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1. Introduction

The notion of n-Lie superalgebra was presented by Daletskii and Kushnire-
vich in [1] as a natural generalization of a notion of n-Lie algebra introduced
by Filippov in 1985 (cf. [2]). Following [3] and [8], we use the terms Filippov
superalgebra and Filippov algebra instead of n-Lie superalgebra and n-Lie
algebra, respectively. Filippov algebras were also known before under the
names Nambu-Lie gebras and Nambu algebras. We may also remark that
Filippov algebras are a particular case of n-ary Malcev algebras (see, for
example, [11]).

This work is one of the first steps on the way of classification of finite-
dimensional simple Filippov superalgebras over an algebraically closed field
of characteristic 0. In [9], finite-dimensional commutative n-ary Leibniz al-
gebras over a field of characteristic 0 were studied by the first author. There
it was shown that there exist no simple ones. The finite-dimensional simple
Filippov algebras over an algebraically closed field of characteristic 0 were
classified earlier by Wuxue in [7]. Notice that an n-ary Leibniz algebra is ex-
actly a Filippov superalgebra with trivial even part, and a Filippov algebra is
exactly a Filippov superalgebra with trivial odd part. Bearing in mind these
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facts, in this article we consider the n-ary Filippov superalgebras with n ≥ 3
and with nonzero even and odd parts. In [10], it was proved that there are
no simple finite-dimensional Filippov superalgebras with multiplication Lie
superalgebra isomorphic to B(0, n) under assumption that a generator of a
module over B(0, n) is even. The case of odd generator requires techniques
different from one that was used in the even case. In the present work we
eliminate the assumption for the generator to be even, and prove a theorem
(analogous to the main theorem of [10]) for the general case.

We start recalling some definitions. An Ω-algebra over a field k is a linear
space over k equipped with a system of multilinear algebraic operations Ω =
{ωi : |ωi| = ni ∈ N, i ∈ I}, where |ωi| denotes the arity of ωi.

An n-ary Leibniz algebra over a field k is an Ω-algebra L over k with one
n-ary operation (x1, . . . , xn) satisfying the identity

((x1, . . . , xn), y2, . . . , yn) =
n∑

i=1

(x1, . . . , (xi, y2, . . . , yn), . . . , xn).

If this operation is anticommutative, we obtain a definition of Filippov
(n-Lie) algebra over a field.

An n-ary superalgebra over a field k is a Z2-graded n-ary algebra L = L0̄⊕L1̄

over k, that is, if xi ∈ Lαi
, αi ∈ Z2, then (x1, . . . , xn) ∈ Lα1+...+αn

. An n-ary

Filippov superalgebra over k is an n-ary superalgebra F = F0̄ ⊕ F1̄ over k
with one n-ary operation [x1, . . . , xn] satisfying the identities

[x1, . . . , xi−1, xi, . . . , xn] = −(−1)p(xi−1)p(xi)[x1, . . . , xi, xi−1, . . . , xn], (1)

[[x1, . . . , xn], y2, . . . , yn] =
n∑

i=1

(−1)pq̄i[x1, . . . , [xi, y2, . . . , yn], . . . , xn], (2)

where p(x) = l means that x ∈ Fl̄, p =
∑n

i=2 p(yi), q̄i =
∑n

j=i+1 p(xj), q̄n = 0.
The identities (1) and (2) are called the anticommutativity and the general-
ized Jacobi identity, respectively. By (1), we can rewrite (2) as follows:

[y2, . . . , yn, [x1, . . . , xn]] =
n∑

i=1

(−1)pqi[x1, . . . , [y2, . . . , yn, xi], . . . , xn], (3)

where qi =
∑i−1

j=1 p(xj), q1 = 0. (Sometimes instead of using the long term
“n-ary superalgebra” we simply say for short “superalgebra”.) If we de-
note by Lx = L(x1, . . . , xn−1) the operator of left multiplication: Lxy =
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[x1, . . . , xn−1, y], then, by (3), we get

[Ly, Lx] =
n−1∑

i=1

(−1)pqiL(x1, . . . , Lyxi, . . . , xn−1), (4)

where Ly is an operator of left multiplication, and p is its parity. (Here and
afterwards, we denote by [ , ] the supercommutator.)

Let L = L0̄ ⊕L1̄ be an n-ary anticommutative superalgebra. A subalgebra
B = B0̄ ⊕B1̄ of the superalgebra L, Bī ⊆ Lī, is a Z2-graded vector subspace
of L which is a superalgebra. A subalgebra I of L is called an ideal if
[I, L, . . . , L] ⊆ I. The subalgebra (in fact, an ideal) L(1) = [L, . . . , L] of L is
called the derived algebra of L. Put L(i) = [L(i−1), . . . , L(i−1)], i ∈ N, i > 1.
The superalgebra L is called solvable if L(k) = 0 for some k. Denote by R(L)
the maximal solvable ideal of L (if exists). If R(L) = 0, then the superalgebra
L is called semisimple. The superalgebra L is called simple if L(1) 6= 0 and
L lacks ideals other than 0 or L.

The article is organized as follows. In the second section, we remind how
to reduce the classification problem of the simple Filippov superalgebras
to some question about Lie superalgebras, using the same ideas as in [7].
We reduce this question to an existence problem for some skewsymmetric
homomorphisms of semisimple Lie superalgebras and their faithful irreducible
modules.

In the last section, we restrict our consideration to the case of Lie superal-
gebra B(0, n) (and an odd generator of a module over B(0, n)) and solve the
existence problem of these skewsymmetric homomorphisms in this case. It
turns out that the required homomorphisms do not exist. Therefore, there
are no simple Filippov superalgebras of type B(0, n) over an algebraically
closed field of characteristic 0, as stated in the main result of this paper
(Theorem 3.1).

In what follows, by Φ we denote an algebraically closed field of character-
istic 0, by F a field of characteristic 0, by k a field and by 〈wυ; υ ∈ Υ〉 a
linear space over a field (the field is clear from the context) generated by the
family of vectors {wυ; υ ∈ Υ}.
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2. Reduction to Lie superalgebras

Let F be a Filippov superalgebra over k. Denote by F∗ (L(F)) the associa-
tive (Lie) superalgebra generated by the operators L(x1, . . . , xn−1), xi ∈ F .
The algebra L(F) is called the algebra of multiplications of F .

Lemma 2.1. ([10]) Given F = F0̄ ⊕F1̄ a simple finite-dimensional Filippov

superalgebra over a field of characteristic 0 with F1̄ 6= 0, the algebra L =
L(F) = L0̄ ⊕ L1̄ has nontrivial even and odd parts.

Theorem 2.1. ([10]) If F is a simple finite-dimensional Filippov superal-

gebra over a field of characteristic 0, then L = L(F) is a semisimple Lie

superalgebra.

Given an n-ary superalgebra A with a multiplication (·, . . . , ·), we have
End(A) = End0̄A ⊕ End1̄A. The element D ∈ Ends̄A is called a derivation

of degree s of A if, for every a1, . . . , an ∈ A, p(ai) = pi, the following equality
holds:

D(a1, . . . , an) =
n∑

i=1

(−1)sqi(a1, . . . , Dai, . . . , an),

where qi =
∑i−1

j=1 pj. We denote by Ders̄A ⊂ Ends̄A the subspace of all
derivations of degree s and set Der(A) = Der0̄A ⊕ Der1̄A. The subspace
Der(A) ⊆ End(A) is easily seen to be closed under the bracket

[a, b] = ab − (−1)deg(a)deg(b)ba,

(known as the supercommutator) and it is called the superalgebra of deriva-

tions of A.
Fix elements x1, . . . , xn−1 ∈ A, i ∈ {1, . . . , n}, and define a transformation

adi(x1, . . . , xn−1) ∈ End(A) by the rule

adi(x1, . . . , xn−1) x = (−1)pqi(x1, . . . , xi−1, x, xi, . . . , xn−1), (5)

where p = p(x), pi = p(xi), qi =
∑n−1

j=i+1 pj.
If, for all i = 1, . . . , n and x1, . . . , xn−1 ∈ A, the transformations

adi(x1, . . . , xn−1) ∈ End(A) are derivations of A, then we call them strictly

inner derivations and A an inner-derivation superalgebra (ID-superalgebra).
Notice that the n-ary Filippov superalgebras and the n-ary commutative
Leibniz algebras are examples of ID-superalgebras.
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Now, let us denote by Inder(A) the linear space spanned by the strictly
inner derivations of A. If A is an n-ary ID-superalgebra, then it is easy to
see that Inder(A) is an ideal of Der(A).

Lemma 2.2. Given a simple ID-superalgebra A over k, the Lie superalgebra

Inder(A) acts faithfully and irreducibly on A.

Let F be an n-ary Filippov superalgebra over k. We point out that the
map ad := adn : ⊗n−1F 7→ Inder(F) satisfies

[D, ad(x1, . . . , xn−1)] =
n−1∑

i=1

(−1)pqiad(x1, . . . , xi−1, Dxi, xi+1, . . . , xn−1),

for all D ∈ Inder(F), and the associated map

(x1, . . . , xn) 7→ ad(x1, . . . , xn−1) xn,

from ⊗nF to F is Z2-skewsymmetric. If we consider F as an Inder(F)-
module then ad induces an Inder(F)-module morphism from the (n− 1)-th
exterior power ∧n−1F to Inder(F) (which we also denote by ad) such that
the map (x1, . . . , xn) 7→ ad(x1, . . . , xn−1) xn is Z2-skewsymmetric. (Note that
in ∧n−1F we have: x1 ∧ . . . ∧ xi ∧ xi+1 ∧ . . . ∧ xn−1 = −(−1)pipi+1x1 ∧ . . . ∧
xi+1 ∧ xi ∧ . . . ∧ xn−1.) Conversely, if L is a Lie superalgebra, V is an L-
module, and ad is an L-module morphism from ∧n−1V 7→ L such that the
map (v1, . . . , vn) 7→ ad(v1∧ . . .∧vn−1) vn from ⊗nV to V is Z2-skewsymmetric
(we call the homomorphisms of this type skewsymmetric), then V becomes
an n-ary Filippov superalgebra by putting

[v1, . . . , vn] = ad(v1 ∧ . . . ∧ vn−1) vn.

Therefore, we have a correspondence between the set of n-ary Filippov su-
peralgebras and the set of the triples (L, V, ad), satisfying the conditions
above.

We shall assume that all vector spaces appearing in the following in this
section are finite-dimensional over F .

If F is a simple n-ary Filippov superalgebra, then Theorem 2.1 establishes
that the Lie superalgebra Inder(F) is semisimple, and F is a faithful and
irreducible Inder(F)-module. Moreover, the Inder(F)-module morphism
ad : ∧n−1F 7→ Inder(F) is surjective.

Conversely, if (L, V, ad) is a triple such that L is a semisimple Lie su-
peralgebra over F , V is an faithful irreducible L-module, ad is a surjective
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L-module morphism from ∧n−1V onto the adjoint module L and the map
(v1, . . . , vn) 7→ ad(v1 ∧ . . . ∧ vn−1) vn from ⊗nV to V is Z2-skewsymmetric,
then the corresponding n-ary Filippov superalgebra is simple. A triple with
these conditions will be called a good triple. Thus, the problem of determin-
ing the simple n-ary Filippov superalgebras over F can be translated to that
of finding the good triples.

3. Lie superalgebra B(0, n)
In this section, we recall some notations and results from [5, 6] on the Lie

superalgebra B(0, n) (and its irreducible faithful finite-dimensional represen-
tations) and give some explicit constructions which shall be used later on.
Then we apply these results to the study of the simple n-ary Filippov super-
algebras of type B(0, n). Let us start recalling the definition of an induced
module.

Let L be a Lie superalgebra, U(L) its universal enveloping superalgebra [5],
H a subalgebra of L, and V an H-module. The module V can be extended to
U(H)-module. We consider the Z2-graded space U(L)⊗U(H) V , the quotient
space of U(L) ⊗ V by the linear span of the elements of the form gh ⊗ v −
g ⊗ h(v), g ∈ U(L), h ∈ U(H). This space can be endowed with a structure
of a L-module as follows: g(u ⊗ v) = gu ⊗ v, g ∈ L, u ∈ U(L), v ∈ V . The
so-constructed L-module is said to be induced from the H-module V and is
denoted be IndLHV .

From now on, we denote by G a contragredient Lie superalgebra over Φ
and consider it with the “standard” Z-grading (cf. [5, Sections 5.2.3 and
2.5.7]).

Let G = ⊕i≥−dGi. Set H = (G0)0̄ = 〈h1, . . . , hr〉, N+ = ⊕i>0Gi and
B = H⊕N+. Let Λ ∈ H∗, Λ(hi) = ai ∈ Φ, and let 〈vΛ〉 be an one-dimensional
B-module such that N+(vΛ) = 0, hi(vΛ) = aivΛ. Let VΛ = IndG

B 〈vΛ〉 /IΛ,
where IΛ is the (unique) maximal submodule of the G-module IndG

B 〈vΛ〉.
Then Λ is called the highest weight of the G-module VΛ. Numbers ai are
called the numerical marks of Λ. By [5], every faithful irreducible finite-
dimensional G-module may be obtained this way. Note that now we suppose
that 1 ⊗ v ∈ V1̄ which provides a Z2-graded structure of V .

Lemma 3.1. Let V be a module over a Lie superalgebra G, let V = ⊕Vγi
be

its weight decomposition, and let φ be a homomorphism from ∧mV into G.
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Then, for every vi ∈ Vγi
,

φ(v1, . . . , vm) ∈ Gγ1+...+γm
, if γ1 + . . . + γm is a root of G

φ(v1, . . . , vm) = 0, otherwise

.

Proof. We only have to consider the action of an element h of a Cartan
subalgebra of G on φ(v1, . . . , vm).

Consider the algebra G = B(0, 1). It consists of the matrices of type




0 x y
y z u
-x v -z



 .

Choose the classical basis of G0̄: {h = e22 − e33, g−2δ = e32, g2δ = e23}, and of
G1̄: {g−δ = e12 − e31, gδ = e13 + e21}. Here H = 〈h〉 is a Cartan subalgebra
of G, and δ ∈ H∗ is such that δ(h) = 1. We have

G = 〈g−2δ〉 ⊕ 〈g−δ〉 ⊕ 〈h〉 ⊕ 〈gδ〉 ⊕ 〈g2δ〉 =
2∑

i=−2

Gi.

This gives the canonical Z-grading of G. Therefore,

B = 〈h, gδ, g2δ〉 ,

U(B) =
〈

hk1gk2

2δg
ǫ
δ : ki ∈ N0, ǫ ∈ {0, 1}

〉

,

U(G) =
〈

hk1gk2

2δg
k3

−2δg
ǫ1
δ gǫ2

−δ : ki ∈ N0, ǫi ∈ {0, 1}
〉

.

Note some relations in the universal enveloping algebra U(G):

g2δg−2δ = g−2δg2δ + h, gδg−2δ = g−2δgδ + g−δ, g−δg−2δ = g−2δg−δ,

g2δg−δ = g−δg2δ − gδ, gδg−δ + g−δgδ = h, g−δg−δ = −g−2δ.

Let Λ(h) = a ∈ Φ and UΛ = IndG
B 〈vΛ〉. Set v = vΛ. It is clear that UΛ has

the following basis: {vk = gk
−2δ ⊗ v, wm = gm

−2δg−δ ⊗ v; k, m ∈ N0}. Using the
relations in U(G), we obtain the following action of the basis elements of G
on UΛ:
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hvk = (a − 2k)vk, hwk = (a − 2k − 1)wk,

g2δvk = k(a − k + 1)vk−1, g2δwk = k(a − k)wk−1,

g−2δvk = vk+1, g−2δwk = wk+1,

gδvk = kwk−1, gδwk = (a − k)vk,

g−δvk = wk, g−δwk = −vk+1.

One can see that UΛ has a finite-dimensional quotient module if and only
if a = k − 1 for some k ∈ N. In this case, IΛ = {vj, wi : j ≥ k, i ≥ k − 1} and
dim VΛ = UΛ/IΛ = 2k − 1.

Definition 3.1. Given a Lie superalgebra G, we say that a Filippov super-
algebra F has type G if Inder(F) ∼= G.

Lemma 3.2. There are no simple finite-dimensional Filippov superalgebras

of type B(0, 1) over Φ.

Proof. Assume the contrary. Let F be a simple (n+1)-ary finite-dimensional
Filippov superalgebra of type B(0, 1) over Φ. Let G = B(0, 1) and V = VΛ =
V (k) be a faithful irreducible G-module with the highest weight Λ, Λ(h) = a,
a = k − 1 ∈ N0. Then k 6= 1 (i.e., a 6= 0), since otherwise dim V = 1 and F
is either a Filippov algebra or an n-ary Leibniz algebra. Since φ is surjective,
there are ui ∈ Vγi

such that φ(u1 ∧ . . . ∧ un) = h (in what follows, we denote
φ(u1 ∧ . . . ∧ un) by φ(u1, . . . , un)). Then

φ(u1, . . . , un)v0 = hv0 = av0.

Since φ is skewsymmetric, we have |−γi+a| ≤ 2 for every i, i.e., |−γi+k−1| ≤
2. Therefore, we have either k = 2 or k = 3.

If k = 2 then a = 1 and V = 〈v0〉 ⊕ 〈w0〉 ⊕ 〈v1〉 = V1 ⊕ V0 ⊕ V−1. Then
there are ui ∈ Vγi

such that φ(u1, . . . , un) = gδ. By [10], we may assume that
1 ⊗ v is odd. Since the action of gδ on g−δ ⊗ v provides a nonzero element
and g−δ ⊗ v is even, ui 6= g−δ ⊗ v, for i = 1, . . . , n. Henceforth, we have
n = 2k + 1, k ≥ 1, and

A := φ(1 ⊗ v, 1 ⊗ v, g−2δ ⊗ v
k
) = αgδ

for some 0 6= α ∈ Φ (where u, v
k

means that the elements u and v are
k-times repeating: u, v, . . . , u, v

︸ ︷︷ ︸

2k

, and we omit the index k when its value is

clear from the context).
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Multiplying the latter equality by g−δ, we have

(k + 1)φ(g−δ ⊗ v, 1 ⊗ v, g−2δ ⊗ v
k
) = αh.

Repeating this procedure with gδ, we come to (k + 1)A = −αgδ and A = 0,
which is a contradiction.

If k = 3 then a = 2, γi = 0 for all i, and

V = 〈v0〉 ⊕ 〈w0〉 ⊕ 〈v1〉 ⊕ 〈w1〉 ⊕ 〈v2〉 = V2 ⊕ V1 ⊕ V0 ⊕ V−1 ⊕ V−2.

Therefore, ui = v1 and φ(v1, . . . , v1) = αh for some 0 6= α ∈ Φ. Multi-
plying this equality twice by gδ, we obtain nφ(w0, v1, . . . , v1) = −αgδ and
nφ(v0, v1, . . . , v1) = −αg2δ. Acting with both sides of φ(v1, . . . , v1) = αh on
v0 and of nφ(v0, v1, . . . , v1) = −αg2δ on v1, we come to

[v1, . . . , v1, v0] = 2αv0 and n[v0, v1, . . . , v1] = −2αv0.

Therefore, n = −1, which gives again a contradiction.

Let G be a contragredient Lie superalgebra of rank n, U = IndG
B 〈vΛ〉, and

V = VΛ = U/N be a finite-dimensional representation of G, where N = IΛ

is a maximal proper submodule of the G-module U . Let G = ⊕αGα be a
root decomposition of G relative to a Cartan subalgebra H. Denote by A
the following set of roots: A = {α : gα /∈ B}.

Lemma 3.3. Let gα ∈ Gα and gα ⊗ v 6= 0 (v = vΛ). Then

gj
α ⊗ v ∈ U∑n

i=1
(jα(hi)+Λ(hi))δi

for all j ∈ N, and there exists a minimal positive integer k ∈ N such that

gk
α ⊗ v ∈ N and the set Eα,k = {1 ⊗ v, gα ⊗ v, . . . , gk−1

α ⊗ v} is linearly

independent in V . More, setting h = [g−α, gα], we have:

1. Λ(h) = − (k−1)α(h)
2 if either gα ∈ G0̄ or k odd;

2. α(h) = 0 if gα ∈ G1̄ and k even.

Proof. Using induction, the first inclusion is clear. Suppose that there is
no k ∈ N with these properties. Construct a basis of V starting with the
elements 1 ⊗ v, gα ⊗ v, g2

α ⊗ v, . . .. Since dim V < ∞, there is a minimal

number k such that u =
∑k

i=0 βig
i
α ⊗ v ∈ N and βk 6= 0. Choose h ∈ H such

that α(h) 6= 0. We have hu =
∑k

i=0 βiγig
i
α⊗v ∈ N , where γi = iα(h)+Λ(h).

If γk = 0 then γi = 0 for some i < k, which is impossible. Therefore,
u − 1

γk
hu ∈ N and γi = γk, which is again impossible. Thus, there exists
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k ∈ N such that Eα,k is linearly independent in V and gk+i
α ⊗ v ∈ N for every

i ∈ N ∪ {0}. Moreover, since gk
α ⊗ v ∈ N , in case gα ∈ G0̄ we have

g−αgk
α ⊗ v = k(α(h)(k − 1)/2 + Λ(h))gk−1

α ⊗ v ∈ N,

where h = [g−α, gα]. Therefore, Λ(h) = − (k−1)α(h)
2 . The remaining cases may

be considered analogously. Namely, if k = 2s and gα ∈ G1̄, then g−αgk
α ⊗ v =

sα(h)gk−1
α ⊗ v and α(h) = 0. If k = 2s + 1 and gα ∈ G1̄, then g−αg2s+1

α ⊗ v =

(Λ(h) + sα(h))g2s
α ⊗ v and Λ(h) = − (k−1)α(h)

2 .

Remark 3.1. Note that if we start with a root β, then there exists s ∈ N

such that Eβ,s is linearly independent, but Eα,k ∪ Eβ,s may not be linearly
independent.

Recall that a set E is called a pre-basis of a vector space W if 〈E〉 = W .
Let {gk1

α1
. . . gks

αs
; ki ∈ N0, αi ∈ A} be a basis of V . As we have seen above,

for every i = 1 . . . , s, there exists a minimal number pi ∈ N such that
gpi

αi
∈ N . Using the induction on the word length, it is easy to show that

{gk1

α1
. . . gks

αs
; ki ∈ N0, ki < pi, αi ∈ A} is a pre-basis of V/N .

Consider the algebra B(0, n). It consists of the matrices of type





0 x y
y⊤ A B
−x⊤ C −A⊤



 ,

where A is a (n×n)-matrix, B and C are some symmetric (n×n)-matrices,
and x, y are some (n × 1)-matrices.

Choose the following generators of G = B(0, n) [4]:

hi = ei+1,i+1 − ei+n+1,i+n+1

hn = en+1,n+1 − e2n+1,2n+1

gδi+1−δi
= ei+2,i+1 − ei+n+1,i+n+2

gδi−δi+1
= ei+1,i+2 − ei+n+2,i+n+1

i = 1, . . . , n − 1







∈ B(0, n)0̄

and

g−δn
= e1,n+1 − e2n+1,1

gδn
= en+1,1 + e1,2n+1

}

∈ B(0, n)1̄.
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We write out also some elements and multiplications that will be needed
in the following:

gδi
= ei+1,1 + e1,n+i+1 g−δi

= e1,i+1 − en+i+1,1 g2δi
= ei+1,n+i+1

g−2δi
= en+i+1,i+1 [g2δi

, g−2δi
] = [gδi

, g−δi
] = hi [gδi

, g−2δi
] = g−δi

[g2δi
, g−δi

] = −gδi

gδi−δj
= ei+1,j+1 − ej+n+1,n+i+1 g−δi−δj

= en+i+1,j+1 + en+j+1,i+1

gδi+δj
= ej+1,n+i+1 + ei+1,n+j+1

[
gδi+δj

, g−δi−δj

]
= hi + hj[

gδj−δi
, gδi−δj

]
= hj − hi

[
g2δi

, g−δi−δj

]
= gδi−δj[

g−δi
, g−δj

]
= −g−δi−δj

[
gδi

, gδj

]
= gδi+δj[

g−δj+δi
, g−2δi

]
= −g−δi−δj

[
gδi

, g−δi−δj

]
= g−δj[

gδk−δi
, g−δk−δj

]
= −g−δi−δj

[
gδj+δi

, g−2δi

]
= g−δi+δj

The space H = 〈hi : i = 1, . . . , n〉 is a Cartan subalgebra of B(0, n), and
δi, i = 1, . . . , n, are the linear functions on H such that δi(hj) = δij, where
δij is the Kronecker delta. Then ∆ = ∆0 ∪ ∆1 is a root system for B(0, n),
where ∆0 = {0,±δi ± δj} and ∆1 = {±δi}, i, j = 1, . . . , n. The roots
{δi − δi+1, i = 1, . . . , n − 1, δn} are simple. The conditions Gδk

⊆ Gn−k+1,
H ⊆ G0 and G−δk

⊆ G−n+k−1 provide the standard grading of B(0, n) [5,
Section 5.2.3]. The negative part of this grading is G−δi−δj

for every i, j;
Gδi−δj

for i > j, and G−δi
for every i. Henceforth, the set

E = {gk1

δn−δn−1
. . . g

kn−1

δn−δ1
gkn

δn−1−δn−2
. . . gks

δ2−δ1
g

ks+1

−2δn
g

ks+2

−δn−δn−1

. . . gkr

−2δ1
gǫn

−δn
. . . gǫ1

−δ1
⊗ v : ki ∈ N, ǫi ∈ Z2} (6)

is a basis of the induced module M = IndG
B 〈vΛ〉 (v = vΛ).

For α ∈ ∆ and w ∈ E , we denote by θ(α, w) the degree of the element gα

in w. For example, θ(−2δ1, w) = kr, where w from (6). By Lemmas 3.1 and
3.3, it is easy to obtain the following

Lemma 3.4. Given w ∈ E, γ(w) =
∑n

i=1 γi(w)δi is a weight of M , where

γi(w) =
∑

j<i

θ(δi − δj, w) −
∑

j>i

θ(δj − δi, w) −
∑

j 6=i

θ(−δj − δi, w)

− θ(−δi, w) − 2θ(−2δi, w) + Λ(hi). (7)

Let V be an irreducible module over G = B(0, n) with the highest weight
Λ, Λ(Hi) = bi (here Hi are the elements of the standard basis of H (cf. [5]),
Hi = hi − hi+1, Hn = 2hn). By [5], bi ∈ N, bn ∈ 2N. It is possible to check
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that ai := Λ(hi) = (
∑n−1

j=i bj) + bn/2 ≥ 0, i = 1, . . . , n− 2, an−1 := Λ(hn−1) =
bn−1 + bn/2 ≥ 0, an := Λ(hn) = bn/2 ≥ 0, and a1 ≥ . . . ≥ an ≥ 0. We see
that the weight Λ can be defined by means of the n-tuple (a1, . . . , an), with
ai ∈ N0, i = 1, . . . , n, such that a1 ≥ . . . ≥ an ≥ 0 and Λ(hi) = ai. Denote
Λ = (a1, . . . , an).

Before proving the main theorem, we present some technical lemmas on
irreducible modules of a special type (a1 = 1) over B(0, n).

Lemma 3.5. Let V = VΛ be an irreducible module over B(0, n) with Λ =
(1, a2, . . . , an). Then we have the following:

1) g2
−2δ1

⊗ v = 0; 2) g−2δ1
g−δ1

⊗ v = 0; 3) g3
−δ1

⊗ v = 0 (g2
−δ1

⊗ v 6= 0);

4) g−2δ1
gδj−δ1

⊗ v = 0; 5) g−2δ1
g−δj−δ1

⊗ v = 0; 6) g−δ1
gδj−δ1

⊗ v = 0;

7) gδi−δ1
gδj−δ1

⊗ v = 0; 8) g−δi−δ1
g−δj−δ1

⊗ v = −g−2δ1
g−δj−δi

⊗ v;

9) g2
−δ1

⊗ v = −g−2δ1
⊗ v; 10) gδi−δ1

g−δj−δ1
⊗ v = −g−2δ1

gδi−δj
⊗ v (i 6= j);

11) gδi−δ1
g−δi−δ1

⊗ v = −(1 + ai)g−2δ1
⊗ v;

12) g−δi−δ1
g−δ2

⊗ v 6= 0 (if a2 = 1); 13) gδ2−δ1
g−δ2

⊗ v 6= 0 (if a2 = 1);

14) gδi−δ1
g−δ2

⊗ v 6= 0 (if a2 = 1, ai = 0).

Proof. 1) By Lemma 3.3, if α = −2δ1, then h = [g2δ1
, g−2δ1

] = h1, 1 = Λ(h) =
k − 1 and k = 2.

2) By 1), gδ1
g2
−2δ1

⊗ v = 0. Since [gδ1
, g−2δ1

] = g−δ1
, we have (g−2δ1

gδ1
+

g−δ1
)g−2δ1

⊗v = g2
−2δ1

gδ1
⊗v+g−2δ1

g−δ1
⊗v+g−δ1

g−2δ1
⊗v = 2g−2δ1

g−δ1
⊗v = 0.

3) It is easy to see that g−δ1
⊗ v 6= 0, h = [gδ1

, g−δ1
] = h1, −δ1(h1) 6= 0.

Therefore, by Lemma 3.3, k is odd and 1 = Λ(h1) = − (k−1)
2 (−1), k = 3.

4) We have [gδ1+δj
, g−2δ1

] = gδj−δ1
and gδ1+δj

g2
−2δ1

⊗ v. Hence, (g−2δ1
gδ1+δj

+
g−δ1+δj

)g−2δ1
⊗ v = g−2δ1

g−δ1+δj
⊗ v + g−δ1+δj

g−2δ1
⊗ v = 0.

5) Since [gδ1−δj
, g−2δ1

] = −g−δj−δ1
and gδ1−δj

g2
−2δ1

⊗ v = 0, we have
(g−2δ1

gδ1−δj
− g−δj−δ1

)g−2δ1
⊗ v = −2g−2δ1

g−δj−δ1
⊗ v = 0.

6) gδ1+δi
g−2δ1

g−δ1
⊗ v = 0 ⇒ g−δ1+δi

g−δ1
⊗ v = 0.

7) gδi
g−δ1

gδj−δ1
⊗ v = gδi−δ1

gδj−δ1
⊗ v = 0.

8) By 5), gδ1−δi
g−2δ1

g−δj−δ1
= 0. Since [gδ1−δi

, g−2δ1
] = −g−δi−δ1

,
(g−2δ1

gδ1−δi
− g−δ1−δi

)g−δ1−δj
⊗ v = 0. Since [gδ1−δi

, g−δ1−δj
] = −g−δi−δj

,
(−g−2δ1

g−δi−δj
− g−δ1−δi

g−δ1−δj
) ⊗ v = 0.

9) Since [gδ1
, g−2δ1

] = g−δ1
and [gδ1

, g−δ1
] = h1, we have 0 = gδ1

g−δ1
g−2δ1

⊗v =
(−g−δ1

gδ1
+ h1)g−2δ1

⊗ v = −g2
−δ1

⊗ v − g−2δ1
⊗ v.
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10) We have to apply gδ1+δi
to 5) and use [gδ1+δi

, g−2δ1
] = g−δ1+δi

,
[gδ1+δi

, g−δ1−δj
] = gδi−δj

.
11) In 10) we have to use [gδ1+δi

, g−δ1−δi
] = h1 + hi instead of the last

equality.
12) If i 6= 2 and we suppose that g−δ1−δi

g−δ2
⊗ v = 0, then the action with

gδ2
gives g−δ1−δi

⊗v = 0, which is a contradiction. If g−δ1−δ2
g−δ2

⊗v = 0, then
the action with gδ1

leads to g2
−δ2

⊗ v = 0, again a contradiction.
13) If g−δ1+δ2

g−δ2
⊗v = 0, then 0 = g−δ1+δ2

g−δ2
⊗v = g−δ2

g−δ1+δ2
⊗v−g−δ1

⊗v,
which is a contradiction.

14) If ai = 0 and g−δ1+δi
g−δ2

⊗v = 0, then the action with gδ2
gives g−δ1+δi

⊗
v = 0, which is a contradiction.

Corollary 3.1. Under the assumptions of Lemma 3.5 and a2 = 0,

{g−2δ1
⊗ v, g−δ1±δi

⊗ v, g−δ1
⊗ v, 1 ⊗ v}

is a pre-basis of V .

Proof. Note that in this case g−δi+α ⊗ v = 0, for α ∈ {0,±δj} \ {δi}.

Lemma 3.6. Under the assumptions of Lemma 3.5,

dim V−kδ1+
∑n

i=2
αiδi

= 0,

when k ≥ 2, αi ∈ Φ.

Proof. By Lemma 3.5, gs
−2δ1

appears in the expression (6) for a nonzero
element of V only if s = 1, and in this case we can not find the element of
the types g−δ1+δi

, g−δ1−δi
, g−δ1

in this expression. By the same reason, in
such expression (6), we may find g−δ1

only in degree 1, and it is not possible
to find two elements of the type g−δ1−δi

(or g−δ1+δi
). From here the lemma

follows.

Now we are in conditions to state and prove the main result of this paper.

Theorem 3.1. There are no simple finite-dimensional Filippov superalgebras

of type B(0, n) over Φ.

Proof. Let G = B(0, n), let V be a finite-dimensional irreducible module
over G with the highest weight Λ = (a1, . . . , an), and let φ be a surjective
skewsymmetric homomorphism from ∧mV on G. Then there exist ui ∈ Vγi

such that

φ(u1, . . . , um) = g−2δ1
. (8)
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If u ∈ Vγ (or Gγ) and γ =
∑

αiδi, then we denote by δi(u) the element αi, and
we denote by δ(u) the element α1. By Lemma 3.4, δ(ui) = a1 − ki for some
ki ∈ N0. By Lemma 3.1, ma1−

∑m
i=1 ki = −2. Since g−2δ1

(1⊗v) 6= 0 and φ is
a skewsymmetric homomorphism, φ(u1, . . . , um)(1⊗v) = g−2δ1

(1⊗v) 6= 0 and
φ(u1, . . . , ui−1, 1 ⊗ v, ui+1, . . . , um) 6= 0. Since δ(1 ⊗ v) = a1, the inequality
|ki − 2| ≤ 2 follows. Let a1 ≥ 2. By Lemma 3.3, we have

φ(u1, . . . , um)(ga1−1
−2δ1

⊗ v) = g−2δ1
(ga1−1

−2δ1
⊗ v) 6= 0

and, analogously, |ki − 2a1| ≤ 2. From these inequalities we see that the
required skewsymmetric homomorphism does not exist if a1 ≥ 4, and, in the
case a1 = 3, we have the conditions ki = 4 for all i.

Consider the case a1 = 3. In this case, by (8), we have φ(u1, u2) = g−2δ1
,

where δ(u1) = δ(u2) = −1. Since δ(1 ⊗ v) = 3 and g−2δ1
(1 ⊗ v) 6= 0, we have

φ(1⊗v, u2)
.
= g2δ1

. (In what follows, the symbol
.
= denotes an equality up to a

nonzero coefficient.) Since g2δ1
(g−2δ1

⊗v) 6= 0, we have φ(1⊗v, g−2δ1
⊗v) 6= 0,

δ(1 ⊗ v) = 3 and δ(g−2δ1
⊗ v) = 1, which is a contradiction.

Consider the case a1 = 2. By [10], we may assume that 1 ⊗ v is odd. Let
φ(u1, . . . , um) = g−δ1

, ui ∈ Vγi
. Then

∑m
i=1 δ(ui) = −1. Since

φ(u1, . . . , um)(1 ⊗ v) = g−δ1
⊗ v 6= 0, (9)

we have |
∑m

i=1 δ(ui)−δ(uj)+2| ≤ 2, for every j = 1, . . . , m, and |1−δ(uj)| ≤
2. On the other hand, since φ(u1, . . . , um)(g3

−δ1
⊗ v) = g4

−δ ⊗ v 6= 0 and

δ(g3
−δ1

⊗ v) = −1, we have |2 + δ(uj)| ≤ 2. Therefore, δ(uj) = 0,−1 and we
may assume that δ(u1) = −1, δ(ui) = 0, i ≥ 2. By (9), φ(1⊗ v, u2, . . . , um)

.
=

g2δ1
, and

φ(1 ⊗ v, u2, . . . , um)(g−2δ1
⊗ v)

.
= g2δ1

(g−2δ1
⊗ v) = 2(1 ⊗ v).

Thus, we may interchange, for example, the elements u2 and g−2δ1
⊗ v. Re-

peating this process, we obtain

φ(1 ⊗ v, g−2δ1
⊗ v)

.
= g2δ1

.

Multiplying on g−δ1
, we come to the following

φ(g−δ1
⊗ v, g−2δ1

⊗ v) − (m − 1)φ(1 ⊗ v, g−δ1
g−2δ1

⊗ v, g−2δ1
⊗ v)

.
= gδ1

.

Acting with the both sides of the last equality on g−δ1
⊗ v, we arrive at

φ(1 ⊗ v, g−δ1
g−2δ1

⊗ v, g−2δ1
⊗ v)(g−δ1

⊗ v) 6= 0
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and

A := φ(1 ⊗ v, g−δ1
⊗ v, g−2δ1

⊗ v) 6= 0.

It remains to notice that δ(A) = 3, which is a contradiction.

Lemma 3.7. There are no good triples of the type (G, V, φ), where G =
B(0, n), V = VΛ, Λ = (1, 1, a3, . . . , an).

Proof. By above, there are the elements ui ∈ Vγi
such that φ(u1, . . . , um) =

g−2δ1
, where −3 ≤ δ(ui) ≤ 1. By Lemma 3.6, −1 ≤ δ(ui) ≤ 1. If δ(ui) = 1

for some i, then the action by the last equality on g−δ2
⊗ v twice gives a

contradiction (note that g−δ2
⊗ v is an even element). Therefore, we come

to the case φ(u1, . . . , um) = g−2δ1
, where δ(u1) = δ(u2) = −1, δ(ui) =

0, i > 2. The action on g−δ2
⊗ v gives w

.
= φ(u1, u2, g−δ2

⊗ v, u4, . . . , um) ∈
{g−δ1

, g−δ1−δi
, g−δ1+δi

}. If w ∈ {g−δ1
, g−δ1−δi

} then the action on g−δ2
⊗ v

leads to a contradiction, by Lemma 3.5. Thus, w
.
= g−δ1+δi

, i 6= 2, ai = 1,
using Lemma 3.5 and the action on g−δ2

⊗ v. We have proved that if w
.
=

φ(u1, u2, g−δ2
⊗v, u4, . . . , um) 6= 0, where δ(u1) = δ(u2) = −1, δ(ui) = 0, i > 3,

then w
.
= g−δ1+δi

, i 6= 2, ai = 1. Applying the equality w
.
= g−δ1+δi

to
g−δ1−δi

⊗ v, we have w
.
= φ(u1, u2, g−δ2

⊗ v, g−δ1−δi
⊗ v, u5, . . . , um) 6= 0 by

Lemma 3.5. By above, w
.
= g−δ1+δj

, j 6= 2, aj = 1. Repeating this process,
we arrive at

v0 = φ(u1, u2, g−δ2
⊗ v, g−δ1−δi3

⊗ v, . . . , g−δ1−δim
⊗ v)

.
= g−δ1+δi2

, (10)

where ij 6= 2 and aij = 1. If m ≥ 4 then applying (10) to g−δ1−δi2
⊗ v we

obtain

v1 = φ(u1, u2, g−δ1−δi2
⊗ v, . . . , g−δ1−δim

⊗ v)
.
= g−2δ1

and δ2(v1) = m−2+δ2(u1)+δ2(u2) = 0, δ2(v0) = 2−m+m−3 = −1, which
is a contradiction. If m = 3 then v2 = φ(u1, u2, g−δ2

⊗ v) = g−δ1+δi
, i 6= 2.

Replacing u = g−δ2
⊗ v by g−δ1−δi

⊗ v = u′, we obtain δ2(u1) + δ2(u2) = −1
(note that δ2(u) = 1). Therefore, δ2(v2) = −1, which leads to a contradiction.

Consider now the case m = 2. In this case, we have φ(u1, u2) = g−2δ1
. We

may assume that δ2(u2) ≥ 0. We have φ(u1, u2)(1 ⊗ v) 6= 0. It follows from
here that

w = φ(1 ⊗ v, u2) ∈ {g2δ2
, gδ2

, gδ2+δi
, gδ2−δi

}.

If w ∈ {g2δ2
, gδ2

, gδ2−δi
}, then wg−2δ2

⊗ v 6= 0 and we have

w1 = φ(1 ⊗ v, g−2δ2
⊗ v)

.
= g2δ1

.
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Therefore, (g−δ1
w1)g−δ1

⊗ v 6= 0 and w2 = φ(1 ⊗ v, g−δ1
⊗ v) 6= 0, δ(w2) =

1, δ2(w2) = 2, which is a contradiction. Thus, w
.
= gδ2+δi

. In this case,
wg−δ2−δi

⊗ v 6= 0 and u = φ(1 ⊗ v, g−δ2−δi
⊗ v) 6= 0. Hence, i = 1, a3 = . . . =

an = 0 and u
.
= gδ1+δ2

. Furthermore,

g−δ1
u = φ(g−δ1

⊗ v, g−δ2−δ1
⊗ v) − φ(1 ⊗ v, g−δ1

g−δ2−δ1
⊗ v) := u1 − u2

.
= gδ2

and (g−δ1
u)(g−δ2

⊗ v) 6= 0 (observe that if u2g−δ2
⊗ v 6= 0, then u′′ = φ(1 ⊗

v, g−δ2
⊗ v) 6= 0 and δ(u′′) = 2, δ2(u

′′) = 1). Therefore,

u′ = φ(g−δ1
⊗ v, g−δ2

⊗ v) = gδ1+δ2
.

We have

(g−δ2
u′)g−δ1

⊗ v 6= 0, u3 = φ(g−δ2
g−δ1

⊗ v, g−δ2
⊗ v)

.
= gδ1

,

u3g−2δ1
⊗ v 6= 0, u4 = φ(g−2δ1

⊗ v, g−δ2
⊗ v) 6= 0, u4

.
= gδ2

and u4g−δ2
⊗ v 6= 0, which is again a contradiction.

Thus, we have come to the case Λ = (1, 0, . . . , 0). In this case, there are
some weight vectors ui ∈ V such that

φ(u1, . . . , um) = h1 +
n∑

i=2

αihi. (11)

Notice that we may assume that ui 6= g−δ1
⊗ v. Act on (11) with gδ1

and use
Corollary 3.1. If δ(ui) = 1, then ui

.
= 1 ⊗ v and gδ1

ui = 0. If δ(ui) = 0, then
ui ∈ 〈g−δ1±δi

⊗ v, i 6= 1〉 and gδ1
ui = 0. If δ(ui) = −1, then ui

.
= g−2δ1

⊗ v and
gδ1

ui
.
= g−δ1

⊗ v. Finally, considering the action on g−δ1
⊗ v, we come to a

contradiction.
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