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bution and intermixing of fibres in a paper sheet), plays a central role in paper
products, and is usually evaluated off-line, with a significant delay relative to the high production rates
achieved in modern paper machines. In this paper, we address an approach for evaluating and monitor paper
formation using images acquired with an especially designed sensor, in-line, in-situ and in real time. The
methodology essentially consists of applying wavelet texture analysis to raw images, in order to compute a
wavelet signature for each image, based on which their discrimination, according to the formation quality
level, can be made. A PCA analysis of such features confirms the different formation quality levels defined a
priori after visual inspection, and, furthermore, suggests a new subclass for abnormal samples, related to the
bulkiness of fibre flocks. A multivariate statistical process control framework, based on such PCA description
(PCA-MSPC), is proposed to monitor formation quality, which provides quite good results when applied to
the available images, as analyzed with the ROC curve for the method and confirmed with a Monte Carlo
simulation study using subimages with 1/4 of the size of the original ones.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

Paper surface properties play a key role in the definition of the
overall quality level of fine paper products, affecting features such as
general appearance (optical properties, flatness, etc.), printability (e.g.
the absorption of ink) and friction (related to the ability of feeding
paper to printers without causing jams, as well as to the wearing of
printer components). A central aspect of paper surface quality is the
level of uniformity in the way fibres are distributed across its surface,
known as paper formation. A paper with good formation has a surface
free of fibre flocks or of any high fibre density regions, whereas one
having bad formation does present a strong and noticeable hetero-
geneity in the surface distribution of fibres. Papers with a poor
formation can cause many problems to the final user. For instance, the
average strength of a sheet with poor formation is less than that for a
comparable sheet with a better formation, the quality of printing
operations is also inferior, and the coating consumption increases as
paper formation gets worse. For these reasons, it constitutes a matter
of great concern to paper producers, being routinely measured in the
quality control labs in modern paper production facilities, either
through visual inspection and comparison with a series of standards
representing different quality levels of formation or, more frequently,
using instrumentation that scan the paper sheet and measure the
l rights reserved.
variation in light transmission through it. However, such an inspection
activity is carried too late in the process and any abnormality is only
detected after large amounts of paper have already been produced (a
modern paper machine can produce paper at a linear speed of
approximately 100 km/h, meaning that, in a single day of nominal
production, a 9mwide paperweb is produced that covers the distance
from Moscow to Rome). Thus, it is both opportune and of foremost
importance to move such an inspection activity to the production
facilities, where paper is actually being made, turning it into a fast and
effective method for performing on-line process monitoring of paper
formation. This is not however an easy task to accomplish and relevant
technological challenges must be properly dealt with first, before such
a system can be implemented. One aspect, for instance, is the way
quality images are extracted over a fast moving web in the wire
section of a paper machine, in a high-humidity environment, where
drops erratically fly around, potentially interfering with the camera
objective. In this paper, we analyze a set of real images acquired with
an experimental apparatus developed at Voith Paper Automation that
successfully circumvent these difficulties, and evaluate the potential
for conducting image-based process monitoring as well as product
evaluation and classification activities, in-line, in situ and in real time,
with such technology.

Image processing is a mature field of knowledge, with many
powerful techniques developed for dealing with issues such as image
enhancement (so that image features become better resolved and
clear, by adjusting contrast and brightness, enhancing object edges,
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smoothing noise, etc.) and segmentation (partitioning the image in
meaningful compartments, usually called regions or segments,
through pixel, region, edge or model-based segmentation algorithms),
which quite often are preliminary stages for further qualitative or
quantitative analysis [1–3]. Another wave of applications that has
emerged during the last 15 years or so, but gaining significant
momentum in the last 5 years, is linked to the application of
multivariate statistical analysis techniques, such as principal compo-
nent analysis (PCA), along with other multiway, regression (partial
least squares, PLS) and classification (PLS-DA) extensions, as well as
other data processing techniques (e.g., transforms such as wavelets
and Fourier), to image analysis problems, exploring the correlation
structures existing between different wavelength channels (multi-
variate or hyperspectral images) while adequately handling pixel-to-
pixel, and also sometimes, depending on the approach followed,
image-to-image variability. A multivariate image is a set of congruent
images stacked together, each one being relative to a particular
wavelength band (in the most common case of hyperspectral images)
and providing the numerical intensity values (normally integers from
0 to 255) for such channel (congruent images are images that, after
proper pre-processing, each pixel maintains the same meaning and
provides the same type of information, regarding the elements to be
analyzed). Such multivariate images have typically three modes, two
for the position coordinates (x, y) and one for the channel wavelength
(λ). These are adequately handled by unfolding the 3-way raw image
into a 2-way array preserving the wavelength dimension [4] or
directly applying multiway approaches (such as PARAFAC). Multi-
variate Image Analysis (MIA) approaches have already been applied to
different types of problems, involving congruent/non-congruent
images and following pixel-based/image-based approaches. Some
examples of successful applications found in literature include the
assessment of the surface quality of steel [5] and artificial stones [6],
monitoring flames in industrial boilers [7] and softwood lumber
grading [8]. As further examples of image-based tasks, now involving
predictive modelling (regression analysis), one can refer the estima-
tion of: coating content in snack food production [9], fruit yield from
airborne images [10], concentration of ingredients in cheese [11] and
of pulp properties [12]. Applications involving congruent images are
less common, but can also be found in well controlled experimental
settings [13].

The analysis of paper formation belongs to the general class of
“texture analysis” problems, for which Wavelet Texture Analysis
(WTA) has been considered a state of the art approach in the
extraction of relevant information from images [5,14]. WTA enables
the computation of a variety of features from the 2-D wavelet
transform of each image that, after proper selection, are usually
strongly connected to the type of texture phenomenon under analysis,
providing a wavelet features signature of it. Other approaches based
upon wavelets were also applied in the context of MIA, exploring the
ability of such transform to accumulate both spatial and frequency
information in each of its transform coefficients, and to bring some
necessary congruency to the analysis in the image domain [13]. In
what concerns to the analysis of paper formation, Bouydain et al. [15]
applied a 2-D wavelet transform to light transmission images of paper
sheets, focusing on the details of the second decomposition, whose
overall energy (sum of the energies obtained for each detail image)
was taken as a good indicator of the quality level of paper formation.
Even though the analysis only used a limited number of decomposi-
tions, which might hinder its discrimination ability for different
abnormal formation patterns, the authors found it more sensitive than
the standard formation assessment technique. Scharcanski [16]
developed an approach based on stochastic modelling of the wavelet
coefficients at different resolutions, and, based on such probabilistic
descriptions, proposed a multiresolution distance measure for
stochastic textures, showing ability to discriminate between different
levels of quality of paper formation. However, this procedure do rely
somewhat on the adequacy of the hypothesised distributions, and the
use of equal weights for all scales in the definition of the distance
measure may not be an adequate strategy, as shown in our analysis
further ahead in this paper. To sum up, the procedural simplicity and
underlying clarity of the WTA-based methodology, its computation
efficiency and effectiveness, are strong reasons for its selection,
especially in situations such as the one we are considering in this
paper, where the relevant image features are likely to be present in
any region of the image space (random texture).

It is perhaps worth noticing that the approach pursued in this
paper do present strong analogies to that followed before by one of the
authors when addressing the issue of simultaneously monitor rough-
ness (a fine length-scale phenomena, regarding very small irregula-
rities in the surface of paper) and waviness (larger scale deviations
from the flat shape), in an integrated way, using accurate surface
profiles obtained through a mechanical stylus profilometer [17]. Such
1-D profiles were analyzed using a wavelet-based technique, in order
to identify and separate the scales corresponding to paper roughness
and waviness, for which features were computed that allow for their
proper monitoring. The fact that the present approach for addressing a
rather different paper surface quality problem also calls for a
multiscale framework, is a clear manifestation of the multiscale
nature of paper structure, mentioned in [17], and, in a certain sense,
the current approach does represent an extension of the 1-D
methodology followed in such reference, to the analysis of signals
with higher number of modes (images).

This paper is organized as follows. In Section 2, the essential
nomenclature and concepts underlying wavelet multiresolution
decomposition and WTA are briefly addressed, as well as the basic
steps of the methodology to be followed. Then, in Section 3, we
describe the measuring sensor and the image set to be analyzed. The
results of their analysis are present in the next section, along with
those for the image-based PCA-MSPC approach for paper formation,
which is evaluated both using the original images, as well as through a
Monte Carlo study of their subimages. The essential conclusions of this
work are referred in the final section of this paper.

2. Wavelet and wavelet texture analysis (WTA) basics

2.1. Wavelet transforms

The wavelet transform of a signal, x, consists of an alternative
representation of it, given by a coarser resolution version plus all the
details lost across the several decomposition stages performed. This so
called multiresolution decomposition [18], is conducted by succes-
sively applying quadrature mirror filters to the coarser resolution
version obtained after each decomposition stage, fromwhich another
(higher level) coarser resolution results plus a detail signal, i.e., a
signal that represents what is lost when passing from one resolution
level to next coarser one. After a few decomposition stages, say Jdec, a
single coarser resolution approximation vector is obtained, say aJdec,
along with all the details lost through the several decomposition
stages, d1, …, dJdec. They convey the same overall information as the
original signal x, but organized in a different way. In particular, each
coefficient accumulates information from a certain region (box) in the
time-frequency space, a property that is very useful for a number of
applications, in particular for WTA.

One can also compute the wavelet transform of a 2-D signal
(a image), using a 2-D wavelet transform. This can be accomplished
through the alternating application of the 1-D filtering operations to
the rows and columns of the matrix of pixel intensities, implicitly
using a separable 2-D wavelet basis set (tensor products of the 1-D
basis functions), or through the application of non-separable 2-D
wavelet functions [19–21]. In this paper, we follow the first, more
conventional and widely used approach. Applying such a 2-D wavelet
transform to an image, say X, results, after Jdec decomposition stages,



Fig. 1. 2-D wavelet transform of an image, with the different detail images and the
resulting coarser resolution approximation image, after three decomposition stages
(Jdec=3). The transform has the same number of coefficients as the size of the original
image.
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in a coarser version of it, aJdec
1 , as happened in the 1-D case, plus all the

detail images that are lost across the different decomposition stages.
However, in the 2-D situation, there are three types of details that are
obtained at each scale, regarding the different combinations of
decomposition operations successively applied to the rows and
columns of the previous coarser approximation image, corresponding
to the three types of basis functions used. Such detail images contain
information regarding different spatial orientations: horizontal,
vertical and diagonal [22]. For instance, for scale j, we can find the
detail images: dj

1 (details with sensitivity North-South, or vertical), dj
2

(details with diagonal sensitivities) and dj
3 (details with sensitivity

East-West, or horizontal). Fig. 1 shows an example of the wavelet
transform of an image, after three decomposition stages (Jdec=3). The
final number of 2-D wavelet coefficients in all detail and approxima-
tion images is equal to the number of pixels in the original image.
Fig. 2. A typical features profile (wavelet signature) for a paper sample image, computed
using the standard deviation metric.
2.2. Wavelet texture analysis (WTA)

The wavelet coefficients of the transformed image carry local
information about the energy found in certain frequencies ranges and
with some orientation (indexed to the scale and type of details).
Therefore, bycomputing ametric for each scale andorientation,which is
a function of all the coefficients at that scale/orientation combination,
one is indeed summarizing all the relevant information for a particular
range of frequencies (along a given orientation). WTA consists on
computing features in this way, and analyse their discriminating power
regarding the textural phenomena under analysis. Some examples of
WTA features used in practice are the energy (Ejk ¼ jjdkjjj2F , where ||•||F
stands for the Frobenius normof amatrix), entropy, averaged l1-normor
the standard deviation of the set of coefficients. In thisworkwe adopted
the last way of computing features, the standard deviation of
coefficients: sjk=std(djk), where std represents the sample standard
deviation of the wavelet coefficients contained in the argument (as
before, j=1,…,Jdec and k={1,2,3}). Fig. 2 presents one example of a
features vector computed for a given image collected from the paper
production process, using Jdec=5. In this case one has 16 features per
image: Jdec×3+1=16, as we have 3 types of detail images per
decomposition level, plus the final coarser approximation (which is
sometimes omitted from this type of analysis, in order to minimize the
effects of non-uniform illumination of the sample area). WTA uses such
parsimonious features profiles (also called its wavelet signatures)
summarizing the fundamental information contained in the raw images,
to analyze and classify the distribution of sampleswith different texture
patterns or characteristics.

2.3. Methodology for paper formation analysis and evaluation

The essential steps underlying the proposed methodology for the
analysis of paper formation based upon WTA features are outlined in
Fig. 3. After acquisition, the image may be pre-processed, for instance
Fig. 3. WTA-based methodology for the evaluation of the formation quality of paper
and/or for its monitoring.



Fig. 4. Image pre-processing by removal of the non-uniform illumination effect.
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by correcting non-uniform illumination effects that may disturb the
subsequent analysis (Fig. 4).

This can be easily achieved by subtracting the estimated illumina-
tion pattern from the image. However, WTA is often found to be rather
robust to this type of effects, and this is the reason way we keep this
stage optional in our procedure. One reason to explain such a
robustness arises from the fact that non-uniform illumination is a
low frequency feature of the image, which therefore does not interfere
with coefficients relative to higher frequency bands, but only with
those for coarser scales (low frequency bands), in particular with the
ones belonging to the coarsest approximation signal. Therefore, by
removing the last approximation image from the analysis, one is
implicitly removing or minimizing the effect of non-uniform illumi-
nation. Afterwards, the 2-D wavelet transform is computed as well as
theWTA features that will be used for grade evaluation and/or process
monitoring. Process monitoring can also make use of a grade classifier,
namely for establishing the type of abnormality present when an
alarm is triggered in the monitoring control charts. These issues will
be described more thoroughly in the results section.

3. Materials and methods

3.1. Formation sensor

The formation sensor consists of a digital camera within a housing
with a rotating head at high speed, in order to prevent dirt
accumulation on the housing surface. This design protects the camera
from the harsh environmental conditions (steamy and wet) prevailing
in the forming section of a paper machine, ensuring that the sensor
will function properly with little maintenance (Fig. 5).
Fig. 5. Scheme illustrating the experimental image acquisition apparatus for on-line
formation monitoring.
With this setup in use, a transmission image of the wet web on the
forming wire is obtained. The formation sensor is usually employed to
monitor and optimize the forming section of a paper machine. It is
especially useful for multi-ply paper machines where the formation of
an individual ply cannot be determined with standard formation
sensors that are placed close to the reel. The images acquired for this
article were taken from pilot plant test trials, where blade settings as
well as the flow around the blades were changed. The camera used
was a Jai A10 CL, with a Navitar DO-2595 lens. The strobe light consists
of a led array emitting red light (CCS LDL-TP).

3.2. Description of the image set

A set of 24 images, representing different formation patterns, were
collected for analysis. Before any data processing was made, these raw
images were visually assessed in order to verify whether the
subsequent analysis does provide meaningful results, i.e. to enable
the confirmation that samples clustering together in a given features
subspace, do represent similar textural patterns as they are visually
perceived by the final user of paper. The preliminary evaluation scores
obtained by visual inspection are presented in Table 1, with image
samples representative from the main quality grades (three) pre-
sented in Fig. 6. From this table, we can also notice that a dubious
sample was assigned the class label “1.5” (borderline between classes
with scores 1 and 2; in fact it does seem to present more similarity
with samples from class 1, but shows more texture variation than a
typical grade “1” sample) and an outlier was identified, labelled with
score “9” (Fig. 7).

4. Results

In this section we present the main results obtained from the
analysis of the sample images from paper with different quality
Table 1
Classification scores for the images analyzed. Score “1” represents paper with good
formation, score “2” paper with poor formation, and score “3” stands for paper with bad
formation

Sample Score Sample Score

1 1 13 1
2 1 14 1
3 1 15 1
4 2 16 2
5 2 17 2
6 1.5 18 2
7 1 19 3
8 1 20 3
9 1 21 3
10 2 22 2
11 9 23 2
12 2 24 2

A score “1.5” was given to a sample which is borderline between classes “1” and “2”,
from a visual inspection, while “9” represents a clear outlier (perhaps a problem during
image acquisition).



Fig. 6. Images representative from the three main quality classes: a) class with scores 1, b) class with scores 2, c) class with scores 3.
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grades. We begin by addressing the structure of the WTA features
computed from such images, and their separation power with respect
to the preliminary classification task. Then we focus on how such a
procedure can easily give rise to a process monitoring scheme, with
the potential for simultaneously classify abnormal samples. Computa-
tions were conducted in the Matlab environment (The MathWorks,
Inc.), using in-house developed code and the package WaveLab 8.02
(available at http://www-stat.stanford.edu/~wavelab/) for performing
the wavelet transformation computations.

4.1. Analysis of the image set: WTA-based analysis and classification of
paper formation

We first computed the WTA features from all the 24 images, from
which the profile presented in Fig. 2 is a particular case. The resulting
wavelet signatures are presented in Fig. 8. Such features were
computed after image pre-processing for illumination correction,
but the effect of such correction is only marginal, and do not alter in
any meaningful way, the results and conclusions presented here (this
was checked by direct comparison of the results with and without
illumination correction).

From this figure we can see that apparently not all scales present
the same discriminating power regarding the different quality grades.
In fact features 1 to 6, regarding the two first decomposition stages,
Fig. 7. Sample images with score
are quite insensitive to the different formation grades present in the
image set. On the other hand, features for decomposition stages
higher than 2 (index 7 and above) do seem to cluster the samples in
different groups. An explanation of this behaviour can be found in the
multiscale structure of paper surface: finer scales are connected with
surface phenomena such as wire marks, whereas coarser scales are
linked with formation and other coarser scale structural features.
Decomposing the (24×16) wavelet features matrix (24 image samples
with 16 wavelet features computed for each one of them), using
principal component analysis (PCA) with mean correction [23,24],

XWTA ¼ T � PT þ E ð1Þ

where XWTA is the (n×m) wavelet features matrix, T the (n×a) matrix
of PCA scores, P the (m×a) matrix of PCA loadings and E the (n×m)
residual matrix, we can indeed see that the loadings for the first two
principal components do not weight significantly the first 6 features
(Fig. 9). On the other hand, coefficients for the coarser scales tend to
present high magnitudes and preferentially opposite signs. These
results are consistent with what is expected from prior knowledge
about paper formation, which is essentially a coarser scale phenom-
enon, and the fact that such behaviour is being properly captured by
the first two PCA components does support their “visual significance”.
Furthermore, only the first two PCA components were analyzed,
1.5 (a) and with score 9 (b).

http://www-stat.stanford.edu/~wavelab/


Fig. 8. Wavelet features profiles for the 24 image samples.
Fig. 9. PCA loadings of the wavelet features profile matrix for the first 2 principal
components.

Fig. 10. PCA scores of the wavelet features profile matrix for the first 2 principal
components.
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because they concentrate most of the overall variation in XWTA

(97.96%), and correspond to theminimumnumber of components that
must be retained in order to obtain a proper separation of the different
formation grades (as we confirmed through cross-validation with a
linear classifier).

Analysing the scores of the PCA decomposition (T1 and T2), it is
possible to see that the samples with different formation quality
grades do appear in different, easily distinguishable, clusters (Fig. 10).
Samples with good formation appear on the left side of the plot, well
separated from those with poor formation, appearing on the right
side. Therefore, the first principal component seems to be doing a
good separation job between good and poor formation samples. The
second component, on the other hand, is discriminating the several
types of abnormalities, separating those labelled a priori with score
“2” from those labelled with score “3”.

Furthermore, from the analysis of Fig. 10, it is apparent that what
was previously considered similar samples with score “2”, could in
fact represent somewhat different texture patterns. Analysing
samples from the cluster “2A” and “2B” (Fig. 11) one can check that
they do present in fact some distinguishing features. Namely, samples
from cluster “2B” tend to showmore “cloudy” patterns, while the size
of irregularities in those from cluster “2A” are smaller and appearing
more frequently in the image. Therefore, the unsupervised analysis of
WTA features has not only provided for a good separation of samples
according to the quality grades defined a priori (but not used in the
analysis), validating their pertinence as discriminating descriptors,
but also enable for the discovery of new classes, allowing for a better
resolved definition of different quality grades.

Furthermore, we can now perhaps understand better our classi-
fication uncertainty regarding sample labelled “1.5”: this sample, in
spite of clearly belonging to cluster “1” (towhich it is indeed in general
more similar), is almost as far from the farthest sample in this cluster,
than from the closest sample from cluster “2”, which may indicate
significant differences from some other representatives from the score
“1” cluster.

4.2. An image-based process monitoring scheme of paper formation
based on WTA features profiles

Following the good separation results obtained between images
sampleswithdifferent formationqualitygrades, using theWTA features,
andprovided that the image acquisition system is to beoperatedon-line,
in-situ, we found it both opportune and natural to address the issue of
implementing an on-line process monitoring scheme for paper forma-
tion. Given the highly correlated nature of the data matrix of wavelet
features structure, XWTA, a suitable monitoring scheme, with well
established results, is the so called multivariate statistical process
monitoring (MSPC) based on PCA (PCA-MSPC) [25–28]. This methodol-
ogy consists of modelling the systems operation under normal
conditions using a PCAmodel, in order to capture the normal correlation
structure and variability relative to the so called “common” causes. In
this framework, for each newmultivariate observation (xi), two statistics
are computed, one relative to the (Mahalanobis) distance between its
projection in the PCA subspace and the centroid of the normal operation
conditions (NOC) cluster, also in thePCA subspace, usually referred asTi2,
and another relative to its (squared) Euclidean distance to such a
subspace, Qi:

T2
i ¼ tiΛ

−1tTi ð2Þ
Qi ¼ eieTi ð3Þ

where ti stands for the scores of the ith observation (ith row of the
scores matrix, T), whose NOC covariance matrix is given by Λ; ei is the
ith residual vector (ith row of the residual matrix, E). In simple terms,
the T2 statistic monitors the variability in the PCA subspace, whereas



Fig. 11. Images representative from clusters 2A (a) and 2B (b).

Fig.12. ROC curve for the PCA-MSPCmonitoring of paper formation usingWTA features.
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Q addresses variability around this subspace. Control limits for these
statistics have been derived for the multivariate normal case. The
upper critical value for the T2 statistic is:

T2
lim a;n;αð Þ ¼ a n−1ð Þ

n−að Þ F a;n−a;αð Þ ð4Þ

where F(v1,v2,α) is the upper α×100% percentage point for the F
distribution with v1 and v2 degrees of freedom (α is the significance
level selected for conducting the monitoring task), n is the number of
observations in the NOC data set and a is the number of principal
components. As for the Q statistic, the upper control limit is given by:

Q lim a;αð Þ ¼ Θ1

cα
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Θ2h20

q

Θ1
þ 1þ Θ2h0 h0−1ð Þ

Θ2
1

0
@

1
A

1
h0

ð5Þ

where

Θi ¼ ∑
m

j¼aþ1
λi
j; i ¼ 1 : 3 ð6Þ

h0 ¼ 1−
2Θ1Θ3

3Θ2
2

ð7Þ

λj
i stands for the jth eigenvalue (following a decreasing magnitude

ordering, obtained from the PCA analysis of NOC data), raised to the
ith power, and cα is the upper α×100% percentage point for the
standard normal distribution (m is the number of WTA features).
Individual scores can also be monitored using univariate SPC charts,
but in this work we base the monitoring scheme around the T2 and Q
statistics. Applying the PCA-MSPC methodology to the present case of
monitoring paper formation, encompasses the definition of a NOC set
for estimating the PCA subspace and monitoring statistics. We
assumed that, under normal operation, only samples with grade “1”
formation quality are being produced. Therefore a small subset of four
grade “1” samples was selected for the purposes of estimating the
procedure parameters and statistics, INOC={1–3,13}. The remaining
samples were used to test the procedure: ITEST,NORMAL={7–9,14,15},
ITEST,ABNORMAL={4,5,10,12,16–24}. As the training and test set are rather
small, we focused firstly our analysis on the ability of PCA-MSPC based
on WTA features to separate the normal samples in the test set from
the abnormal ones. This is essentially a two-class classification
problem, where the classifier is built using the statistical process
control methodology. For such a type of classification problems, the
receiver-operating characteristic curves (ROC curves) provide a
suitable tool for analyzing the classifier performance, namely its
sensitivity (probability of detecting the abnormality, when it happens)
and specificity (probability of not detecting the abnormality, when it is
absent). These concepts are connected to the so called False Positive
Rate (FPR) and True Positive Rate (TPR), where the TPR is the fraction
of observations violating the monitoring detection limits, relatively to
all abnormal samples available in the test set, and FPR is the fraction of
normal samples violating the detection limits (the sensitivity is equal
to the TPR, while specificity is given by 1−FPR). The ROC curve is a plot
of FPR versus TPR, and the higher the values obtained for TPR at a
given level of FPR, the better is the classifier or monitoring scheme
(this is also some times quantified through the area below the ROC
curves: the higher the area the better the classifier performance).
These curves are computed by varying the classifier thresholds (Thi)
that define the regions corresponding to the two classes, and for each
threshold value, a FPR and TPR pair is calculated, which will then be
plotted along all the others: FPR(Thi) vs. TPR(Thi), Thi ∊ [Thmin, Thmax].
In the present case of statistical process monitoring, this corresponds
to vary the significance level of the control charts. The ROC curve
obtained is presented in Fig. 12, where we can see that all abnormal
samples were always correctly detected at all levels of false alarms
contemplated (FPR), which is the “ideal curve” for a classifier. This
result really confirms the separation power of the PCA-MSPC
procedure based on the WTA features of the acquired images, now
regarding abnormal vs. normal samples.



Table 2
Results for the Monte Carlo study regarding the evaluation of normal and abnormal
subimages

Mean Standard deviation

FPR 0.056 0.075
TPR 1.00 0.00

Fig. 13. PCA model estimated from all subimages with grade “1” (⁎). Samples presenting
formation problems were also projected in this subspace (O). The 99% ellipse for the
grade “1” samples is also shown, representing normal operation conditions (NOC)
region.
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As the number of images used in this analysis was quite low, we
refined this study by using “more” images, obtained by dividing the
original ones in 4 parts (i.e., each original image give rise to 4 sub-
images of equal size, 1/4 the size of the original image, corresponding
to its four quadrants). Using all such subimages from grade “1”
samples to define the NOC conditions, resulted in the PCA scores plot
presented in Fig. 13 and in the plot summarizing the values obtained
for two PCA-MSPC statistics (T2 and Q) presented in Fig. 14 (note the
use of log–log scales in this plot, as the separation ability obtained
with this methodology was quite high).

However, the use of all grade “1” samples for constructing the NOC
region is a rather optimistic situation, necessarily leading to an
improved separation performance between normal and abnormal
samples. Therefore, to circumvent this limitation in the analysis, we
have randomly sampled half of the grade “1” subimages to be used as a
reference set for estimating the PCA model and the PCA-MSPC
statistics, and applied it to assess the status of the remaining
subimages not contained in the test set (the remaining 50% of normal
subimages, and all the abnormal ones), from which the FPR and TPR
Fig. 14. Combined plot for the T2 and Q statistics, obtained after considering all grade
“1” subimages as representing normal operation conditions.
were computed. By repeating this procedure 1000 times, the results
presented in Table 2 were obtained. These results show that abnormal
samples were always correctly detected, whereas a small fraction of
the normal ones were misclassified (note the relatively high standard
deviation obtained when compared to the mean value for the FPR,
which can be attributed to the low number of samples used in each
Monte Carlo trial to establish the normal operation conditions
necessary to estimate the model and statistics, leading to an increased
rate of false alarms).

5. Conclusions

In this paper, an approach for evaluating and monitor paper
formation was presented, which uses real images acquired with an
especially designed sensor, located in the end of the wire section of a
paper machine. The methodology essentially consists of applying
wavelet texture analysis to the raw images, in order to compute a
features profile or wavelet signature for each image, based on which
their discrimination can be made. We found it to be quite robust to
illumination non-uniformity effects, as the presence/absence of
illumination correction pre-processing did not led to any assignable
difference in the analysis. The length scales more relevant for
discriminating the different levels of quality regarding paper forma-
tion, were also analyzed using plots of the WTA profiles and of the
loadings vectors obtained after PCA modelling. The clusters obtained
in the scores plot of such PCA description do confirm the preliminary
visual assessment made of the samples, and, furthermore, suggest the
existence of two subclasses of grade “2” abnormal samples, differing
in the bulkiness of fibre flocks. The good discrimination results
obtained prompted us to develop an approach for implementing
statistical process control of paper formation, given the importance of
such characteristic for the final quality of paper products. In this
regard, a PCA-MSPC approach was applied to WTA features computed
for each image. Such an approach led to quite good results when
applied to the available images, as analyzed with the method's ROC
curve, and confirmed with a Monte Carlo study using subimages with
1/4 of the size of the original ones. These results attest the potential of
the proposed methodology for integrating an image-based statistical
process control of paper formation, in-line, in-situ and in real time.
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