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During the past decade, hypotheses concerning the

pathogenesis of most neurodegenerative diseases have

been dominated by the notion that the aggregation of

specific proteins and subsequent formation of cyto-

plasmic and extracellular lesions represent a harbinger

of neuronal dysfunction and death. As such, in Alzhei-

mer’s disease, phosphorylated tau protein, the major

component of neurofibrillary tangles, is considered a

central mediator of disease pathogenesis. We challenge

this classic notion by proposing that tau phosphoryl-

ation represents a compensatory response mounted by

neurons against oxidative stress and serves a protective

function. This novel concept, which can also be applied

to protein aggregates in other neurodegenerative dis-

eases, opens a new window of knowledge with broad

implications for both the understanding of mechanisms

underlying disease pathophysiology and the design of

new therapeutic strategies.
Tau: feared by the bad, loved by the good

The appearance of neurofibrillary tangles (NFTs), primar-
ily composed of aggregated phosphorylated tau protein
within specific neuronal populations, is a known neuro-
pathological feature in several diseases known as
‘tauopathies’ [1]. These include many different types of
diseases, such as Alzheimer’s disease (AD), Down’s
syndrome, progressive supranuclear palsy, corticobasal
degeneration, Parkinsonism-dementia complex of Guam
and frontotemporal dementias, including Pick’s disease
and frontotemporal dementia and Parkinsonism linked to
chromosome 17 (FTDP-17). In AD, because the pathologi-
cal diagnosis of AD is dependent upon NFTs and the brain
areas affected by NFTs correlate to disease progression, it
is widely assumed that NFTs are central mediators of AD
pathogenesis. However, such correlations are insufficient
to conclude that NFTs are harbingers of cell death in AD.
Here, we propose a novel model for the roles played by tau
phosphorylation and aggregation in AD by arguing that
the accumulation of phosphorylated tau might actually be
a protective (antioxidant) response that serves as a
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manifestation of cellular adaptation to save endangered
neurons.
Tau protein: function and physiological roles

Neuronal morphology and structural integrity are main-
tained largely by the cytoskeleton, which is partially
composed of microtubules. The assembly and stability of
microtubules, in turn, are maintained by microtubule-
associated proteins. One such microtubule-associated
protein, tau protein, participates in the association–
dissociation cycle of microtubules in neurons [2,3]. This
protein is found primarily in the cytosol, but is also
associated with the cell membrane [4], and it is present
mainly, but not exclusively, in axons. Tau protein appears
as a series of polypeptides of differing lengths on
electrophoresis gels [5–7], which is a characteristic
phenomenon of alternative RNA splicing [8–15] and/or
various phosphorylation levels [5]. The gene encoding tau,
consisting of at least 16 exons [16], is located on
chromosome 17 [11,17].

The adult brain expresses six isoforms of tau, which
differ by the presence of three or four repeats of 31 or 33
amino acids in the C-terminal portion, and none, one or
two inserts in the N-terminal region (see [18] for details).
The three or four tandem repeats contain domains that
are important for microtubule binding. Two proline-rich
regions, the phosphorylation of which affect the ability of
tau to bind to microtubules, flank the microtubule-binding
domain. It has been suggested that the four-repeat forms
favor fibril formation, whereas the three-repeat forms do
not [19]. A highmolecular weight tau protein, containing a
region encoded by an extra exon, has been described in the
peripheral nervous system [20].

The importance of tau as a microtubule-associated
protein was first realized during a search for factors that
affect microtubule assembly [2,3]. Tau stabilizes micro-
tubules by promoting their polymerization [21,22] and
suppressing their dissociation [23]. However, there is
evidence that tau is not necessary for normal cell function.
A tau-deficient mouse produced by gene targeting is viable
and phenotypically similar to tau-containing mice [24].
The only morphological change observed was a reduction
in the number and density of axons in parallel fibers from
the cerebellum. Furthermore, acknowledging that
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Box 1.

Pathology in disease can be likened to Newton’s Third Law of Motion

– for every action there is an equal and opposite reaction. In

Alzheimer’s disease, although tau phosphorylation and neurofibril-

lary tangles or amyloid-b and senile plaques are often viewed as

pathogenic (i.e. action), we suspect them to be secondary protective

events (i.e. reaction). Deciphering action from reaction is as crucial in

biology as it is in the physical world.
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knocking out a gene might lead to compensatory effects,
tau-deficient mice develop increased levels of alternative
microtubule-associated proteins, such as MAP1A, to
compensate for the loss of tau [24]. The binding of tau to
microtubules, in addition to cell membranes, is highly
regulated by phosphorylation [4,25]. Tau contains four
distinct domains, including the microtubule (tubulin)-
binding region, which becomes highly phosphorylated in
neurodegenerative diseases. Hypophosphorylated tau
binds with high affinity to microtubules, whereas hyper-
phosphorylated tau, similar to that present in AD, shows a
low capacity for binding to microtubules [5,26].

The classic concept: the harmful side of NFTs in AD

NFTs are intracellular fibrillar structures composed of
aggregations of paired helical filaments (PHFs) [27],
which are made up of abnormally phosphorylated tau
[28,29]. Tau filaments accumulate in dystrophic neurites
as fine neuropil threads or as bundles of PHFs in neuronal
bodies, forming NFTs which become extracellular ‘ghost’
tangles after the death of the neurons [30,31]. The number
and localization of NFTs has been correlated with the level
of dementia; by contrast, such a correlation has not been
demonstrated for senile plaques [32]. Therefore, phos-
phorylated tau has been suggested to have a key role in
the mental deficits associated with AD pathophysiology.

In PHFs, tau shows an abnormal and high level of
phosphorylation localized at the C-terminus [28], which is
associated with a loss of microtubule-binding capacity and
a consequent accumulation in neuronal bodies. Similarly,
in FTDP-17, mutations at or near the region of the tau
gene that encodes the microtubule-binding region are
thought to be responsible for tau aggregation and the loss
of motor function [33,34]. After aggregation, PHF-tau
undergoes posttranslational modifications, including ubi-
quitination [35], glycation [36,37] and oxidation [38].

PHF-tau is usually assumed to be a neurotoxic agent
and several mechanisms have been suggested for its role
in neurodegeneration. First, because it has been shown
that phosphorylated tau inhibits microtubule assembly
and causes the disassembly of microtubules [39], PHF-tau
is also thought to compromise microtubule stability and
function, resulting in a loss or decline in axonal or
dendritic transport in disease [40,41]. Furthermore,
PHF-tau disrupts intracellular compartments that are
essential for normalmetabolism. Cell culture studies show
that the overexpression of tau causes a change in cell
shape, retards cell growth and dramatically alters the
distribution of various organelles transported by
microtubule-dependent motor proteins. In these
studies, mitochondria fail to be transported to periph-
eral cell compartments and cluster in the vicinity of
the microtubule-organizing center. Similarly, the endo-
plasmic reticulum no longer extends to the cell
periphery and becomes less dense [42,43]. Moreover,
transgenic mice that overexpress the four-repeat
human tau protein isoform specifically in neurons
develop axonal degeneration in the brain and spinal
cord and have notable axonal dilations due to the
accumulation of neurofilaments, mitochondria and
other vesicular structures [44].
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Together, the aforementioned studies have fostered the
notion that tau phosphorylation and aggregation rep-
resent a key pathogenic mechanism that is directly
involved in neurodegeneration.
The alternative concept: looking for the benefit of NFTs

in AD

Several studies associate the neuronal loss observed in AD
brain with NFT formation. However, the correlation
between NFT presence and the incidence of disease does
not necessarily dictate a causal relationship. Indeed,
because NFTs are produced in response to a variety of
disease conditions [45,46], there is the distinct possibility
that tau phosphorylation has an alternative role in disease
– one that proceeds rather than precedes disease (Box 1).
NFT as an antioxidant stress response

What evidence is there to support an alternative role for
NFTs in AD? First, PHF or PHF-like fibril formation itself
might not have a significant impact on neuronal viability
because NFT-bearing neurons appear to survive for
decades [47]. In the same study, the authors generated a
model that enables the quantification of neuronal loss in
the hippocampus that is associated with NFT formation.
This model showed that hippocampal neurons with NFTs
survive for w20 years and, therefore, NFTs might not be
central mediators of neuronal death in AD. It has been
shown that the amount of neuronal loss exceeds, by many
fold, the number of NFTs accumulated [48,49]. No direct
correlation exists between age at death and hippocampal-
neuron number or the amount of NFTs. Nonetheless,
these findings suggest that the formation of NFTs might
occur many decades before neuronal death and, therefore,
a relationship between NFT formation and the duration of
disease symptoms seems unlikely. Moreover, there is no
association between apoptotic morphology, such as DNA
fragmentation, and tau deposition [50], suggesting that
NFTs are not directly related to neuronal degeneration.

So, if NFTs are not directly responsible for neuronal cell
loss, what is the role of these formations and why do they,
or similar intracellular inclusions, appear in so many
neurodegenerative diseases? Our view is that the presence
of NFTs in AD serves to protect crucial cellular com-
ponents from attack by reactive oxygen species (ROS)
(Figure 1) [51]. Oxidative damage is one of the earliest
events in AD and actually decreases with disease
progression and NFT formation [52]. These findings
indicate that NFTs might represent a compensatory
response aimed at reducing ROS-associated damage.
Indeed, both tau and neurofilament proteins, another
major component of NFTs [53], are uniquely adapted to
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###
 # #    #   #
#     #

Initial oxidative insult

Failure to respond
Multifaceted compensatory response

Oxidative insult upregulates kinases →
Hyperphosphorylation of tau and NFs→

Aggregation of fibrils (#)

Early formation of NFT→
Reduced oxidative damage →
Prolonged function of neuron

Delayed senescence
and NFT formation

Cell death

    Unbridled oxidation →
• mitochondrial dysfunction
• proteasomal malfunction
•protein misfolding (     )
•glial-cell activation
•programmed cell death

Without the neuroprotective
properties of tau, neuron

death rapidly ensues

Senescence and cell death

Figure 1. The hypothetical survival strategy of neuronal cells under oxidative stress. Oxidative insult to neurons in AD results in two possible outcomes. First, the neuron

mounts an extensive and multifaceted compensatory response including the phosphorylation of cytoskeletal elements, such as tau and neurofilaments (NFs). In spite of

leading to inclusion formation, this pathway leads to protracted survival. Neurons that fail to respond rapidly succumb to oxidative insult.
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oxidative attack as a result of their high content of
lysine–serine–proline (KSP)domains.Theexposureof these
domains on the protein surface facilitates the extensive
phosphorylation of serine residues, resulting in an oxidative
sponge of surface-modifiable lysine residues [54]. Tau
phosphorylation is upregulated by oxidative stress [55]
and tau and neurofilaments are modified by the products of
oxidative stress, including 4-hydroxy-2-nonenal (HNE) [56]
and other cytotoxic carbonyls [57], leading to protein
aggregation as NFTs [58]. Moreover, following oxidative
modification, phosphorylated tau, but not other tau forms,
polymerizes more easily [58,59].

Oxidative stress activates several kinases, including
glycogen synthase kinase-3 (GSK3) andmitogen-activated
protein kinases (MAPKs), such as extracellular receptor
kinase (ERK), p38 MAPK and Jun-N-terminal kinase
(JNK), which are activated in AD [60–62] and are capable
of phosphorylating tau [63] and neurofilaments [64].
Additionally, once phosphorylated, tau and neurofila-
ments are vulnerable to modification by carbonyl products
of oxidative stress [54,58,59] and, consequently, aggrega-
tion into fibrils [58]. Because phosphorylation has a
pivotal role in the redox balance, it is not surprising that
the oxidative-stress-associated activation of MAPK path-
ways leads to the phosphorylation of tau and neurofila-
ments [60,61,65]. Therefore, conditions associated with
chronic oxidant stress [66] are invariably associated with
the extensive phosphorylation of cytoskeletal elements.
Indeed, progressive supranuclear palsy and frontotem-
poral dementia, neurological conditions in which
www.sciencedirect.com
phosphorylated tau and neurofilament protein accumu-
lations occur, also show evidence of oxidative adducts
[67,68]. A protective role for tau phosphorylation is
further supported by the fact that embryonic neurons
that survive after treatment with oxidants have more
phospho-tau immunoreactivity relative to those that die
[69]. It was also shown that PHF-like tau phosphorylation
occurs during hibernation [70], a neuroprotective phenom-
enon [71]. Therefore, the regulation of tau phosphoryl-
ation in the adult mammalian brain appears to represent
a naturally occurring process that is associated with
neuroprotective mechanisms [70]. In support of this, it has
been observed that cellular antioxidant induction and tau
expression are opposing [56,72], suggesting that the
reduced oxidative damage in neurons showing tau
accumulation [73] might be a direct consequence of an
antioxidant function of phosphorylated tau [51,54].
Reduction in microtubule assembly is independent of

tau abnormalities occurring in AD

The classic notion is that phosphorylated tau loses its
capacity to bind to microtubules and leads to the
destruction of microtubule structure and, consequently,
to neurodegeneration [40,41]. However, this is not borne
out in intact animal or human studies. For example, it has
been shown that mice lacking tau protein develop
normally and do not present major phenotypic changes.
In fact, the nervous system of these tau-deficient animals
is immunohistologically normal and cultured hippocampal
neurons prepared from these mice show that axonal
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elongation is unaffected [24]. Furthermore, knockout mice
for neurofilament subunits also do not show any overt
behavioral phenotype or gross structural defects in the
nervous system [74,75]. The fact that knockout animals
for tau and neurofilament subunits do not present
alterations of neuronal function suggests that NFT
formation, and a consequent microtubule disorder, is not
likely to be a cause of neurodegeneration in AD. In fact,
tau phosphorylation is not even likely to be a factor in
microtubule stability because there is no relationship
between PHF-tau and microtubule alterations in the AD
brain [76]. Both the number and total length of micro-
tubules are significantly and selectively reduced in
pyramidal neurons from AD in comparison with control
cases, but this decrement in microtubule density is
unrelated to PHFs. These findings suggest that the
reduction in microtubule assembly is independent of tau
abnormalities occurring in AD.

NFTs might protect neurons: learning from other types

of intracellular inclusions

Despite all the evidence, the question remains: are NFTs a
harbinger of death or a manifestation of cellular adap-
tation for neurons? Furthermore, can we say that all
intracellular inclusions are actually protective and com-
pensatory responses to cell stressors [46,51]? Although
much remains unknown, it is clear that cytoskeletal
phosphorylation and other inclusions could, in fact, be
beneficial because similar phosphorylation occurs in
cytokeratins in response to various stressors, such as
heat shock and toxins [77]. In particular, the adminis-
tration of hepatotoxins to mice causes the phosphorylation
of cytokeratin and its aggregation into Mallory bodies,
which are highly insoluble inclusions [78]. Cytokeratins,
which are normally expressed in a tissue-specific manner,
are, like neurofilaments, members of the large family of
intermediate-filament cytoskeletal proteins [79,80].
Although the mechanism by which stress-induced cyto-
keratin phosphorylation protects against certain types of
liver injuries remains unknown, an association between
increased phosphorylation of intermediate filaments and a
variety of cell stressors has been clearly demonstrated
[81,82]. The significance of cellular inclusions in Hunting-
ton’s disease has also received much scrutiny. Recently,
neuronal inclusion bodies of aggregated huntingtin were
shown to serve as a ‘coping’ mechanism against neurode-
generation [83]. In a Huntington’s disease cell-culture
model, inclusion-body formation is associated with
increased cell survival and decreased levels of huntingtin
throughout the neuron. Similarly, cells that failed to form
inclusion bodies were more likely to die. The inclusion-
body formation appeared to decrease cell death by
reducing the amount of free huntingtin, a protein with
abnormal polyglutamine expansion. Thus, it is also
possible that tau has a protective role for neurons not
only by its phosphorylation but also by its aggregation, as
with huntingtin. The long-term consequences of intra-
cellular inclusions such as NFTs and huntingtin might be
deleterious and lead to synaptic loss; however, their
presence probably makes this a protracted, rather than
an acute, process.
www.sciencedirect.com
Concluding remarks

NFTs, one of the major pathological markers in AD, are
positively related to the progression of AD. However, we
still do not know whether NFTs are action [84] or reaction
[51] in the complex scenario of AD. Elsewhere in this
issue, LaFerla and Oddo [18] eloquently discuss the
current established notion that tau phosphorylation
represents a pathologic process (i.e. action) that should
be interrupted. Supporting this, mutations in tau can lead
to neurodegeneration [85], albeit different from AD, and
caspase cleavage of tau might be a significant event in
disease progression [86,87]. However, as outlined in this
article, the same evidence can also be re-interpreted to
support a new function for NFTs in the neurodegenerative
process and suggest that NFTs might be ‘protective
shields’ for neurons facing adverse conditions (i.e. reaction).
Supporting this, in addition to the evidence presented
here, the secondary role of tau phosphorylation to
oxidative stress is evident in sporadic AD [88], Down’s
syndrome [89] and even familial forms of AD [90].
According to some, the ‘truth’ might lie somewhere in
the middle, such that phosphorylated tau is toxic (as
considered in the classic concept) but its uptake into NFTs
prevents it from causing harm. Although initially attrac-
tive, such a postulate fails to explain why most neurons
that die in AD do so in the complete absence of any
(aberrant) tau-phosphorylation events, thereby indicating
that neither tau nor tau-phosphorylation is toxic. As with
any novel and controversial hypothesis, we hope that this
Opinion article opens the doors for further discussion and
experimentation on the ‘truth’. This is crucial in light of
proposed therapeutic strategies envisaging the reduction
of tau phosphorylation because, according to our hypoth-
esis, this might actually be counterproductive and inter-
fere with a normal stress response in neurons.
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