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Abstract

In this paper we present a unified theory for studying the so-called Krall-type discrete orthogonal
polynomials. In particular, the three-term recurrence relation, lowering and raising operators as well
as the second order linear difference equation that the sequences of monic orthogonal polynomials
satisfy are established. Some relevant exampleskfall polynomials are considered in detail.
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1. Introduction

Let u be a quasi-definite linear functional in the vector spBoef polynomials with
complex coefficients. Then there exists a sequence of monic polynothgls with
degP, = n, such that [14]

(w, PyPp) =knbpnm, kn#0,n,m=0,1,2,....

Special cases of quasi-definite linear functigrere the classical ones (those of Jacobi,
Laguerre, Hermite and Bessel). In the last years perturbations of the funatioethe
addition of Dirac delta functions—the solleal Krall-type orthogonal polynomials—have
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been extensively studied (see, e.qg., [6,7,16,20-22,26] and references therein), i.e., the linear
functional
M
fi=u+) Aid(x—a), (1.1)
i=1

Where(A,»)f.‘i1 are nonzero real numbers afitk — y) means the Dirac linear functional

defined by(s(x — y), p(x)) = p(y), Vp € P. In the very recent paper [2] we have consid-
ered the case of the more general functidnad u+ Y17 | A;8(x —a;) — Z;V:l B;§ (x —

b;), which also involves the case of derivatives of delta Dirac functionals defined by
(8'(x —a), p(x)) = —p’(a). Moreover, in [2] a necessary and sufficient condition for the
quasi-definiteness of the linear functiomalvas established and a detailed study when the
original functionalu is a semiclassical functional was worked out in detail.

In the present paper we will suppose that the functianai (1.1) is a semiclassical
discrete [31] org-discrete [28] functional making an special emphasis in the case when
u is a classical discrete [17] @gr-classical functional [29]. The interest of such modifica-
tions for the discrete case starts after Tgrd International Symposium on Orthogonal
Polynomials and Their Applicatiori®eld in Erice (Italy) when R. Askey raised the ques-
tion of identify and study the resulting polynomials of adding a delta Dirac measure to the
classical Meixner linear functional. This problem was independently solved in [3] and [12]
and it was extended to other families of classical polynomials (see [4] for the Hahn and
Kravchuk cases and [5,13] for the Charlier one, for a general framework see [19]). The
case whenu is ag-classical linear functional is still open and only few results by Costas-
Santos [15] are known. Another connected problem is related with the so-called coherent
pairs for measures [27,30] that leads to similar linear discrete functionals [9—11].

Let us also point out that there are also the so-called discrete (see, e.g., [8]} and
discrete Sobolev type orthogonal polynomials associated with the classical discrete and
g-classical functionals [23,24]. In both cases the corresponding polynomials can be re-
duced to the Krall-type one (except for thecase when the mass is added at zero where a
more careful study is needed [23,24]) since the differengés) = f(x + 1) — f(x) and
Dy f(x)=(f(gx) — f(x))/(gx — x).

The aim of this contribution is to present a simple and unified approach to the study of
such perturbations of the semiclassical grskemiclassical functionals.

The structure of the paper is as follows. leciion 2 some remarks on the general theory
[2] are included as well as a detailed discussion wheas a semiclassical functional. In
Section 3 the algebraic properties of the new family are obtained, and finally, in Section 4
some examples are developed in details.

2. General theory
2.1. Representation formula
We follow [2]. If u in (1.1) is quasi-definite then there exists a sequence of monic

polynomials(Z,), orthogonal with respect td and therefore we can consider the Fourier
expansion
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n—1
13,1(x)=Pn(x)+Z)»n,kPk(x), n=0,12,.... (2.1)
k=0

Then, for0O<k<n—1,
M

(1, Py (x) P(x)) = Pi(ai)
= o = =Y APy (a) —— .
T PR ; T PR
Thus, (2.1) becomes
M
Pa(x) = Pou(x) = > Ai Py(a)Kp-1(x, @), (2.2)

i=1
where, as usual,

n

Pr(x) P(y)
KnGr,y)=Y —— 2
(x.y) ,;(u, P2

denotes the reproducing kernel associated with the linear functiongherefore from
(2.2) we get the following system a@f linear equations in the variablég, (ak)),’y:l,

M

Polay) = Polar) = Y AiPp(@)Kp1(a, @), k=1,2,..., M. (2.3)
i=1

To simplify the above expressions we use the notations of42]ig the transpose of):

Pu@ = (Pa(z0), Pa(z2), . Paan)) ', Z=(zr 22, 20"

Also we introduce the matrice§,_1(z, ¥) € C’*9 whose(m, n) entry isK,_1(zm, yu).
Herez = (z1,z2,...,2zp) andy = (y1, y2, ..., y4). Finally, we introduce the matrix asso-
ciated with the mass poin@ = diag(A1, Az, ..., Ay). With this notation (2.3) can be
rewritten as

Pu(@) = Pu(@) — Ky—1DPy (@), Ky1=Ky-1(a,a), (2.4)

wherea = (ay, a, ..., ay). If the matrix| + K, _1D, wherel is the identity matrix, is
nonsingular, then we get the existence and uniqueness for the solution of (2.4) and therefore
(2.2) becomes

Py(x) = Py(x) — KI_1(x,a)D(l + K,—1D) 1P, (). (2.5)

The above formula constitutes the firspresentation formula for the polynomie(lé,,)n.
From the above expression and following [2] we obtain the following

Theorem 1. The linear functionafi defined in(1.1)is a quasi-definite linear functional if
and only if

(i) The matrixl + K,_1D is nonsingular for every € N.
(i) (u, P2(x)) + P (@)D(l +K,—1D) 1P, (a) # 0 for everyn € N.
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In such a case the noraf := (i1, P2(x)) is given by
(it, P2(0)) = (u, P2(x)) + Pl @D(l +K,—1 D) 1P, (@), (2.6)
and the corresponding sequen@®,),, of monic orthogonal polynomials is given {8/5).
Furthermore, since the entries of the mattixare nonzero, thel® is a nonsingular
matrix, thusD(I +K,_1D) 1= (D1 +K,_1)~1:=M,_1, so (ii) means that
Py (a;i)

Vs, P2y

ande, = e~/ a9%.P)  where arg means the principal argumento& C.
Similarly to [2], if we multiply (2.5) by¢ (x) = ]_[i"il(x — a;), and use the Christoffel—
Darboux formula

1+ 8,,75; (a)Mn—lﬁn (a) #0, ISn (a;) =

. 1[ Pix)Pu1(y) — Pu(y) Pu1(x)
Kn—l(-x7y)_k_ x_y

} kn = (u, P2(x)), (2.7)
then we obtain the representation
¢ (¥) Py (x) = Ax; n) Py (x) + B(x; n) P_1(x), (2.8)

whereA(x; n) and B(x; n) are polynomials of degree bounded by a number independent
of n and at mostM and M — 1, respectively. On the other hand, from the three-term
recurrence relation that the sequeii£g), satisfies

xPy(x) = Pyy1(x) + B P (x) + Y Pr—1(x), Vn?éov vn eN, (29)

and taking into account (2.8) we get, foe> 1,

¢ (xX) Pu_1(x) = C(x; 1) Py(x) + D(x; 1) Py_1(x),

C(x:n)= _M’
Yn—1
x = Bu-1
D(x;n):A(x;n—1)+y78(x;n—1). (2.10)
n—1

Let us point out that the above representations are valid for any family of polynomials
orthogonal with respect to the linear functional (1.1) and not only for the case wisen
classical or semiclassicebntinuous functional.

Notice also that, as in the continuous case [2], an inverse process can be done in order
to recover the linear functional in terms ofu (it is sufficient to add tar the same masses
but with opposite sign). Therefore, there exist two polynomigls; n) and B (x; n) with
degrees bounded by a number independentsafch that

¢ (x) Py (x) = A(x; n) Py(x) 4+ B(x; n) Py_1(x). (2.11)
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2.2. Representation formula in the semiclassical case

If uis a semiclassical discrete linear functional, then there exist a polyngrtialand
two polynomialsM1(x; n) and N1(x; n), with degree bounded by a number independent
of n, such that [31]

Y (x) AP, (x) = M1(x; n) Py (x) + N1(x; n) P,—1(x), (2.12)

whereA is the forward difference operatatf(x) = f(x + 1) — f(x). Notice that using
the TTRR (2.9) we get a similar expression but in term&pénd P, _1,

Y (x) AP, (x) = Ma(x; n) Py(x) + No(x; n) Pyy1(x), (2.13)

where again the degree 8f,(x; n) and N2(x; n) are bounded by a number independent
of n. Usually the formulas (2.12) and (2.13) are called the lowering and raising operators
for the family (P,),,.

Similarly, for theg-semiclassical case a similar result is known [28], i.e., there exist a
polynomialy (x) and the polynomiald/1(x; n), N1(x; n), M2(x; n) and N2(x; n), with
degree bounded by a number independent asluch that

Y (x) Dy Py (x) = M1(x; n) Py(x) + N1(x; n) Py_1(x), (2.14)
Y (x) Dy Py (x) = M2(x; n) Py(x) 4+ N2(x; n) Paga(x), (2.15)
whereD, is theg-Jackson derivativés
_ Pgx) - P()
Dy P(x) = 7)6(6] 1 q#0,+1

Using either (2.8) and (2.12) or (2.10) and (2.13) we obtain the following representation
formula:

(x5 1) Py (x) = a(x; n) Py(x) + b(x; ) Py(x + 1), (2.16)

wherea, b andrz are polynomials of degree bounded by a number independeant of
In theg-case the situation is the same. In fact using (2.8) and (2.14) or (2.10) and (2.15)
we obtain the following representation formula:

70 (63 1) Py () = a(x; n) Py (x) + b(x; n) Pa(gx), (2.17)
wherea, b andrz are polynomials of degree bounded by a number independeant of

3. Algebraic properties of the polynomials P, (x)
3.1. The three-term recurrence relation fa?, ),

In the following we assume thatis quasi-definite. Then, the sequeri@®), of monic
polynomials orthogonal with respectiicsatisfies a three-term recurrence relation (TTRR)

Xﬁn(x)zIgn-l—l(x)+:3~nﬁn(x)+)7nﬁn—l(x)a neN, (31)

1 Usuallyq € (0, 1).
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with the initial conditionsP_1 (x) = 0, Po(x) = 1. To obtain the coefficient§, andy, of
the TTRR (3.1) for the polynomialB, orthogonal with respect td we use the standard
formulas for orthogonal polynomials (see, e.qg., [14]). Thus, using (2.6) we find
(@, P2(x) Lt enPL@M,_1P (@)

P ) 1Pl @My—2Puoa @

as well as, fon =1,
5 y 1+ 8175,{ (a)MOﬁn(a)
1=Y1
1+ 305 Aifuo

whereug = (u, 1) is th~e first moment of the functional ~
On the other hangi, = b,, — b,+1, whereb,, denotes the cqefficient af—1for P, and
b, is the corresponding coefficient 81 for P,. To compute, we use (2.5), so that

En =by — Snsn—lh’n|1/275T_1(5)M11—175;1T (a)

n

n>1,

and therefore

Bn = Bu + entniilynialV* Pl @M, PL (@)
— enen—tlya V2P (@M1 P @).

n

Finally, forn = 0 we have

fo= ({x)  ur+YM aiA
<ﬂ7 1) uoQ + Zlﬁil Ai

, u1={(u,x).

3.2. Second order difference equation @),

In the following we assume thatis a semiclassical discrete grdiscrete functional.

From the representation formulas (2.8) and (2.16) and (2.17) follows that the polynomi-
als P, satisfy a second order difference equation. For the discrete case it is an immediate
consequence of Theorem 2.1 or Theorem 3.1 in [1]. In fact, we have

Theorem 2. Suppose that the polynomia(lén)n are defined by2.16)where the polyno-
mial P, is a solution of a second order difference equa{iB@DE) of the form

o(x;n)Py(x — 1) —@(x; n) Py(x) + s(x; n) Py(x + 1) =0. (3.2)
Then{P,} satisfy a SODE of the form
6 (x;n)AV P, (x) + T(x; n) AP, (x) + A(x; n) Py(x) =0, (3.3)

wherez (x; n) = E(x; n) — & (x; n), AMx:n) = E(x;n) + 6 (x; n) + @(x; n), andé, ¢ and
¢ are given explicitly in(3.8).

Proof. For the sake of completeness we present a sketch of the proof. We start with the
representation formula (2.16),

7 (x5 1) Py (x) = a(x; n) Py (x) 4 b(x; n) Py (x + 1), (3.4)



R. Alvarez-Nodarse, J. Petronilho /J. Math. Anal. Appl. 295 (2004) 55-69 61

and evaluate it inc = 1 and then we use (3.2) to substitute the valigéc — 1) and
P,(x + 2). So, we obtain
r(ein) Pa(x + 1) =c(x;n) Py(x) + d(x;n) Py(x + 1),
r(x;n)=c¢x+1Lnnr(x+1n),
cx;n)=—ocx+1,n)b(x+1;n),
dix;n)=ax+Lnckx+Ln)+bx+Ln)ekx+1n), (3.5)
and
sGrin) Py(x = 1) = e(x; n) Py(x) + f(x;n) Py (x + 1),
s(x;n)=o(x;n)mr(x —1;n),
e(x;n)=o(x;n)b(x —1L;n)+alx — 1 n)p(x;n),
fin)=—a(x—Ln)g(x;n). (3.6)
Then, Egs. (3.4)—(3.6) yield
m(im)Py(x)  a(xin) b(xin)
r(x;n)Py(x+1) c(x;n) d(x;n)| =0, (3.7)
sx;n)Pp(x —1) e(x;n)  f(x;n)
where the functiong, a andb are given by (2.16) as well as d, e, f, r ands in (3.5)
and (3.6). Expanding the determinant in (3.7) by the first column we get

&) Py(x — 1) — (x; n) Py(x) + E(xs n) Py(x +1) =0,
where

& (xsn) =s(xsm[a(x; myd(x; n) — c(x; mb(x; m)],

@(x;n)=—m(x;n)[cx;n) f(x;n) —e(x; n)d(x;n)],

S(xin)=r(x;n)[e(x; n)b(x; n) —a(x;n) f(x;n)], (3.8)
or, equivalently, (3.3). O

To conclude this section let us notice that for thease a similar equation can be ob-
tained using the same technique developed here. Nevertheless we can immediately obtain
the result as follows.

Let us writex = ¢°. Then f(¢x) = f(¢°*1) and therefore (2.17) can be rewritten as
follows:

7(q*; n) Py(q®) = a(q®; n) Pu(q®) + b(q®; n) Pu(g’+Y),
or, in terms of thes variable
7(s; 1) Py (s) = a(s; n) Py(s) + b(s; n) Pu(s + 1),

i.e., they admit the same representation (2.16) changing;®. But for theg-semiclassical
polynomials the following second ordegrdifference equation is known (see, e.qg., [28]):

o (x; 1) Pa(qg ™ x) — (x; n) Py(x) + (x5 1) Pa(gx) =0, (3.9)
which becomes with the change— ¢* in Eq. (3.2). Thus the following result holds.
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Theorem 3. Suppose that the polynomials, ), satisfy(2.17)where the polynomiap, is
a solution of ag-SODE of the forn§3.9). Then(P,), satisfy ag-SODE of the form

& (x;n) Py(g™ix) + @(x; n) By (x) + E(x; n) Py(qx) =0, (3.10)
whereg, ¢ and ¢ are given explicitly by3.8)but now

r(x;n) =¢(gx; n)m(gx;n),

c(x;n)=—o(gx;n)b(gx;n),

d(x;n) =a(gx;n)s(gx;n)+b(gx; n)p(gx; n),

1

s(x;n)=o0@x;m)m(qg "x;n),

1

e(x;n) =0 (x; n)b(g ™ x; n) +alg tx; mg(x; n),

fxin)=—a(q x;n)g(x;n).
3.3. The lowering and raising operators

In this section we will prove that the polynomiaf% orthogonal with respect to the
linear discrete functional, whereu is a semiclassical functional, have lowering and rising-
type operators.

Proposition 4. The lowering-type operator associated with the discrete linear functional
1 is given by the expression

oy (x3 1) Py (x) + Bi(x; m) Py (x + 1) = y1 (x5 n) Py_a (%), (3.11)
where

a(x;n) = ¢ (x)d(x; ) (x; n) — [a(x; n)d (x; n) — c(x; n)b(x; n) JA(x; n),

Bi(x;n) = —¢p(x)b(x; n)r(x;n),

yi(x;n) = [a(xs myd (s n) — c(x; mb(x; ) |B(x; ).

Proof. Using formulas (3.4) and (3.5) we find
d(x; ) (x5 1) Py(x) — b(x; n)r(x; n) Py(x + 1)
= [a(x; n)d(x; n) — c(x; n)b(x; n) | Py (x).
Multiplying the last formula byp (x) and using (2.11) we obtain the resulto

Notice that from (3.11) and using the TTRR (3.1) we obtain the raising-type operator
oy (x5 1) Py (x) + Br (x5 1) Py (x + 1) =y, (o5 1) Py (), (3.12)
where
o (x;n) = oy (x; n) + i (xs n) By — )7,
Br(x;n) = Bi(x;n),
yr(xin) = —y(x;n)y, L.
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Notice that if instead of formula (3.5) we use (3.6) then we will find expressions similar
to (3.11) and (3.12) but with the ter®, (x — 1) instead ofP, (x + 1).
In a complete analogous way but using (2.17) we have

Proposition 5. The lowering operator associated with thdinear functionalhu is

a1 (x5 1) P (0) + Bi(x; n)g P () = y1(x3 n)g Pam1(x), (3.13)
where

a(x;n)g = ¢ (x)d(x; ) (x; n) — [a(x; n)d (x; n) — c(x; n)b(x; n) JA(x; n),

Bi(x;n)qg = —¢p(x)b(x;n)r(x; n),

yi(xin)g = [a(x; n)d(x; n) — c(x; n)b(x; n)|B(x; n).
The raising operator in this case is

o (X3 1) g By (x) + Br (x5 1) g Pa(gx) = yr (x: n)g Puga (%), (3.14)
where

ar (x:n)g = a1 (x: n)g + yi(x:n)g (Bn — )7, L

Br(x;n)g = Bi(x;n)g,

Vr(xin)g = —yi(x; g, *.

As before, from the above equations similar expression involving the t€yitas 1x)
can be easily obtained.

4. Examples
Here we will consider some examples. Since the classical case with one or two extra
delta Dirac measures has been studied intensively (see, e.g., [4,5]) we will focus here our

attention in they-case. For the sake of simplicity we will choose the Al-Salam and Carlitz |
polynomial as the starting family. The main data of such family can be found in [25, p. 113].

The Al-Salam and Carlitz | polynomials are defined by
xq)
q; — |-
a
where the basic hypergeometric serigg is defined by [18]
o0 . k
ai, ..., ar (@ k.- z k k(k=1)/21p-r+1
r 34,2 )= (_1) 9
(pp(bl’-~-’bp 1 > ];(bl§Q)k-~-(bp§Q)k(q;‘I)k[ 1 ]

(a) e 7@ (e N (P, n(n—=1)/2 tf",xfl

being (a; ¢)x = [157%(1 — ag™) the ¢-shifted factorials. Also we will use the standard
notation(as, ..., a-; q)x = (a1; @)k - - (ar; @)x @NA(@; @)oo = [[;20(1 — ag").

The ponnomiaIsU,i")(x) satisfy the following properties: a second order linear differ-
ence equation
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aUy?(gx) = [a+¢1—x)(a = 0]U () + gL = x)a—0U (g 1)
=g (1—¢"x*U (), (4.2)
i.e., an equation of the form (3.9) with
o(x;n)=q(1—x)(a—x),
p(x;n)=a+q(l—x)(a—x)+q" " (1—g")x>,
slx;n)=a,

the three-term recurrence relation

XU @) = U () + A+ a)g" U (x) —ag" 1 — ¢ U, (x),

n=0,1,2,..., (4.2)

and the differentiation formula

UL (x) = U (gx) = (1 — ¢")x U (x). (4.3)
They satisfy the followig orthogonality relation:

1

/(qx; q)oo(qx/a; q)ooU,(l”)(x)U,;“)(x) dgx = df&,,m, a <0, (4.4)

a
where

d7 = (=a)" (1= 9)(q; Pn(q; Poo(@; Q)o@ g5 @oog" " V2.

Herefab f(x)dyx denotes thg-integral by Jackson (see, e.g., [18,25]).
From the above orthogonality relation we cdefine the positive definite linear func-
tionalu as

1
u, . P—>C, u, [P(x)] = /(qx; @oolgx/a; @)ooP(x)dyx, a<D0. (4.5)

A particular case of the above functional is wher= —1 that leads to the discrete
g-Hermite | polynomials, @-analog of the Hermite polynomials.

4.1. Modification of the Al-Salam and Carlitz | polynomials

As an example we will consider the followingrturbedfunctionalii, : P — C:
1

i, [P(x)] = /(qx; @)oo(qx/a; Q)ooP(x)dgx + AP(x0), a<0<A. (4.6)

The polynomials orthogonal with respect to the linear functional (4.6) will be denoted by
UL A (x).
Using (2.3) and (2.7) (or (2.8)) we find
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(x — U4 (x) = [x — x0 — AU A (x0)d;, 2U, (x0) [ U (x)
+ AU (x0)d, 2US® (x0) U, 2y (o). (4.7)
where
U (x0) U0
1+ AY g (U@ (x0)2d; ? 1+ AKy—a1(x0, x0)
Therefore, taking into account (4.3) and (4.7), we find that (2.17) is valid with

Uy (x0) =

m(x;n) =x(x —xo),

AUé“>”‘(xo)U,5‘i>1<xo)> AU (x0) Uy (x0)
dz (1—gmdz
(x0)U," (x0)
1—gmad?z
For these polynomials, by (2.6), we have
d,’ = (1, (U,(,“)’A)Z) =d?+ A[U,g“)(XO)]Z(1+ AK,,_1(xo0, XO))fl,
and therefore the coefficients of the TTRR are
U, (x0) U™ (x0) UA" (x0) UL, (x0)
2, (1+ AK,(x0, x0)  d2(1+ AK,_1(x0, x0)) }
1+ AU (x)d, Y1P(1+ AK_1(x0, x0)) 2
1+ A[UL, (x0)d, 4 12(1+ AK —2(x0, x0) L

Now, from the above explicit expressionsmofx; n), a(x; n), b(x; n), o (x; n), p(x; n),
and ¢ (x; n), we immediately obtain the second order difference equation (3.10). Finally
for finding the lowering and raising operators we should obtain formula (2.11) which, for
this case, takes the form
U (x) = UM (x) + AU (x0)K -1 (x x0),

or, equivalently

a(x;n):x(x—xo—

(a) A
b(x;n)=—

Bn=(1+a>q"+A[

¥ =—aq" H1—q" (4.8)

(x — 20U (x) = ACe; US4 (x) + BOx; m) U4 (),
where

_ AU (x0) U4 (x0)
A(xin)=x —xo+ ,
d?

Beim — AU 0 U xo)
dz
and therefore, (3.14) and (3.13) give the raising and lowering operators. For the sake of
simplicity we will omit the explicit expressions of the SODE and the raising and low-
ering operators and we only present them for the special case of digectétemite |
polynomials.
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4.2. Modification of the discretg-Hermite | polynomials

To conclude this work we will consider the discreteHermite | polynomials, i.e., the
polynomialsh, (x; q) := U,ﬁ’l) (x; q), and let us study in detail the modification of these
polynomials via the addition of a delta Dirac measdrat xo = 0, which will be denoted
by 14 (x; ¢). The main data for thg-Hermite | polynomials follow from the data of the
Al-Salam and Carlitz | putting = —1.

According to (4.7), in this case themeesentation formula (2.8) reads as

xhi (x5 q) = xhy (x; @) + Thhp—1(x; q), n>1, (4.9)
where
Al (01 _
r,= { 04 AK, 100y T2
0, n=2m-—1,

d?=1— )@ On(@, —1, —4; )ooq @,

m(m—1) _1)m( . 2) n=2m
h (0O —14 ( q;:9 )m; y N
n(,Q) {0’ n:2m_1, m e 3
andK,,_1(0,0) = Z;cl, [hx(O; q)]zdk‘z. For the special case=2m — 1 we have
m—=1 _p 2
q (g9
K2n-1(0,0) = .
a- q)(q, L —4: @)oo £ Z (q% g2k

Notice that with the above notation

1 AG; qDmg™ 1
A-9@q. -1, —¢;:9)  G%qPDm 1+ AK2,_1(0,0)°
If now we use (4.9) and the differentiation formula (4.3) wite- —1 we find

I, = m € N.

1—
xhi! (v: q) = xha(x: ) + 7 =9 rDyha(xiq)., n>1,
—q"

or, equivalently,

22 (x; ) = (P 4 A)ha(x; @) — Apha(gx;q), n>1, (4.10)
whereA, =1I,/(1—q")
Remark. Notice that sincel,_1 = 0 for all m € N then, by (4.9),h§‘m_1(x;q) =
hom—1(x; q), i.e., the odd degree polynomials are not affected with the addition of the
Dirac measure.

Notice also that

xh3,, (63 ) = xham (X3 @) + Tomhan-105; ) = xhaw (53 @) + Tamhiy,_1(x5 9),
i.e., formula (2.11) takes the form

xha(x; @) = xhiy (x: q) = Tahy_g (x: ).
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For this family the square of the norm is

e 2 n
d" = A= 9)(q: Dn(q. —1.—q: P)oog @D A+ T}).
Using the formulas in Section 3 (or (4.8) with= —1 andxg = 0) we find

xhy (63 @) = by (6 @) + Buhy} (65, 9) + Fuhyl_1 (63 q), n €N, (4.11)
where the coefficients of the TTRR are given by
~ 1+ 1,
=0, u=q¢"t1-¢"H"—""", N.
Bn=0. Vu=q" " ( q)lJanil ne
To compute the-SODE we use Theorem 3 with the functions (see [25])

o(xin)=q(1-x%, oxin)=1+q—q""x% c@xin)=1
and (cf. (4.10))
w(x;n) =x2, a(x;n) =x°+ Ay, bx;n)=-—A,.
Then we have
& (esmhf (g hx @) + @O b (x5 @) + S (s ki (gx; q) =0,
where
G(xin) =g " X214+ 23 (—q?An (P + An) + " (An + 4% A2 — g(x2+ An))).
G(xin)=q H(=1+4 ¢’ A, (x% + ¢%A,)
—q(q(=1+xH) A + A +q —q*"x¥)(q % + Ay)
x (—An +qx2(1+q17"An)),
Sn) =q"x2(q An(x® + g2 An) + ¢" (x2 + g An(—=1+q — g2 An))).

We notice that these are the expressions in Theorem 3 up to the f&ctor
For the lowering-type operator we have, from (3.13),

o (x: m)ghpy (x: @) + B (x: mghi) (qx; @) = yi(x; n)ghy_y (x: q),
where (up to the factayx?A4,,)
a(xin)g =q""x(—q Ay +q" (=14 qAn)).
Bi(x;n)g =qx,
Yi(xin)g = (—14¢") (= An + q(x* + An — g An® + ¢ A, (3% + Ap))).

Combining the last expression with the TTRR (4.11) we obtain the raising-type operator.
To conclude this section let us show that the polynomidiéc; ¢) can be expressed in
terms of a basic serieg,. For doing that we substitute the representation

_ —n y—1
(x5 q) = q"" 1)/22<p1<q 5 q;—xq>

in (4.10). After some straightforward calculations, this leads to the expression
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hA(x: ) = "D /zi @7 Oelg ™ Pr(=g0)* gx(x®+ Ap)
" = (q: D (gx —1)

x (1= 8(x; n)g"),

wheres (x; n) = (x/q + An)/(x%2+ A,). Finally, using the well-known identity 4 ag* =
1 —a)(aq; q)i/(a; q)r With a = §(x; n), we obtain

—-n ,,—1.-1 .
_ ,q T x T, 8(x;n)
hit (s q) = g" "V 250, | 1 qo 5(x: m) T1q; —qx).
-1
X+ A
5(x;n)=7q 5 T An
X+ Ay
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