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Abstract

Ž .Masses of the SU 3 chiral soliton in tree approximation turn out at much too high energies typically around 2 GeV. It is
shown that 1-loop corrections reduce this value drastically with results in the region of the empirical nucleon mass. q 1998
Elsevier Science B.V. All rights reserved.

PACS: 14.20.-c; 12.40.-y
Ž .Keywords: SU 3 loop

1. Introduction

In this short letter we discuss the effect of 1-loop
Ž .corrections to the mass of the SU 3 symmetric

chiral soliton. It is well-known that the soliton’s tree
Ž .mass turns out too high already in SU 2 and the

Ž .SU 3 extension adds further a large kaonic rota-
tional energy such that the situation is worsened with
values which typically lie around or even above 2

Ž . w xGeV. In SU 2 it was shown 1,2 that pionic 1-loop
corrections are capable to reduce the too high tree

Ž .mass to a reasonable number Table 1 .
The main concern of this paper is to answer the

Ž .question whether the same may happen also in SU 3
where we have to start from a much larger soliton
mass, and if that actually occurs how can it be in
accordance with N counting? In the course of thisC

investigation we will recognize as often in soliton
models the decisive role of the Wess-Zumino-Witten
Ž .WZW term.

Ž .A detailed discussion of the SU 2 case is found
w x Ž .in 2 and the SU 3 extension requires only minor

changes in the formulation. The renormalisation pro-
cedure is identical to that used in chiral perturbation
theory and relies on chiral counting together with
dimensional regularisation which preserves chiral
symmetry. Starting point is always an exact numeri-
cal solution of the classical equations of motion
around which fluctuations for the 1-loop calculation
are considered and the exactness of the solution
guarantees that the terms linear in the fluctuations
vanish. These requirements limit the applicability of

Ž .the procedure considerably: in SU 3 this is the
rotating hedgehog

it r̂ F Ž r .e†UsAU A , U s AgSU 3Ž .0 0 ž /1
1Ž .

Ž .in the symmetric case m sm . Here F r denotesK p

Ž .the chiral angle and A is a SU 3 rotation matrix
depending on Euler angles a , as1, . . . ,8. Alreadya

for weak symmetry breaking, m Rm , the ansatzK p

Ž .1 does not remain exact. Allowing the profile to
Ž .become Euler angle dependent, F r,a , improvesa
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w xthe situation 3 but does not solve the problem: kaon
and eta solitonic components are induced already in

Ž 2 2 .lowest order m ym . To consider fluctuationsK p

Ž .around such a SU 3 deformed object is certainly
beyond present possibilities and we are therefore not
in the position to calculate 1-loop in the rotator

w xapproach 4 . On the other hand, for strong symmetry
Ž .breaking m 4m the hedgehog 1 rotating inK p

Ž . Ž .SU 2 only, Ag SU 2 , becomes an exact solution.
However there the assumption m 4m is in con-K p

flict with chiral counting and the adopted regularisa-
tion scheme. Whether the standard chiral lagrangian
may nevertheless be used in connection with the

w xbound-state approach 5 will be subject of a separate
investigation. At present our procedure applies only

Ž . Ž . Ž . Žto SU 2 m ™` and to SU 3 symmetry m sK K
.m which is treated in the following. The actualp

nucleon mass should lie in between these two limit-
ing cases.

2. Formulation

Ž . w xThe standard chiral SU 3 lagrangian 6 ex-
pressed in terms of the matrix U which contains the
dynamical fields and the mass matrix M

2f
m † †LLs tr E UE U qM UqUŽ .m4

21 m †q L qL q L trE UE UŽ . Ž .1 2 3 m2

2
1 † †q L tr U E U,U E Už /2 m n2

q L q3LŽ .3 2

=
21m † n † m †trE UE U E UE U y trE UE UŽ .m n m2

qL trM UqU † trE UE mU †Ž .4 m

qL tr UMqMU † E UE mU †Ž .5 m

2 2† †qL trM UqU qL trM UyUŽ . Ž .Ž . Ž .6 7

qL tr MUMUqMU †MU †Ž .8

2f
m † †' tr E UE U qM UqUŽ .m4

8
Ž4.q L LL 2Ž .Ý i i

is1

Ž .comprises the familiar non-linear sigma N lls

Ž .model of chiral order ChO2 and eight terms of
ChO4 which are relevant in the soliton sector with-
out external fields. At scale msm s770 MeVD

which should provide the lagrangian in leading order
w x Ž .N 7 the renormalized low energy constants LECsC

are chosen

1L qL q L s0 , L q3L s0 ,1 2 3 3 22

1
L s , L sL s0 ,2 4 6216e

f 2 y f 2
K p y3L s2 L sy6L s s2.3P10 ,5 8 7 2 28 m ymŽ .K p

3Ž .

w xto be in accordance with the standard values 6,7
Ž .within error bars with one exception: L has to be2

fixed by an effective Skyrme parameter es4.25
Ž .the standard value would correspond to e,7 in
order to simulate the missing higher ChOs generated
by vector mesons. A detailed justification of this

w x Ž .choice is found in Ref. 2 . The SU 2 reduction of
Ž .2 yields exactly the lagrangian employed in that

Žreference and the LECs which additionally appear
Ž . .in SU 3 take their standard values . As a conse-

quence the soliton as well as the pionic 1-loop
results do not have to be recalculated, but may just
be taken from there. It should be mentioned that
although the LECs are chosen such that many of the

Ž .ChO4 terms in 2 vanish at scale msm all theseD

terms are switched on and do contribute when the
scale is changed.

Ž .In the SU 3 symmetric case under consideration
the mass matrix Msm2 P1 is diagonal and leads to
identical kaon and pion masses and decay constants

f 2 s f 2 s f 2 q8 3L qL m2 , fs91.1 MeV ,Ž .K p 4 5

f 2 m2 s f 2 m2 s f 2 m2 q16 3L qL m4 ,Ž .K K p p 6 8

ms138 MeV . 4Ž .

Because the symmetry breakers are absent, the nu-
cleon mass in tree approximation



( )H. WalliserrPhysics Letters B 432 1998 15–21 17

J Jq1Ž .
E sM qtree 0 2Qp

21 NC
q C yJ Jq1 yŽ .22Q 12K

3 NC
sM q q , N odd 5Ž .0 C8Q 4Qp K

comprises the soliton mass M of order N , the0 C
y1 Žpionic rotational energy of order N Q pionicC p

.moment of inertia and the kaonic rotational energy
0 Ž .of order N Q kaonic moment of inertia . TheC K

non-trivial N assignment to the kaonic rotationalC

energy is caused by the WZW term which selects the
lowest lying multiplet depending on the number of
colors. For odd N the ‘‘nucleon’’ with spin andC

isospin 1r2 and hypercharge N r3 sits in the multi-C

plet with the labels

N y1 N 2 NC C C 3p ,q s 1, , C s q q . 6Ž . Ž .2 4ž /2 12 2

With that eigenvalue C of the Casimir operator Eq.2
Ž .5 is immediately verified.

For the 1-loop calculation fluctuations h area

introduced through the ansatz

i l h r f †a aUsA U e U A , as1, . . . ,8 , 7Ž .( (0 0

Ž .and the corresponding equations of motion e.o.m.
which according to their time dependence ;eyi v t

may be written as

h2 h sv 2 n2 h 8Ž .ab b ab b

Ž 2 2 .h is a differential operator and n the metricab ab

have to be solved for the phase-shifts. Because the
Ž .e.o.m. 8 decouple for the different meson species

into partial waves characterized by phonon spin L
and parity the pionic, kaonic and eta phase-shifts
may be summed up separately over the various

Ž .channels Lc

d x p s 2 Lq1 d x p , xsp , K ,h . 9Ž . Ž . Ž . Ž .Ý Lc
Lc

The ultra-violet divergencies contained in the Casimir
energy are related to the high momentum behaviour
of these phaseshifts

a x
p™` 2x x 3 xd p ™ a p qa pq q PPP , 10Ž . Ž .0 1 p

with expansion coefficients a x,a x,a x known analyti-0 1 2
Žcally for the N lls model the explicitly denoted

terms give rise to at least logarithmically divergent
.expressions . These coefficients obey the important

ChO4 relation

4 x 2 x x3p m a y4p m a q8p aÝ x 0 x 1 2
x

8
3 Ž4.s G d r LL , 11Ž .Ý Hi i

is1

where the G ’s are simple numerical factors given ini
w x6 and which is used below for regularisation of the

Ž .Casimir energy. For the full model 2 the coeffi-
cients have to be determined numerically and the
challenge is to calculate the phase-shifts with great
precision up to p ,25m where L ,100 par-m a x p m a x

Ž w x.tial waves are needed for details see 2 . With these
informations at hand the divergencies in the 1-loop
contribution may be isolated using dimensional regu-
larisation

`1 pdp
E s yÝ Hcas 2 22p ž 0 (p qmx x

=

xa2x x 3 xd p ya p ya pyŽ . 0 1 p

ym d x 0Ž .x

3m4 a x m2 m2 a x m2
x 0 x x 1 x1q q ln y ln6 2 2ž /16 4m m

a x m2
2 x

q 1q ln 2ž /2 m /
4 x 2 x xqL m 3p m a y4p m a q8p aŽ . Ý x 0 x 1 2

x

' E x mŽ .Ý cas
x

8
3 Ž4.qL m G d r LL qhigher ChOs ,Ž . Ý Hi i

is1

12Ž .
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which involves a scale m to render the arguments in
the logarithms dimensionless. The divergencies as
d™4 reside in

mdy4

L m sŽ . 216p

=
1

X1y G 1 q ln 4p q1 ,Ž . Ž .Ž .2dy4

13Ž .

and may finally be absorbed into a redefinition of the
LECs

Lr m sL yG L m ,Ž . Ž .i i i

G m2
ir rL m sL m y ln , 14Ž . Ž . Ž .i i D 2 2ž /32p mD

which become scale-dependent. The renormalisation
scheme is identical to that used in chiral perturbation
theory.

Ž .From 12 it is also noticed that the regularisation
scheme must fail for m 4m : in the limit m ™`K p K

we would obtain an infinite contribution from the
Žsecond row containing the chiral logarithms the

K Ž .term m d 0 r2p would cancel the bound stateK
1contribution Ý v which has to be added in thatz z2

case because the infinitesimal kaonic rotations ap-
.pear at finite energies .

Ž .For m sm with the finite contributions in 12K p

the nucleon mass in tree q 1-loop is finally deter-
mined

3 NC
E sM m q qŽ .treeq1- loop 0 8Q m 4Q mŽ . Ž .p K

q E x m . 15Ž . Ž .Ý cas
x

All quantities involved become scale-dependent in a
non-trivial way, this will be investigated. Because
the contributions of the various mesons enter addi-
tively we may consider them separately.

2.1. Pions

Ž .The pionic contribution is the same as in SU 2 ,
w xthis was mentioned already. In Ref. 2 we obtained a

p Ž .1-loop contribution E m sy680 MeV at scalecas D

msm . Further it was found that the scale-depen-D

Ž . p Ž .dences of M m and E m cancel almost exactly0 cas

over a wide region of scales, compare Fig. 3.2 in that
reference. This finding was interpreted as strong
evidence for the reliability of the renormalisation
procedure and also for the reasonable choice of the
effective Skyrme parameter e. The pionic rotational

Ž .energy in 5 is very small by itself and its scale-de-
pendence is relatively weak such that it does not
destroy this property.

2.2. Eta

The coupling of the h to the soliton proceeds
through the mass terms only and consequently is
extremely weak. The resulting 1-loop contribution

h Ž .E m sq0.5 MeV is tiny.cas D

2.3. Kaons

Because in the kaonic sector we have four in-
finitesimal kaonic rotations the phase-shift starts at

K Ž .d 0 s4p according to Levinson’s theorem. This
fact, although the zero-modes do not contribute by

Ž .themselves because they are located at zero energy ,
leads to a large negative Casimir energy which at

K Ž .scale msm amounts to E m sy425 MeV.D cas D

This contribution compensates nicely for the kaonic

Table 1
Ž . Ž .Nucleon mass in SU 2 and symmetric SU 3 with and without

WZW term. The individual tree and 1-loop contributions are listed
separately and their N order is indicated. All energies are givenC

in MeV

Ž . Ž . Ž .SU 2 SU 3 SU 3
without with
WZW WZW

1soliton mass N 1630 1630 1630C
y1pionic rotation N 70 70 70C
0kaonic rotation N – 390 350C

total tree 1700 2090 2050

0p 1-loop N y680 y680 y680C
0K 1-loop N – y425 y600C
0h 1-loop N – q0.5 q0.5C

total tree q 1-loop 1020 985 770
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Ž . Ž .Fig. 1. Scale-dependence of the kaonic contributions without WZW in tree dashed and tree q 1-loop solid . The inclusion of the 1-loop
contribution amplifies the scale-dependence.

Ž .rotational energy N r4Q m sq390 MeV whichC K D
0 Ž .is of the same order N Table 1 . However, theC

scale-dependence of the rotational energy is en-
hanced further if the 1-loop contribution is included
as is noticed from Fig. 1. This indicates that there is
an important term missing.

2.4. Kaons with WZW term

Ž .Inclusion of the WZW term has two effects i it
adds a contribution to the kaonic moment of inertia

Ž . Ž .and ii it modifies the e.o.m. for the fluctuations 8
introducing a term linar in v.
Ø Kaonic moment of inertia

The WZW term provides the driving term for
induced soliton components h proportional toa

w xthe kaonic angular velocities V 8e

QN ( KC2 eh h s B f z V , a,b ,es4–7 ,ab b 0 8 ab b e' 2 f2 3 K

16Ž .

which finally lead to a contribution to the mo-
ment of inertia. Here, h2 represents the differen-ab

Ž .tial operator encountered in 8 , B is the baryon0

density and z e are the kaonic rotational zero-a
Ž .modes defined below. For m sm Eq. 16K p

does not possess a unique solution, because the
zero-modes as solutions of the homogeneous
equation can always be added with arbitrary
strength. This pecularity is caused by the intro-
duction of supernumerary variables through the
collective rotations which causes a linear depen-
dence of the angular momenta on the momentum

Ž .fields conjugate to h primary constraints . Ina

order to avoid double counting and also to make
the Legendre transformation to the hamiltonian

w xwell defined 9 , we have to impose the con-
straints

2 f FK3 e 2 ed r z n h s0 , z s sin f r̂H a ab b a aei iž /2Q( K

17Ž .

that the induced components h be orthogonal toa
Ž .the infinitesimal rotations secondary constraints .

These constraints have to be added with multipli-
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ers l to the lagrangian and lead to a modifica-e
Ž .tion of Eq. 16

QN ( KC2 e 2 eh h s B f z V ql n z ,ab b 0 8 ab b e e ab b' 2 f2 3 K

N 1C
l s f V , 18Ž .e 8 de d' Q4 3 ( K

which is then free of spurious zero-mode compo-
nents. Instead of going through Dirac’s quantiza-

w xtion procedure 9 , we may as well reinsert the
induced components into the lagrangian and read
off the moment of inertia from the terms propor-
tional to V 2. For m sm and scale msm weK p D

Ž . Ž . y1obtain Q m s 1.92 q 0.21 GeV s 2.13K D

GeVy1 a 10% contribution from the induced
component. Of course also for m /m the con-K p

Ž .straints 17 have to be implemented, but there
the induced component decays very rapidly with
increasing kaon mass justifying that this contribu-
tion is normally neglected. In our case it helps to
soften the scale-dependence of the kaonic rota-
tional energy as is noticed by comparing Fig. 1
with Fig. 2.

Ø Phase-shifts
The WZW term introduces a term linear in v

Ž .into the e.o.m. 8

N BC 02 2 2h h q iv f h sv n h . 19Ž .ab b 8 ab b ab b2'3 fK

As a consequence not all infinitesimal rotations
remain at zero energy. For physical kaon mass,
two of them appear as bound states and are
interpreted as kaonic excitations of the nucleon
Ž w x.bound-state approach 5 . For m sm theseK p

states appear as resonances in the continuum and
consequently the kaonic phase-shift starts only at

K Ž .d 0 s2p . Again, because these states are al-
ready taken into account by the kaonic collective

Ž .rotations we have to impose the constraints 17
in order to project the zero-modes from the space
of allowed fluctuations

N BC 02 2 2 2 eh h q iv f h sv n h ql n zab b 8 ab b ab b e ab b2'3 fK

20Ž .
Žwith lagrangian multipliers determined from
Ž ..17 . The same procedure had to be applied also

Fig. 2. Same as Fig. 1 but with the WZW term considered. The tree q 1-loop contribution is almost scale-independent over a wide region
of scales.
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w xin 2 , where it were external fields that destroyed
the rotational symmetry. The phase-shift calcu-

Ž . K Ž .lated from 20 starts again at d 0 s4p as it
should and the Casimir energy may as usual be
computed with the phase-shift formula according

Ž .to 12 . Alternatively, and of course with the
same result, the linear term in v may be inte-

Ž w xgrated from the path integral compare 2 , Eq.
Ž ..2.34 and may be replaced by an additional

Ž .potential in the scattering Eqs. 20 .
With inclusion of the WZW term the Casimir

K Ž .energy E m sy600 MeV at scale msmcas D D

over-compensates the kaonic rotational energy
Ž . Ž .N r4Q m sq350 MeV Table 1 . In contrast toC K D

the case without WZW the scale-dependences of
these quantities are opposite such that the kaonic
energy in tree q 1-loop becomes almost scale-inde-

Ž .pendent over a wide region Fig. 2 quite similar to
Žthe pionic contributions for very small scales the

soliton becomes unstable due to a too strong sym-
.metric ChO4 term . This confirms that the WZW

term plays an important role also in this context.

3. Results

Table 1 comprises the results for the nucleon
Ž .mass in the SU 3 symmetric chiral soliton model

with and without the WZW term taken into account.
It should be kept in mind that there are no additional
adjustable parameters in the game, the effective

Ž .Skyrme parameter was taken as in the SU 2 calcula-
tion. It is noticed that in both cases the tree mass of
,2 GeV is appreciably reduced into the region of
the physical nucleon mass. This is compatible with
N counting because for the kaonic contributionsC

tree and 1-loop are of the same order N 0 andC

because a strong cancellation between the two oc-
curs. As was discussed in the previous section,
scale-independence requires the inclusion of the
WZW term. Thus, the results for the nucleon mass

Ž .are in case of SU 3 symmetry 770 MeV and for
Ž .SU 2 1020 MeV such that the empirical nucleon

mass actually lies in between these two limiting
values. Once the lagrangian is fixed the calculation
presented is exact to order N 0, there are no otherC

contributions to this order. Unfortunately we were
not in the position to calculate 1-loop corrections for
finite m /m for the reasons discussed in theK p

introduction. Possibly one can estimate the Casimir
energy for m Rm in the rotator approach whereK p

one finds Euler angle dependent scattering equations
w x10 , but it is difficult to control the necessary ap-

Žproximations neglection of the terms linear in the
fluctuations which arise from the rotating hedgehog

.being not an exact solution . On the other hand for
m 4m the 1-loop contributions could possibly beK p

w xcalculated using the bound-state approach 5 which
also remains to be investigated.
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