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This paper presents two procedures for the identification of material parameters, a genetic algorithm and
a gradient-based algorithm. These algorithms enable both the yield criterion and the work hardening
parameters to be identified. A hybrid algorithm is also used, which is a combination of the former two,
in such a way that the result of the genetic algorithm is considered as the initial values for the gradi-

ent-based algorithm. The objective of this approach is to improve the performance of the gradient-based

PACS:
81.40.Lm
62.20.x
81.70.Bt
$1.20.Hy
07.10.-h
62.20.Fe
81.05.-t

Keywords:

Plasticity

Anisotropy

Parameter identification
Stamping

Optimization

Yield criteria

Work hardening

algorithm, which is strongly dependent on the initial set of results. The constitutive model used to com-
pare the three different optimization schemes uses the Barlat’91 yield criterion, an isotropic Voce type
law and a kinematic Lemaitre and Chaboche law, which is suitable for the case of aluminium alloys. In
order to analyse the effectiveness of this optimization procedure, numerical and experimental results
for an EN AW-5754 aluminium alloy are compared.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The numerical simulation of sheet metal forming processes has
proven its efficiency and usefulness. In the last twenty years, con-
siderable efforts have been made to improve the numerical meth-
ods for solving non-linear problems arising from material
behaviour, geometry and friction. Moreover, by means of user-
friendly graphical interfaces and due to increasing computer
capacity, the use of numerical simulation to analyze the sheet
metal forming process has been promoted at an industrial scale.
Despite the advances in this domain, the final result of the simula-
tion of metal forming processes depends greatly on the limitations
of the constitutive material behaviour model, used in the simula-
tions [1,2]. In fact, various types of models can be used, according
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to their ability to explain and/or predict the details of the plastic
behaviour during a given deformation process. Simple models of
isotropic hardening can give an acceptable estimate of the drawing
forces occurring during the process and are widely used in industry
[3]. However, more sophisticated models, involving for instance
non-linear kinematic hardening and more refined yield criteria
models, give improved evaluation of the evolution of every defor-
mation process [4-7]. Generally, these models have a large number
of parameters, which increases the amount and type of experimen-
tal tests necessary for their evaluation. Moreover, the results of the
parameter evaluation are often inconsistent [8-10].

The identification of the material parameters, for a given consti-
tutive model, can be seen as an inverse formulation. In this context,
the key idea is to simulate the performed experiment, trying to
adapt material parameters in order to numerically obtain the same
results as the experimental ones [11,12]. This approach consists of
an optimization problem where the objective function is to mini-
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mize the gap between the experimental and the numerical results.
The optimization variables are the material parameters that appear
in the constitutive model. To solve this problem one can use differ-
ent methods that can be divided mainly into three groups:

1. Derivative-free search algorithms.
2. Gradient-based algorithms.
3. Evolutionary algorithms.

The derivative-free algorithms, also called direct search algo-
rithms, are generally based on simple strategies and do not require
the calculation of derivatives. Their simplicity is their main attri-
bute. However, direct search algorithms undergo the problem of
converging to local minimums, and are also somehow user-depen-
dent. The convergence of these algorithms is very time-consuming
and involves the comparison of each trial solution with the best
previous solution. One can refer to several methods based on direct
search strategies namely: pattern search [13], Rosenbrock [14],
simplex [15] and Powell [16]. These methods remain popular be-
cause of their simplicity, flexibility and reliability.

The gradient-based algorithms usually converge quickly in the
vicinity of the solution, and are therefore very interesting in
terms of rapidity. However, they have some limitations, being
strongly dependent on user skills, due to the need to choose
the initial trial solutions. Also, they can easily fall to local mini-
mums, mainly when the procedure is applied to multi-objective
functions, as is the case with material parameter identification.
The requirement of derivative calculation makes theses methods
non-trivial to implement. One can mention a large number of
optimization gradient-based methods such as the Steepest Des-
cent Method, the Newton method or several Quasi-Newton Meth-
ods [17-20].

An evolutionary algorithm is a generic definition used to indi-
cate any population-based optimization algorithm that makes
use of some mechanism to improve the initial solutions. The trial
solutions to the optimization problem are individuals in a popu-
lation. Evolution of the population takes place after the repeated
application of the genetic operators (reproduction, mutation,
recombination, etc.). These algorithms have become very popular
in recent years, mainly because of the increase in computer cal-
culation speed that leads to optimized results in an acceptable
time. Moreover, it is generally believed that evolutionary algo-
rithms perform consistently well across all types of problems,
which is evidenced by their success in fields such as engineering,
art, biology, economics, genetics, robotics, social sciences and
others. Although they are robust methods, their convergence is
very time-consuming, and they must be considered as sub-opti-
mal algorithms, as for continuous variable optimization the glo-
bal minimum of the objective function is not guaranteed.
Anyway, local minima are generally avoided and the final solu-
tion is in the vicinity of the global minimum. Genetic algorithms
are the most popular type of evolutionary algorithms that make
use of biological evolutionary analogies to improve the initial
set of solutions.

In conclusion, these three types of approaches to variable opti-
mization can be used to solve the problem of determining the
material parameters of a given constitutive model. All the algo-
rithms have advantages and drawbacks. However, one can pro-
duce hybrid algorithms combining the advantages of each
approach, e.g. robustness of the genetic algorithm and perfor-
mance of the gradient-based algorithm. Generally speaking, if
the constitutive model is relatively simple e.g. isotropic harden-
ing described by a power law and an anisotropic Hill'48 [21]
yield criterion, the identification is relatively easy to perform,
whenever the available experimental data is sufficient. As the
complexity of constitutive models increases, identification be-

comes non-trivial, and generally demands user skills. To explore
and identify the problems and difficulties that can arise during
the parameter identification procedure, this paper makes use of
two different algorithms, a gradient-based and an evolutive algo-
rithm, to identify the material parameters of the constitutive
equations model in the case of a 1 mm thick sheet of EN AW-
5754-0 aluminium alloy, used in the automotive industry. A set
of experimental results was obtained from tension and both
monotonic and Bauschinger shear tests. The Barlat'91 [22] yield
criterion is considered. A Voce type equation [23] with kinematic
hardening component described by the Lemaitre and Chaboche
law [24] is used.

The paper is structured as follows. In Section 2, the constitutive
equations are briefly illustrated. In Section 3 the parameter identi-
fication problem and the two algorithms used are presented. In
Section 4 the experimental tests are described. In Section 5 the re-
sults of the parameters identified are discussed. And Section 6
sums up the main conclusions of this work.

2. Constitutive equations

The YLDO91 yield criterion was proposed by Barlat et al. [22,25]
and was written from previous isotropic criterion defined by Her-
shey and Hosford [26,27]. It can be written as follows:

¢ =51 = So|" +1S2 = S5 + S5 — 51" = 25" M

where Sy, S, and S5 are the principal values of the isotropic plastic
equivalent deviatoric stress tensor S, which is obtained from the
Cauchy stress tensor ¢ by a linear transformation; m is an exponent
which can be considered equal to, respectively, 6 for BCC and 8 for
FCC materials [28] and & is the equivalent stress. The linear trans-
formation used to calculate the isotropic plastic equivalent (IPE)
stress tensor S is

S=L:o )

where L is the linear transformation tensor, defined for orthotropy
[29] by

(C2+6)/3  —c3)3 /3 0 0 0
—c3/3  (3+¢)/3  —c¢i/3 0 0 0

L | s —a1/3 (G+¢)/3 0 0 0 )
0 0 0 & 0 0
0 0 0 0 ¢ 0
0 0 0 0 0 c

where ¢4, Ca, €3, C4, €5 and cg are the parameters that describe the
anisotropy. When all parameters ¢; (i=1 to 6) are equal to one
and m = 2, the YLD91 criterion reduces to the von Mises yield crite-
rion. The parameters to be identified in this model are c, ¢;, ¢3 and
cs. The parameters c4 and cs, the identification of which requires
shear tests to be performed in the sheet thickness, are kept constant
and equal to isotropic values (c4 = ¢cs = 1); this is because the exper-
imental database does not involve such strain paths. As above men-
tioned, an exponent value of m = 8 is used [28], which is coherent
with the behaviour of FCC materials such as aluminium alloys.
The yield surface is described by the equation:

®=5-Y=0 (4)
where Y is the yield stress that takes as initial value Y,. The yield
stress evolution is given by the Voce law [23], defined as:

Y =Cy(Yea — Y)&P 5)

where & is the equivalent plastic strain rate and Cy and Ys, are
material parameters to be identified. This model is used in the sim-
ulation of materials whose behaviour presents saturated hardening.
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In order to take into account kinematic hardening, the tensor S
becomes:

S=L:(6-X) (6)

where the backstress tensor (X) can be described by the non-linear
with saturation law proposed by Lemaitre and Chaboche [24]:

X =0 [xw (?) - x} &P (7)

where C, and X, are material parameters to be identified. ¢ is the
deviatoric part of the stress tensor.

The above described anisotropic yield criterion and hardening
laws were chosen because they correspond to the most suitable
set of phenomenological constitutive laws to describe the alumin-
ium alloy behaviour.

3. Parameter identification

It is not possible to experimentally determine the behaviour of
the material for all possible strain paths and therefore a limited
number of tests are usually considered, representative of the strain
paths encountered during the deep drawing process. To character-
ize the behaviour of deep drawing quality metals, the most widely
experimental tests used are tensile, shear and equibiaxial tensile
tests. In case of constitutive laws involving kinematic hardening,
reverse strain paths have to be taken into account, such as ten-
sion-compression tests [30], bending-unbending tests [31,32] or
planar Bauschinger shear tests [33,34]. The mechanical behaviour
of a material is then modelled, for use in numerical simulations
of the forming process, by means of the parameters identified from
the available experimental data.

The experimental database provides information for specific
strain paths, which allows parameter identification by minimizing
the difference between the numerical parameter optimization ap-
proach (for the constitutive model used) and the experimental re-
sults. The material parameter identification is then a minimum
error problem, where the error can be defined as the difference be-
tween the results of the optimization approach and the experimen-
tal data. The error (or cost) function can be expressed as:

1
N 4

1

Fa) -1y [PM™(A) — PE)? ®)

where F(A) is the error function, A the set of the parameters for the
constitutive model, N the number of experimental points; P{"™(A)
and P{® are the numerical and experimental values at a given
instant.

3.1. Gradient-based optimization method

The derivative or gradient-based algorithm used in this study
was developed by Pilvin and has already been largely discussed
[8]. It is briefly reviewed here. The algorithm thus obtained was
introduced into SiDoLo software. A fundamental issue regarding
the optimization using second order gradient-based optimization
methods, such as this one, is the initial guess for the set of param-
eters; if it is not carefully chosen, the iterative method can lead to
convergence difficulties. In order to accelerate the convergence,
two gradient-based methods were combined [35,36]. A steepest
descent method is used for determination at the beginning of the
optimization procedure and the Levenberg-Marquardt method
[37,38] is used to accelerate the convergence after the initial stages
of the optimization process [39]. This second order gradient-based
optimization method guarantees the convergence, at least to a lo-
cal minimum and is, in general, the most widely used optimization
algorithm [8] for identification tasks. In order to integrate the

Table 1
Diagram of the genetic algorithm used

1 Generate the initial population.
2 Start GA iterations n =1 to nmax:
2.1. Evaluate the fitness function for all solutions
2.2. Select the solutions to the mating pool
2.3. Combine solutions by a crossover technique
2.4. Apply the mutation operator
2.5. Apply elitism strategy
3 Stop iteration process if nmax is reached or return to step 2

internal variable equations, the gradient-based method imple-
mented in the program SiDoLo uses Runge-Kutta explicit numeri-
cal integration.

3.2. Evolutive optimization algorithm

In order to perform the material parameter identification an
algorithm based on the genetic evolutive scheme was also imple-
mented. The genetic algorithm (GA) is a selective random search
algorithm designed to achieve a global optimum within a large
space of solutions, as proposed by Holland [40]. The initial solu-
tions (population) of the GA algorithm are usually randomly gener-
ated. If some adequate quality solutions are known then it is
possible to include them in the initial population, which is known
as a seeding procedure. For instance, in this study it was possible to
insert the solutions obtained with the isotropic von Mises yield cri-
terion in the initial population. Then, for all the individuals the fit-
ness function is calculated. This fitness function measures the
robustness of each solution. Therefore a fitness-dependent tech-
nique is used to select the parents for the next population from
the current one, setting them in the mating pool. This acts as a nat-
ural selection process where the strongest individuals have more
probability of leaving their genetic information to the next gener-
ation. The next generation of solutions is obtained by a crossover
technique from the individuals in the mating pool. In this study a
single point crossover is used to perform this task. In order to en-
sure genetic diversity, a mutation operator is used. This is related
to the exploration and exploitation balance that should be present
in the convergence of the GA algorithm [41]. A way to increase this
“converging pressure” is to maintain part of the population; this
procedure is referred to as an elitism strategy. This algorithm is
repeated until the end condition is reached. The diagram of the
optimization problem, using the genetic algorithm is shown in
Table 1.

4. Experimental data

The material used was an EN AW-5754-0 aluminium alloy. The
samples for mechanical tests were cut from a 1 mm thick sheet.
Uniaxial tensile tests and simple shear tests were performed at
0°, 45° and 90° to the rolling direction (RD). Both types of tests
were carried out at an equivalent strain rate of 8 x 104 s~!. Ten-
sile samples have a gauged area of 150 x 20 mm?. A local strain
gauge, at the centre region of the sample, coupled with a CCD cam-
era, allows the calculation of longitudinal and transverse logarith-
mic strains. The true stress is calculated from the load by assuming
an isochoric plastic transformation. Simple shear samples have a
gauged area of 4.5 x 50 mm? and the local shear strain y, at the
centre region of the sample, is also recorded by a CCD camera. To
identify the kinematic hardening, Baushinger-type shear tests
were carried out in the RD direction. They consist of a loading of
the sample up to a maximum shear value (y=0.1, 0.2 and 0.3 in
this study) followed by unloading and reversal of the loading direc-
tion. The experimental data obtained for the 1 mm thick sheets of
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Fig. 1. Experimental results obtained for the EN AW-5754-0 aluminium alloy: tensile and shear tests at 0°, 45° and 90° to the rolling direction (T 00, T 45 and T 90 for the
tensile tests and CS 00, CS 45 and CS 90 for the shear tests) and Baushinger (shear) tests obtained at 0° to the rolling direction after 10, 20 and 30% of pre-deformation in shear

(€C 00 10, CC 00 20 CC 00 30).

Table 2 1.4 . . - . .
Experimental data obtained for the EN AW-5754-0 aluminium alloy i : — SIDOLO Txy=0.0
Angle with RD (°) r-value Initial yield stress (o) (MPa) Y ES N S S A g Sgﬁfﬁﬁ:ﬁoﬁo
0 0.707 107.6 H : DD3MAT Txy=0.5
45 0.611 105.5 o EXP

90 0.536 107.0 ;

the EN AW-5754-0 aluminium alloy is shown in Fig. 1. This mate-
rial exhibits a Portevin-Le Chatelier (PLC) effect, which is responsi-
ble for the serrations observed on the stress-strain curves in
tension.

Table 2 presents the experimental plastic anisotropy coeffi-
cients, r, and the yield stresses, o, obtained in tension in the sheet
plane for 0°, 45° and 90° to RD. The plastic anisotropy coefficients
are determined by fitting the results of the plastic strain in width
versus the plastic strain in thickness up to 0.20 of longitudinal
strain. It can be seen that this material exhibits weak planar anisot-
ropy, particularly in the stress-strain curve.

5. Identification results

The identification procedure is a minimization of the cost func-
tion over all the tests in the database (Eq. (8)). For the gradient-
based algorithm, an initial set of parameters was chosen and the
calculation was stopped after 200 iterations or after a stagnation
of the cost function. For the evolutive algorithm, all identifications
were performed considering a crossover probability of 75% and a
mutation probability of 5%. The population was 70 individuals
and 120 iterations were performed. The elitism strategy keeps
the 6 best elements in each population.

The yield stress parameters for the YLD91 criterion obtained
with the two different approaches are shown in Table 3. In this ta-
ble the label SiDoLo refers to the results obtained with the gradi-

Table 3
Identified parameters obtained for the YLD91 model with SiDoLo and with DD3MAT

I e oy e L L i o]

08}

—

¢ ) -
N

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
Sx

Fig. 2. Numerical results for the yield stress surface of the EN AW-5754-0 alumi-
nium alloy. Experimental results obtained in tension at 0, 45 and 90° with RD
direction. The numerical results presented were obtained with SiDoLo (Set 1) and
with DD3MAT.

ent-based program. For this case, the initial set of parameters is
indicated in brackets. The parameters obtained with the evolutive
program are referred to as DD3MAT results. Fig. 2 presents the
yield surface obtained with the two different approaches. Projec-
tions of the yield surface are performed in the normal stress plane
oxx — ayy fOr 1, = 0 and 14, = 0.5, all values being normalized by the
yield stress obtained in tension in the rolling direction, where ox is
the rolling direction and oy is the transverse direction. The normal-
ized experimental results are also plotted, i.e. the yield stress val-
ues, obtained at 0°, 45° and 90° with respect to RD. These points are

C1 Cy C3 Ce m . . . .
nEE ) e LES(D) EhD,  mhan G represented by small circles and the respective normal directions
et . ] J J ! d I J . . . .
——— e i e . = to the yield surface in each experimental point are drawn, as calcu-

The initial values are given in brackets.

lated from the experimental r values (Table 2). It is possible to ob-
serve slight differences in the shape of the yield surfaces for both
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Table 4
Identified parameters for the mixed hardening model with SiDoLo
Yo (MPa) Ysac (MPa) Cy
Voce Set 1 51.2 (107.6) 153.9 (200.0) 11.91 (50.0)
Set 2 128.7 (107.6) 193.4 (200.0) 6.9 (5.0)
Set 3 85.8 (107.6) 182.7 (200.0) 16.2 (50.0)
G Xsar (MPa)
NLSL Set 1 111.6 (10.0) 73.0 (10.0)
Set 2 1.24 (1.0) 1.02 (1.0)
Set 3 671.8 (1000.0) 2.24 (1.0)

The initial values are given in brackets.

identifications. The main differences are observed for the equibiax-
ial stretching strain path. When comparing the directions of the
normal to the yield surface with the experimental results, some
small differences are observed, particularly for the case of the gra-
dient-based program. The parameter identification results could be
improved by means of experimental data concerning the equibiax-
ial stretching strain path, i.e. using bulge or an approximation to al-
low the biaxial data to be accessed through tensile results in the
thickness direction as proposed, for example, by Green [42] and
Tong [43].

Table 4 presents the identified mixed hardening coefficients, for
Voce law and the non-linear with saturation law proposed by
Lemaitre and Chaboche (NLSL), obtained with SiDoLo. In order to
test the influence of the initial set of parameters within the deriv-
ative-based algorithm, three cases (number 1, 2 and 3) were tested.
For all identifications, the initial value of Yy, was kept equal to
experimental yield stress in the rolling direction, and the value of
Ysac was 200 MPa (see Table 4); the other initial values are also
shown in Table 4. The initial YLD91 parameters were set equal to

Table 5
Identified parameters for the mixed hardening model with DD3MAT
Voce Yo (MPa) (10,150) Ysac (MPa) (100,250) Cy (1,15)
73.2 146.8 9.6
NLSL Cx (1,150) Xsat (MPa) (10,120)
117.5 60.5

The limit values are given in straight brackets.

300 ! . , T

XXX

200

Cauchy Stress [MPa]

100

0.00 0.04 0.08 0.12 0.16 0.2
Logarithmic Strain 0°/ DL
Fig. 3. Experimental and numerical results obtained for the tensile test performed

at 0° to RD. The numerical results presented were obtained with SiDoLo (Set 1) and
with DD3MAT.

200 : ; . , ;

100

Cauchy Stress [MPa]

-100

200 l I I ] l
-0.20 -0.10 0.00 0.10 0.20 0.30 04

y 0°/DL

Fig. 4. Experimental and numerical results obtained for the cyclic tests (10, 20 and
30% of prestrain) performed at 0° to RD. The numerical results presented were
obtained with SiDoLo (Set 1) and with DD3MAT.

1.0 (see also Table 3). Table 4 shows large differences between
the final results obtained with the different sets. The results ob-
tained with sets 2 and 3 were not kept as valid once the cost func-
tion remained in the vicinity of 300, whereas with the set 1 the cost
function reduces to near 150.

Table 5 shows the parameters obtained with the evolutive algo-
rithm, which are almost identical for several runs. The limit values
imposed for each parameter in the identification are also shown in
this table (values in square brackets).

The mechanical behaviour of the material is well described
using the set 1 of parameters in Table 4, (obtained with the deriv-
ative-based method) and the results presented in Table 5 (obtained
with the genetic algorithm). This is shown in Figs. 3 and 4, which
show the results obtained for tensile tests in the RD as well as
monotonic and Bauschinger shear tests for both identification
methods. Both numerical results exhibit close agreement with
experimental ones even in the reverse paths.

5.1. Improvement of the identification strategy
In order to improve the overall optimization procedure, a hybrid

scheme was developed. The hybrid algorithm was obtained using
first the genetic algorithm to obtain a point near the minimum,

Table 6
Identified parameters for the yield surface with the hybrid scheme
(DD3MAT + SiDoLo)

C1 C C3 Ce m
SiDoLo (Set 4) 1.303 1.128 0.938 1.031 8

Values given in Table 3 (DD3MAT) and Table 5 were used as initial parameters.

Table 7
Identified parameters for the mixed hardening model with the hybrid scheme
(DD3MAT + SiDoLo)

Voce Yo (MPa) Ysar (MPa) Cy
61.4 156.1 11.8
NLSL Cx Xsar (MPa)
87.3 68.3
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Fig. 5. Evolution of the cost function with iterations for the identifications perfor-
med with the derivative-based method (Sets 1, 2 and 3) and the identification
performed with the hybrid identification scheme (DD3MAT + SiDoLo).

and then use the derivative-based, as a local search algorithm, to
achieve the minimum. With this strategy it is possible to combine
the advantages of the derivative and the evolutive algorithms. Ta-
bles 6 and 7 present the results obtained with this scheme for the
parameters of the yield surface criterion and for the mixed harden-
ing model, respectively. This new set of numerical results is re-
ferred to below as set 4. Fig. 5 presents the evolution of the
identification error with the iteration (cost function), for all optimi-
zations performed with the derivative based program (sets 1, 2 and
3) as well as for the optimization performed using as an initial set
the results obtained with the hybrid algorithm (set 4). From this
figure it can be observed that the derivative-based algorithm
sometimes converges to a local minimum, as has been previously
mentioned. The decrease in the cost function at the beginning of
the identification for set 4 is due to the sub-optimal nature of
the GA algorithm [40]. However, when using the result of the ge-
netic algorithm as initial set for the gradient-based algorithm, con-
vergence is rapidly reached around a high-quality set of
parameters. The cost function values obtained for sets 1 and 4
are 151.94 and 150.33, respectively. The hybrid algorithm gives a
better solution than those obtained with the derivative-based
algorithms.

1.1

= EXP

—— Set1

Co

0.8 T T T T T
0 15 30 45 60 75 90

Angle with RD [°]
Fig. 6. Experimental and numerical results of the variation in plane of the initial

values of the uniaxial yield stress obtained with the derivative-based and the hybrid
algorithm.

B
| |
n EXP
0.4 |—Set1
---- Setd
0.2 T T T T T
1] 15 30 45 60 75 90

Angle with RD [°]

Fig. 7. Experimental and numerical results of the variation in plane of the initial
values of the Lanckford coefficients obtained with the derivative-based and the
hybrid algorithm.
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Fig. 8. Experimental and numerical results for the tensile test obtained with the
derivative-based and the hybrid algorithm in the rolling direction.
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Fig. 9. Experimental and numerical results for the cyclic test obtained with the
derivative-based and the hybrid algorithm in the rolling direction.

Figs. 6 and 7 show the experimental and numerical results
obtained with set 1 and 4 for the variation in plane of the initial
values of the uniaxial yield stress and Lanckford coefficients. Figs.
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Fig. 10. Experimental and numerical results obtain for width plastic strain versus
thickness plastic strain in tension, in the rolling direction. The numerical results
presented were obtained for sets 1 and 4.

8-10 show the experimental and numerical results obtained with
set 1 and 4 for tensile tests, cyclic tests and width versus thickness
plastic strains, respectively. It is possible to conclude from these
figures that both sets are representative of the experimental
behaviour, although the constitutive parameters for these two sets
are slightly different (cf. Tables 3, 4, 6 and 7). This is due to the fact
that the mechanical description, particularly the isotropic-kine-
matic hardening components, depends on the connection between
the different laws. This implies a difficult optimization task, re-
vealed by the different sets obtained for the derivative-based
method presented in Table 4. The hybrid scheme is clearly more
robust.

The CPU time spent for identification of all parameters was 60
and 30 min using the genetic algorithm and the derivative-based
algorithm, respectively (the computer used was a Pentium IV
3.0 GHz). The use of the hybrid algorithm leads to a lower calcula-
tion time, taking 25 min for the entire identification procedure. In-
deed, the number of generations of the genetic algorithm can be
greatly reduced and, as the solution is near the optimal solution,
the derivative-based methods converge in few steps.

6. Conclusions

This paper presents a comparison of optimization strategies for
performing material parameter identification of an EN AW-5754-0
sheet aluminium alloy. Tensile and shear tests were performed in
order to obtain an experimental database on this material. The
constitutive model used to describe the material behaviour is a
phenomenological model composed of the YLD91 orthotropic plas-
ticity criterion, the isotropic hardening law of Voce type and the
non-linear kinematic hardening of Lemaitre and Chaboche. Two
optimization algorithms are used: a genetic algorithm and a deriv-
ative-based algorithm. It is shown that both algorithms are able to
fit the experimental behaviour even though the traditional prob-
lems of each algorithm have been encountered: large calculation
times and sub-optimal problems for the GA and the inability of
the derivative-based algorithm to avoid local minima. To improve
the optimization procedure, a hybrid strategy is proposed which
combines the advantages of both methods, i.e. firstly, the robust-
ness of the genetic algorithm is used to reach the vicinity of the
global minimum and then the precision of the derivative-based
algorithm is used to reach the optimal set of parameters. With this
method, it is shown that by performing a fine parameter optimiza-
tion, it has been possible to fit most of the macroscopic effects

observed in this material, using the constitutive models mentioned
above.
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