
Theory and Methodology

On solving complex multi-period location models using simulated
annealing

Ant�onio Antunes a,*, Dominique Peeters b

a Departamento de Engenharia Civil, Universidade de Coimbra, 3030-290 Coimbra, Portugal
b CORE & Unit�e de G�eographie, Universit�e Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium

Received 6 November 1998; accepted 22 December 1999

Abstract

This paper describes a study aimed at evaluating the capabilities of simulated annealing in dealing with complex,

real-world multi-period location problems raised by school network planning in Portugal. The problems were for-

mulated as mixed-integer linear optimization models. The models allow for facility closure or size reduction besides

facility opening and size expansion, with sizes possibly limited to a set of pre-de®ned standards. They assume facility

costs to be divided into a ®x component and two variable components, respectively dependent on facility size and

facility attendance. Results obtained through the study indicate that simulated annealing can be a useful tool for solving

these kinds of models. Ó 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Location models are important tools for re-
gional, urban, and sectorial planners who partic-
ipate in decision-making processes regarding the
location, size and catchment area of public facil-
ities (like schools, sanitary land®lls, libraries,
swimming-pools and hospitals). It is not therefore
surprising that a vast body of literature has ac-
cumulated and keeps growing on this subject

(Hansen et al., 1987; Daskin, 1995; Drezner,
1995).

The best-known (discrete) location models are
probably the uncapacitated/capacitated facility
location problem (UFLP/CFLP), also named
simple/capacitated plant location problem (SPLP/
CPLP), and the p-median problem. The former
seeks a minimum-cost solution for the location of
facilities within a given set of sites to satisfy the
demands of a given set of centers; the latter seeks a
maximum-accessibility solution with a given
number of facilities. Together with these relatively
simple (though NP-hard) problems, many others,
sometimes much more complex, have been stud-
ied, where aspects like the dynamic or uncertain
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nature of the decision context, as well as design
and organizational characteristics of particular
facilities, have been taken into account.

Location models are mixed-integer linear
programming models that, like any other models
of this kind, can be solved with three types of
algorithms: general (exact) algorithms, specialized
(exact) algorithms, and (specialized) heuristic al-
gorithms. General algorithms, like `branch-and-
bound', can be used to solve to exact optimality
any (linear) facility location model, but they only
are e�cient in handling small problems (though,
as shown by Ribeiro and Antunes (2000) much
larger ones than some years ago). Good com-
mercial software packages, like GAMS/CPLEX
(Gams Development, 1996), XPRESS-MP (Dash
Associates, 1997) or MINTO (Nemhauser et al.,
1994), are now available for this purpose. Spe-
cialized algorithms can be used to solve large and
complex problems of the particular type under
consideration, exploiting their distinct mathe-
matical structure. However, the best ones re-
ported in the literature will normally require
arduous programming work before they can be
applied. Furthermore, it should be stressed here
that it is often quite di�cult to adjust a spe-
cialized algorithm developed for a given problem,
to a slightly di�erent problem. Heuristic algo-
rithms also serve to solve large and complex
problems, and the corresponding software is
much easier to develop. However, they are not
exact, in the sense that they only guarantee a
local optimum, not necessarily close to the global
optimum.

The whole ®eld of location modeling started to
grow in the early 60s, led by authors like Kuehn
and Hamburger (1963), Feldman et al. (1966), and
Teitz and Bart (1968). These authors proposed
heuristics of a particular type, known as local
search heuristics. Another kind of heuristics that
may be used to solve location models became
popular only recently, in the 80s, under the name
of modern (or threshold) search heuristics. For a
survey, see Reeves (1993) or Aarts and Leenstra
(1997). Simulated annealing, the method dealt
with here, belongs to this family of heuristics, to-
gether with tabu search, genetic algorithms and
neural networks.

This paper describes a study aimed at evaluat-
ing the capabilities of simulated annealing in
dealing with complex, real-world multi-period lo-
cation problems raised by school network plan-
ning in Portugal. The second section contains a
statement of the problem to be solved, and its
formulation as a mathematical model. The third
presents a detailed explanation about the ap-
proach adopted to solve it, before it was decided to
apply simulated annealing. Then follows a section
describing the criteria used to generate the partly
random problems on which the solution methods
were tested. The ®fth section presents the general
principles of simulated annealing and the main
features of their implementation to our model. The
sixth gives essential information about the results
obtained in four real-world applications of the
model. The ®nal section summarizes the main
conclusions of the study and indicates some di-
rections for future research.

2. Location model

In 1986, the Portuguese Government decided to
extend elementary education from 6 to 9 years.
Such a decision could not be put into e�ect with-
out a very signi®cant expansion of infrastructure,
and a program to know where, with what size and
when should schools be built. Of course, in for-
mulating the program, attention had to be paid to
the fact that, in the future, given the `fertility crisis'
that is a�ecting Portugal, as much as the whole
Western World, education demand tends to be
drastically reduced.

Research on the kind of dynamic problems we
were interested in was initiated by Roodman and
Schwartz (1975, 1977), and has received several
relevant contributions since then, particularly
from authors like Van Roy and Erlenkotter (1982),
Fong and Srinivasan (1981), Jacobsen (1990), and
Shulman (1991). Further work speci®cally ad-
dressing school location problems has been done
by Viegas (1987) and Greenleaf and Harrison
(1987). However, to the best of our knowledge, the
literature does not report work done with models
accounting for facility closure and capacity re-
duction in addition to facility opening and
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capacity expansion, particularly when capacity
and assignment decisions and costs are dissociated.
In circumstances such as those found in Portugal
(capacity shortage with decreasing demand), these
features are of crucial importance.

This led us to develop a multi-period model
aimed at ®nding the minimum discounted cost
solution for the evolution of a set of facilities
through a given planning horizon in order to meet
the demands for the corresponding services. The
decisions to be made consist of opening new fa-
cilities, and expanding, reducing or closing existing
facilities. The model is as follows:
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where J is the set of centers �j � 1; . . . ; J�, K the
set of sites �k � 1; . . . ;K�, K0 the set of initially
closed sites, K1 the set of initially opened sites, M
the set of periods �m � 1; . . . ;M�, xjkm the fraction
of users from center j assigned to a facility located
at site k in period m, y�km � 1 if an expanding fa-
cility is located at site k in period m; y�km � 0 oth-
erwise, yÿkm � 1 if a reducing facility is located at
site k in period m; yÿkm � 0 otherwise, z�km the ac-
cumulated capacity expansion of the facility lo-
cated at site k up to period m, zÿkm the accumulated
capacity reduction of the facility located at site k
up to period m, cvxjkm the discounted attendance-
variable cost of a facility located at site k in period
m per user of center j (includes transport costs),
cfkm the discounted ®xed cost of a facility located
at site k in period m (for initially opened facilities it
includes the cost associated with a capacity of qk0),
cvzkm the discounted capacity-variable cost in-
crease (or decrease) of expanding (or reducing) a
facility located at site k in period m, ujm the
number of users located at center j in period m, qk0

the initial capacity of the facility located at site k, q
the capacity of a module, q maxk �Pqk0� the maxi-
mum capacity of a facility located at site k,
q mink �6qk0� the minimum capacity of a facility
located at site k, efkm the ®xed setup expenditure
for a facility to be located (or expanded) at site k in
period m, evzkm the capacity-variable setup expen-
diture for a facility to be located at site k in period
m, and bm is the budget for period m.

This is a complicated mixed-integer linear pro-
gramming model, to which we gave a name in the
tradition of location analysis: `dynamic modular
capacitated facility location problem' (DMCFLP)
model.

The geographical landscape assumed by the
model is the one normally used in (discrete) loca-
tion modeling. Demand for facilities is assumed to
be concentrated in points named centers, which
may represent regions, municipalities, towns or
neighborhoods. Supply of facilities is assumed to
be possible at points named sites, which represent
either any one of the above geographical entities or
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determined plots of land. The facilities are as-
sumed to be composed of a ®xed part and a vari-
able number of modules of given ®xed capacity.
For schools, the module may be either one class-
room or a group of classrooms.

Function (1) expresses the objective of mini-
mizing the total discounted (socio-economic) costs
of a set of facilities. Facility costs are divided into
three parts: ®xed costs, capacity-variable costs
proportional to the number of modules, and at-
tendance-variable costs proportional to the num-
ber of users, a signi®cant part of which will
normally consist of transport costs. With regard to
existing facilities, initial capacity-variable costs are
taken as ®xed costs, which explains the minus sign
applied to variables zÿkm.

Constraints (2) ensure that, in each period, the
demand of any center will be met by some facility or
facilities. Constraints (3) guarantee that the capac-
ity of each facility in each period, resulting from
adding the initial capacity to the accumulated ca-
pacity expansion occurred up to the period, will be
large enough to meet the demand assigned to it.
Constraints (4a) and (4b) ensure that maximum and
minimum capacity limits, de®ned to avoid or ex-
ploit technical and economic scale advantages or
disadvantages, will be taken into account at both
expanding or reducing facilities. Constraints (5)
guarantee that capacities may either be expanded or
reduced, but not both. Constraints (6) ensure that
facilities opened at initially closed sites, once
opened, will remain open. Constraints (7a) and (7b)
guarantee that facilities closed at initially opened
sites, once closed, will remain closed. Constraints
(8) ensure that the capacity of expanding facilities
will never decrease. Constraints (9) guarantee that
the capacity of reducing facilities will never in-
crease. Finally, constraints (10) ensure that the
budget constraints de®ned for each period will be
satis®ed. In these constraints, the variables z�k0

should be set equal to qk0, and the variables y�k0

should be set equal to 0.

3. Solution approach

The model introduced in the previous section is
quite a di�cult one, something that we readily

understood after we tried, and failed, to solve
some partly random 10-center� 10-site� 3-period
problems using packages like SCICONIC,
XPRESS-MP and CPLEX (early versions). Sec-
tion 4 describes how the problems were generated.

Our ®rst attempt to overcome these di�culties
involved a ÔmyopicÕ approach, consisting of solv-
ing the ®rst-period problem without taking into
account future-period demands, and then solving
the second-period problem given the optimum fa-
cility set identi®ed for the ®rst-period problem,
and so forth. The results obtained using this ap-
proach, compared with those given by a Ôpan-
oramicÕ approach (within which short-term
planning decisions would also re¯ect the long-term
expected evolution for demand), were quite good
on many occasions, though not in the presence of
severe capacity shortage and rapidly decreasing
demand. (Antunes, 1994, pp. 57±68.) This was
precisely the situation found in many Portuguese
regions when it was decided to extend elementary
education.

The idea of using simulated annealing emerged
when we realized that it would be relatively simple
to apply this method to our model, and once we
understood that our e�orts to develop dual-based
and lagrangean relaxation specialized methods
were unlikely to be successful. Of course, we knew
that tests on complex, large-constrained models
had sometimes failed to meet expectations, but
there were not many other promising options open
to us.

Before applying simulated annealing to the
model, we decided to try it on a simple location
model, UFLP (Krarup and Pruzan, 1983; Cor-
nu�ejols et al., 1990), to see how it would compare
with ADD and ADD + INTERCHANGE, two
fast, well-known local search heuristics. ADD as-
sumes all the sites to be initially closed and, in
successive iterations, opens the facility which al-
lows the best decrease in costs, until no further
cost reduction is possible. INTERCHANGE
works upon ADD and, in successive iterations,
chooses the capacity transfer, from open to closed
sites, which allows the best decrease in costs, once
again until no further cost reduction is possible.

The results obtained with a good choice of
annealing parameters (this concept is clari®ed in
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Section 5) in solving a representative sample of
partly random problems are summarized in Tables
1 and 2. The comparison with ADD was encour-
aging about the prospects of annealingÕs capabili-
ties, because the solutions found were clearly
better. But it was the comparison with
ADD � INTERCHANGE, often regarded as be-
ing a good heuristic, that ®nally convinced us of its
possibilities. In fact, for a set of small
20-center� 20-site problems, the annealing algo-
rithm (called ANNEAL in abbreviated form)
produced worse results and took longer on average
than ADD� INTERCHANGE. But large
80-center� 80-site problems were solved better
and faster, indicating the aptness of simulated
annealing for dealing with problem size.

4. Random problems

As mentioned in the previous section, alterna-
tive methods were tested using partly random
problems, i.e., problems including both determin-
istic and stochastic elements. There was no other
way of building a representative sample, as multi-
period location problems are relatively rare in the
literature.

The deterministic part of problem data includ-
ed the territory geometry (a square of 100� 100
length units), the number of centers, sites and pe-

riods, and classroom capacity (25 students). It also
included cost data. Setup costs were assumed to
consist of a ®xed part and a variable part, re-
spectively, equal to 10 monetary units �l� and
10 l per classroom. Operating costs were also as-
sumed to consist of a ®xed part and a variable
part, respectively equal to 10 l per planning peri-
od of 5 years and 17 l per classroom per period.
Transport costs were taken to be 0:08 l per period
per student. A discount rate of 40% per period
(equivalent to 7% per year) was taken to convert
setup costs to a per period basis. These particular
®gures were the same as those to be used later in
solving real-world problems of school network
planning.

The stochastic part of problem data included
the coordinates of centers and sites, the number of
users in each center and its evolution through time,
the location and capacity of existing facilities, and
the maximum capacity of new facilities. The co-
ordinates of centers and sites were assumed to be
random integers uniformly distributed between 0
(zero) and 100. Thus, centers and sites were lo-
cated inside or on the border of a 100� 100
square, with integer coordinates. The users in each
center were assumed to be a random integer uni-
formly distributed between 0 (zero) and 200. This
number was taken to change through time ac-
cording to the combined e�ect of a random global
growth rate (varying from problem to problem)

Table 1

Comparison between ADD and ANNEAL results for UFLP problems

Problem size

(centers � sizes)

ANNEAL better

than ADD

ADD equal to

ANNEAL

ADD better than

ANNEAL

Computing time

ANNEAL/ADD

20� 20 24 89 12 6.31

40� 40 58 50 17 3.27

80� 80 103 4 17 1.87

Table 2

Comparison between ADD + INTERCHANGE and ANNEAL results for UFLP problems

Problem size

(centers � sizes)

ANNEAL better

than ADD+

ADD + better

than ANNEAL

ADD+ equal to

ANNEAL

Computing time

ANNEAL/ADD+

20� 20 5 106 14 1.87

40� 40 14 84 27 1.06

80� 80 50 38 37 0.64
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and a random local growth rate (varying from
center to center). Both rates were taken to follow a
uniform distribution between )10% and 10% per
period. Existing facilities were assumed to be lo-
cated near the largest centers with probability
proportional to center size. The capacity of these
facilities was taken to be equal to a randomly se-
lected number of classrooms, such that they would
be able to accommodate a maximum of 4=3 and a
minimum of 2=3 of the users living in the nearest
center. The maximum capacity of new facilities
was taken to be equal to a randomly selected
number of modules, equal for all facilities, and
such that global capacity would not exceed the
total number of users multiplied by two.

The problems generated using these rules were
quite `realistic', at least with respect to the school
network planning conditions encountered in Por-
tugal.

5. Annealing implementation

After being successfully applied to the traveling
salesman problem and other classic optimization
problems, simulated annealing became widely
known in the OR community.

The basic ideas behind the annealing algorithm
are brie¯y described below. For a detailed pre-
sentation of the subject, see Dowsland (1993) or
Aarts et al. (1997).

Suppose the cost of the current state or solution
S of a given system is C�S�. A solution to a (dis-
crete) public facility location problem is de®ned by
the locations of open sites, the capacity of the
corresponding facilities and the assignment of us-
ers to facilities. It can be shown that if the tran-
sition of the current state to a randomly selected
neighboring solution S0, with cost C�S0�, is made
according to some appropriate choice criteria, the
system will tend towards the global least cost so-
lution as the number of transition attempts in-
creases.

The choice criterion most commonly used is the
Metropolis criterion, built upon the Bolzmann-
Gibbs distribution, according to which S would be
selected with probability given by

p � min 1; exp

��
ÿ DC

h

��
:

In this expression DC � C S0� � ÿ C�S� and h is
the temperature of the system, a parameter whose
value may decrease during the annealing process.
The function describing the evolution of temper-
ature during the annealing process is known as the
cooling schedule.

Notice that according to the Metropolis crite-
rion solutions leading to cost decreases will always
be selected �p � 1�, while solutions leading to cost
increases will be selected with larger probability at
the beginning of the annealing process, especially if
increases are small.

In general terms, the annealing algorithm con-
sists of the following steps:

1. Choose S1 fS1 : initial solutiong
2. Choose h1 fh1 : initial temperatureg
3. Choose hf fhf : final temperatureg
4. j! 0
5. Repeat

6. j j� 1
7. Choose at random S0j 2 N Sj

ÿ � fN Sj

ÿ �
:

neighborhood setg
8. Choose at random p 2 0; 1� �;
9. If p6 min 1; exp ÿ C S0j� �ÿC Sj� �

hj

� �� �
Then Sj�1  S0j
Else Sj�1  Sj

10. Choose hj�16 hj

Until hj�1 < hf

11. End

Any practical implementation of simulated an-
nealing requires two basic issues to be decided: the
generation of candidate solutions; and the attri-
butes of the cooling schedule.

The generation of candidate solutions is ac-
complished, in our implementation, through the
procedure described in Fig. 1.

First, a site and a period are selected at random,
with all the sites and periods having the same
probability of being chosen. If the site is closed, it
will become open, receiving a minimum capacity
facility. When the site is open, it will go through a
feasible transformation selected at random. This
transformation may either consist of adding a new
module to the existing facility, transferring a
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module to another facility (also selected at ran-
dom), or dropping a module. For a facility at
minimum capacity, the suppression of a module
will naturally imply facility closure.

Second, if the site is open, the capacity sequence
of facilities where modules have been added or
dropped is analyzed and possibly adjusted, to en-
sure that the monotonic rules applying to the
evolution of facilities are observed. The adjust-
ments are made towards the front, starting from
the initial period. For example, considering a 3-

period problem, if the current capacity sequence
for a facility is fz� q; z; zg and the selected
transformation consists of suppressing a module in
the second period, capacity in this period would
become equal to zÿ q (where z represents a given
capacity and q stands for the capacity of a mod-
ule). Hence, we would have the sequence
fz� q; zÿ q; zg. To avoid this non-monotonic se-
quence, capacity in the third period has to be set at
zÿ q. Therefore, the candidate capacity sequence
in the site would be fz� q; zÿ q; zÿ qg. Fig. 2

Fig. 1. Generation of candidate solutions for DMCFLP problems.
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describes the capacity adjustments consecutive to
several possible changes in the second period of a
3-period problem. Similarly, in a 4-period prob-
lem, if the current capacity sequence for a facility
is fz� q; z; z; zÿ qg and the selected transforma-
tion consists of adding a module in the third
period, capacity in this period would become
equal to z� q. Hence, we would have the se-
quence fz� q; z; z� q; zÿ qg. To avoid this non-

monotonic sequence, capacity in the third period
has to be set back at z (i.e., the change would be
rejected).

Finally, compliance with budget constraints is
checked. If the candidate solution is accepted, the
cost of the solution is calculated after assigning the
users to the facilities by solving transportation
problems (one for each period). The tree-indexing
method employed for this purpose is explained in

Fig. 2. Capacity adjustments in 3-period problems.
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Jacobsen (1978). Otherwise, a new candidate so-
lution is generated.

The attributes of the cooling schedule were
chosen following the principles adopted by John-
son et al. (1989) in their annealing algorithm for
the graph partitioning problem. Those authors
de®ned a schedule involving four parameters: the
initial temperature, h1; the temperature length, k;
the cooling rate, c; and the stopping number, r.
The initial temperature de®nes the rate at which
candidate solutions with cost x% higher than the
cost of the initial solution are retained. The tem-
perature length is the minimum number of candi-
date solutions to be tried at each temperature. If
the algorithm is unable to ®nd at least one better
single solution or a better average solution, the
temperature is decreased. The cooling rate is the
rate at which temperature is decreased. The stop-
ping number is the maximum number of temper-
ature reductions that may occur without ®nding
any solution improvements. When this number is
reached the system becomes ``frozen'', and the
annealing process reaches the end. The links be-
tween the four parameters and the way they in-
teract are shown in Fig. 3.

On the basis of a detailed empirical study car-
ried out on the UFLP and the DMCFLP, de-
scribed in detail in Antunes (1994, pp. 97±110,
114±124), we chose the following parameters:
· h1 � 0:13� C1, where C1 is the cost of a ran-

domly chosen feasible initial solution (this
means that solutions with a cost 30% higher
than the initial solution cost will be chosen with
a probability of approximately 10%),

· k � 3KM (K is the number of sites and M is the
number of periods),

· c � 0:3,
· r � 6.

In order to test our implementation of simu-
lated annealing (ANNEAL), we compared the
corresponding solutions with the solutions given
by branch-and-bound (B±B) for a set of 50 ran-
dom DMCFLP problems. The package XPRESS-
MP was used to calculate the B±B solutions, be-
cause some preliminary tests indicated that this
package would be more e�cient than GAMS/
CPLEX. The comparison was made on the basis of
small 6-center� 6-site� 3-period problems, the

maximum size we were able to handle within rea-
sonable computational e�ort.

The results are summarized in Table 3. Average
annealing solutions taken for 5 random seeds (i. e.,
5 di�erent sets of random numbers) were inferior
to the B±B solutions in 36 out of 50 problems, but
only in 17 was ANNEAL unable to ®nd the op-
timum B±B solution. However, it came close to the
optimum solution in all these 17 problems, as the
di�erence was always less than 1%. In the re-
maining 33 problems, ANNEAL was at least as
e�cient as B±B. The use of Ôat leastÕ is justi®ed
because, surprisingly, on 9 occasions, ANNEAL
gave better solutions than B±B (the XPRESS-MP
implementation of it), something that would be
impossible if the corresponding optimum were
really exact, as we expected them to be. According
to the investigation we made, this unexpected re-
sult is associated with the default tolerances as-
sumed by XPRESS-MP. Smaller tolerances would
probably lead to better solutions, but we were not

Fig. 3. The cooling schedule for the annealing process.
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able to complete the B±B search procedure within
reasonable computational e�ort (and even if we
were, we could not be sure they were true opti-
mum). This made us decide to keep the default-
tolerance solutions as a reference, and to see them
as the best a�ordable B±B solutions.

These ®ndings were quite encouraging espe-
cially because the computational e�ort required to
run ANNEAL was about 10% of the e�ort re-
quired by B±B. Furthermore, the computing time,
which averaged 530 seconds on a 40 MHz Mac-
intosh Quadra 700, showed only limited ¯uctua-
tion from problem to problem, their coe�cient of
variation being equal to just 21.5%.

6. Real-world applications

Following the results described in the previous
section, ANNEAL was used to solve four facility
location problems raised by school network plan-
ning in PortugalÕs Centro Region. These problems,
and the context within which they arose, are de-
scribed elsewhere (Antunes and Peeters, 2000).
Therefore, we only include here the essential in-
formation about their data and results.

Three of the problems were de®ned for the
secondary school (escolas secund�arias (ES)) net-
works of the sub-regions of Baixo Vouga, Baixo
Mondego and Pinhal Litoral. The other one was
de®ned for the elementary school (escolas b�asicas
(EB)) network of the municipality of Leiria, which
is part of the Pinhal Litoral sub-region. The lo-
cation of these four geographical areas is depicted
in Fig. 4. All the problems were built considering
three periods, representing the short-, the medium-
and the long-term.

The ES problems were smaller in size, ranging
from the 5-center� 12-site ��3-period� problem

de®ned for the Pinhal Litoral, to the 8� 20
and the 12� 23 problems de®ned, respectively,
for the Baixo Mondego and the Baixo Vouga
problems. In these problems, each center repre-
sented a municipality, and each site represented a
location within a municipality, either where fa-
cilities existed when the planning process began,
or where facilities could be located during the
process. Comparatively, the EB problem was
quite large, involving 29 centers and 38 sites, with
both centers and sites corresponding to commu-
nities (the smallest Portuguese administrative
unit).

Fig. 4. Location of real-world applications.

Table 3

Comparison between ANNEAL and B±B results for DMCFLP problems

Solutions for ®ve

random seeds

Di�erence in cost between ANNEAL and B±B solutions (%)

<)1 [)1, 0[ 0 ]0, 1] >1

Worst 1 5 6 21 17

Average 4 4 6 34 2

Best 4 5 24 17 0
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The Baixo Mondego problem was studied ®rst,
because it was used as a basis for adjusting the
algorithm to certain speci®c needs of real-world
applications (for instance, the needs associated
with the presence of existing facilities built ac-
cording to outdated maximum and minimum ca-
pacity requirements). This problem was solved 20
times (20 di�erent random seeds), using a 200
MHz Macintosh Performa 6400. The 20 runs gave
six di�erent solutions. The best solution occurred
six times. The di�erence in cost between the best
and the worst solutions was 1.7%. It should how-
ever be said that the short-term intervention cor-
responding to the best solutions was obtained 14
times. This is an important fact to emphasize be-
cause, within a cyclical planning framework, the
short-term decisions undoubtedly are the most
relevant. Medium- and long-term decisions, which
are not to be implemented immediately, can be
changed later if necessary. As shown in Table 4,
the number of candidate solutions investigated by
ANNEAL was on average 5310, with a maximum
of 8100 and a minimum of 2700. The average
number of accepted solutions and solution im-
provements was 2740 (51.60%) and 72 (1.36%).
The computing time was on average 170 seconds,
with a maximum of 257 seconds (i.e., always less
than ®ve minutes).

The Pinhal Litoral, Baixo Vouga and Leiria
problems were solved ®ve times each. The main
(relative) di�erences with regard to the Baixo
Mondego problem occurred with computing time.
The Pinhal Litoral problem took on average 43

seconds, with a maximum of 58 seconds (i.e., less
than one minute). The computing time for the
Baixo Vouga problem was on average 717 seconds,
with a maximum of 1047 seconds (i.e., more than
15 minutes). The Leiria problem took on average
299 minutes to solve, with a maximum of 583
minutes (i.e., almost 10 hours). In spite of the large
e�ort needed to compute the solutions for this
problem, in one of the ®ve runs a better solution
was found through inspection, interchanging open
and close sites.

7. Conclusion

The study described in this paper shows that
simulated annealing may be a good resort when
solving complex mid-size multi-period location
problems like those raised by school network
planning in Portugal. The corresponding algo-
rithms are really easy to develop, and easy to
adapt to new application conditions. The trade-o�
between cost and quality of solution in our case
studies was quite interesting.

The study also revealed the limitations of sim-
ulated annealing when dealing with large-size
problems. However, it must be said that our al-
gorithm could be improved in respect to a few
points. We used a relatively simple algorithm. It
could be made more sophisticated, for instance
through the introduction of penalty schemes or
tabu lists commonly used today within modern
search heuristics. Moreover, some elementary
procedures could be improved. One such im-
provement would be achieved by solving trans-
portation problems more quickly, using solutions
found in previous iterations. As the algorithm will
normally involve solving thousands of transpor-
tation problems, the impact of this improvement
will be considerable. In the future, we will direct
part of our research activities to this kind of issues.
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