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Abstract 

 Falls are a prevalent problem in actual society. The number of falls has been increasing 

greatly in the last fifteen years. Some falls result in injuries and the cost associated with their 

treatment is high. However, this is a complex problem that requires several steps in order to be 

tackled. Namely, it is crucial to develop strategies that recognize the mode of locomotion, indicating 

the state of the subject in various situations, namely normal gait, step before fall (pre-fall) and fall 

situation. Thus, this thesis aims to develop a strategy capable of identifying these situations based 

on a wearable system that collects information and analyses the human gait. 

The strategy consists, essentially, in the construction and use of Associative Skill Memories 

(ASMs) as tools for recognizing the locomotion modes. Consequently, at an early stage, the 

capabilities of the ASMs for the different modes of locomotion were studied. Then, a classifier was 

developed based on a set of ASMs. Posteriorly, a neural network classifier based on deep learning 

was used to classify, in a similar way, the same modes of locomotion. Deep learning is a technique 

actually widely used in data classification. These classifiers were implemented and compared, 

providing for a tool with a good accuracy in recognizing the modes of locomotion. 

In order to implement this strategy, it was previously necessary to carry out extremely 

important support work. An inertial measurement units’ (IMUs) system was chosen due to its 

extreme potential to monitor outpatient activities in the home environment. This system, which 

combines inertial and magnetic sensors and is able to perform the monitoring of gait parameters 

in real time, was validated and calibrated. Posteriorly, this system was used to collect data from 

healthy subjects that mimicked Fs. 

Results have shown that the accuracy of the classifiers was quite acceptable, and the 

neural networks based classifier presented the best results with 92.71% of accuracy. As future 

work, it is proposed to apply these strategies in real time in order to avoid the occurrence of falls. 

 

Keywords: falls; gait parameters; inertial measurement units (IMUs); sensory fusion’s algorithms; 

calibration; Principal Component Analysis (PCA); ASMs; deep learning. 
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Resumo 

 As quedas são um problema predominante na sociedade atual. O número de quedas tem 

aumentado bastante nos últimos quinze anos. Algumas quedas resultam em lesões e o custo 

associado ao seu tratamento é alto. No entanto, trata-se de um problema complexo que requer 

várias etapas a serem abordadas. Ou seja, é crucial desenvolver estratégias que reconheçam o 

modo de locomoção, indicando o estado do sujeito em várias situações, nomeadamente, marcha 

normal, passo antes da queda (pré-queda) e situação de queda. Assim, esta tese tem como 

objetivo desenvolver uma estratégia capaz de identificar essas situações com base num sistema 

wearable que colete informações e analise a marcha humana. 

A estratégia consiste, essencialmente, na construção e utilização de Associative Skill 

Memories (ASMs) como ferramenta para reconhecimento dos modos de locomoção. 

Consequentemente, numa fase inicial, foram estudadas as capacidades das ASMs para os 

diferentes modos de locomoção. Depois, foi desenvolvido um classificador baseado em ASMs. 

Posteriormente, um classificador de redes neuronais baseado em deep learning foi utilizado para 

classificar, de forma semelhante, os mesmos modos de locomoção. Deep learning é uma técnica 

bastante utilizada em classificação de dados. Estes classificadores foram implementados e 

comparados, fornecendo a uma ferramenta com uma boa precisão no reconhecimento dos modos 

de locomoção. 

 Para implementar esta estratégia, era necessário realizar previamente um trabalho de 

suporte extremamente importante. Um sistema de unidades de medição inercial (IMUs), foi 

escolhido devido ao seu potencial extremo para monitorizar as atividades ambulatórias no 

ambiente domiciliar. Este sistema que combina sensores inerciais e magnéticos e é capaz de 

efetuar a monitorização de parâmetros da marcha em tempo real, foi validado e calibrado. 

Posteriormente, este Sistema foi usado para adquirir dados da marcha de indivíduos saudáveis 

que imitiram quedas.  

Os resultados mostraram que a precisão dos classificadores foi bastante aceitável e o 

classificador baseado em redes neuronais apresentou os melhores resultados com 92.71% de 

precisão. Como trabalho futuro, propõe-se a aplicação destas estratégias em tempo real de forma 

a evitar a ocorrência de quedas. 



XIV 

 

Palavras-chave: quedas; parâmetros da marcha; Unidades de medição inercial (IMUs); 

algoritmos de fusão sensorial; calibração; Principal Component Analysis; ASMs; deep learning. 

 

 

 

 

 

  



 

  XV 

 

Contents 

Acknowledgments .................................................................................................................... VII 

Agradecimentos ........................................................................................................................ IX 

Abstract .................................................................................................................................... XI 

Resumo .................................................................................................................................. XIII 

Contents.................................................................................................................................. XV 

List of Figures ......................................................................................................................... XIX 

List of Tables ......................................................................................................................... XXV 

Acronyms and Abbreviations ............................................................................................... XXVIII 

Chapter 1 - Introduction ............................................................................................................ 1 

1.1. Motivation .................................................................................................................... 1 

1.2. Problem Statement and scope ...................................................................................... 3 

1.3. Goals and research questions ....................................................................................... 3 

1.4. Contribution to knowledge............................................................................................. 6 

1.5. Publications .................................................................................................................. 7 

1.6. Thesis outline ............................................................................................................... 7 

Chapter 2 – Inertial Measurement Units: State-of-the-art .......................................................... 11 

2.1. Introduction ................................................................................................................ 11 

2.2. Applications and Commercial IMUs ............................................................................. 15 

2.3. Advantages and Disadvantages ................................................................................... 21 

2.4. Methods and Problems ............................................................................................... 22 

2.5. Calibration .................................................................................................................. 25 

2.6. Challenges ................................................................................................................. 26 

Chapter 3 – Falls Prevention and Risk Identification: state-of-the-art ......................................... 29 

3.1. Introduction ................................................................................................................ 29 

3.2. Classification of the Falls ............................................................................................ 30 

3.3. Methods ..................................................................................................................... 32 

3.3.1. Fall Detection Systems ................................................................................... 32 

3.3.2. Fall Prevention Systems/Fall Forecasting Systems ......................................... 36 

3.4. Gait Parameters, Sensors and Experimental Setup Information .................................... 40 



XVI 

 

3.4.1. Gait Parameters ............................................................................................. 40 

3.4.2. Sensors and Experimental Setup Information ................................................. 42 

3.5. Challenges, Issues and Trends ............................................................................... 49 

3.5.1. Challenges .................................................................................................... 49 

3.5.2. Issues ........................................................................................................... 49 

3.5.3. Trends ........................................................................................................... 50 

Chapter 4 – Human Gait Monitoring System Overview ............................................................. 51 

4.1. Introduction ................................................................................................................ 51 

4.2. Magnetic/Inertial Measurement System ...................................................................... 51 

4.3. eLPRT protocol ........................................................................................................... 52 

4.4. Algorithmic State Machine .......................................................................................... 53 

4.5. System Requirements and MATLAB Interface .............................................................. 54 

4.5.1. System Requirements .................................................................................... 54 

4.5.2. MATLAB Interface .......................................................................................... 56 

4.5.2.1. Quality Assessment ........................................................................ 59 

4.5.2.2. Results and Discussion .................................................................. 59 

Chapter 5 – IMUs based System Validation ............................................................................. 61 

5.1. Validation of the communication protocol .................................................................... 61 

5.1.1. Trials ............................................................................................................. 62 

5.1.2. Results .......................................................................................................... 63 

5.1.3. Discussion ..................................................................................................... 66 

5.2. Validation of the signals of the sensors ........................................................................ 67 

5.2.1. Results and Discussion .................................................................................. 68 

5.2.1.1. Foot ............................................................................................... 68 

5.2.1.2. Thigh ............................................................................................. 70 

5.2.1.3. Lower Back .................................................................................... 72 

5.3. Validation of the estimation of joint angles ................................................................... 73 

5.3.1. Reference Measurement System - DARwIn OP ................................................ 74 

5.3.2. Knee Joint Angle Measurement ...................................................................... 75 

5.3.3. Results .......................................................................................................... 75 

5.3.4. Discussion ..................................................................................................... 77 

Chapter 6 – IMUs based System Calibration ........................................................................... 79 



 

  XVII 

 

6.1. Calibration procedures - Introduction ........................................................................... 79 

6.2. Methods ..................................................................................................................... 81 

6.2.1. Process of the orientation estimation of the IMUs based system ..................... 81 

6.2.2. Calibration Procedures ................................................................................... 81 

6.2.2.1. Method A ....................................................................................... 82 

6.2.2.2. Method B....................................................................................... 82 

6.2.2.3. Method C....................................................................................... 83 

6.2.2.4. Proposed Method........................................................................... 84 

6.2.3. Tracker Software............................................................................................ 85 

6.2.4. Experimental Protocol .................................................................................... 85 

6.3. Results ....................................................................................................................... 87 

6.3.1. Stage 1 ......................................................................................................... 87 

6.3.2. Stage 2 ......................................................................................................... 88 

6.3.2.1. Stationary position ......................................................................... 88 

6.3.2.2. Walking trial ................................................................................... 91 

6.3.3. Stage 3 ......................................................................................................... 93 

6.3.4. Stage 4 ......................................................................................................... 95 

6.4. Discussion .................................................................................................................. 96 

Chapter 7 – Pre-Fall Detection System .................................................................................... 99 

7.1. Stage 1 ...................................................................................................................... 99 

7.1.1. Trials ........................................................................................................... 100 

7.1.2. PCA ............................................................................................................. 101 

7.1.3. ASMs .......................................................................................................... 103 

7.1.4. Evaluation of classification performance ....................................................... 107 

7.1.5. Results ........................................................................................................ 108 

7.1.5.1. PCA ............................................................................................. 108 

7.1.5.2. ASMs ........................................................................................... 114 

7.2. Stage 2 .................................................................................................................... 133 

7.2.1. Results ........................................................................................................ 134 

7.3. Stage 3 .................................................................................................................... 135 

7.3.1. Convolutional Neural Networks..................................................................... 135 



XVIII 

 

7.3.2. Results ........................................................................................................ 137 

7.4. Stage 4 .................................................................................................................... 138 

7.5. Discussion ................................................................................................................ 140 

Chapter 8 – Conclusions ...................................................................................................... 143 

8.1. Future work .............................................................................................................. 148 

References ........................................................................................................................... 151 

Appendices ........................................................................................................................... 169 

Appendix 1 ...................................................................................................................... 169 

  



 

  XIX 

 

List of Figures 

Figure 2.1 - Example of a RLVBIMU04 IMU from VBOX Automotive with wire connection [194]. 13 

Figure 2.2 - a) A mechanical Acc; b) A surface acoustic wave Acc [194], [29]. ......................... 14 

Figure 2.3 - A conventional mechanical Gyro [29]. ................................................................... 14 

Figure 2.4 - Image of a micro Mag structure [195]. ................................................................. 15 

Figure 2.5 - Xsens MVN products [38]. MVN Awinda is on the left side. MVN Link is on the right 

side. ....................................................................................................................................... 17 

Figure 2.6 - InterSense 3-DOF trackers [39]: a) InertiaCube4TM; b) InertiaCube BTTM. ............ 18 

Figure 2.7 - InterSense 6-DOF trackers [39]: a) IS-900 system; b) IS-1200+ system. ................ 18 

Figure 2.8 - Technaid products [40]: a) IMU CV4; b) IMU V4 ................................................... 19 

Figure 2.9 - Technaid Motion Capture System [40]. ................................................................. 19 

Figure 2.10 - IMeasureU IMU sensor [41]. .............................................................................. 20 

Figure 2.11 - Noraxon myoMOTION device [42]. ...................................................................... 20 

Figure 3.1 - Balance performance model [83]. ........................................................................ 30 

Figure 3.2 - Possible Fs along the horizontal/lateral and vertical directions [88]: a) F forward; b) F 

laterally; c) F backward; d) F along vertical direction – slipping of foot; e) F along vertical direction 

– weak legs. ........................................................................................................................... 31 

Figure 3.3 - Classification of F detection methods according to [89]. ........................................ 33 

Figure 3.4 - Distribution of research studies on wearable sensors: Application vs Wearable Sensors 

[82]. ....................................................................................................................................... 34 

Figure 3.5 - Typical output of a chest 3D Acc before and after a F event. Acceleration peaks are 

cause by floor impact [86]. It is possible to observe that acceleration suffers perturbations about 1 

second before actual impact. .................................................................................................. 35 

Figure 3.6 - STEADI F Risk Assessment algorithm [135]. ......................................................... 38 

Figure 3.7 - Representation of the stability in a vertical position. ............................................... 41 

Figure 3.8 - Different axis/planes. The frontal plane is referred to as Antero-posterior (AP), the 

lateral plane as Medio-lateral (ML) and the vertical simply as Vertical (VT). ............................... 43 

Figure 4.1 - Magnetic/Inertial Measurement System Elements................................................. 52 

Figure 4.2 - a) Constitution of the frame; b) Constitution of the payload (S-sample/reading, T1 & 

T2-temperature byte 1 and 2, Bat1 & Bat2-battery byte 1 and 2). ............................................ 52 

file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702061
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702062
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702063
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702064
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702065
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702065
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702066
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702067
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702068
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702069
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702070
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702071
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702072
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702073
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702073
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702073
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702074
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702075
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702075
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702076
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702076
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702076
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702077
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702078
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702079
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702079
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702080
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702081
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702081


XX 

 

Figure 4.3 - Data acquisition process flowchart. ....................................................................... 55 

Figure 4.4 - Matlab GUI when initialized (Ang – Angles; GED – Gait Events Detection). ............. 56 

Figure 4.5 - Matlab GUI when the system is in the operational state. ........................................ 58 

Figure 4.6 - Matlab GUI when the system was stopped. ........................................................... 58 

Figure 4.7 - Inquiry results in percentage per question number. ............................................... 60 

Figure 5.1 – Phases of the validation process. ......................................................................... 61 

Figure 5.2 - Spatial arrangement of the sensory modules in the body with their physical addresses: 

a) 5 sensory modules on trunk (3), foot (13-right, 6-left), and shank (7-right, 14-left); b) 4 sensory 

modules on foot (13-right, 6-left), and shank (7-right, 14-left); c) 3 sensory modules on right leg: 

foot (13), shank (7), and thigh (14); d) 2 sensory modules on the upper foot (13-right, 6-left); e) 1 

sensory module on the upper foot (13-right); f) 2 sensory modules on the heel (13-right, 6-left); 

and g) 1 sensory module on the heel (13-right). ...................................................................... 62 

Figure 5.3 - Average percentage of loss for each spatial arrangement in laboratory (N-Normal pace; 

F- Fast pace)........................................................................................................................... 65 

Figure 5.4 - Average percentage of loss for each spatial arrangement in the corridor (N-Normal 

pace; F- Fast pace). ................................................................................................................ 66 

Figure 5.5 - Average percentage of loss for each spatial arrangement in an outdoor environment 

(N-Normal pace; F- Fast pace). ................................................................................................ 66 

Figure 5.6 - Attachment location of the sensing devices used for the trials (Dark sensing devices 

are in the back of the body). ................................................................................................... 68 

Figure 5.7 – a) Orientation of the Cartesian axes of the sensing device. b) Xsens’ IMU attached to 

the right foot. .......................................................................................................................... 68 

Figure 5.8 – Norm of the acceleration during a walking trial obtained from: a) a Jiménez’s trial 

(black line) [163].     b) IMUs based system (data not filtered). ................................................ 69 

Figure 5.9 - Gyro data during a walking trial obtained from: a) a Jiménez’s trial [163]. b) IMUs 

based system (data not filtered). ............................................................................................. 69 

Figure 5.10 - Mag data during a walking trial obtained from: a) a Jiménez’s trial [163]. b) IMUs 

based system (data not filtered). ............................................................................................. 70 

Figure 5.11 - Attachment location of the IMUs [51]. a) Elevation view. b) Side view. c) Real photo 

of the proposed capturing system. .......................................................................................... 71 

file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702082
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702083
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702084
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702085
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702086
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702087
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702088
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702088
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702088
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702088
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702088
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702088
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702089
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702089
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702090
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702090
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702091
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702091
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702092
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702092
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702093
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702093
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702094
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702094
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702095
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702095
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702096
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702096
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702097
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702097


 

  XXI 
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 .............................................................................................................................................. 71 

Figure 5.13 - Acc data (vertical axis) when an IMU is attached in the right thigh. a) Hamdi’s typical 

signal (blue signal) [51]. b) One gait cycle measured by the IMUs based system (data filtered: 

Butterworth lowpass filter – Fc=3Hz). ...................................................................................... 72 

Figure 5.14 - Gyro data (vertical axis) when an IMU is attached in the lower back. a) Hamdi’s typical 

signal [51]. b) One gait cycle measured by the IMU’s system (data filtered: Butterworth lowpass 

filter – Fc=3Hz). ..................................................................................................................... 73 

Figure 5.15 - a) DARwIn robot with two sensory modules attached to left thigh and shank (for both 

modules, the positive Z axis is perpendicular to the housing cover, Y axis – up, X axis – to the left 

of the robot). b) DARwIn robot performs an angle of -30º with the left leg (sagittal plane). In this 

situation, knee angles from the robot are represented as α, and the knee angles from the model 

implemented are represented as γ.......................................................................................... 74 

Figure 5.16 - Typical knee angles (º) during the trial where the DARwIn OP was walking (ANG Dar 

- robot real angles measured through encoders; ANG IMUs - calculated knee angles from sensory 

modules data; x-axis: time (s); y-axis: angles). .......................................................................... 76 

Figure 5.17 - Typical knee angles (º) during the trial where the DARwIn OP kept the leg stretched 

(ANG Dar - robot real angles measured through encoders; ANG IMUs - calculated knee angles from 

IMUs' data; x-axis: time (s); y-axis: angles). .............................................................................. 76 

Figure 5.18 - Typical knee angles (º) during the trial where the DARwIn OP performed an angle of 

-30º (ANG Dar - robot real angles measured through encoders; ANG IMUs - calculated knee angles 

from IMUs' data; x-axis: time (s); y-axis: angles). ...................................................................... 77 

Figure 6.1 – Several steps of the calibration procedures from the raw measurements x to 

measurements va resolved in the anatomical frame [170]. ....................................................... 80 

Figure 6.2 - Block diagram of the calibration process. .............................................................. 81 

Figure 6.3 - Basic Principle of Method A: Extraction of Acc Maximum and Minimum values for each 

axis through 6 different positions............................................................................................. 82 

Figure 6.4 - Sensors' attachment location to measure Gyro’s offsets. ....................................... 86 

Figure 6.5 - Walking trial angles of the thigh: a) roll; b) pitch; and c) yaw. ................................. 93 

Figure 6.6 - Tracker software environment working with a rotation trial..................................... 94 

file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702098
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702098
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702098
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702099
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702099
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702099
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702100
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702100
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702100
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702101
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702101
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702101
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702101
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702101
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702102
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702102
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702102
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702103
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702103
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702103
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702104
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702104
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702104
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702105
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702105
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702106
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702107
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702107
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702108
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702109
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702110


XXII 

 

Figure 6.7 - Rotation angles of stage 3 experiment: a) Roll; b) Pitch; and c) Yaw. ...................... 94 

Figure 6.8 - Yaw angles obtained through a CF, Madgwick filter (w/ and w/o Mag), and Mahony 

filter (w/ and w/o Mag)........................................................................................................... 96 

Figure 7.1 - Block diagram of the first stage. ........................................................................... 99 

Figure 7.2 – Trial i) in the gymnasium – Subject (blue point) walks forward (Top – w/o F; Down – 

w/ F where the F’s location is represented by the red X)........................................................ 100 

Figure 7.3 – Trial ii) in the gymnasium – Subject (blue point) walks in circles (Top – w/o F – right 

and left; Down – w/ F where the F’s location is represented by the red X). ............................ 100 

Figure 7.4 – Trial iii) in the gymnasium – Subject (blue point) walks 10m forward bypassing an 

obstacle (Top – w/o F – right and left; Down – w/ F where the F’s location is represented by the 

red X). .................................................................................................................................. 100 

Figure 7.5 - Sensing devices attachment location used for the trials (Dark sensing devices are in 

the back of the body; Red numbers represent the physical addresses of the sensing devices). 101 

Figure 7.6 - Set of steps to obtain the most relevant variables (Case I). .................................. 102 

Figure 7.7 - Set of steps to obtain the most relevant variables (Case II). ................................. 103 

Figure 7.8 – Test data set of the left gripper right finger force cell. Example presented in [185]. 

The weighted standard deviation (blue line) was computed from the training set. The failure 

condition for all unsuccessful trials was detected correctly after an average of 2.4 seconds (shaded 

area). ................................................................................................................................... 104 

Figure 7.9 - Scree Plot of the PCA procedure I when using the global walking locomotion mode.

 ............................................................................................................................................ 108 

Figure 7.10 - Scree Plot of the PCA procedure II when using the global data. ......................... 109 

Figure 7.11 - Scree Plot of the PCA procedure II when using the Walking Forward (WF) data. . 110 

Figure 7.12 – Scree Plot of the PCA procedure II when using the PF data. ............................. 111 

Figure 7.13 - Scree Plot of the PCA procedure II when using the F data. ................................ 112 

Figure 7.14 – Non-repeated and relevant metrics identified through PCA procedure and the 

indication to which group they belong.................................................................................... 113 

Figure 7.15 – Examples of ASMs. a) Gyr_X_6 from WF set of ASMs; b) SVM_6 from Global set of 

ASMs; c) Mag_Z_13 from PF set of ASMs; d) Mag_Y_3 from F set of ASMs. ......................... 114 

Figure 7.16 – ROC curve of the first ROC analysis – ASM WF**. ............................................ 116 

Figure 7.17 – Histogram of the number of failures per metric – ASM WF**. ........................... 116 

file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702111
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702112
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702112
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702113
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702114
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702114
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702115
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702115
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702116
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702116
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702116
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702117
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702117
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702118
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702119
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702120
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702120
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702120
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702120
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702121
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702121
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702122
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702123
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702124
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702125
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702126
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702126
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702127
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702127
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702128
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702129


 

  XXIII 

 

Figure 7.18 – Examples of ASMs. a) Gyr_X_6; b) Acc_Z_13; c) WD_Mag_Z_13; d) Mag_Z_13 

(Green – Successful motion periods; Red – Unsuccessful motion periods; Blue – Weighted STD).

 ............................................................................................................................................ 117 

Figure 7.19 - ROC curve of the second ROC analysis – ASM WF*. .......................................... 118 

Figure 7.20 - Histogram of the number of failures per metric – ASM WF*. ............................. 119 

Figure 7.21 - Examples of ASMs. a) Mag_Z_3; b) Mag _Z_13 (Green – Successful motion periods; 

Red – Unsuccessful motion periods; Blue – Weighted STD). .................................................. 119 

Figure 7.22 - ROC curve of the third ROC analysis – ASM WF. ............................................... 120 

Figure 7.23 - Histogram of the number of failures per metric – ASM WF. ............................... 121 

Figure 7.24 – Examples of ASMs. a) Acc_Z_13; b) Mag _Z_13 (Green – Successful motion periods; 

Red – Unsuccessful motion periods; Blue – Weighted STD). .................................................. 121 

Figure 7.25 – ROC curve of the fourth ROC analysis – ASM Global*....................................... 122 

Figure 7.26 – Histogram of the number of failures per metric – ASM Global*......................... 123 

Figure 7.27 – Examples of ASMs. a) Mag_Y_7; b) WD_Mag _Z_13 (Green – Successful motion 

periods; Red – Unsuccessful motion periods; Blue – Weighted STD). ..................................... 123 

Figure 7.28 – ROC curve of the fifth ROC analysis – ASM Global. .......................................... 124 

Figure 7.29 - Histogram of the number of failures per metric – ASM Global. .......................... 125 

Figure 7.30 – Examples of ASMs. a) Mag_Z_13; b) WD_Mag _Z_13 (Green – Successful motion 

periods; Red – Unsuccessful motion periods; Blue – Weighted STD). ..................................... 125 

Figure 7.31 – ROC curve of the sixth ROC analysis – ASM F. ................................................. 126 

Figure 7.32 – Histogram of the number of failures per metric – ASM F. ................................. 127 

Figure 7.33 – Examples of ASMs. a) ApEn_Acc_X_7; b) Mag _Z_3 (Green – Successful motion 

periods; Red – Unsuccessful motion periods; Blue – Weighted STD). ..................................... 127 

Figure 7.34 – ROC curve of the seventh ROC analysis – ASM PF∆. ....................................... 128 

Figure 7.35 – Histogram of the number of failures per metric – ASM PF∆. ............................ 129 

Figure 7.36 – Examples of ASMs. a) ASMA_6; b) SVd_13 (Green – Successful motion periods; Red 

– Unsuccessful motion periods; Blue – Weighted STD). ......................................................... 129 

Figure 7.37 – ROC curve of the eighth ROC analysis – ASM PF. ............................................ 130 

Figure 7.38 – Histogram of the number of failures per metric – ASM PF. ............................... 131 

Figure 7.39 – Examples of ASMs. a) ApEn_Acc_Z_3; b) Mag_Z_6 (Green – Successful motion 

periods; Red – Unsuccessful motion periods; Blue – Weighted STD). ..................................... 131 

file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702130
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702130
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702130
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702131
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702132
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702133
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702133
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702134
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702135
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702136
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702136
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702137
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702138
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702139
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702139
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702140
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702141
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702142
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702142
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702143
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702144
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702145
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702145
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702146
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702147
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702148
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702148
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702149
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702150
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702151
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702151


XXIV 

 

Figure 7.40 – Decision cascade to classify collected motion periods. ..................................... 133 

Figure 7.41 - Layers that constitute a neural network, which consist of a set of interconnected 

nodes [190].......................................................................................................................... 136 

Figure 7.42 – Processes of resampling and resizing to use data as input in the CNN. ............ 137 

Figure 7.43 – Top view of the walking trial performed in stage 4. ........................................... 138 

  

file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702152
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702153
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702153
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702154
file:///C:/Users/Utilizador/Desktop/Nuno/Escola/UMinho/5º%20ano/Tese/ZFinal_Thesis/Tese.docx%23_Toc491702155


 

  XXV 

 

List of Tables 

Table 3.1 - Commercial wearable F detection products ............................................................ 36 

Table 3.2 - Potentially relevant metrics for the prevention of gait, and the sensors, the location of 

the sensors, subjects’ age, and the procedure used to obtain them (K – Kinematic; F – Frequency; 

ST – Spatiotemporal;           Ph – Physiological; Ki – Kinetic; y – young; o – old; h – healthy; fp – 

fall prone; *-already mentioned) .............................................................................................. 43 

Table 5.1 - Direction of the positive axis for each sensory module in each spatial arrangement . 63 

Table 5.2 - Number of lost frames and total frames for each environment ................................ 64 

Table 5.3 - Average percentage of loss of the five tests for each spatial arrangement (L-Lab; C-

Corridor; O-Outdoor; N-Normal pace; F- Fast pace) .................................................................. 64 

Table 6.1 - Error Percentage of the Maximum and Minimum values when compared to the 

homologous values of the Method A – Acc case ...................................................................... 87 

Table 6.2 - Error Percentage of the Maximum and Minimum values when compared to the 

homologous values of the Method A – Mag case ..................................................................... 87 

Table 6.3 - Error Percentage of the Gyro’s Offsets in three body segments when compared to the 

homologous values when IMU was at Position 1 ...................................................................... 88 

Table 6.4 - Mean of the RMSEs between methods for normalized data – Acc x-axis .................. 88 

Table 6.5 - Mean of the RMSEs between methods for normalized data – Acc y-axis .................. 89 

Table 6.6 - Mean of the RMSEs between methods for normalized data – Acc z-axis .................. 89 

Table 6.7 - Mean of the RMSEs between methods for normalized data – Mag x-axis ................. 89 

Table 6.8 - Mean of the RMSEs between methods for normalized data – Mag y-axis ................. 89 

Table 6.9 - Mean of the RMSEs between methods for normalized data – Mag z-axis ................. 90 

Table 6.10 - Mean of the RMSEs between methods for orientation angles – Roll (SI: degrees) .. 90 

Table 6.11 - Mean of the RMSEs between methods for orientation angles – Pitch (SI: degrees) 90 

Table 6.12 - Mean of the RMSEs between methods for orientation angles – Yaw (SI: degrees) .. 90 

Table 6.13 - Mean of the RMSEs between methods for normalized data – Acc x-axis ................ 91 

Table 6.14 - Mean of the RMSEs between methods for normalized data – Acc y-axis ................ 91 

Table 6.15 - Mean of the RMSEs between methods for normalized data – Acc z-axis ................ 91 

Table 6.16 - Mean of the RMSEs between methods for normalized data – Mag x-axis ............... 91 

Table 6.17 - Mean of the RMSEs between methods for normalized data – Mag y-axis ............... 92 



XXVI 

 

Table 6.18 - Mean of the RMSEs between methods for normalized data – Mag z-axis ............... 92 

Table 6.19 - Mean of the RMSEs between methods for orientation angles – Roll (SI: degrees) .. 92 

Table 6.20 - Mean of the RMSEs between methods for orientation angles – Pitch (SI: degrees) 92 

Table 6.21 - Mean of the RMSEs between methods for orientation angles – Yaw (SI: degrees) .. 92 

Table 6.22 - RMSEs between calibration methods and the optical reference ............................. 95 

Table 6.23 - RMSEs between different sensor fusion algorithms and the optical reference ........ 95 

Table 7.1 – Classification of collected data ............................................................................ 103 

Table 7.2 – Relevant metrics identified from both PCA procedures (Global Data) .................... 109 

Table 7.3 – Relevant metrics identified from PCA procedure II (WF Data) ............................... 111 

Table 7.4 – Relevant metrics identified from PCA procedure II (PF Data)................................ 112 

Table 7.5 – Relevant metrics identified from PCA procedure II (F’s Data) ............................... 113 

Table 7.6 – Different ROC analyses and their considerations ................................................. 115 

Table 7.7 – Predicted conditions - ASM WF** (FP–False Positive; TN–True Negative; TP–True 

Positive; FN–False Negative) ................................................................................................. 115 

Table 7.8 – Predicted conditions-ASM WF* (FP–False Positive; TN–True Negative; TP–True 

Positive; FN–False Negative) ................................................................................................. 118 

Table 7.9 - Predicted conditions-ASM WF (FP–False Positive; TN–True Negative; TP–True Positive; 

FN–False Negative)............................................................................................................... 120 

Table 7.10 - Predicted conditions-ASM Global* (FP–False Positive; TN–True Negative; TP–True 

Positive; FN–False Negative) ................................................................................................. 122 

Table 7.11 – Predicted conditions-ASM Global (FP–False Positive; TN–True Negative; TP–True 

Positive; FN–False Negative) ................................................................................................. 124 

Table 7.12 – Predicted conditions-ASM F (FP–False Positive; TN–True Negative; TP–True Positive; 

FN–False Negative)............................................................................................................... 126 

Table 7.13 – Predicted conditions-ASM PF∆ (FP–False Positive; TN–True Negative; TP–True 

Positive; FN–False Negative) ................................................................................................. 128 

Table 7.14 – Predicted conditions-ASM PF (FP–False Positive; TN–True Negative; TP–True 

Positive; FN–False Negative) ................................................................................................. 130 

Table 7.15 – Best combinations of parameters and the minimal Euclidean distance for each ROC 

analysis ................................................................................................................................ 132 

Table 7.16 – Metrics of each ROC analysis (TPR – True Positive Rate) ................................... 132 



 

  XXVII 

 

Table 7.17 – Results of the decision cascade when PF’s data were considered as different from 

the other types of data .......................................................................................................... 134 

Table 7.18 – Results of the decision cascade when PF’s data were considered like WF and Global’s 

data ..................................................................................................................................... 135 

Table 7.19 – Results of the Case 2 of the stage 3 (Input image: 28x28) ................................ 137 

Table 7.20 – Results of the Case 2 of the stage 3 (Input image: 100x41) .............................. 138 

Table 7.21 – Results of the Case 1 of the stage 4 (ASMs based classifier) ............................. 139 

Table 7.22 – Results of the Case 2 of the stage 4 (ASMs based classifier) ............................. 139 

Table 7.23 – Results of the Case 1 of the stage 4 (CNN) ....................................................... 139 

Table 7.24 – Results of the Case 2 of the stage 4 (CNN) ....................................................... 140 

Table I - Acc’s main characteristics ....................................................................................... 169 

Table II – Mag’s main characteristics .................................................................................... 169 

Table III – Gyro’s main characteristics ................................................................................... 169 

Table IV – Temperature sensor’s main characteristics ........................................................... 170 

  



XXVIII 

 

Acronyms and Abbreviations 

2D   Two-Dimensional 

3D  Three-Dimensional 

AAL   Ambient Assisted Living 

Acc   Accelerometer 

ADC   Analogue-to-Digital Conversion 

ALSM   Algorithmic State Machine 

ASM   Associative Skill Memory 

ASMA   Activity Signal Magnitude Area 

BOS  Base of Support  

CAN   Controller Area Network 

CF  Complementary Filter  

CMEMS Center for MicroElectroMechanical Systems  

CNN  Convolutional Neural Network  

COM  Centre of Mass  

COP  Centre of Pressure  

CRC  Cyclic Redundancy Check 

DOF  Degree of Freedom 

EA   Euler Angle 

EE   Energy Expenditure 

EMG   Electromyography 

F   Fall 

FF   Foot-Flat 

FFT   Fast Fourier Transform 

GDA   Gradient Descent Algorithm 



 

  XXIX 

 

GS   Gram-Schmidt Method 

GUI   Graphical User Interface 

Gyro   Gyroscope 

HR   Harmonic Ratio 

HS   Heel-Strike 

IEEE   Institute of Electrical and Electronic Engineers 

IMU   Inertial Measurement Unit  

KF   Kalman Filter 

LDS  Local Dynamic Stability 

LL  Lower Limb 

MARG  Magnetic Angular Rate and Gravity 

maxLE  Maximum Lyapunov Exponent 

MCS  Motion Capture System 

MEMS  Micro-Electro-Mechanical System 

MIMU   Magnetic/Inertial Measurement Unit  

PC  Principal Component 

PCA   Principal Component Analysis 

PF   Pre-Fall 

PPv   Peak-to-Peak Angular Velocity 

Q   Quaternion 

RF   Radio Frequency 

RM   Rotation Matrix 

RMSE   Root Mean Square Error 

ROC   Receiver Operating Characteristic 

ROM   Range Of Motion 



XXX 

 

RQ  Research Question 

RSSI  Received Signal Strength Indicator 

SMA   Signal Magnitude Area 

STD   Standard Deviation 

SVd   Dynamic Sum Vector 

SVM   Signal Vector Magnitude 

SW   Swing Phase 

T   Trunk 

TO   Toe-Off 

USB  Universal Serial Bus 

WD  Wavelet Decomposition 



 

  1 

 

Chapter 1 - Introduction 

With the intention to conclude the fifth year of the Biomedical Engineering course, branch 

of Medical Electronics, this thesis clings on work developed throughout 2016/2017 year. From the 

Center for MicroElectroMechanical Systems (CMEMS) of Minho University, it was possible to carry 

out all idealized work for this thesis. The Inertial Measurement Units (IMUs) based system from 

CMEMS has been validated, and calibration methods were implemented in order to improve 

detected limitations. Besides that, a fall (F) and pre-fall (PF) detection system based on a classifier 

was also implemented, and delineated experiments were run and data was used to gait analysis. 

In the scope of the assistance and rehabilitation field, the proposed work aims to detect 

situations with high probability of F with some advance in time. This type of gait analysis through 

orientation calculation of the lower limbs (LL) and trunk (T) is, effectively, the main goal of this 

work. In this context, it is needed firstly to validate the IMUs based system used, in order to inspect 

the reliability of the system. After, a calibration strategy would be integrated in the system to 

improve system’s results. Finally, a F and PF detection system through IMUs based system’s data 

was tested in order to achieve an offline scenario of walking assisted in clinical environments. All 

the procedures, analysis and conclusions are detailed in this dissertation.  

1.1. Motivation 

Human walking, which is one of many types of human gait, can be considered as complex 

and a common human physical activity that can be performed in a variety of ways and directions, 

and that requires muscular strength, joint’s mobility and coordination of the central nervous system 

[1]. According to [2], the normal gait can be affected by a number of neurological injuries that have 

been investigated in order to improve the early diagnose techniques and to develop and/or to 

assess the treatments. Specially, from gait pathologies are highlighted: stroke; poliomyelitis (polio); 

spinal cord injury (SCI); Parkinson disease (PD); cerebral palsy (CP); multiple sclerosis; hip and 

knee osteoarthritis; muscular dystrophy; gait degeneration in elderly subjects; rheumatoid arthritis; 

degenerative joint disease; and myelomeningocele. Consequently, the main symptoms used to 

diagnose and to assess the progress of the gait impairments are disorders and abnormalities of 

the gait caused by walking diseases. 
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Thus, a detailed knowledge about gait’s characteristics at a given time, and monitoring 

and evaluating over time, will allow early diagnosis of diseases and their complications, which 

contributes to the decision of the treatment that should be chosen [3] or to prevent the occurrence 

of Fs, which is one of the most common health concerns especially in elderly people [4], [5]. Even 

medications or normal physiological changes have the same trend than the above mentioned 

diseases and may result in alterations of balance, being as well risks of F. 

In fact, Fs are the leading cause of fatal and non-fatal injuries among the elderly and 

represent a relevant economic burden to society [6]. Only in the United States of America, $19 

billion were spent on the direct medical costs of F related injuries in 2000. Only hip fractures, 

which are commonly associated with Fs, cost $8.7 billion/ year [4]. Because the U.S. population 

is aging, both the number of Fs and the costs to treat F related injuries are likely to rise. In 2015, 

costs for Fs to Medicare alone totalled over $31 billion [7], which is a far higher number than that 

registered 15 years earlier. The costs of treating F related injuries goes up with age and the F 

incidence is higher among women [7]. Fs, with or without injury, also carry a heavy quality of life 

impact. Fear of falling is common among the elderly and, as a result, it limits their activities and 

social engagements. Obviously, this tends to further physical decline, depression, social isolation, 

and feelings of helplessness [4]. 

In order to decrease the incidence of F and healthcare costs associated with F related 

injuries, it is necessary to widely implement F prevention methods. Currently, there are procedures 

to assess the patient’s risk of F, where some parameters are assessed and then prevent measures 

such as medication or diet are implemented according to the determined level of risk. These 

procedures are also accompanied by methods to attempt to improve gait performance like: training 

assisted by therapists; the passive devices (as canes and wheeled walkers); the treadmill with 

partial body weight support; functional electrical stimulation; and the active lower limb devices (as 

orthoses and exoskeletons) [8], [9]. 

Aware of the existence of the presented type of procedures, there are also real-time 

monitoring devices capable of detecting Fs [10], [11]. Some of them are also able to act in order 

to avoid the subject’s impact on the floor [12]. Nevertheless, the accuracy’s values of these devices 

or even the time to detect Fs before impact are still not optimal. Additionally, the commercial 

designs should be improved in order to ensure an assistance according to patient’s disability, assist 

therapists with early alerts of warning, and perform an efficient management of human-robot 

interaction without clinical assistance. 
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1.2. Problem Statement and scope 

The field of Fs prevention is a very interesting area with a direct impact on the prevention 

of injuries due to Fs and the reduction of health costs. However, to get closer to the optimal idea 

of a real-time monitoring device capable of detecting and preventing Fs, it is necessary to do a 

preliminary work in order to determine what sensors will be used and where to place them, what 

gait parameters are relevant and should be calculated, and what technique will be used to classify 

gait’s data. Thus, it is crucial to make a deep research in the scientific literature about several 

themes and only then start the practical part. 

Firstly, it was decided to use an existing IMUs based system [13], which is wearable and 

capable of collecting data from human gait. In order to use well the IMUs based system it was 

necessary to validate and calibrate the system. The validation process involves the communication 

protocol, the typical gait signals of the sensors, and a system of knee angle measurement. Sensors 

also needed to be calibrated and several methods tested to get better and more reliable results. 

The comprehension of the system can be helped with a graphical user interface (GUI), and data 

can be well separated with an efficient algorithmic state machine (ALSM). Then, combining this 

knowledge with the important and related gait parameters or metrics, it was possible to have a 

system with the ability to give information about human gait. Through a statistical analysis, Principal 

Component Analysis (PCA), it was possible to restrict the number of metrics. Finally, by means of 

statistical methods or deep learning approaches it was possible to classify human gait’s data. 

All aspects previously expressed reveal a serious and important relevance of this field, 

presenting an innovative character, covering several areas of knowledge and contributing to the 

scientific community with advancements able to help answer some important questions. 

1.3. Goals and research questions 

The ultimate goal of this thesis is the development of an offline classifier capable of 

distinguish normal gait from F and PF’s situations, from the integration of relevant gait’s 

parameters by means of an IMUs based system during some daily living activities. In order to 

achieve this ultimate goal, it is required the knowledge of basic concepts of human walking, as well 

as the knowledge of sensors’ characteristics, sensors’ attachment location, specification of the 

walking trials, and the most relevant gait parameters to this particular situation. Additionally, it is 
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important to understand the evolution of the gait’s parameters during the gait cycle and the way 

the F and PF’s situations influence these gait parameters. 

Thereby, with this thesis it is necessary to achieve the following goals: 

 Goal 1: the first goal consists in a survey and critical analysis of relevant information 

about IMUs, namely the state of the art and methods used in the literature to overcome 

the problems in this technology, to calculate joints’ angles and to validate the use of 

the system. It is also important to understand which sensors are most used in the 

literature to monitor human gait. This goal will make it possible to conclude on the 

potentials and the lacks of the current state of the art for these topics. 

 Goal 2: this goal aims to understand how Fs are classified in the literature, as well as 

the existing types of systems, methods and devices concerning this field. In this goal 

it is also important to understand which are the typical gait parameters, sensors, 

attachment location of the sensors, age, and experimental setups. Since this field has 

potential to grow, challenges, issues, and trends are also important to understand the 

near future of this area. 

 Goal 3: the third goal consists in improving on existent IMUs based system by 

developing real-time Matlab® GUI to get and process IMUs’ data. This includes the 

development of an ALSM to process the data, and make the communication system 

more reliable. This goal is to improve the IMUs system from a previous work [13] and 

will made possible a more practical use of the current system. 

 Goal 4: as fourth goal it is proposed the validation of the IMUs based system. This 

process should cover an important series of topics that allow the use of the system 

during everyday activities, namely: i) the communication protocol; ii) the typical 

sensors’ signals of human gait; and iii) the joint’s angles estimation. This goal is very 

important to verify the reliability of the IMUs based system, and is essential for the 

next goals. 

 Goal 5: this fifth goal consists in a survey for calibration procedures in the scientific 

literature and its implementation in the IMUs based system. In this goal, several tests 

should be performed, as well as a comparative analysis, considering the recent works 

in the literature. An optical system should also be used as a ground truth system. Once 
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again, this goal is very important to make the IMUs system more accurate to the next 

goal. 

 Goal 6: the last goal aims to develop a strategy able to recognize normal gait, F and 

PF’s modes of locomotion from data of the gait cycles. Thus, it will be possible to 

combine in one system a F detection system and a PF detection system. In order to 

get good results, this goal need to have in consideration the extracted conclusions from 

previous goals, as well as a previous treatment of the data obtained from the IMUs 

based system. A statistical analysis (PCA) should be also performed to reduce the 

number of metrics, which reduces the computational weight. Then, two strategies were 

applied. Firstly, the concept of ASMs was innovatively used to build a classifier. 

Secondly, a Convolution Neural Network (CNN) was used to make the aforementioned 

classification. The overall work has been described throughout this master’s thesis. 

The following research questions (RQ) are expected to be answered in the present work: 

 RQ1: What are the most used sensors to perform gait monitoring? Can the drift 

be compensated in the IMUs based system? And under what conditions? This RQ 

is addressed in Chapter 2. 

 RQ2: What are the most commonly used sensors in F or PF detection systems? 

This RQ is addressed in Chapter 3. 

 RQ3: To what extent does the GUI help to improve the user-system relationship? 

What is the reliability of the proposed ALSM? This RQ is addressed in Chapter 4. 

 RQ4: Considering the used wireless IMUs based system, how many IMUs can 

be connected to the base station without problems? What can be done to increase 

the number of connected modules? This RQ is addressed in Chapter 5. 

 RQ5: Given the sampling frequency of the system, is it possible to get the data 

of the human gait correctly? This RQ is addressed in Chapter 5. 

 RQ6: Is it possible to perform an on-body calibration without major errors? This 

RQ is addressed in Chapter 6. 
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 RQ7: Which are the metrics with greater potential to detect F and PF’s situations 

in the implemented classifiers? This RQ is addressed in Chapter 7. 

 RQ8: Which is the best classifier to be used in the recognition of normal gait, F 

and PF’s modes of locomotion? This RQ is addressed in Chapter 7. 

1.4. Contribution to knowledge 

The main contributions of this work are: 

 The improvement of the wireless IMUs based system from the CMEMS, creating 

a real-time GUI to help monitor the human gait in real time that enables to better 

understand the information from the IMUs. The interface not only improved the 

speed of data processing, but also facilitated the interaction between the user and 

the system, providing a clearer information exchange.  

 An ALSM that was implemented in order to ensure a clearer and more reliable 

data processing. Data from sensors can be used to estimate the orientation of 

each module through the use of a complementary filter (representation achieved 

in Quaternions and/or Euler angles) and other functionalities, based on previous 

work [13]. 

 The validation of the IMUs based system on several domains, e.g. the 

communication protocol or the estimation of orientation or joints’ angles. This step 

proved to be very useful in the collection of human gait’s data. 

 A simple proposed method for initial calibration of the sensors. Several tests were 

performed to determine the accuracy of this quick method that does not take 

longer than 5 seconds. 

 A tool that accurately implements of the locomotion mode recognition, i.e., 

discriminate between different types of data, namely: normal gait, F’s situation 

and PF’s situation (step before a fall). This tool is fundamental to be integrated in 

the IMUs based system in order to apply adaptive assistance based on human gait 

during daily living activities. This tool and its major concepts were demonstrated 

offline and detailed comparisons were evaluated. Two different methods/tools 

presented in the literature were implemented: i) ASMs based classifier, and ii) a 

CNN which is an essential tool for deep learning. The ASMs concept was 

innovatively used within the context of human fall prediction. 
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1.5. Publications 

From the work developed during this academic year, it was possible to publish four 

conference papers and the submission of one journal article. One conference paper was also 

selected for possible publication in a journal. 

Journal article 

 N. F. Ribeiro and C. P. Santos, “Orientation Estimation Using IMUs for Human 

Gait Analysis: A Systematic Review,” Journal of Medical Systems, 2017. (under 

revision) 

Conference papers 

 N. F. Ribeiro and C. P. Santos, "Inertial measurement units: A brief state of the 

art on gait analysis," 2017 IEEE 5th Portuguese Meeting on Bioengineering 

(ENBENG), Coimbra, Portugal, 16-18 February, 2017. 

 N. F. Ribeiro, J. Figueiredo and C. P. Santos, "Validation of a wireless 

communication protocol to monitor human gait using IMUs," 2017 IEEE 5th 

Portuguese Meeting on Bioengineering (ENBENG), Coimbra, Portugal, 16-18 

February, 2017. 

 N. F. Ribeiro and C. P. Santos, "An intuitive visual interface for a real-time 

monitoring system for human gait using IMUs," 2017 IEEE International 

Conference on Autonomous Robot Systems and Competitions (ICARSC), Coimbra, 

Portugal, 26-27 April, 2017, pp. 153-158. (Selected for possible publication 

- Robotics and Autonomous Journal (Elsevier)) 

 N. F. Ribeiro, C. Ferreira, L. P. Reis, H. Silva, P. Macedo, L. Rocha and C. P. 

Santos, “Validation of a Knee Angle Measurement System Based on IMUs,” in 

CLAWAR 2017 - The 20th International Conference on Climbing and Walking 

Robots and the Support Technologies for Mobile Machines, Porto, Portugal, 11-13 

September, 2017. 

1.6. Thesis outline 

The reminder of this master’s thesis is organized as follows. In Chapter 2 is presented a 

general overview of the IMUs, introducing the place of the IMUs in the gait analysis systems, the 
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group of sensors that can constitute an IMU, and relevant characteristics and applications of these 

sensors. Also, are highlighted commercial IMUs available on the market and their respective 

brands, the problems that IMUs can suffer from, methods to represent and estimate angles from 

this technology, the importance of calibration procedures, and challenges to overcome in the near 

future. 

An introduction about Fs, the problems they constitute among the elderly, and how to 

classify them is available in Chapter 3. Herein, are also presented the methods used to prevent 

and detect Fs, and the most used gait parameters or metrics, sensors and respective attachment 

location in the scientific literature. Besides, this chapter end with the current challenges, issues 

and trend about this important theme. 

Chapter 4 contains a complete overview about the IMUs based system used throughout 

the current master’s thesis. The Magnetic/Inertial Measurement System is initially described by 

focusing in its constitution and in sensors’ details. The communication protocol is also addressed, 

as well as the created GUI, and the ALSM. 

Chapter 5 describes the implemented validation processes and their respective results. 

Firstly, the communication protocol was tested and validated through physical tests. Signals of the 

IMUs’ sensors were compared to typical signals presented in the scientific literature in trials with 

similar conditions. DARwIn OP was also used as a ground truth system to validate a knee angle 

measurement system based on IMUs.  

Calibration procedures are truly important in the IMUs’ domain to prevent errors. So, 

several calibration methods presented in the literature were implemented and tested in four 

different stages throughout Chapter 6. These stages involve comparisons between methods at the 

level of the raw data and estimated angles, comparisons of estimated angles with different 

calibration methods with an optical reference system, and the use of multiple filters to estimate 

orientation. Respective results and discussion are also presented. 

An offline F and PF detection system is described in Chapter 7. In this chapter, the IMUs 

system is used to collect gait’s data from several subjects and from some types of trials. This 

information was, initially, filtered, separated by gait cycles and used to estimate some gait 

parameters. Then, through PCA procedures, relevant data were extracted and used to build sets 

of ASMs for each type of locomotion mode. Best combination of parameters for each set of ASMs 

was determined using Receiver operating characteristic (ROC) analyses. These sets of ASMs were 
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also used to construct an ASMs based classifier. A CNN was also used as classifier. The results 

are also discussed. 

The conclusions of this work are made in Chapter 8. Finally, the proposals to continue this 

work in the future are written in this chapter too. 
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Chapter 2 – Inertial Measurement Units: State-of-the-art 

2.1. Introduction 

Gait analysis systems are no exception in the set of monitoring systems that establish a 

symbiosis relationship with the Ambient Assisted Living (AAL) environments. Not only in individuals 

in need of treatment or rehabilitation, but also in healthy and elderly people, analysis of the human 

locomotion has a very important role always aiming at improving the quality of life. In fact, a deep 

and detailed knowledge about gait characteristics at a given time, and not least, monitoring and 

evaluating over time, will allow early diagnosis of diseases and their complications, and contribute 

to the decision of the treatment that should be chosen [3]. 

Gait analysis involves measurement, description and assessment of gait parameters that 

characterize human locomotion [14], [15]. In order to quantify these gait parameters, there is a 

set of several techniques [3] used for gait measuring:  

•Image Processing: which is a collection of techniques used to calculate and 

obtain a map of distances from a viewpoint. They are able to obtain important elements of 

the image with a better and faster real-time process. For this purpose there are some 

technologies such as Stereoscopic Vision (camera triangulation), Time-of-Flight Systems 

(ToF), Structures Light, Infrared Termography (IRT) and Laser Range Scanner;  

•Floor Sensors: where sensors are place along the floor on the force platforms. 

In this instrumented walkways gait is measured by pressure or force sensors and moment 

transducers when the subject walks on them. There are two types of floor sensors: force 

platforms and pressure measurement systems;  

•Wearable Sensors: which includes, e.g., pressure and force sensors, 

accelerometers (Accs), gyroscopes (Gyros), active markers, extensometers, inclinometers, 

goniometers, ultrasonic sensors, IMUs, and electromyography (EMG). These are placed on 

various parts of the patient’s body to measure different characteristics of the gait.   

 

 Among all the techniques mentioned, wearable sensors units reveal an extreme potential 

to monitor ambulatory activities in the home environment, and their reliability has since been 

demonstrated in various studies. So, the connection between this technique for measuring gait and 
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AAL is truly promising [16],[17],[18]. This way of analysing human motion is considered as 

continuous and ambulatory and has an outstanding importance in: 

i. The detection of risk situations such as F detection in elderly patients [18]; 

ii. The process of rehabilitation in injured patients, generating input for health 

interventions (real-time personalized feedback), design of treatment plans and follow-up   

monitoring [19]; 

iii. The diagnosis and treatment of patients with neurological diseases [20]. 

 

 As already mentioned, wearable sensors have an important role in human gait analysis. 

The achievements of human gait analysis can be divided in three main areas, namely, kinematics, 

kinetics and EMG. Kinematics of human gait describes the movements of the major joints and 

components of the lower extremity, collecting gait’s data through the use of multiple sensors. With 

this collected information, this type of analysis is able to recognize the gait phases, obtain the most 

important gait parameters and movement information on the body segments [14],[21],[22]. Gait 

kinetics studies forces and moments that result in the movement of body segments in a human 

gait, including the kinetic analysis, and has been an important part of healthcare evaluation and 

the clinical diagnosis. Forces between the foot and the ground are the focus of the kinetic 

measurement and allow the application of adaptive force sensors [14],[21],[22]. In turn, EMG is 

mostly used to detect and measure the small electric current produced by muscles during 

contraction and is now an important method in clinical gait analysis. With the development of 

wireless technology and its application on sensors, EMG has become a very reliable and wearable 

tool for gait analysis. EMG is obtained from the subject by a non-invasive intervention with surface 

electrodes [3],[14]. 

According to Liu et al. [16], recent research on wearable sensor systems for biomedical 

applications can be divided into two major parts. In one hand, state recognition on daily physical 

activities including walking feature assessment, walking condition classification and gait phase 

detection, in which the kinematic data obtained from inertial sensors such as Acc or Gyro are 

immediately used as inputs of some inference techniques. On the other hand, there is the accurate 

measurement of human motion such as joint angle, body segment 3D position and orientation, in 

which measurement calibration and data fusing of different inertial sensors are important to 

minimize errors of the quantitative human motion analysis. 



 

  13 

 

Given its importance in gait analysis, it is then necessary to define what an IMU is. Thus, 

an IMU can be described as an electronic device that can combine multiple sensors such as Accs, 

Gyros, and magnetometers (Mags) (Fig. 2.1). This electronic device may be equipped with an 

antenna (wireless technology), or a secure digital (SD) card or even an output pin logged by wire 

to a base station. IMU is the most commonly designation for this electronic device [13], [23], [24]. 

However, when a Mag is present, some authors used other designations: magnetic/inertial 

measurement unit (MIMU) sensor [25] or even magnetic angular rate and gravity (MARG) sensor 

[26]–[28]. Thus, throughout this thesis the term IMU is the general designation to mention IMU, 

MIMU or MARG sensors.  

 

 

 

 

 

 

 

 

 

 

Basically, the three sensors mentioned above are the commonly used in IMUs for gait 

analysis. This happens because they are important sensors for obtaining relevant data to this type 

of analysis. In particular, an Acc is a type of inertial sensor that can measure acceleration along its 

sensitive axis and can also be classified as either a mechanical or solid state device [14],[29]. A 

mechanical Acc, Fig. 2.2.a, consists of a mass suspended by springs. The displacement of the 

mass is measured using a displacement pick-off, giving a signal that is proportional to the force 

acting on the mass in the direction of the input axis. The mass proof can be forced to deflect by 

the inertial force because of acceleration or gravity according to Newton’s Second Law [14], [29], 

[30]. Solid state Accs, Fig. 2.2.b, establish a set of various sub-groups that includes surface 

acoustic wave, vibratory, silicon and quartz devices. They are characterized as small, reliable and 

rugged [29]. Technically, they are often used to obtain physical activity levels, accelerations during 

Figure 2.1 - Example of a RLVBIMU04 IMU from VBOX Automotive with wire connection [194]. 
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walking, gait cycle time and number of walking steps can be determined using several Accs affixed 

to the subject. Motion activated functions, free-fall detection, pedometer, display orientation and 

vibration monitoring and compensation are a few applications this device can perform [13], [30]. 

 

In turn, a Gyro is a spinning wheel or disc in which the axis of rotation is free to assume 

any orientation by itself as depicted in Fig. 2.3. When rotating, the orientation of this axis is 

unaffected by tilting or rotation of the mounting, according to the conservation of angular 

momentum. For this, Gyro are useful for measuring or maintaining orientation and can be 

considered as an angular velocity sensor. It can be applied for the measurement of the motion and 

posture of the human segment in gait analysis by measuring the angular rate, angle of various 

joints and the flexion angle (integration of the angular rate) [13], [14], [16]. 

  

 

 

 

 

 

 

 

 

IMUs can also be equipped with magnetic field sensors. This is a device capable to detect 

and measure magnetic fields. Its operating principle is based on detecting effects of the Lorentz 

force which may be measured electronically with a change in voltage or resonant frequency or 

a) b) 

Figure 2.2 - a) A mechanical Acc; b) A surface acoustic wave Acc [194], [29]. 

Figure 2.3 - A conventional mechanical Gyro [29]. 
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measured optically with a mechanical displacement [31]. Figure 2.4 depicts a micro Mag where 

white arrows indicate the current flow through the flexures while the location of the lower sensing 

electrode is indicated in yellow. Although the necessary concern with the compensation for 

temperature effects, advanced electronics are used to improve the sensitivity. So, these 

instruments have medical and biomedical applications, and implemented in an IMU it is mostly 

used to assist calibration against orientation drift. This allows better performance for dynamic 

orientation calculation and can be used in multiple applications such as reference measure for 

body orientation or earth gravity field, linear/rotary position, speed measurement and current 

sensing [31].  

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2. Applications and Commercial IMUs 

In areas like mobile robots, IMUs are frequently used to improve odometry or for flight 

stabilization or autonomous hovering of helicopters or quadrotors. Moreover, this type of sensors 

is widely used for localization of airplanes and miniature indoor blimps. However, with regards the 

monitoring of the human being, IMUs can be integrated into clothes, shoes or even used with 

Velcro straps [13], [23]. Thus, IMUs enable full 3D location/orientation information and full-body 

motion capture [23]. In fact, IMUs show a vast number of applications in this kind of monitoring, 

allowing, for example [3], [32]: Gait symmetry and gait normality measurements [33]; Creation of 

Figure 2.4 - Image of a micro Mag structure [195].  
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F-risk prediction models; Study of motion of each joint and the body orientations based on portable 

force plates and motion sensors; Prediction of gait initiation and termination [34]; Estimation of 

walking speed [35]; Estimation of movements of thighs from movements of shanks to reduce the 

number of sensing units; Long-term monitoring of human movements; Assessment of energy 

expenditure; Study physical activity, postural sway, postural orientation [36], activity classification 

and estimation of temporal gait parameters; 3D joint or lower limb angle measurement or 

orientation estimation of LLs or joints [37].  

Obviously, the main focus is portable applications, in which small dimensions are essential 

and existing research prototypes are usually smaller and lighter than commercial products. 

Nevertheless, in dynamic applications, high raw data rates are required for precise data processing 

and state estimation, which affects the development of IMUs designs. Currently, the IMUs’ 

performance can be accessed through the bandwidth, drift, linearity and sample rate of their 

sensors [23]. 

Today, at a commercial level, there are many companies interested in the production and 

improvement of IMUs. Obviously, at this level of competition, there is a constant race by companies 

to improve products’ characteristics at competitive prices. Companies like Xsens, InterSense, 

Technaid, IMeasureU or Noraxon offer a wide range of products related to IMUs with own distinctive 

characteristics. For example, Xsens has products like isolated IMUs (MTi1–series, MTi10–series 

and MTi100-series) and two hardware versions of a full-body human measurement system based 

on inertial sensors that require the use of suit with trackers (MVN Awinda and MVN Link are shown 

in Fig. 2.5). MVN Awinda has 17 wireless trackers and a station per actor which requires 17 

batteries with 6 hours of life. In terms of accessibility, it is characterized by wearable straps and 

one-size-fits-all. In turn, MVN Link has 17 wired trackers and one access point for multiple actors 

which requires only one battery with 9.5 hours of life. It is described by a Lycra suit with 5 sizes. 

This company also offers a software for motion capturing called MVN Studio. This software is able 

to exhibit, for example, real-time 3D visualization and data integration, and playback and editing of 

motion capture data [38]. 
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InterSense motion tracking products are industry solutions, being integrated into the next 

generation position, navigation and stabilization systems. This company produces three degrees of 

freedom (DOF) and 6-DOF trackers. 3-DOF trackers belong to InertiaCube line of orientation 

sensors. From this line there are two products known as: 1) InertiaCube4TM (Fig. 2.6.a) that offers 

superior performance over its predecessors while minimizing size and price, and is ideal for real -

time applications in simulation and training, virtual and augmented reality, motion capture, and 

human movement analysis; and 2) InertiaCube BTTM (Fig. 2.6.b) that provides real-time orientation 

data via a standard Bluetooth interface to computer. It is a wireless sensor for human movement 

analysis. In turn, in 6-DOF trackers category there are also two products: IS-900 system (Fig. 2.7.a) 

and IS-1200+ system (Fig. 2.7.b). The first one is the system of choice for precise position and 

orientation (6-DOF) tracking in military and industrial simulators, immersive displays, virtual 

prototyping and film production. This system is immune to metallic interference, while offering real-

time tracking in various environments. IS-1200+ system is a recent optical and inertial based 6-

DOF tracking system. The system offers tracking data utilizing a fusion of inertial-optical   

technology [39]. 

  

Figure 2.5 - Xsens MVN products [38]. MVN Awinda is on the left side. MVN Link is on the 

right side. 
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Technaid is a company developing technology for several applications such as 

biomechanics, rehabilitation, motion analysis, virtual reality and robotics. In respect to motion 

analysis, this company developed recently the Tech IMU V4 series. IMU V4 series represents the 

last versions of inertial sensors developed by this company. Each Tech IMU integrates three 

different MEMS (Micro-electro-mechanical system) sensors, a 3D Acc, a 3D Gyro, and a 3D Mag. 

IMU CV4 (Fig. 2.8.a) and IMU V4 (Fig. 2.8.b) are the two examples of developed inertial sensors 

from V4 series, and three types of communication interfaces are available: CAN (Controller Area 

Network) Standard, tech MCS (Motion Capture System), and USB (Universal Serial Bus). The 

mentioned company also has a motion capture system Tech MCS (Fig. 2.9) which is a complete 

wireless motion analysis solution, based on one of the lighter and smaller inertial sensors of the 

market (Tech IMU). It’s similar to MVN Link from Xsens because it also has wired trackers and one 

access point for multiple actors which requires only one battery. Although, it is important to refer 

that motion capture system from Technaid is not a Lycra suit but comes with textile and plastic 

adapters. The company also developed a software that accompanies each Tech MCS package. It 

is able to record and show whole human performance in real-time on Personal Computer [40],[42]. 

 

  

a) b) 

Figure 2.6 - InterSense 3-DOF trackers [39]: a) InertiaCube4TM; b) InertiaCube BTTM.  

a) b) 
Figure 2.7 - InterSense 6-DOF trackers [39]: a) IS-900 system; b) IS-1200+ system. 
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IMeasureU is a wearable technology company from New Zealand that build solutions 

capable to provide high fidelity athlete movement and workload data used to characterise fatigue, 

enabling optimal recovery, training and performance. Concerning to their product, they have a 

small, lightweight sensor that contains a 9-axis IMU (Fig. 2.10), where data sampling up to 1 kHz 

can be stored on the device or transmitted via Bluetooth Smart to a computer or phone. This way, 

IMU measures and quantifies an athlete's motion in their natural environment. The system 

accurately measures sports-specific movement and quantifies biomechanical workload used to 

identify athlete fatigue and up to 8 sensors can be synchronised simultaneously through IMU 

software [41]. 

 

a) b) 

Figure 2.8 - Technaid products [40]: a) IMU CV4; b) IMU V4 

Figure 2.9 - Technaid Motion Capture System [40]. 
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Noraxon is an American company that has been a leader in manufacturing and distributing 

high-end measurement and training devices, such as EMG, gait analysis, biofeedback, and 2D/3D 

motion analysis that enables a unique approach to a fully equipped analysis and therapy concept 

for evidence-based clinical and research applications. As products they have myoMOTION           

(Fig. 2.11) that enables the capture of human motion in 3-DOF, wirelessly. Translational data via 

double integration is simple and accurate with our built-in math tool kit. The entire process is 

portable by using IMUs placed on any segment of the body that precisely tracks the 3D angular 

orientation of that body section. This concept is easily expandable from a single joint of interest to 

a simultaneous full body measurement across all major articulations. The software provides 

orientation data and/or linear acceleration data [42]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.10 - IMeasureU IMU sensor [41].  

Figure 2.11 - Noraxon myoMOTION device [42]. 
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SparkFun is an online retail store that sells components and widgets, and offers classes 

and online tutorials designed to help educate individuals in the world of embedded electronics. 

This company also sells IMUs with six and nine DOFs [43]. Other companies such as Arduino, 

InvenSense, and x-io Technologies Limited also sell products like those mentioned above 

constituting a group of alternatives. 

However, trademarks are not the only entities focused on IMUs. Research groups are also 

engaged in efforts to improve this technology. According to some research groups, efforts are being 

made to extol certain characteristics like the miniaturization of the device to apply this technology 

to the gait analysis [23]. Benocci et al. [44] used the IMU ADIS16350 which integrates a digital 3-

axes Acc and a digital 3-axes Gyro in 22x22x22 mm with high resolution, bandwidth and sensitivity 

to communicate via Bluetooth with a base station to monitor gait. With the same type of sensors, 

IMU used by Macedo et al. [13] was the MPU-6000 with a Honeywell 3-axis Digital Compass IC 

HMC5883L connected to a CC2530EM module to allow a Radio Frequency transmission. Höflinger 

et al. [23] presented a wireless Micro-IMU based on MEMS sensors with large scale integration 

which can be integrated into clothes or shoes for accurate position estimation in mobile 

applications and location-based services. Barton et al. [45] also presented a cubic IMU design and 

wireless technology. Tsai et al. [46]  showed 1 cm3 wireless IMU without Gyros and Lim et al. [47] 

made a combination of ordinary Accs and Gyros with a line encoder with a small size. Besides, it 

is important to refer that funding for research nowadays comes from projects that include both 

universities and companies. Therefore, the development is joined. 

2.3. Advantages and Disadvantages 

Taking into account all that has been mentioned about IMUs, multiple parameters like 

precision, conformability, usability or transportability demonstrate that the portable systems based 

on body sensors are promising methods for gait analysis [3]. As advantages, it is clear that inertial 

sensors compared to other systems are lighter, smaller, cheaper, portable, wearable, non-invasive 

and do not alter natural movement patterns [16], [48]. Nevertheless they have the advantage of 

identifying human motion in a wide variety of environments [49]. Even the gait analysis when using 

wearable sensors becomes cheaper, more convenient and provides an indication of the intensity 

level of physical activity [17]. In this type of analysis, the use of 3D-sensors allows the recording of 

motion in three planes and provides more information [17]. 
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Despite all this, there are some characteristics with negative connotation that should be 

taken into account. Acc and Gyro’s data cause computational problems for determining the    

angles [32]. Concerning to the magnetic sensor, the presence of magnetic disturbances (as 

induced, e.g., by ferromagnetic material) may limit the accuracy of the orientation estimates by 

means integration [50]. Like any machine, a wearable sensor system has imperfections. Some of 

these imperfections are sensor attachment errors, regular calibration maintenance, external signal 

noise, signal filtering errors and integration drift, and is computationally complex [3],[51]. 

Therefore, inertial sensors are less accurate than laboratory systems [48]. A further disadvantage 

is the need to place devices on the subject’s body, which may be uncomfortable [14]. Lastly, the 

size of power consumption of the IMUs is an important limitation of the current gait analysis 

systems, which affects directly the measurement capacity of the system and monitor the gait 

parameters over long time period [3]. 

2.4. Methods and Problems 

As for the methods, Quaternions or Euler parameters (Q), Rotation matrices (RM) or Euler 

angles (EA) are examples of methods used to represent orientation of segments or joints. Usually, 

these three methods are applied in 3D orientation [51]. Gram-Schmidt method (GS) is an 

optimization method used to find the best orientation [52]. Kalman filters and their derivatives (KF) 

[53], the gradient descent algorithm (GDA) , and the complementary filter (CF) [54] are the most 

used sensor fusion algorithms among the studies. Usually tools like the GS method [52]. 

IMUs also have problems that must be solved in order to allow more precise and accurate 

measurements especially in gait analysis field. One of the biggest problems is integration. 

Blumrosen et al. [55] indicated that small errors in the measurements can be accumulated and 

increase the tracking error over time in respect to the Acc and Gyro integration. When accumulated, 

integration errors can cause deviations of the calculated results from the true values. This situation 

is often referred to as a drift [16], [32], [49]. Although this problem occurs with some frequency, 

today there are solutions to integration problems that are used by research groups. 

According to Blumrosen et al. [55] the repetition pattern of gait can be used to estimate 

the time intervals needed for carrying an efficient implementation of the strap-down integration, 

exclude the IMU bias and minimize the error to less than 10% of the stride length. The same 

authors state that anthropometric considerations or advanced filtering e.g. using extended Kalman 

filters can be used as well. The aggregation of other sensors can also reduce the error 
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accumulation. This group of researchers used the Received Signal Strength Indicator (RSSI), which 

is a measurement of the signal power on a radio link, to estimate mobile nodes location. They 

focus on three main techniques to exploit the RSSI measurements: track body part based on RSSI 

measurements only; extract kinematic features; and aggregation of RSSI measurements and other 

sensor modalities like IMU (RSSI data was aggregated with only one IMU data using a KF). 

According to their results was demonstrated that the accumulation of error was minimized using 

the RSSI measurements and the tracking accuracy compared with the one based only on RSSI 

measurements, can be improved by around 50 percent.  

Djurić-Jovičić et al. [32] argue that the use of KF in the integration procedure decreases 

the drift and provides for real-time applications, however it requires calibration and data from other 

sensors (Accs, Gyros, and magnetic sensors in most cases) for error minimization, as well as noise 

statistics and good probabilistic models. These group of researchers presented a new method for 

estimating angles of leg segments and joints, which uses Acc’s arrays attached to body segments. 

The absolute angle of each body segment was determined by band pass filtering of the differences 

between signals from parallel axes from two Accs mounted on the same rod. Joint’s angles were 

evaluated by subtracting absolute angles of the neighbouring segments. This method eliminates 

the need for double integration as well as the drift typical for double integration. Another way to 

reduce the error accumulation is by aggregation of other sensors (Acc and Mag’s data), through 

sensor fusion algorithms [48], [50], [55]. 

In turn, Ambrozic et al. [48] implemented a kinematic model of the human body into their 

sensory fusion algorithm with the purpose to greatly reduce the drift without the need for standstill. 

With a wearable sensory system that comprises sensorized insoles, pressure-sensitive pads to 

measure human-robot interaction, IMUs, vibrotactile modules for afferent feedback and sensors 

for detection of amputee psychophysiological stress status, they perform a tracking of motion 

parameters and an estimation of kinematic data of the wearer for use in controlling active lower-

limb ortho-prostheses. At an algorithmic level, this group of authors combined data collected from 

IMUs that is used to produce estimates of segment orientations and from sensorized insoles worn 

inside sneaker shoes that provide information on vertical ground reaction force amplitude and 

distribution, in order to extract information about the subject’s kinematics, movement type and 

phase, and track selected biomechanical stability descriptors. In order to assess kinematic 

parameters, these researchers made a common approach for determining orientations that 
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consists in the use of a KF from collected data of seven IMUs. They are based on individual 

segment’s angular velocity integration during motion and orientation correction in relation to 

gravity. They used the Acc as an inclinometer to determine the intermediate angle of inclination. A 

Mag was also used and was assumed that magnetic field in space is locally constant and non-

parallel to gravity. It was concluded that the approach often results in a drift during long-term 

dynamical movement due to Gyro’s drift, errors introduced by separations of gravity and dynamic 

acceleration, and changes of the magnetic field. This way, to solve the problem or try to mitigate 

it, these researchers introduced the resetting during standstill in a first attempt. However, the 

introduction of a kinematic model of the human body into the sensory fusion algorithm was able 

to reduce the drift without need for standstill. 

Errors introduced by separation of gravity and dynamic acceleration, changes of the 

magnetic field and temperature dependency, and the orientation error tends to grow with time 

owing to the drift of integrated Gyro output [16], [48]. Gyro is sensitive to a temperature change or 

small changes in the structure (mechanical wear), which leads to fluctuating offsets from sensor 

output in applications of human motion measurements [16]. Even skin motion artefacts cause 

errors to all body-fixed sensors. Sensors placed on thighs are more susceptible to skin and soft 

tissue related motion, because the majority of femur is concealed by a substantial amount of soft 

tissue [32]. Boerema et al. [17] have shown the existence of an interaction effect between sensor 

position and type of activity. According to their results the most lateral position on a waist belt 

favors all other positions, and if a person may touch the sensor with the motion the best alternative 

is to position the sensor slightly more forward on the belt to a more central position (In legs that is 

not so important or relevant). They also conclude that sensors should be fitted to the body as tightly 

as possible. This can be possible with mounting material that ensures this tight fit, like an elastic 

waist belt, Velcro or clips that create a firm connection to a waistband. Novak et al. [56] found that 

some pathologies such as Parkinson’s disease exhibit simultaneous T, head, and pelvis 

reorientation, this nonetheless suggests that IMUs placed on the head or T may allow faster 

detection of turns during gait and would be preferable to IMUs on the pelvis or foot. So, they 

perform some turning strategies in an experimental test with subjects. Their results showed that 

the best results can be obtained using an IMU placed on the upper or lower back, while IMUs on 

the legs consistently produce worse onset detection results. This group of researchers believe that 

happens because of two reasons. First, the top-down turning strategy, where the upper body 

generally turns earlier than the lower body. The second reason is that the trunk begins turning 
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immediately regardless of the leg used to make the turn while the two legs do not turn 

simultaneously. 

Summing up, from studies, corrected errors were also identified, namely: (1) drift in [28], 

[49], [57]–[65]; (2) noise in [51], [54], [57], [60]–[62], [64], [66]–[68]; (3) skin movement 

artifacts in [49], [69]–[71]; (4) bias, offsets, scale factor or systematic errors in [51], [52], [59], 

[64], [66], [67], [72], [73]; (5) effect of vibration on sensors in [74]; (6) orientation of sensing 

device on the installation location on the human body in [25]–[28], [37], [49], [51]–[54], [60], 

[61], [66], [68]–[70], [72], [73], [75]–[78]; (7) steady state error in [58]; (8) temperature effects 

in [52]; and (9) ferromagnetic disturbances in [26], [28]. 

2.5. Calibration 

Calibration is also a problem to be taken into account. Most guidelines recommend a 

systematic calibration to all users to establish the range, sensitivity, accuracy, precision, and inter-

unit variability. Beyond this, an efficient calibration can allow a significant reduction of drift errors 

[16], [17]. There are two different distinguishable levels of calibration: (1) Unit calibration: The 

internal reliability of the accelerometer sensors across multiple units; and (2) Value calibration: The 

conversion of Acc’s output into more meaningful information, such as time spent in moderate 

intensity physical activities which would give more clarity to patients or healthcare professionals 

[17]. In particular, the calibration of the Acc sensor is carried out during the static state as well as 

Gyro, which is advantageous [16], [32]. With regard to the magnetic sensors, from the datasheet 

of XEN-1210 it is possible to claim that this sensor has a very low offset and the device does not 

need calibration. It has no hysteresis and is indestructible by high magnetic fields [79]. 

Among studies, the calibration procedures can also be divided in four types: (1) Hardware 

Calibration (HC), where the goal of the calibration procedure focused only on the sensing device 

sensors. This type of calibration can be found in [52], [64], [65], [67], [73], [74], [80]; (2) Output 

Data Calibration (ODC), where data from sensing device sensors were used in order to adjust the 

orientation or angles parameters [25], [28], [49], [51], [54], [57]–[59], [62], [63], [66], [69], [70], 

[72], [75], [76], [26], [68], [71], [78]; (3) Calibration with help of a Camera-based System (CHCS), 

where an alternative system in addition to the sensing devices helps calibrating frames or 

synchronization between the two systems [27], [37], [77]; and (4) Monitoring Software Calibration 
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(MSC), where calibration procedure followed the instructions from a commercial brand software 

[53], [60], [61], [81]. 

Blumrosen et al. [55] suggested a new calibration scheme for small indoor environment, 

using a priori information about the medium. The calibration process for the inertial sensor included 

extraction of acceleration biases, and calculation of initial values of angular velocity biases.  

Liu et al. [16] proposed an intelligent calibration for quantitative gait analysis including gait 

phase detection and leg segment orientation estimation. The present proposal is based on the 

precision measurement of Acc during static situation and a linear regression method for simplified 

assessment of drift error. In respect to the calibration of sensor units the authors calibrate the Acc 

during a static stage. This sensor is subjected to different gravity vectors by rotating a based axis. 

In turn, Gyro is calibrated in a dynamic calibration that is completed when the Acc is tested in a 

moving condition. In both cases calibration matrixes are computed using the least squares method. 

Regarding the intelligent calibration for reducing drift, authors explain that the mid stance phase 

can be detected just using Gyro signals and raw integration results of Gyro signals from the three 

sensor units. They also find that the rotational angular velocities of the shank and thigh are very 

small in later interval of this phase, and the Acc can be used for inclination measurement with 

respect to gravity acceleration. In each mid stance phase of the four strides, the angle signals from 

Acc were used as initial value of integral calculation instead of the value from integral signal of the 

Gyro. According to their experimental results was proved the validity of the intelligent calibration 

method for decreasing drift errors. 

2.6. Challenges 

There are many challenges in the field of gait analysis. To be in accordance with research 

groups a list of future challenges was prepared. Thereby, according to some research groups the 

list’s topics are presented. In this thesis, the challenges 1, 2, 7, and 8 will be discussed. 

1. It is necessary develop an algorithm to estimate joint angles from IMUs independent 

on speed of the subject’s gait [32]; 

2. An intelligent and online calibration that utilizes instantaneous location estimations 

would be very important, since it would avoid the use of manual calibration with a 

number of movements to compute joint angles, could mitigate for part of the dynamic 

changes caused by changes in the environment and in sensor orientation, would 

improve the overall tracking estimation accuracy, and would decrease drift              
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errors [16],[52],[55]. A fundamental problem in IMU-based human motion analysis is 

that the IMUs’ local coordinate axes are not aligned with any physiologically meaningful 

axis. The solution is to do this via calibration postures and/or calibration        

movements [50]; 

3. Equally innovative would be the development of a wearable sensor system for 

estimating muscular tensions instead of EMG [16]. Analysis of human walking pattern 

by the eight gait phases more directly identifies the functional significance (muscular 

tensions) of the different motions accruing at the individual joints and segments; 

4. Application to longer distance gait trials is still unknown and this underlying limitation 

will have to be investigated to better assess the accuracy and repeatability [49]. So, it 

is important to check the evolution of the drift with the time; 

5. One of the ideas is to evaluate the potential of the method in clinical applications with 

a large number of volunteers. The environment where the methods are tested is also 

very important, once the proposed methods aim people in need of treatment or 

rehabilitation and elderly people. So, it is important that the proposed methods work 

in this type of environment; 

6. Tao et al. [14] claim that technical matters still need to be improved, like the stability 

of sensor signals, the reliability of analytical algorithms for kinematics and kinetics in 

gait analysis, development of low cost and small volume integrated wearable sensor 

systems; 

7. One of the most promising areas is the improvement of signal processing and analysis 

algorithms. The current movement tracking algorithms based on the application of KFs 

using Direction Cosine Matrix (DCM) to data acquired from Gyros and Accs should be 

improved [3]. 

8. Still, many physical phenomena like shadowing, absorption by the human tissue, 

creeping of the electromagnetic wave along the body, affect the accuracy of the 

tracking information, as it is based on statistical models that cannot fully mitigate over 

instantaneous dynamic changes [55]. 

 

: 
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Chapter 3 – Falls Prevention and Risk Identification: state-of-

the-art 

3.1. Introduction 

Health care has been increasingly required due to the increase in average life expectancy 

in developed countries. It is also a well-known fact that the majority of health problems affect the 

elderly [82]. In this context, Fs are one of the most common health concerns especially in elderly 

people, being a marker of frailty, and acute and chronic health impairment [4], [5]. Frequently, Fs 

result in injury, disability, and institutionalization [4]. According to [4], the majority of Fs result in 

no injury, however 31% of the cases result in an injury requiring medical attention or restriction of 

activities for at least one day. Normally, those injuries or restrictions are minor soft tissue injuries, 

but 10-15% of Fs result in fracture, and 5% of Fs in more serious problems such head trauma. Fear 

of falling usually happens to elderly fallers, and almost half of fallers have a great probability to 

have a repeated F within the next year.  

Actually, Fs are associated with greater functional decline, social withdraw, anxiety and 

depression, and an increased use of medical services. Even fear of falling has been associated 

with impaired mobility and decreased functional status. Thus, older adults who have fallen have a 

greater risk of F regardless if they had an injurious F. Death related to Fs increases with advancing 

age and greater number of co-morbidities. Accidental Fs are the leading cause of unintentional 

injury deaths in people aged over 65 years old [4]. Hip fractures are correlated with F related 

injuries, and they are greatly associated with a high mortality within the first six months, particularly 

in men [4], [5].  

Concerning the pathophysiology of Fs, the majority of Fs occur due to more than one single 

cause. In fact, multiple interactions between a subject with great risk of F and acute mediating 

factors are responsible for the Fs. For example, neurological and muscular diseases such as 

Parkinson, Stroke, Dementia or Osteoarthritis can increase the risk of F. Normal physiological 

changes have the same trend than the above mentioned diseases and may result in alterations of 

balance. Even medications such as antidepressants, sedative hypnotics or neuroleptics are 

potential reversible risk factors for Fs in the elderly. Hypoglycemic agents have been implicated as 

a risk factor for Fs in a few retrospective studies, and footwear or environment hazards, including 
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wet floors, poor lightning or improper bed height, may also be a predisposing risk factors                 

for Fs [4], [5]. 

The risk of F can be described according to a scale model (Fig. 3.1) that illustrates the 

interaction between balance capacity and balance demands of the task (in the case of locomotion: 

terrain type, distance to travel or velocity requirements for example). From this interaction it is 

possible to obtain an outcome which is measured on a given scale. In this particular situation, the 

heavier the first, the closer walking performance is to optimal [83].  

In general, there are two ways to prevent a F in elderly people: i) with physical activity; or 

ii) a F forecasting system. In the first case, as already mentioned above, skeletal muscle strength 

and mass decline with age and immobility. So, exercise might prevent Fs and injury by 

strengthening muscles and increasing endurance; maintaining and improving posture, joint motion, 

and postural reflexes; stimulating cardiorespiratory function; and improving alertness [5]. In relation 

to the F forecasting system, capable of warning a F in advance, it would allow a technician to 

prevent a subject from falling or a system to act in order to avoid falling. Nowadays, there are some 

studies that focus in machine learning techniques in order to detect a F before happening. So, with 

this technology, a system would be capable of prevent a subject’s F. 

3.2. Classification of the Falls 

 Concerning the literature, there are several works that propose division and classification 

of Fs. In [84], six types of Fs are listed: i) syncope/fainting; ii) tripping; iii) sitting on an empty chair; 

Figure 3.1 - Balance performance model [83]. 
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iv) slipping; v) lateral F; vi) rolling out of bed. In turn, [85] identifies seven distinct F’s situations: i) 

slips; ii) trips; iii) extrinsic (collisions, obstacles); iv) intrinsic; v) from stairs; vi) from an upper level; 

vi) non-defined. And [86] enumerates up to 9 F scenarios (grouped in forward, backward and 

vertical Fs). Looking only within the context of biped locomotion, and from a purely motion-based 

analysis, Fs can be roughly grouped in two main categories: i) Fs along the horizontal/lateral 

direction; and ii) Fs along the vertical direction.  

 The first are usually caused by stumbling (loss of balance in gait generation, or obstacles 

in locomotion's path), and can therefore be subdivided in forwards, backwards and lateral Fs, while 

the second are mainly related to weak legs or foot slipping [87], [88]. Figure 3.2 depicts a simplified 

sketch of these types of Fs. These Fs are obviously from a scenario where an individual is in 

locomotion, which is ultimately the point of this section. 

 

 

 

 

 

 

 However it is also possible to identify Fs from other situations, such as stationary positions 

(standing, sitting or on a ladder) and there are voluntary, deliberate and risk-free motions that can 

be misinterpreted as Fs (e.g. crouching) [89].  

 Finally, there are two main events associated with a F: a change in trunk's orientation to a 

horizontal lying position, and a negative peak in acceleration/sudden decelerations due to impact 

with the floor. From normal behaviour/locomotion to the motionless stance (where acceleration 

values are equal to the gravitational acceleration) after the F can go up to a 1 second interval [90]. 

The final posture however can stabilize only 2 seconds after the impact with the floor [91]. This 

information, while helpful in identifying if a F has occurred, can do little to prevent it [12], [86], 

[92], [93]. Thus, it is crucial to understand or find solutions to detect a F before it happens. 

Figure 3.2 - Possible Fs along the horizontal/lateral and vertical directions [88]: a) F forward; b) F laterally; c) F 

backward; d) F along vertical direction – slipping of foot; e) F along vertical direction – weak legs. 
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3.3. Methods 

 As already mentioned, Fs are a major health problem among the elderly. Consequently, 

the number of systems that detect Fs has increased significantly in recent years [94]. At this point 

it is very important to make a distinction between F detection systems/algorithms and F prevention 

or F forecasting systems/algorithms. According to [94], a F detection system can be described as 

an assistive device capable of alerting technicians/surrounding people when a subject Fs. In one 

hand, these systems can mitigate some of the adverse consequences of a F, namely on the 

reduction in the fear of falling and the rapid provision of assistance after a F. Note that depending 

on the severity of the F, the subject may be unable to move for an extended period of time after 

falling. Critical complications during this time such as hypothermia, dehydration, broncho-

pneumonia and pressure sores can actually happen to older fallers if they live alone or lose 

consciousness. On the other hand, it is unable to prevent or avoid a F.  

 In turn, a F prevention system/algorithm can actually avoid the F of the subject, 

contributing more to reduce the fear of falling and the need of assistance after a F. However, 

nowadays there are few F prevention systems and the majority of the studies focus on determining 

or assess the risk of F. 

3.3.1. Fall Detection Systems 

 F detection systems are often based on impact detection [84], [86]. However, according 

to the literature, these systems can be differentiated or classified, and there are many attempts to 

structure F detection systems. Some authors perform a two-class division in motion sensors and 

image processing approaches [12]. Lai et al. [95] classifies these system according to the historical 

evolution from passive alarms to audio/video external systems and to wearable motion-sensing 

devices that detect risk situations. Mubashir et al. [89] proposes a three-class division of existing F 

detection algorithms: wearable sensor based, ambience sensor based, and camera based as 

depicted in Fig. 3.3. According to them, wearable sensors can be divided into two categories: 

posture based and motion based devices. Ambience devices can be classified into presence and 

posture based sensors. And the camera (vision) based systems can be further categorised into 

three classes as shape change, inactivity and 3D head motion. In relation to the existing 

approaches, they usually share the same general framework, although data acquisition varies 

according to the number of sensors or cameras. 
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Perry et al. [96] also divided these system into three categories: methods that measure 

acceleration, methods that measure acceleration combined with other methods, and methods that 

do not measure acceleration. And finally, through a review of the literature, Igual et al. [94] realized 

that F detectors can be categorized in two types: context-aware systems and wearable devices. 

However, since all this project is about IMUs and related sensing devices, the aim of this part of 

the study will be F detection systems/algorithms based on wearable sensors that are typically used 

in body segments due to their advantages. 

According to [94] the majority of wearable F detectors are in the form of Acc devices, and 

some of them also incorporate other sensors such as Gyros to obtain the patient’s position. Even 

today’s smartphones come with a rich set of embedded sensors, such as Acc, Mag, Gyro, GPS, 

microphone, and camera [97]. Figure 3.4 also illustrates the last sentence [82]. As can be seen, 

Acc are widely used by F detection systems. In [82] research attention has focused on the different 

application areas with varying intensities. So, IMUs or sensing devices can be considered a 

wearable solution to detect Fs. The only relevant exception to this are force platforms [92], [98]–

[100], and, less commonly, goniometers on the legs [92], [93], and air pressure barometers [101]. 

Figure 3.3 - Classification of F detection methods according to [89].  
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Fs can be identified through the output of Accs based on great signal amplitudes and within 

a specific set of frequencies. These signals can be used to differentiate Fs from other daily life 

activities [86]. Figure 3.5 is a truly example of the variation of the Acc’s signal before, during, and 

after a F. Studies like [12], [86], [92], [93] are examples of approaches that have proposed F 

detection systems based on Acc’s output, and on the identification of these kinematic traits. 

Concerning the systems’ specifications, during locomotion the Acc’s output is only relevant 

between 0.25 to 20Hz (lower frequency components can be discarded) [84], [102]–[104]. Mathie 

et al. [92] claim that most human movements occur between 0.3 and 3.5Hz, and 90% of the signal 

power is under 10Hz. In fact, acceleration is mostly in the vertical direction, and running is known 

to produce greatest values of vertical acceleration (around 8.1 to 12 g at the ankle, 5g at the lower 

back, and up to 4g at the head), while at walking leads to acceleration values in the range of 2.9 

to 3.7g [92]. 

 

 

 

Figure 3.4 - Distribution of research studies on wearable sensors: Application vs Wearable Sensors [82]. 
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 Establishing acceleration thresholds is the most common approach in F detection systems 

based on accelerometry [84], [86], [89], [105]–[108], and some studies implemented adaptive 

thresholds [95], [109]. But according to Kangas et al. [84] these are not the optimal approaches 

in terms of accuracy, since they never present values greater than 95%. 

 Thus, the scientific literature enumerates other solutions under the F detection systems 

theme which have better results namely: decision tree classifiers [92], [101], [106], fuzzy logic 

[86], and uses of machine learning algorithms such as Support Vector Machine, Non-Negative 

Matrix Factorization (NNMF) and k-Nearest Neighbour (k-NN) [90], [110], [111], which have 

achieved up to 97% success rates and are also used in gait classification and walking pattern 

recognition [102], [103]. Nowadays, there are also several products available on the market. The 

majority of them are wearable devices in order to be usable at home environments, and normally 

the usual attachment location of the sensors is the waist. These wearable devices are usually 

equipped with an alarm button to call for emergency when a F is not automatically detected, and 

their battery has a maximum lifetime of up to two years. Table 3.1 contains some examples of 

commercial F detection systems and some relevant details such as sensor type, attachment 

position, battery life, and some features. 

 

Figure 3.5 - Typical output of a chest 3D Acc before and after a F event. Acceleration peaks are cause by floor 

impact [86]. It is possible to observe that acceleration suffers perturbations about 1 second before actual impact. 
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Table 3.1 - Commercial wearable F detection products 

Name 
Sensor 
Type 

Attachment 
Location 

Battery 
Life 

Features 

SENSO [10] N/A Waist 
Up to 2 
years 

-Emergency button; 
-Send emergency text to emergency 
contacts. 

Tunstall iVi 
Pendant [11] 

N/A Neck/Waist/Chest 12 months 
-Replaceable battery; 
-Water resistant. 

MySOS Mandown 
[112] 

3D Acc Neck/Waist 25h 
-Two-way audio; 
-Dual band: 900/1800 MHz 

SensorBand [113] 3D Acc Waist 1 year 
-Connect to internet; 
-Speech communication. 

Badge-iT Fall 
Detector [114] 

N/A Waist N/A 
-Detect potential hypothermia; 
-Detect wandering using radio signal 
strength. 

Fall detector MCT-
241MD PERS 
[115] 

N/A N/A N/A 
-Full waterproof; 
-Anti-collision algorithm; 

VitalBase [116] N/A Wrist 2 years 
-Waterproof; 
-Emergency call. 

Climax Fall 
Sensor [117] 

N/A Neck 2 years 
-Waterproof; 
-Pendant style. 

Tynetec Fall 
Detector [118] 

2D Acc Neck/Waist 1 year 
-5 user-selectable levels of sensitivity; 
-3 event logs; impacts, pre-alarms & 
alarms. 

Blue Alert Fall 
Detection Sensor 
[119] 

N/A Waist N/A 
-Automatically call for help when 
falling. 

CSEM Wrist Fall 
Detection [120] 

3D Acc Wrist 
15 days to 
one month 

-LCD display; 
-Re-chargeable battery. 

Tynetec Wrist 
Worn Fall Detector 
[121] 

2D Acc Neck 2-3 years 
-5 user-selectable levels of sensitivity; 
-Daily battery self-test. 

  

3.3.2. Fall Prevention Systems/Fall Forecasting Systems 

 F prevention systems or F forecasting systems have the potential to act in order to prevent 

a F. These systems require understanding F risk factors, assessing these risk factors, and 

developing F prevention mechanisms. Otherwise, F detection systems, mentioned before, are only 

able to confirm a F.  However, both systems can use gait parameters, Acc’s output, decision tree 

classifiers or machine learning algorithms [122]. These inputs or algorithms are truly important 

and their study is the first step of F prevention. Many authors dedicated their time to study changes 

in human behaviour before, during and after a F. Brauer et al. [123] focused on postural balance 

and its influence in predicting Fs by testing in one hundred elderly. They made a large set of tests 

including: Berg Balance Scale [124], the Functional Reach Test [125], the Lateral Reach Test 
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[126], and the Step-Up Test [127]. Boissy et al. [86] used a two-stage F detection algorithm based 

on fuzzy logic using as inputs typical accelerations patterns during a F. They were able to check 

differences in Acc’s signal before, during and after a F. Nyan et al. [128], for example, obtained a 

threshold of ±10º of body’s inclination (torso and thigh) by analysing the variation of angles before, 

during and after a F.  

 At this point is very important to distinguish two different F prevention related systems:      

i) F risk assessment system (FRAS) – where some parameters are assessed and then prevent 

measures such as medication or diet are implemented; and ii) PF detection systems (PFDS) – 

where systems are capable of detecting a F before it happens in real-time. These systems can 

predict a F at least 300ms-1s before [12], [86], and they are the future trend in this investigation 

area. 

 Concerning the first type, it is important to retain some examples of popular measures, 

tools or scales used to assess the risk of F [129]: i) the Morse F Scale (MFS); ii) St Thomas Risk 

Assessment Tool in Falling Elderly Impatients (STRATIFY) [130]; iii) Heindrich II F Risk Model 

(HFRM); iv) TUG (Time up & go) [131]; v) Barthel Index [132]; vi) TGBA (Tinetti Gait and Balance 

Assessment) [133]; vii) WSFRAT (WilsonSims F Risk Assessment Tool – Psychiatric Patients) [134]; 

and viii) EPFRAT (The Edmonson Psychiatric F Risk Assessment Tool – Psychiatric Patients) [134]. 

  However, these are not the only tools available. Stopping Elderly Accidents, Deaths & 

Injuries (STEADI), which is an organization capable of provide training, tools, and resources 

exclusive to prevent F in the elderly population and identify the risks of F [135], has a F risk 

assessment algorithm that can classify F risk in three categories: i) low; ii) moderate; and iii) high. 

The algorithm consists in assessing gait, balance, and strength through three tests: i) TUG 

(recommended); ii) a 30 seconds chair stand test (optional); and iii) a 4 Balance test (optional). 

The historic of the patient is also important to determine the F risk, namely for example the number 

of Fs. Thus, concerning the risk of F obtained, an effective intervention can be made, although not 

in real time. The entire algorithm is depicted in the following Fig. 3.6.    

In fact TUG score is the easiest and most commonly used measure. In this test, the elderly 

perform a sequence of activities (stand up from a chair, walk with normal speed for 3 meters, turn 

around, walk back to the chair and sit down on the chair) for movement evaluation. For each 

activity, the time is recorded and if an activity takes longer than 14 s, the risk of falling is considered 

high [131]. This measures can also be obtained with wearable sensors, and Fig. 3.4 also show 
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that the IMU’s sensors are widely used in gait assessment or F risk estimation. For example, Najafi 

et al. [136] tracked activity patterns using a single tri-axial Acc attached to the chest through 

validation of timed up and go and standard measures of balance and gait. The implemented 

algorithm was accurate in identifying the number of steps taken and walking duration, which are 

important parameters in F risk estimation. 

Recently, several studies have focused on PFDS. Tamura et al. [12] created a wearable 

airbag incorporated with a PFDS based on Acc and Gyros’s signals to trigger inflation of the airbag. 

In this study, the main assumption in the algorithm is that the subject is in free F, and before the 

impact the airbag is triggered and the patient’s head, neck, hip, and thigh are protected. 

Concerning their results, they claim a change in the pitch signal 0.5 s before the change in the 

acceleration signal. According to their algorithm, a F occurred when the acceleration was less than 

Figure 3.6 - STEADI F Risk Assessment algorithm [135]. 



 

  39 

 

±3 m/s2 and the angular velocity exceeded 0.52 rad/s. The free-F conditions were detected at an 

average of 193.4±57 ms in forward Fs and 197.4±54.7 ms in backward Fs. The mean F time was 

0.249±0.094 ms, the inflation time was 0.121±0.019 ms, and the accuracy of the system was 

93% in all experiments. The prototype system was tested by 16 young, healthy subjects (mean age 

22.2 ± 5.1 years) who mimicked Fs to the front, back, and sides while wearing the device without 

airbags.  

Leone et al. [137] developed a wireless and minimal invasive surface Electromyography-

based system (EMG) that is capable of detecting people instability through muscle activity. The 

algorithm uses a threshold based approach that allows the detection of a typical imbalance 

condition about 200ms after the stimulus perturbation in simulated and controlled F conditions. 

They test several thresholds and the best result for the sensitivity was 87.3%. Again subjects 

mimicked Fs. 

 Nyan et al. [138] presented an implementation and clinical trial’s results of  a wearable 

PFDS prototype. They used inertial sensors to detect faint Fs in its incipience. The approach is 

based on the characteristics of angular movements of the thigh and torso segments in Fs. Basically, 

if one of two dimensional angular signals intersects the threshold level of ±10º, then a F is 

confirmed using their algorithm. A F is confirmed when the correlation coefficient of thigh angular 

data and torso angular data, and the correlation coefficient between the band-pass filtered Gyro 

segment are bigger than 0.8. The system’s accuracy is high with a lead-time of 700ms before 

impact occurs to the vulnerable areas of the body. No false alarms were found in the experiment 

(100% specificity). All Fs, except for two front Fs, could be detected; thus, a sensitivity of 95.2% 

(40/42) was achieved. Fs were simulated by the subjects. 

 Lopez-Yunez et al. [139] implemented a Freescale ZSTAR3 system with wireless tri-axial 

Accs and ZigBee network (2.4GHZ) capability. They used the tilt angle and phase shift between the 

pulse wave (prior to F event) and the pulse magnitude which were analysed to obtain the 

characteristics of the F. Even the direction of the F can be determined. The sensors were placed 

on the back neck, the abdomen area, and on waist left side. Ninety percent (90%) overall efficiency 

for the system was achieved when considering all four types of Fs (back F, front F, F from a chair, 

and side F). All falls were simulated. 
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3.4. Gait Parameters, Sensors and Experimental Setup Information 

 Above mentioned systems can rely either on the recording of specific data from the 

hardware (e.g. absolute acceleration values already explained), or alternatively, in computed 

metrics from sensor’s raw data. These computed metrics give more information about subject’s 

gait, making it possible to draw relevant conclusions or informations. Due to the great amount and 

diversity of these metrics, it becomes necessary to identify which of them can be more helpful 

when considering reliable F prevention and detection, as well as the used sensors and their 

attachment location. This is the aim of this subsection. 

3.4.1. Gait Parameters 

 In order to not use only the raw data of the sensing device in the current F forecasting 

study, a study was carried out to determine gait parameters which may be relevant in predicting of 

Fs. Firstly, there are several needed concepts to be introduced prior to discussing gait metrics. 

Concerning scientific literature [83], [92], [104], [140]–[143], it was found that gait analysis 

attempts to classify or quantify three main traits of human bipedal locomotion: i) Stability; ii) 

Variability; and iii) Harmony. Each one is related to different aspects of locomotion. 

 The first mentioned trait of human bipedal locomotion has been associated with F risk in 

elderly population [141]. Gait stability can be divided into postural and dynamic. Postural stability 

quantifies the amount of postural sway, which is measured through the mean velocity of the centre 

of the pressure (COPv), and is managed by the musculoskeletal and sensory systems [140]. The 

stability in the vertical position is obtained when the projection of the Centre of Mass (COM) is on 

the base of support (BOS), and the higher the stability, the less the distance to the COP – Figure 

3.7. An external or internal disturbance changes the projection of the COM to the limits of the BOS 

resulting in postural imbalance. The distance from the position of the COM to the closest boundary 

of the BOS (COM - BOS) represents static equilibrium control [144]. 

On the other hand, dynamic stability happens when body segments are moved in a 

coordinated fashion way and the upper body oscillations are minimal [140]. As mentioned before, 

several pathological conditions have been linked to a certain degree of instability during locomotion. 

The Local Dynamic Stability (LDS) value, which is the most relevant dynamical stability parameter, 

and is defined as the sensitivity of a locomotor body to infinitesimal perturbations [142], [143], 

complement variability measures. LDS measures the robustness of a locomotor body against 

interference from either control errors or environmental noise, and is characterized by the 



 

  41 

 

maximum Lyapunov exponent (maxLE) [140]. However, there are other gait parameters related to 

gait stability: i) root mean square of the acceleration (𝐴𝑐𝑐𝑅𝑀𝑆); ii) maximum and minimum 

acceleration peak (𝑎𝑚𝑎𝑥 , 𝑎𝑚𝑖𝑛); and iii) peak-to-peak angular velocity (PPv).  Moreover, [140] 

concluded that a combination of postural and dynamical stability measures can achieve better 

results in identifying Fs than individual metrics. 

 Laessoe et al. [83] have shown that greater variability increases F risk. Additionally, [142], 

[143] claim that gait stability should not be confused with gait variability - there are reports showing 

that pathological gait, characterized by lower speeds, can exhibit higher local stability but a greater 

kinematic variability [141], [142], though not always the case ([104] found that cerebral palsy 

greatly decreases stability, while maintaining similar walking velocities to healthy counterparts). It 

has also been widely suggested that individuals with pathological gait tend to decrease walking 

velocity in order to gain stability, which leads to a lower variability between strides [145]. 

Particularly, variability measures are unable to take into account infinitesimal small perturbations 

that local stability metrics are based upon - even so, they can add important information about the 

neuromuscular processes behind gait generation [102], [142], and is has been shown that greater 

gait variability increases F risk [83]. Metrics that quantify gait variability usually compare 

acceleration data in subsequent steps/strides and compute the standard deviation (STD) [143]. 

Other metrics require averaging over several steps, which has been suggested to decrease the 

impact variability has on the values [143]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 - Representation of the stability in a vertical position. 
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 Iosa et al. [104] described gait harmony by how alternate, synchronized, symmetric and 

rhythmic is body motion with regards to inter-limb, intra-limb, and lower-upper body coordination. 

Basically, it quantifies how smooth gait is, and can be mainly (but not restricted to) quantified by 

the Harmonic Ratio (HR), the computation of which involves an analysis of the frequency spectrum 

of the acceleration data - regarding the ratio of odd and even harmonics. In addition to this 

parameter, there are two more: the ratio index of the minimum acceleration peak (𝑎𝑚𝑖𝑛𝑅𝐼), and 

the ratio index of the peak-to-peak angular velocity (PPv RI). 

 Basic gait parameters were also found such as: step length, step duration, gait symmetry, 

cadence, walking velocity, sum vector magnitude (SVM), postural orientation, step length, and step 

duration. Gait symmetry refers to the similarity between the movements of the right and left sides, 

and it is compared step by step [98], [101]. In turn, SVM quantifies the movement’s intensity [106] 

and it is used to detect the impact [91]. Basically, when a F occurs, a great acceleration is 

produced, but when the body touches the ground, the acceleration is suddenly reduced. At this 

point, the SVM of the Acc generates a significant peak, this being produced by the F, much larger 

than the periodic peak produced by the walk [95]. As for the postural orientation, it refers to the 

relative inclination of the body in space [106]. Another important metrics found were: i) Signal 

magnitude area (SMA); ii) roll, pitch and yaw angles; iii) Dynamic sum vector (SVd); iv) Energy 

expenditure (EE); and v) the Fast Fourier Transform (FFT). All F and gait related metrics are 

explored in Table 3.2. This table also contains other metrics, different from those mentioned earlier. 

3.4.2. Sensors and Experimental Setup Information 

 Before discussing this subsection, it is crucial to properly establish measurement directions 

and adopt a proper nomenclature regarding the axis. So, for now on, the nomenclature used is 

presented in Fig. 3.8, which is the most common in the scientific literature under this investigation 

area. 

To obtain all mentioned metrics it is necessary the use of sensors attached to the body. 

Concerning the articles found, wearable sensors such as IMUs [140], [146], [147], Accs [12], [83], 

[84], [88], [90], [91], [95], [101]–[104], [106], [141]–[143], [148]–[152], Gyros [12], [104], 

[141], and force plates [98]–[100], [102], [140], [143], [148], [153]–[155] were used to detect, 

predict and assess F risk. These sensors were attached in general to all body segments: trunk, 

shanks, thighs, feet, and head. However, lower trunk or waist are the most common attachment 

location. Subjects involved in these articles were healthy young adults, although a large amount of 

studies included details and clinical results of elderly people. Few studies included middle-aged 
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participants. Participants performed, in general, walking trials involving walking strides, and 

simulated Fs (horizontal/lateral and vertical). Table 3.2 contains all these informations for each 

metric in detail. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.2 - Potentially relevant metrics for the prevention of gait, and the sensors, the location of the sensors, 

subjects’ age, and the procedure used to obtain them (K – Kinematic; F – Frequency; ST – Spatiotemporal;           

Ph – Physiological; Ki – Kinetic; y – young; o – old; h – healthy; fp – fall prone; *-already mentioned) 

Metric Type Sensors 
Attachment 

Location 
Exp. Setup Age Refs 

COPv K Force plates (not attached) 

1st – Standing 
tasks; 2nd – 
Treadmill-

walking test. 

12 subj. (4h.y+8o) 
h.y - 21.75±0.96 
h.o. - 73.25±7.09 
fp.o. - 74.50±2.65 

[140] 

  
2 adjacent 

force 
platforms 

(not attached) 

Data acquired 
in a double-leg 

stance with 
feet at pelvis 

width. 

7 subj. 
h.o. - 67.9±4.3 

[155] 

maxLE F IMU 
Lower back 

(L5/S1) 
* * [140] 

  
Acc/Gyro; 

Piezo sensor 
Knee, Ankle, 

and Heel 

Walk on the 
treadmill at a 

controlled 

13 subj. 
(5h.y+4h.o+4fp.o) 

h.y - 26.4±2.3 
h.o. - 71.3±6.5 

[141] 

Figure 3.8 - Different axis/planes. The frontal plane is referred to as Antero-posterior (AP), the lateral plane as 

Medio-lateral (ML) and the vertical simply as Vertical (VT). 
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Metric Type Sensors 
Attachment 

Location 
Exp. Setup Age Refs 

speed (3 
speed levels). 

fp.o. - 71.0±3.0 

  Acc 
Head, Trunk, 

Foot, Tibia and 
Thigh 

* * [102] 

  
Acc; 

eletrogonio-
meters 

Chest; right leg 

Walked 
around a 

rectangular 
(7m wide and 
200m long) 
(self-selected 
comfortable 

speed). 

36 subj. 
(10h.y+12h.o+14fp.

o) 
h.y - 27.10±3.25 
h.o. - 57.6±7.7 
fp.o. - 61.0±6.6 

[142] 

  Camera 

Sacrum, iliac 
spine, thigh, 
anterior shin, 

lateral 
malleolus of 
the fibula, 

dorsum of the 
foot, 5th 

metatarsal, 
calcaneous 
and hallux. 

4 repeated 
collections of 
30 walking 
strides per 

velocity 
condition per 

subject. 

19 subj. 
h.y - 22.5±2.8 

[145] 

  Acc; camera 
Right anterior 
superior iliac 
spine; heels. 

Walk without 
requiring the 

use of the 
handrails on 
the treadmill 
(1 min. at a 
self-selected 
comfortable 

speed). 

13 subj. 
(5h.y+4h.o+4fp.o) 
h.y - 26.40±2.3 
h.o. – 71.3±6.5 
fp.o. - 71.0±3.0 

[143] 

  Camera Trunk 

Walked on a 
level treadmill 
for 3 trials of 
5 min each 

(self-selected 
comfortable 

speed). 

20 h. subj. 
18-73 

(mean age: 40) 
[154] 

Step/Stride 
distance 
𝒅𝒔𝒕𝒆𝒑

/𝒅𝒔𝒕𝒓𝒊𝒅𝒆 

ST Acc * * * [143] 

 
piezo-

resistant 
Accs 

Head, pelvis 

Walk 20m (2 
trials for two 

different 
walkways). 

20 subj. 
h.y. – 29.0±4.3 

[148] 

 
GaitMat 
system 

(not attached) 

Walk barefoot 
at a self-
selected 
speed (4 
trials). 

97 subj. 
(44fp.y+53con.) 

fp.y. – 36.7±15.0 
control–36.6±13.3 

[99] 

 
GaitMatTMII 

system 
(not attached) 

Walk 4 times 
on the mat 

from one end 
to the other at 

2911 f.p. subj. 
male - 70.0±21.8 
female–60.5±16.5 

[100] 
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Metric Type Sensors 
Attachment 

Location 
Exp. Setup Age Refs 

a self-selected 
speed. 

BOS ST 
IMU/Acc; 

Force plates 
* * * 

[99],[100], 
[143], 
[154] 

Cadence ST 
IMU; Acc; 

Gyro; Force 
plates 

* * * 
[99],[100], 

[143], 
[148] 

  Acc 
Lower back 

(L3) 
9 specific 

tests 

94 h. subj. (14 
fallers; 80 non-

fallers) 
fallers-73.0±2.9 non-

fallers-73.8±2.9 

[83] 

Walking 
Velocity 

K 
IMU/Acc/Gy

ro; Force 
plates 

Soles; Chest, 
Thighs, 

Shanks; Head 
and Waist 

* * 
[98]–[100], 

[148] 

Swing / 
Stance / SS 

/ DS 
duration 

ST 
IMU,Acc,Gy-

ro; Force 
plates 

Soles; Chest, 
Thighs, Shanks 

* * [98]–[100] 

Stride / 
Cycle 

duration 
ST 

IMU,Acc,Gy-
ro; Force 

plates 

Soles; Chest, 
Thighs, 
Shanks. 

* * 
[98], [100], 

[102] 

𝑑𝐶𝑂𝑃,𝑠𝑓 (sf 

– 
supporting 

foot); 
COG 

(Center of 
gravity) 

ST Acc 
Trunk, Thigh, 

Shanks 

2 types of Fs. 
Walk several 

steps and 
suddenly 

pretend to F. 

2 y. subj. 
(1 male & 1 female) 

[88] 

Wavelet 
decom-
position 

F * * * * [98], [102] 

  IMU Sternum 

Daily 
activities– 
walking, 
standing 

upright/sitting 
down and 

laying down 
on a bed 

5 subj. (2 females; 3 
males) 

Mean age: 28 
[146] 

  Acc Waist 
5 walking 

patterns. 10 
min each. 

52 subj. (39 males & 
13 females) 
21-64 years 

[103] 

𝜎𝑎𝑐𝑐𝑥,𝑦,𝑧
 

(variance) 
K * * * * 

[103], 
[148] 

𝑎𝑐𝑐𝑅𝑀𝑆 K * * * * 
[102], 
[103], 
[148] 

  
Acc and 

Gyro 
Lower trunk 

10m walking 
test (self-

34 y. subj. 
(17fp.y.+17h.y) 

[104] 



46 

 

Metric Type Sensors 
Attachment 

Location 
Exp. Setup Age Refs 

selected 
speed) 

h.y.-5.7±2.5  fp.y.-
5.0±2.3 

  Acc Waist 

30 runs of 
training data 
and 30 runs 

of testing data 
for eight 

activity states. 

1 subj. [149] 

SVM K 
Acc and 

Gyro 
- 

Subjects 
mimicked Fs 
(front, back 
and sides). 

16 h.y. subj. 
22.2±5.1 

[12] 

  Acc 
Waist, Wrist, 

Head 
Intentional Fs 
during trials 

2 subj. (22 and 38) [84] 

  Acc Waist 

System test 
contains five 

kinds of 
activities of 

daily living. 20 
repeats. 

3 subj. 
23-60 

[150] 

  Acc 

Waist in front 
of the anterior 
superior iliac 

spine. 

6 different Fs 
in a lab. 

41 subj. (20 m.a. 
and 21 fp.o) 

20 m.a.-48.4±6.8 21 
fp.o.-82.8±9.4 

[91] 

  Acc Chest 
Daily living 

activities and 
4 types of Fs. 

18 h.y. subj. 
19-28 

[151] 

  IMU 
Sternum and 

Shank. 

All walking 
trials were 

conducted on 
a linear 

walkway. 

17 h.y. subj. 
29.0±11.0 

[147] 

  Acc 

Left hand, right 
hand, waist, 

neck, left foot, 
and right foot 

240 tests to 
measure 
system 

accuracy. 

16 subj. [95] 

  Acc Belt 

3 protocols to 
investigate the 
implemented 

Fs. 

20 h.y. subj. 
23.7±3.0 

[101] 

  Acc Belt 
12 different 

directed tasks 
per subject. 

6 h. subj. 
22-60 

[106] 

  
Mobile 
phone 

Chest, waist, 
thigh. 

Fs with 
different 

directions and 
in different 

environments. 

15 h. subj. 
20-30 

[108] 

𝑎𝑦 vertical 

aceleration 
K * * * * 

[84], [91], 
[108] 

  Acc Belt 6 categories - [90] 
𝑎𝑦 transver-

sal acelera-
tion 

K * * * * [90] 
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Metric Type Sensors 
Attachment 

Location 
Exp. Setup Age Refs 

𝑆𝑉𝐷  

Dynamic 
Sum Vector 

K * * * * [84], [91] 

𝑎𝑚𝑖𝑛  & 
𝑎𝑚𝑎𝑥 

K * * * * 
[102], 
[104], 
[147] 

PPv K * * * * [104] 

Angular 
velocity 

K * * * * [12] 

HR – 
Harmonic 

Ratio 
F * * * * 

[102], 
[104], 
[148] 

𝑎𝑚𝑖𝑛RI K * * * * [104] 

PPvRI K * * * * [104] 

Gait events ST * * * * 
[98], [100], 

[102] 

𝑆𝑀𝐴𝑎𝑐𝑐𝑥,𝑦,𝑧
  K * * * * 

[95], [101], 
[106] 

d(SMA)/dt K * * * * [95] 

Postural 
Orientation 

K * * * * 
[95], [101], 

[102], 
[106] 

Roll, Pitch, 
and Yaw 

K * * * * 
[95], [98], 
[102],[150] 

Energy 
Expenditure 

Ph * * * * 
[106], 
[147] 

ΔP 

(Differential 
pressure) 

Ki * * * * [101] 

Frequency 
Analysis 

F * * * * 
[102], 
[103], 
[147] 

  Acc Waist 

Device used 
each day for a 
period of 2-3 

months. 

6 h.o. subj. 
80-86 

[152] 

ApEn 
(Approxi-

mate 
entropy) 

F * * * * [102] 

acc𝑡𝑟𝑢𝑛𝑘 

auto-
correlation 

K * * * * [83] 

WR (Walk 
Ratio); 
t𝑠𝑡𝑒𝑝 

variability 

ST * * * * [148] 

COM K 
Camera; 

Force Plates 
- 

Subjects 
walked 

barefoot on a 
level surface 

at a self-
selected pace. 

12 o. subj. 
76.9±5.8 

[153] 
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Metric Type Sensors 
Attachment 

Location 
Exp. Setup Age Refs 

ASMA 
(Activity 
Signal 

Magnitude 
Area) 

K * * * * [95] 

Foot 
Clearance 

K IMU Ankle 

Subjects 
walked under 
three walking 

conditions 
(10m). 

10 h. subj. 
Mean age: 27.3 

[156] 

  IMU Ankles 

Subjects 
walked on a 
pre-designed 
loop including 
one vertical 
obstacle. 

11 subj. (7h.y+4o) 
h.y - 32.6±7.5 

fp.o. - 58.3±23.4 
[157] 

 

From all available metrics presented in Table 3.2, only the following metrics were selected 

to be part of the offline F and PF detection system, namely: i) Roll, Pitch and Yaw angles; ii) Gait 

events (GE or gait phases); iii) Hip joint angles (Joint_Ang – Left or Right); iv) ApEn from all sensors; 

v) ASMA (from all Acc axes); vi) SVM (from all Acc axes); vii) dSVM/dt; viii) SVd; ix) Vertical 

acceleration (Z2_Vert_Acc); x) SMA (from all Acc axes); xi) FFT from all sensors’ axes; and xii) 

Wavelet decomposition (WD) also from all sensors’ axes. Besides, raw data from the sensors was 

also included. Thus, a total of 228 signals can be calculated per trial or gait cycle if the IMUs based 

system has 5 modules. From now on the term metric or variable will be used to mention these 

signals. The way of calculating the metrics can be found in the articles mentioned in Table 3.2. 

The aforementioned metrics were selected because most of them can be calculated in 

real-time or are quick to calculate and are described throughout the gait cycle, which means they 

have more information. Other metrics like walking velocity only have one value per gait cycle, and 

we decided to only use instantaneous metrics. Foot clearance is a very important metric in the field 

of Fs. However, metrics that allow the calculation of the foot clearance are already included. Thus, 

foot clearance was not included in the selected metrics, and the computational weight can be also 

reduced. 

Finally, due to the great amount of variables, it is necessary the use of a nomenclature to 

better understand what metrics are being used or treated in the context. Concerning the raw data 

from the sensors, the nomenclature used is “Sensor_Axis_PhysicalAddress”. For example, 

Mag_X_3 means “Mag X-axis from the sensory module number 3”. On the other hand, metrics 

derived from more than one sensor need a different nomenclature: 



 

  49 

 

“DerivedMetric_Sensor_Axis_PhysicalAddress”. For example, ApEn_Mag_X_3 means 

“Approximate Entropy from the Mag X-axis of the sensory module number 3”. 

3.5. Challenges, Issues and Trends 

3.5.1. Challenges 

 Under this area, there are three main challenges to take into account [94]: i) Performance 

under real-life conditions; ii) Usability; and iii) Acceptance. Obviously, all of them should be carefully 

treated in order to bring F detection and/or prevention systems to AAL. 

 Concerning the first mentioned challenge, as first step, F detectors shall be provided with 

a strong set of characteristics to do not decrease the detection rate. They should be reliable, 

accurate, robust, and should exhibit both high sensitivity and specificity. Another concern is the 

fact that these systems are designed and tested under controlled conditions or situations. Even Fs 

are simulated which does not correspond to daily life situation. Usually, authors also use data from 

Fs or activities of daily living of young people when the main focus of these systems are the elderly 

population. Finally, experimental time is also a problem in the majority of the studies. Usually these 

studies collect data for a few minutes or hours, which is not acceptable or enough to assess the 

system performance in a real situation. Longer monitoring periods like months should help to 

improve the system’s performance. 

 Usability is an important challenge for producers or developers. Smartphone-based F 

detectors are attractive because it is a well-known technology, equipped with a rich set of sensors. 

However, they are limited to a specific position of the body, and it also depends on the way people 

carry their smartphones every day.  

 Elderly population does not use electronic devices and this is a challenge to overcome in 

the future. Obviously, the way the system operates is crucial for elderly’s acceptance. For example, 

the system should activate and operate automatically, without user intervention. Even smartphones 

could help in this challenge since they are already a well-known technology, though they demand 

some cognitive capabilities. 

3.5.2. Issues 

 Obviously, all engineering systems have issues, and F detection/prevention systems are 

no exception. Concerning what was found, there are three crucial issues related to wearable 
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sensors [94]: i) Smartphone limitations; ii) Comparison among different techniques: public data 

bases; and iii) Real-life Fs. 

 The first one was also discussed previously, however it is understandable that smartphones 

are not devices initially intended for F detection or any other safety critical application. There are 

some examples of problems related to real-time operations, the sensing architecture or the specific 

features of the operating system. Another problem is related to the battery. It is important to 

manage the sleep cycle of the components in order to regulate the consumption of battery, since 

smartphone’s battery life is always low. Thirdly, it is important that these system can be 

implemented in easy-to-use smartphones and this only depends on the manufacturers. This point 

is crucial since elderly, which have low technical skills, are the target audience. 

 Another issue is related to public data bases. Obviously, different authors collect data in a 

different ways, varying the types of Fs, position of the sensor, sampling frequency or extracted 

features. So, a public database could be an important help to compare different methods of 

detection or risk assessment. Thirdly, the evaluation of the system is severely limited because it is 

inconceivable ask older people to simulate Fs. The number of trials and their duration are still low. 

3.5.3. Trends 

 In the future, this technology is expected to evolve in terms of robustness and 

detection/prevention efficiency. Smartphones have built-in communication protocols that allow 

simple data logging to the device and wireless transmission. Price is also significantly reduced due 

to high production volume. IMUs also have the same trend than smartphones so they can also be 

used as an alternative tool to optical methods [122].  

 In addition to these sensors, there is also the machine learning approach. This approach 

is considered as sophisticated and leads to better detection rates. Deep learning is also a type of 

machine learning approach, and it can bring better results. However, it necessitates a large amount 

of data for training [122]. 
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Chapter 4 – Human Gait Monitoring System Overview 

4.1. Introduction  

 As already mentioned, for this project it is intended a IMUs based system for real time 

human gait monitoring. As such, there is a lot of information to be processed and displayed 

instantly. The GUI will provide for an intuitive visual interface and real-time data visualization and 

recording. So, this chapter intends to demonstrate the extension of previous work [13], the 

developed Matlab GUI, and the quality assessments of several users about it. The remainder of 

this chapter is organized as follows. In Sections 4.2, 4.3, and 4.4 the system used, the 

communication protocol established between system elements, and the explanation of the 

implement ASM are presented, respectively, Section 4.5 presents a list of needs identified from 

the system to build an interface, and explains in detail the built GUI. This section also provides 

methods for assessing the quality of the GUI and to validate the communication protocol, and the 

results and discussion of the quality assessment and the validation of the communication protocol’s 

methods. 

4.2. Magnetic/Inertial Measurement System 

 The overall system, able to monitor human gait, is shown in Fig. 4.1. A personal computer, 

a SmartRF05EB (base station), and sensory modules are the three main elements of the system 

used [13]. A MPU-6000 [158] from InvenSense, which contains a three-axis MEMS Acc, a Gyro, 

and a temperature sensor, allowed an integration with a Honeywell three-axis Digital Compass IC 

HMC5883L [159]. This sensor board is connected to the CC2530EM module (Evaluation Module) 

from Texas Instruments which is a System-on-chip solution to IEEE 802.15.4 applications (IEEE 

Std 802.15.4, 2006) through two 20-pin header connectors. Thus each sensory module is formed. 

Sensors’ specifications are available on Tables I, II, III, and IV. Throughout the project, MPU6000 

was programmed to have a Full-Scale Range of ±4g for Acc, ±1000°/s for Gyro, and ±0.88 Gauss 

for digital Mag. 

 The CC2530EM module is used to establish communication between sensory modules 

and base station SmartRF05EB (Evaluation board) via wireless. Data received by the base station 

is routed to the Personal Computer via serial port (RS-232). Subsequently, the data are properly 

processed. Each sensory module can be firmly attached to one body segment to be monitored. 
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Sensors from each sensory module were calibrated as mentioned in [13] before a gait monitoring. 

Thus, there is a system capable of monitoring human gait. The entire system is controlled by the 

developed GUI. In the following it is presented the use of the communication protocol, the proposed 

ALSM, and a brief explanation of the human gait. The sampling frequency is at least 0.63Hz, and 

160Hz is the maximum value. However, 30Hz is the minimum value used to monitor gait in this 

project.  

 

 

 

 

 

 

 

 

4.3. eLPRT protocol 

 The Enhanced Low Power Real Time (eLPRT) protocol controls the communication through 

the wireless medium, and was designed to optimize the quality of service (QoS) support and the 

bandwidth utilization efficiency [160]. In order to transmit the multiple sensor readings between 

the sensory modules and the base station, a multi-byte message is formed after the sensors 

readings have been collected. This message, depicted in Fig. 4.2, will be designated from now on 

as frame. The frame can be described as follows: i) Start byte and stop byte have the same value 

(122 in decimal), and they are responsible, respectively, for the beginning and end of reading the 

bytes by the part of the processing code. ii) Two bytes identify the sensory module where the 

Figure 4.1 - Magnetic/Inertial Measurement System Elements. 

Figure 4.2 - a) Constitution of the frame; b) Constitution of the payload (S-sample/reading, T1 & T2-

temperature byte 1 and 2, Bat1 & Bat2-battery byte 1 and 2). 
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message came from (Physical Address 1 and 2). iii) The “Type” byte indicates if the message is a 

command message or a sensors’ data message. iv) Every message has a sequence number. 

Because it is only one byte, the sequence number goes from 0 to 255. After 255 it returns to 0. v) 

The “Length” byte gives information about the size of the payload. vi) Payload is where the sensor’s 

data is. Each reading is expressed in two bytes for each axis of each used sensor. In      Fig. 4.2, 

“S1 Acc_X1” represents the first byte from the first Acc reading/sample, and “S1 Acc_X2” the 

second byte from the same reading. This strategy is also applied to the remaining axes and other 

samples. And vii) The CRC (cyclic redundancy check) values (CRC1 and CRC2) are used to detect 

accidental changes to raw data. If they do not match, then the block contains a data error. 

Otherwise, message is ready to be used. 

Once frames reach the base station, they are processed to obtain relevant information 

from the sensory modules correctly. This process must be fast and efficient. For instance, two 

equal frames, i.e., two equal sequence numbers, should not be processed. Thus, an ALSM was 

implemented to improve the reliability of the data processing where the frame's constitution is 

considered. This ALSM showed an efficiency of 100% for a use of 500 times. The ALSM is described 

next. 

4.4. Algorithmic State Machine 

 As the data is received by the base station, it is necessary to process the bytes in order to 

obtain the relevant information from the sensory modules. To this end, it must be ensured that the 

frame is received correctly, and two equal frames are not processed. Thus, an ALSM was made in 

order to improve the reliability of the data processing (Fig. 4.3).  

 As soon as the user clicks the “Start” button, a start command is sent through the selected 

serial port to all activated sensory modules to start sending data. At the same time, frame size 

(blocksize) is set. Then, the serial port starts to be read. In order to start information processing at 

least one frame has to be constituted. From Fig. 4.2, it is possible to retain that the start byte and 

the stop byte have the same value. Thus, the byte position corresponding to the decimal value 122 

is collected to the array “str_byte_pos”. So, a “for” loop sweeps this array through a count variable 

“i”. While “i” is less than the number of possible start bytes, the CRC bytes will be checked, and if 

“CRC state” variable is one, it means that the frame is valid for processing. 
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 When “i” is one, the frame is immediately checked. Otherwise, the frame is checked if 

there are as many or more bytes between possible start bytes than the size of the “blocksize”, or 

even if there are fewer bytes between possible start bytes than the “blocksize”, the “CRC state” 

variable must be 0 in this particular case. If “CRC state” variable is one, the stop byte 

corresponding to the checked frame is eliminated from the array “str_byte_pos” except for the first 

position of this array. Thus, it is possible to shorten the number of iterations of the “for” loop.  

 Sequence number of the frame is compared to the last received. If the frame is equal to 

the last one, the last frame received is not processed. So, two consecutive processed messages 

are necessarily different. Taking into account the payload structure shown in Fig. 4.2, the data is 

then separated, processed, displayed, and saved in real-time. When the “for” cycle ends (Stop 

states), the whole process will repeat itself again when the number of bytes received by the serial 

port is enough to constitute a new frame. This process occurs while the selected modules are 

activated. After several uses of this ALSM, its operation is considered exemplary, since it never had 

problems of operation. With the aid of a CF to estimate the orientation, it is possible to obtain the 

angles of each sensory module represented in Qs and/or EAs. Another feature is the detection of 

human gait events, namely foot flat, toe off, swing phase (SW), and heel strike (HS) by using 

sensory modules on the upper foot or on the heel. 

4.5. System Requirements and MATLAB Interface 

 Data acquisition can be facilitated by the development of a GUI. A logical and intuitive man-

machine interaction can be achieved as long as all the necessary variables and requirements of 

the system are known. Moreover, the GUI can display relevant information in a simple and easy-

to-understand way, which would be more difficult if only the command line was used to display the 

information. 

4.5.1. System Requirements 

 In order to properly develop the GUI, it is necessary to establish a list of requirements 

based on the user and system needs, as follows: a) an easy way to select the serial port; b) an 

interactive way to choose which sensory modules to use and where to place them; c) from the 

selected modules choose a module of interest; d) provide information about the battery status of 

the selected sensory modules; e) display the temperature from the temperature sensor of the 

sensory module of interest; f) count the time from start to finish; g) allow real time data visualization 
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of the sensors data and the calculated angles of the module of interest; h) allow recording the data 

to files; and i) count total frames, lost frames and their percentage over real-time monitoring. 

 

 Figure 4.3 - Data acquisition process flowchart. 
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4.5.2. MATLAB Interface 

 Once the system requirements were defined, a Matlab GUI that fulfilled the previously 

mentioned requirements was developed. Thus, each requirement has been evaluated and 

structured in such a way to be represented in the Matlab GUI with simplicity, so that the user can 

interact with the interface intuitively and easily. 

 The interface acts as follows. When the interface is initialized (Fig. 4.4), it is displayed: i) a 

representation of the human body appears displaying the body segments where the respective 

sensors can be allocated (only body segments are considered); ii) a control panel where there is 

a "Start" button (disabled at the beginning), a time display, a panel that assesses the 

communications quality by displaying the lost frames/packets and the total packets received, and 

two displays (battery and temperature) of the module of interest; and iii) a settings panel, where 

it is possible to select the serial port, the module of interest, which information to visualize in graphs 

from a dropdown list (e.g. Acc, Gyro, Mag, sensory module angles and the gait event detectors) 

and the state of the batteries of all sensory modules. 

 As a first step, the user must start by indicating the location of the sensory modules in the 

body segments shown in the representation of the human body in the interface, inserting the 

Figure 4.4 - Matlab GUI when initialized (Ang – Angles; GED – Gait Events Detection). 
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physical address of the sensory module in the textbox of the respective segment. Each module has 

its number recorded and in view of the user. 

The representation of the human body in the interface contemplates the following 

segments and parts of the body: i) head; ii) trunk; iii) (right and left) upper arm and forearm; iv) 

(right and left) upper and lower leg; and v) (right and left) foot. When a segment or body part is 

selected, the red colour is replaced by green. Figure 4.6 shows an example when the trunk segment 

was selected and the physical address was the number 7. 

 Subsequently, the user must select the serial port by clicking on the button to the right of 

the respective text, and must select the module of interest that is where the temperature, battery 

and graphics information comes from. In order to achieve real time data visualization, the user 

may also select which graphics to display. Only when all these steps are done, the "Start" button 

becomes enabled and changes its colour to green. Once the base station and sensory modules are 

activated, a click on the “Start” button starts the monitoring process. Figure 4.5 provides an 

example of system operation with only one sensory module. In this particular situation, only the 

graphs of the three axes of the Acc were selected. All the mentioned information is available and 

is displayed in real time. Special highlight for battery states panel, where the green colour means 

that the sensory module has a battery value higher than 3.40 Volts in a total of 3.60 Volts; the 

orange colour means that the battery has a value less than 3.40 Volts but the sensory module is 

connected; and the red colour indicates that the sensory module is not active. 

 While the sensory modules are activated and the monitoring process has been initiated, 

the gait monitoring process is taking place. When the modules are switched off, the data acquisition 

process is interrupted and consequently all the information is saved and available in text files. To 

safeguard the occurrence of possible errors the data coming from the IMUs are constantly stored 

in text files. Only at the end of the process is the information separated by sensory modules, and 

the statistics of losses are also saved. This provides for recording which is essential in any system 

aiming for real time gait monitoring. Figure 4.5 is an example of the situation mentioned above. 

When the user disconnects the sensory modules, the process will be interrupted and a message 

will appear in the Matlab GUI saying «Communication finished and data saved! » (Fig. 4.6). In the 

end of the process, there is no reset in the information displayed in the interface, however as soon 

as the user starts the process again by clicking on the start button, the interface itself resets the 

available information and returns everything to the beginning. 
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Finally, just note that when the user wishes to visualize the graphs of the sensors, angles, 

and/or even the gait event detection, only the graphs corresponding to the module of interest are 

displayed. Moreover, the gait event detection graphic only gives one of four stages at a given time 

with a predefined value (Foot-Flat (FF) – 0; Toe-Off (TO) – 1; SW– 2; HS– 3). In order to visualize 

in real time other locations, the user just has to select a different module of interest. 

Figure 4.5 - Matlab GUI when the system is in the operational state. 

Figure 4.6 - Matlab GUI when the system was stopped. 
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4.5.2.1. Quality Assessment 

 During the development of the GUI, some potential end-users were contacted in order to 

collect their feedback and include it in the development. After the interface was completed, the 

human-machine interaction was evaluated based on an inquiry made in a group with thirty-six 

participants (25 males, 11 females; mean age of 27.4±4.9 years old, range from 22 to 35 years 

old; 7 health technicians, 29 with engineering knowledge). The idea was to perform some usability 

tests that would indicate the easy-to use and intuitiveness of the developed GUI.   

 Previous to any contact with the developed Matlab GUI, the system was explained to these 

users as well as the aim of the overall system. They interacted alone with the GUI for five minutes. 

In addition, users were informed where the modules and the base station are activated, that the 

connection between the base station and the Personal Computer is established via serial port, and 

that each sensory module has a physical address. 

 When users finished working with the GUI, they answered five questions that are as follows: 

1 - Do you think the background is simple and enjoyable? ; 2 - Do you consider that the sequence 

of steps is intuitive? ; 3 - Do you find it easy to choose and allocate the sensory modules in the 

virtual respective segment? ; 4 - Do you consider that the information obtained from the graphics, 

battery status from sensory modules and lost data is sufficient? ; 5 - Did you need help during the 

process? 

 In order to evaluate the overall methodological quality of the Matlab GUI, any criteria or 

question on the quality assessment were assigned a score of zero point if the criterion was not 

met. As there are five questions, it was considered that one point corresponds to twenty percent, 

and thus, it is possible to have a percentage scale. The Matlab GUI is considered “Good” if it has 

60% or more of the criteria. “Fair” is the second classification, and the percentage of criteria is 

between 40% and 60% (≥40%; and <60%). Finally, “Poor” is the last classification with less than 

40%. 

4.5.2.2. Results and Discussion 

 Twenty-five people described the background as simple and enjoyable (≈69.4%). Fifty-six 

percent, approximately, (20 people) defined the process as intuitive. Only two people (≈6%) did not 

describe as easy to choose and allocate the sensory modules in the virtual respective segment. 

Thirty-two people (≈88.9%) considered the displayed information sufficient. Eleven subjects needed 

help during the process. Information is resumed in Fig. 4.7. In general, the majority of the people 
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considered the Matlab GUI as “Good”. In a total of 180 answers, 136 were positive (75.6%) which 

means that the quality assessment reveals that the Matlab GUI is able to be used by a common 

person. Main comments from the respondents are: a) the inclusion of a “Stop” button; and b) an 

explanation of how it works through images or video before using the interface. As an immediately 

outcome of this quality assessment, these two last suggestions were already implemented. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7 - Inquiry results in percentage per question number. 
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Chapter 5 – IMUs based System Validation 

Once the IMUs based system is implemented, it is necessary to validate its operation. In 

other words, it is crucial to understand if the IMUs based system is reliable, and if not, find ways 

to overcome the problems. This point is of the utmost importance, as it will influence all the work 

that follows. It will serve also as a basis to know how close it is to the ideal functioning, and on the 

other hand to overcome any difficulties in a more decisive, consistent and founded manner. 

The validation process can be subdivided into 4 different phases as represented in           

Fig. 5.1, namely: i) Communication protocol; ii) Signals of the sensors; iii) Calibration; and iv) 

Estimation of joint angles (Knee). From these, only the calibration process is not explored in this 

chapter, since its description can be found in Chapter 6.  

 

5.1. Validation of the communication protocol 

The presented IMUs based system establishes a wireless communication between a base 

station and IMUs by means of Radio Frequency (RF). Without considering interferences from other 

sources or wireless communications, four basic phenomena occur in the wireless medium [161]: 

i) Path-loss; ii) Reflection; iii) Diffraction; and iv) Scattering. These effects have a negative impact 

on the signal propagation and are responsible for path-loss and the distortion of the received signal. 

In an indoor environment, the probability of having more reflections is higher which significantly 

affects the propagation of the RF signal frequency. In this scenario, the wave partially reflects and 

partially absorbs if the propagation radio waves reach a surface that is larger than the radio waves 

wavelength [161]. On the other hand, the presence of more wireless communications at the same 

Figure 5.1 – Phases of the validation process. 
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place can also affect the performance of the wireless communication [162]. Concerning the 

literature [162], to prevent or mitigate the risk of interference, these wireless systems can use: i) 

Narrow beam adaptive antennas; ii) Power Control; iii) Physical Diversity; and iv) a Monitoring 

Program. 

The first step was to evaluate the communication protocol, quantifying the loss of frames, 

and if there are losses, try to understand the reasons why these losses happen. Thus, the primary 

goal of this validation test is to check for differences in wireless data transmission between sensory 

modules and the base station in different environments. In order to fulfil the proposed objective, 

the losses of data packets were accounted for during specific trials.  

5.1.1. Trials 

A healthy subject with 22 years old performed two different trials in three different 

environments: i) inside a laboratory; ii) in a corridor; and iii) in an outdoor environment free of any 

ferromagnetic influence or other wireless communication. The trials can be described as follows: 

i) stand upright for 20 seconds at one meter from base station; and ii) stand upright for 5 seconds 

and then walk forward 5 meters (inside a laboratory) and 10 meters (in the other two environments) 

at two different paces (normal and fast). In both scenarios, after the test was completed, the subject 

turned off the sensory modules. The losses in this period of time were also accounted for until all 

sensory modules were off. 

The first mentioned trial was performed only with five sensory modules as depicted in     

Fig. 5.2. The other trial was performed for all spatial arrangements (Fig. 5.2). In each of the 

environments, these two trials were repeated five times for each spatial arrangement of the sensory 

modules in the body.  

Figure 5.2 - Spatial arrangement of the sensory modules in the body with their physical addresses: a) 5 sensory 

modules on trunk (3), foot (13-right, 6-left), and shank (7-right, 14-left); b) 4 sensory modules on foot (13-right, 6-

left), and shank (7-right, 14-left); c) 3 sensory modules on right leg: foot (13), shank (7), and thigh (14); d) 2 sensory 

modules on the upper foot (13-right, 6-left); e) 1 sensory module on the upper foot (13-right); f) 2 sensory modules 

on the heel (13-right, 6-left); and g) 1 sensory module on the heel (13-right). 
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The information of the direction of the axes is shown in the following table, where this 

information is available for each spatial arrangement of the sensory modules, and for each sensory 

module. 

Table 5.1 - Direction of the positive axis for each sensory module in each spatial arrangement 

Spatial arrangement of 
the sensory modules 

Physical addresses 

3 6 7 13 14 

5 

x - to the right x - to the right x - to the right x - to the right x - to the right 

y - down y - forward y - down y - forward y - down 

z - front z - up z - front z - up z - front 

4  

x - to the right x - to the right x - to the right x - to the right 

y - forward y - down y - forward y - down 

z - up z - front z - up z - front 

3   

x - back x - to the right x - back 

y - down y - forward y - down 

z - to the right z - up z - to the right 

2 - on the upper foot  

x - to the right 

 

x - to the right 

 y - forward y - forward 

z - up z - up 

2 - on the heel  

x - to the left 

 

x - to the left 

 y - down y - down 

z - back z - back 

1 - on the upper foot    

x - to the right 

 y - forward 

z - up 

1 - on the heel    

x - to the left 

 y - down 

z - back 

 

5.1.2. Results 

Concerning the results of the first trial, the average percentage of loss of the five tests was 

3.40±2.59% inside the laboratory, 2.03±0.97% in the corridor, and 0.28±0.07% in the outdoor 

environment. Table 5.2 details the number of losses verified by each test, as well as the total 

number of frames received during the trial. In this trial, the number of lost frames is always less 

than 5 in an outdoor environment. On the other hand, the number of lost frames is greater than 

10 in every experiment carried out inside of the laboratory and in the corridor. 
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Table 5.2 - Number of lost frames and total frames for each environment 

Test Number 
Number of Lost frames Number of Total frames 

Lab Corridor Outdoor Lab Corridor Outdoor 

1 57 10 3 1167 1157 1157 

2 19 37 4 1234 1174 1176 

3 26 32 4 1194 1175 1147 

4 85 14 3 1174 1158 1145 

5 14 26 2 1200 1190 1130 

 

The second trial was performed seven times repeated five times each, since this was done 

for all forms of spatial arrangement of the sensory modules described above in Fig. 5.2. Table 5.3 

summarizes the values of the average percentage of loss of the five tests for each spatial 

arrangement in the three mentioned environments at different paces (normal and fast pace). These 

values are also represented in Figure 5.3 (one figure per environment: Lab, Corridor, and Outdoor, 

respectively) to make a simple comparison between normal and fast pace for each spatial 

arrangement of the sensory modules. Moreover, as results, for self-comfortable gait speed the 

subject performed a mean velocity of 3.24±0.17 km/h, and for fast pace the tests velocity was 

6.04±0.34 km/h.  

Table 5.3 - Average percentage of loss of the five tests for each spatial arrangement (L-Lab; C-Corridor; O-Outdoor; N-

Normal pace; F- Fast pace) 

 

Spatial arrangement of 
the sensory modules 

Percentage of loss for Environment and Type of Pace (%) 

N F 

L C O L C O 

1 on the upper foot 0.78±0.25 3.57±2.09 1.07±0.41 1.68±0.87 3.06±1.58 1.19±0.60 

2 on the upper foot 0.59±0.19 1.15±0.86 1.36±1.49 0.52±0.15 1.32±0.81 1.87±0.61 

1 on the heel 1.31±0.11 1.37±0.72 0.90±0.35 1.64±1.27 2.52±1.58 0.90±0.35 

2 on the heel 0.74±0.71 3.46±2.17 1.18±0.64 0.87±0.49 1.72±0.37 1.36±0.42 

3 9.86±3.46 4.28±2.33 0.90±0.60 8.24±5.35 5.43±2.89 1.32±0.58 

4 5.82±3.87 6.72±4.94 3.14±1.84 12.64±5.87 3.84±1.87 4.85±2.81 

5 15.21±4.04 8.93±5.41 5.40±2.04 9.74±2.82 5.80±3.27 7.51±2.07 

Mean 4.90±1.81 4.21±2.65 1.99±1.05 5.05±2.40 3.38±1.77 2.71±1.06 
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In Fig. 5.3, the average percentage of loss inside the laboratory for 2 or less sensory 

modules is relatively low. However, when the number of sensory modules is equal to or greater 

than three, the average percentage of loss is always bigger than 5%. In some cases, this percentage 

is bigger than 10% which can affect the gait monitoring process. 

In general, at the corridor, the average percentage of loss (Fig. 5.4) is lower than inside 

the laboratory, but still greater than 8%. In this case, when the number of sensory modules is 3, 

the average percentage of loss is lower than 6%, which is inferior to the value in the previous 

situation (8.24% at the fast pace, and 9.86% at the normal pace). A similar finding is observed 

when 4 or 5 sensory modules were used. However, in the situation where one sensory module was 

used, the result was higher in comparison to the result evidenced in Fig. 5.3. This also happens 

when 2 sensory modules were attached to the heel and on the upper foot. 

In an outdoor environment, the average percentage of loss (Fig. 5.5) is lower than 2% when 

3 or fewer sensory modules were used. When the subject wore 4 and 5 sensory modules, the 

average percentage of loss was lower than, 5% and 8%, respectively. In general, the developed 

protocol for the wireless communication of various sensory modules based on IMUs, was more 

efficient and robust in outdoor than inside the laboratory or in the corridor. In Table 5., in the 

“Mean” line, the average percentage values are accompanied by the mean of the standard 

deviations of the various sensory modules spatial arrangements (Fig. 5.2).  
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Figure 5.3 - Average percentage of loss for each spatial arrangement in laboratory (N-Normal pace; F- Fast pace). 
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5.1.3.  Discussion 

Regarding the first trial, a better result was expected in the outdoor environment, since it 

is an environment free of any wireless communications like those existing in the laboratory and in 

the corridor. In fact, the average percentage of loss in the outdoor environment was lower than the 

one observed in the other environments (Outdoor- 0.28±0.07%; Lab-3.40±2.59%; Corridor- 

2.03±0.97%), as expected. In addition, in the corridor the losses are slightly lower than those found 
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Figure 5.4 - Average percentage of loss for each spatial arrangement in the corridor (N-Normal pace; F- Fast pace). 
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in the laboratory, which means that any interferences in these two environments have greater 

influence inside the laboratory than in the corridor. 

The results of the second trial reveal that as the number of modules increases, the 

percentage of loss also increases. However, once again and for the same reasons the average 

percentage of loss is smaller in an outdoor environment than in the corridor and inside the 

laboratory, and results in the corridor are better than inside the laboratory. Taking into account the 

graphs depicted in Fig. 5.3, it is possible to retain that the average percentage of loss when the 

subject performed normal and fast speed shows the same trend in both scenarios for every 

environment. In other words, the gait speed has almost no influence on the loss of frames. 

However, in the majority of the spatial arrangements of the sensory modules, it was found that 

there is a slightly higher average percentage of loss when the subject walked at a fast speed. 

Although not significant, this may be justified by the fact that during a more sudden movement, 

the connection between the sensor board and the CC2530 module may fail. 

The first trial can be compared to the second trial when the subject used 5 sensory 

modules (Fig. 5.2). Thus, it is possible to verify that when the subject walked, independently of the 

gait speed, the average percentage of loss was higher than the homologous value recorded when 

the subject was standing upright at one meter from the base station. This increase is explained by 

the gradual increase in the distance between the sensory modules and the base station. When the 

distance increases, the risk of interferences, reflections, diffractions, and scattering also increases. 

 

5.2. Validation of the signals of the sensors 

A comparison study between the typical signals of the sensing devices and those measured 

by the IMUs based system during human gait was performed. Basically, a research in the scientific 

literature was made to identify the typical signals of the sensing devices attached in various parts 

of the human body, namely on the foot, thigh and lower back (Fig. 5.6). Later, with the help of the 

sensing devices of the IMUs system, in the mentioned locations, human gait’s data were collected 

from a healthy subject through walk forward trials. Finally, the signals were compared, and due 

discussions were reached. 
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5.2.1. Results and Discussion 

5.2.1.1. Foot 

Jiménez et al [163], which used a Xsens’ IMU attached to the right foot using the shoe’s 

laces (Fig. 5.7), demonstrated the typical signals of the IMU’s three axes during a walking trial. 

Raw sensor’s readings were collected from a subject that walked 30m in one direction and returned 

back after a 180 degrees turn. 

 

 

 

 

 

  

Figure 5.6 - Attachment location of the sensing devices used for the trials (Dark sensing 

devices are in the back of the body). 

Figure 5.7 – a) Orientation of the Cartesian axes of the sensing device. b) Xsens’ IMU attached to the right foot. 
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Typical signals (Acc, Gyr, and Mag) measured by Jiménez’s IMU attached on the foot are 

depicted in Fig. 5.8.a, as well as the signals obtained by the IMUs based system (Fig. 5.8.b). The 

orientation of the sensing device is different in both situations. Compared to the Fig. 5.7, only the 

z-axis coincides with that used in the IMUs based system (Fig. 5.6 – right foot). The x and y axes 

are changed, and the positive sense of the mediolateral axis of the IMUs based system is to the 

right.  

Figure 5.8 – Norm of the acceleration during a walking trial obtained from: a) a Jiménez’s trial (black line) [163].     

b) IMUs based system (data not filtered). 

Figure 5.9 - Gyro data during a walking trial obtained from: a) a Jiménez’s trial [163]. b) IMUs based system (data 

not filtered). 
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From Fig. 5.8, it is possible to observe a similarity between the two depicted signals, i.e. the 

typical one (Fig. 5.8.a) and that measured by our system (Fig. 5.8.b). In fact, the norm of the 

acceleration in one stride is represented by three main peaks [163], [164]. In both signals this 

characteristic is present which indicates the validity of our system. 

In Fig. 5.9, the comparison between the typical signal of the Gyro and the one measured by 

our system is made by axis. Once again, similarities can be found, particularly in the middle graph 

of Fig. 5.9. Essentially, this axis measures the slope of the foot. It is characterized by a set of 

positive peaks, followed by negative peaks, whose connection to the next positive peak is made 

from a loop with the concavity facing upwards [51], [163]. The data measured by the Gyro are in 

agreement with the scientific literature. 

Mag’s data depicted in Fig. 5.10 are also in agreement with the scientific literature [163], 

[164]. Once again, the comparison between the typical signal and the one measured by the IMUs 

based system is made by axis, and it is possible to observe a huge similarity between signals due 

to the low noise of the sensor. 

5.2.1.2. Thigh 

Hamdi et al [51] constructed a MCS with 7 IMUs to monitor the LL’s segments. Their 

sensing devices were used to measure direct biomechanical variables such as angular velocity and 

linear acceleration. The local frame assignment of the sensors attached to each lower limb segment 

is depicted in Fig. 5.6. All sensors are 3D-axis which allows 3D orientation. 

Figure 5.10 - Mag data during a walking trial obtained from: a) a Jiménez’s trial [163]. b) IMUs based system (data 

not filtered). 
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Comparing to Fig. 5.6, the orientation of the sensing devices is different. Even the attachment 

location is not the same. In Figure 5.6 the sensing device is in the back of the leg, and in Fig. 5.11 

the sensing device is in the exterior part of the leg. However, this will not influence the thigh’s data.  

Figure 5.11 - Attachment location of the IMUs [51]. a) Elevation view. b) Side view. c) Real photo of 

the proposed capturing system. 

Figure 5.12 – Gyro data (mediolateral axis) when an IMU is attached in the right thigh. a) Hamdi’s typical signal 

(blue signal) [51]. b) IMUs system (data filtered: Butterworth lowpass filter – Fc=3Hz). 
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Typical signals (Gyro and Acc) measured by Hamdi’s IMU attached on the thigh are depicted 

in Figs. 5.12 and 5.13, as well as the signals obtained by the IMUs based system. 

According to the signals present in [51] about human gait, there are similarities between those 

typical signals and the ones measured by our system (Figs. 5.12 and 5.13). In Fig. 5.12, it is 

possible to observe the occurrence of a peak in a gait cycle in both signals, which means the IMUs 

system is in agreement with the scientific literature. 

Concerning the Acc’s data (Fig. 5.13), it is possible to claim that there are similarities between 

signals, although the noise of the Acc affects slightly. In both signals, the gait cycle is described as 

initially having a negative peak, followed by a positive peak, a negative peak of smaller amplitude, 

and stabilizing again before the next gait cycle. Once again it is possible to claim validity of the 

IMUs system. 

5.2.1.3. Lower Back 

In [51] there is also information about the typical signal measured in the lower back using a 

Gyro. This typical signal is depicted in Fig. 5.14 (only one axis), as well as the signal measured by 

the IMUs system during walk forward trials in the same axis. 

Once again there are similarities in the presented peaks. However there is no time period 

between the two peaks where the value of the sensor is around zero. 

Figure 5.13 - Acc data (vertical axis) when an IMU is attached in the right thigh. a) Hamdi’s typical signal (blue 

signal) [51]. b) One gait cycle measured by the IMUs based system (data filtered: Butterworth lowpass filter – 

Fc=3Hz). 
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5.3. Validation of the estimation of joint angles 

In general, sensing devices present some small errors compared to other more reliable 

systems. For example, Leardini et al. [53] validated their inertial-measurement-unit based 

rehabilitation system by using an 8-TV-camera stereophotogrammetric system (Vicon motion 

systems, UK) as ground truth system, and their root mean square error (RMSE) was less than 5º. 

Takeda et al. [68] presented a method for gait analysis using wearable sensors (Acc and Gyro), 

and they tested it in healthy subjects. As ground truth system they used a camera MCS, and their 

RMSE values were on average 6.79º for knee flexion-extension (F-E). Normal range of motion (ROM) 

at the knee is considered to be 0º of extension (stretched leg) to 135º of flexion [165]. Feldhege et 

al. [54] also validated their knee angle measurement sensor system with an electro-mechanical 

goniometer. The calculated F-E angle of the knee joint showed a RMSE lower than 5º. 

In this section, knee joint angles were calculated from IMUs’ data and they were compared 

with DARwIn OP (ground truth system) knee joint angles. Two sensing devices were attached to 

the DARwIn OP left shank and thigh to acquire data (Fig. 5.15).  Initially, as first trial, the robot 

started a walking process after being programmed to do so. Each trial was repeated five times for 

ninety seconds at one gait cycle per 2.5 seconds. Later, the robot was programmed to keep the 

left leg stretched on a static position (knee joint angle=0º) for thirty-five seconds. The previous 

procedure was performed again at an angle of -30º as depicted in Fig. 5.15. These tests were 

repeated five times each. Data from the two systems were acquired simultaneously by the same 

Personal Computer and both are synchronized. 

 

Figure 5.14 - Gyro data (vertical axis) when an IMU is attached in the lower back. a) Hamdi’s typical signal [51]. b) 

One gait cycle measured by the IMU’s system (data filtered: Butterworth lowpass filter – Fc=3Hz). 
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5.3.1. Reference Measurement System - DARwIn OP 

DARwIn OP (Fig. 5.15) was developed by RoMeLa at Virginia Tech [166] together with 

Robotics Co [167], and it is a humanoid-robot platform with sophisticated sensors, advance 

computational power, and dynamic motion ability that enable research, education, and outreach 

activities [168]. Users are encouraged to modify not only the hardware but also the software. On 

the one hand, the mechanical structure of DARwIn OP is divided into several sub-assemblies, 

namely: head; chest; arms; pelvis; and legs. It has 20 actuator modules with durable metallic 

gears, embedded sensors (3-axis Gyro and Acc, and a webcam), a hardware platform to control 

the robot, and a battery [167]. On the other hand, the robot is compatible with various 

programming languages, including C++, LabView® or Matlab®, which allows for better interaction. 

It is also considered a miniature humanoid robot since its height is 454.5 mm [167], and has 6 

DOFs on each leg, 3 DOFs on each arm, and 2 DOFs on the neck. The robot also allows controlling 

the angle of the joints, as well as knowing the real value of the angles along the gait or any other 

process [168]. The real values of the joints angles recorded by the robot have a low offset with 

respect to the theoretical value programmed in the robot. The registration of the knee joint angles 

in each trial will serve as ground truth to validate the IMUs based system. The data were recorded 

with a sampling frequency of 62.5 Hz.  

a)                       b) 

Figure 5.15 - a) DARwIn robot with two sensory modules attached to left thigh and shank (for both modules, the positive 

Z axis is perpendicular to the housing cover, Y axis – up, X axis – to the left of the robot). b) DARwIn robot performs 

an angle of -30º with the left leg (sagittal plane). In this situation, knee angles from the robot are represented as α, 

and the knee angles from the model implemented are represented as γ. 
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5.3.2. Knee Joint Angle Measurement 

Collected data were used to estimate roll, pitch, and yaw orientation for each attached 

sensory module by using a CF that works with normalized values from calibration procedure [13]. 

The orientation representation can be done by EAs. At this point a precise calibration is crucial, 

since it has a lot of influence in obtaining these estimates. Due to ferromagnetic influence from 

DARwIn OP structures, Mag was not considered in the orientation estimation. Thus, this estimation 

can suffer from the occurrence of drift, since the presence of this sensor would serve to correct 

the Gyro measures [61]. 

The next step is to estimate the angle of the DARwIn OP left knee joint. Continuing the 

previous step, it is essential to use roll, pitch, and yaw (radian) from each module to achieve the 

angle between two planes, which are XY planes in this particular case (sensory modules axes are 

represented in Fig. 5.15. In order to do so, the normal vectors (T_upper-robot thigh, and T_lower-

robot shank) to each plane are rotated as follows by the following rotation matrix [169]:  

 R = Rx(𝑟𝑜𝑙𝑙)Ry(𝑝𝑖𝑡𝑐ℎ) Rz(𝑦𝑎𝑤) (5.1) 

Thus, from each initial normal vector ([x y z]=[0 0 1]) is obtained a new and rotated vector 

based on each roll, pitch, and yaw angles (in radians) estimated in the previous step. The initial 

vectors are rotated by the order of presentation of the rotation matrices in Eq. (5.1). Later, the 

calculation of the knee angles is performed by using these two rotated vectors 

 𝛾= arcsin (
T_upper⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  .T_lower⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

‖T_upper⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖‖T_lower⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗‖
) . (5.2) 

 Where γ is the knee angle in radians. This value is then converted to degrees, and changed 

to the DARwIn OP reference (e.g., to α in Fig. 5.15). Finally, it is only necessary to perform a 

resampling process so data from the robot encoders and from this estimation can be compared 

by calculating the RMSE. Although knee F-E is the only movement evaluated, this method can 

calculate 3D joint angles. 

5.3.3. Results 

Concerning the first set of trials when the robot was walking, typical knee joint angles 

obtained with the encoder and the inertial-based system are displayed in Fig. 5.16. In this situation 

the RMSE value was 5.68º±0.34º. Typical results obtained for knee joint angles with both systems 
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when the robot kept the left leg stretched are depicted in Fig. 5.17. The RMSE value was 

4.29º±0.09º. When the robot performed a knee angle of -30º, the RMSE value was similar to the 

previous one with 4.30º±0.16º. Typical results from both systems in this last situation are 

represented in Fig. 5.18.  

Figure 5.16 - Typical knee angles (º) during the trial where the DARwIn OP was walking (ANG Dar - robot real angles 

measured through encoders; ANG IMUs - calculated knee angles from sensory modules data; x-axis: time (s); y-axis: 

angles). 

Figure 5.17 - Typical knee angles (º) during the trial where the DARwIn OP kept the leg stretched (ANG Dar - robot 

real angles measured through encoders; ANG IMUs - calculated knee angles from IMUs' data; x-axis: time (s); y-axis: 

angles). 
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5.3.4. Discussion 

Starting with the first trial, the RMSE value was 5.68º±0.34º, which is in accordance with 

the literature, despite being the highest value in the results. Analysing the graph of Fig. 5.16, it is 

possible to observe a slight delay in the ascent. This is essentially due to a rapid transition of the 

segments and the model cannot follow so quickly. However, it has a similar waveform.  

In the other two situations, the result was lower than 5º, and the results are very similar to 

each other. Note that the real value of the angle of the robot knee joint is not exactly 0º and 30º in 

Figs. 5.17 and 5.18, respectively. There is an offset between the ideal value and the actual value 

measured by DARwIn OP. In summary, the results for knee F-E angles are in accordance with the 

literature. This error range is within the values found in the gait analysis literature when using IMUs. 

 

 

 

 

 

Figure 5.18 - Typical knee angles (º) during the trial where the DARwIn OP performed an angle of -30º (ANG Dar - 

robot real angles measured through encoders; ANG IMUs - calculated knee angles from IMUs' data; x-axis: time (s); 

y-axis: angles). 
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Chapter 6 – IMUs based System Calibration 

6.1. Calibration procedures - Introduction 

Calibration procedures are present in a wide range of gait analysis systems. This 

procedures have a tremendous role in systems’ reliability, dramatically reducing the existing error 

between what is measured and what really happened [170]. Thus, inertial/magnetic sensors also 

need to be calibrated to be used in gait analysis. Despite the fact that these sensors have 

advantages that attract their use in a home environment, in general, they present some small 

errors compared to other more reliable systems even when the calibration procedures are 

implemented  [53], [54], [68]. For example, Leardini et al. [53] present a maximum mean error of 

3.1±1.8 degrees and 1.9±0.8 degrees respectively in the medio-lateral malposition and frontal-

plane misalignment tests. However, calibration stage is considered a critical point in the use of 

inertial/magnetic motion-sensing. So, it is important to distinguish several aspects, as depicted in 

Fig. 6.1, in the calibration process [170]: 

1. Sensor frame calibration procedure: Pretends to compensate for gain variations, 

offsets and alignment errors between the mechanical sensor’s axes for each sensor in the 

sensory module. Focus, essentially, on allowing the conversion of voltage measurements 

into physical units. It can be performed only once or can also be repeated when it is 

needed, for instance for magnetic sensor measurements since sensitivities and offsets 

(electronic calibration parameters) may vary with temperature. However, some parameters 

like Gyro’s bias should always be measured before using the system or even more 

frequently. 

2. Mounting frame calibration procedure: Uses the precise knowledge of the 

geometrical relations between the different sensor frames to improve the system’s 

accuracy. This mechanical calibration, considering a practical viewpoint, has to find the 

RM between the housing case frame and the sensor frame.  

3. Anatomical frame calibration procedure: Determines the relations between the 

mounting frame and the frame of the object/body segment on which the sensor is attached 

on. When the sensor is attached on the object/body segment, it can be misaligned with 

respect to the anatomical directions. In this case, this procedure estimates the RM 
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concerning the anatomical frame. Note that this procedure should be repeated for each 

application. 

 

  

 

 

 

 

 

 

 

 

 

Many calibration procedures of the sensors have been proposed in the literature [171]. 

However, in this section it will be presented the implementation of three in-field and one on-body 

calibration procedures related to the output data from the Analog-to-Digital-Converter (ADC) of the 

sensory modules. The on-body procedure is proposed in this thesis. The difference between in-field 

and on-body methods is the place where the calibration of the sensory modules is done. In-field 

methods are performed with the sensory module in a horizontal surface or with specific movements 

[172]. On the other hand, on-body methods are performed with the sensory module attached to 

the object/body’s segment, although in some studies it requires specific movements of the subject 

before the start of the system’s use [25]. Obviously, the ideal would be a fast method with the 

sensory modules already attached to the body’s segments. Thus, the aim of this chapter is to 

implement the above mentioned four methods and compare them to assess their accuracy. The 

remainder of this chapter is organized as follows: in 6.2 the methods used in this experiment such 

as the process of the system, the calibration procedures, the experimental protocol, and the optical 

Figure 6.1 – Several steps of the calibration procedures from the raw measurements x 

to measurements va resolved in the anatomical frame [170]. 



 

  81 

 

reference are presented; in 6.3 the results are demonstrated; 6.4 presents the discussion and 

conclusion. The goal of this chapter is to determine the best calibration method and the one closest 

to the considered reference method or evaluation system. 

6.2. Methods 

6.2.1. Process of the orientation estimation of the IMUs based system 

The all process is depicted in Fig. 6.2 as a block diagram. In a first moment (group 1 of 

the block diagram), the calibration procedures are performed, and as results the maximum and 

minimum values of each axis of the Acc and the Mag, and the Gyro’s offsets were obtained. These 

values are the parameters used to normalize the sensors’ raw data. 

The group 3 represents the process to obtain the orientation angles with the data obtained 

from normal trials (group 2). In group 3, the data is normalized, and with the help of a CF, the 

angles are finally estimated. 

 

6.2.2. Calibration Procedures   

Four calibration procedures were implemented before proceeding to using the sensory 

modules in order to obtain calibrated roll, pitch and yaw angles by using a CF. Concerning the goal 

of this chapter, four different techniques, namely, Methods A, B, and C, and the Proposed Method 

Figure 6.2 - Block diagram of the calibration process. 
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(PM) will be compared. The three sensors presented in the sensory modules were calibrated with 

these methods. 

6.2.2.1. Method A  

The first in-field method consists in 

three types of movements (one for each type 

of sensor – Acc, Gyro, and Mag 

respectively): i) the sensory module is 

placed on a surface as horizontal as possible 

on its different faces as described in Fig. 6.3. 

At each position of the sensory module the 

gravity value from the Acc is stored, taking 

into account only the sensitive axis parallel 

to the gravitational force; ii) Gyro’s offsets 

are obtained with the sensory module also 

placed in the position 1 (Fig. 6.3); iii) digital 

Mag axes (parallel and anti-parallel) are 

aligned with the north of the magnetic field 

and maximum and minimum values are 

obtained for each axis. 

6.2.2.2. Method B  

The Method B is a standard in-field calibration method applied in the Acc’s raw data [172]. 

Acc and digital Mag’ maximum and minimum values, and Gyro’s offsets are obtained as described 

in Method A. However, it consists this time in not neglecting the scale and misalignment factor by 

using a rotation matrix in the Acc’s raw data. Computationally, this can be described as follows: 

    𝑌 = 𝑤 . 𝑋 (6.1) 

Or 

 [𝐴𝑥1 𝐴𝑦1 𝐴𝑧1] = [𝐴𝑥 𝐴𝑦     𝐴𝑧 1] . [

𝐴𝐶𝐶11 𝐴𝐶𝐶21 𝐴𝐶𝐶31

𝐴𝐶𝐶21 𝐴𝐶𝐶22 𝐴𝐶𝐶32

𝐴𝐶𝐶31 𝐴𝐶𝐶32 𝐴𝐶𝐶33

𝐴𝐶𝐶10 𝐴𝐶𝐶20 𝐴𝐶𝐶30

]           (6.2) 

 

Figure 6.3 - Basic Principle of Method A: Extraction of Acc 

Maximum and Minimum values for each axis through 6 

different positions. 
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Where 

 Matrix X has the 12 calibration parameters that need to be determined. This matrix 

is used to rotate the Acc’s raw data in further trials; 

 Matrix w is Acc’s raw data collected at 6 stationary positions (Fig. 6.3); 

 Matrix Y is the known normalized earth gravity vector (eg. 𝑌1 = [0 0     1]  when 

IMU is at the Position 1 in Fig. 6.3). 

In a first step, matrix w is obtained through data acquisition in the 6 stationary positions. 

For those positions matrix Y is known and it is possible to obtain matrix X through: 

  𝑋 = [𝑤𝑇 . 𝑤]. 𝑤𝑇 . 𝑌     (6.3) 

Then, during further trials, matrix X is used to obtain the real and calibrated values, which 

matrix Y represents.  

6.2.2.3. Method C  

The in-field Method C consists of slowly rotating the IMU on all directions, thus covering as 

many orientations as possible. Digital Mags can be calibrated through this method, since they 

suffer from local interferences of the magnetic field. This interferences are due to soft- and hard-

iron effects [173]. However, Accs can also be calibrated using this method.  

This method is based on least-mean squares to fit a regular geometric form between the 

points of the measurements. Ideally, on a 3D plot, this would be a centered sphere with the radius 

equivalent to the strength of the earth’s magnetic field at the given location. However the present 

above mentioned effects will tilt, respectively shift the sphere. If there is no soft-iron distortion inside 

the device, or the soft-iron effect is very small and can be ignored, then the ellipsoid from 3D 

rotations is not tilted. Therefore, the least square fitting ellipsoid method can be used to discover 

the parameters of scale (M_SCi) and offsets (M_OSi), where i = x, y, z. Thus, applying these 

parameters to the collected 3D rotations data and three 2D full round rotations, the shifted tilted 

ellipsoid becomes a centered unit sphere. Offsets are subtracted to the data, and scale values are 

used to normalize data. Gyro’s offsets are obtained as mentioned in Methods A and B. 

Computationally, to calibrate the Acc and the Mag, this method can be translated as   

follows [172], where a, b, and c are constants, and x, y, and z are the measures of each axis of 

the sensor: 



84 

 

  𝑥2 = [ 𝑥  𝑦  𝑧 − 𝑦2  − 𝑧2  1 ] .

[
 
 
 
 
 
 
 
 
 

2𝑥0

𝑎2

𝑏2 2𝑦0

𝑎2

𝑐2 2𝑧0

𝑎2

𝑏2

𝑎2

𝑐2

𝑎2𝑅2 − 𝑥0
2 −

𝑎2

𝑏2 𝑦0
2 −

𝑎2

𝑐2 𝑧0
2
]
 
 
 
 
 
 
 
 
 

              (6.4) 

Or 

 𝑤𝑛×1 = [𝐻]𝑛×6 . 𝑋6×1 (6.5) 

The least square method can be applied to determine the parameters X vector as: 

  𝑋 = [𝐻𝑇 . 𝐻]. 𝐻𝑇 . 𝑤 (6.6) 

Then Offset values are obtained for each axis: 

  𝑀_𝑂𝑆𝑥 = 𝑥0 = 𝑋(1)/2 (6.7) 

  𝑀_𝑂𝑆𝑦 = 𝑦0 = 𝑋(2)/(2. 𝑋(4)) (6.8) 

  𝑀_𝑂𝑆𝑧 = 𝑧0 = 𝑋(3)/(2.𝑋(5)) (6.9) 

And as well the Scale factors: 

6.2.2.4. Proposed Method  

The Proposed Method (PM) intends to be an on-body, fast, and with a low margin of error 

method. The concept of this method is based on obtaining the vector’s norm of the acceleration 

and the magnetic field when the subject performs a stationary position before normal use. These 

values and their symmetrics will be considered as the maximum and minimum values of the 

sensors in the subsequent normalization process. Eq. 6.13 demonstrates how to obtain the norm 

of a vector (‖𝐴 ‖). Gyro’s offsets will also be determined on that stationary position, similarly to the 

above mentioned methods (A, B, and C). This calibration method was performed in a horizontal 

surface as in position 1 of Fig. 6.3. However, its purpose is to be made in a body’s segment or 

joint when the subject performs a static position. 

   𝑀_𝑆𝐶𝑥 = √𝐴 = √𝑋(6) + 𝑥0
2 + 𝑋(4). 𝑦0

2 + 𝑋(5). 𝑧0
2 (6.10) 

  𝑀_𝑆𝐶𝑦 = √𝐵 = √𝐴/𝑋(4)             (6.11) 

  𝑀_𝑆𝐶𝑧 = √𝐶 = √𝐴/𝑋(5) (6.12) 
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  ‖𝐴 ‖ = √𝐴𝑥
2  + 𝐴𝑦

2 + 𝐴𝑧
2 (6.13) 

6.2.3. Tracker Software   

Nowadays, optical softwares are considered precise and reliable reference systems among 

the others gait analysis systems. In fact, they are used as a ground truth in several studies to 

validate the gait parameters measured with sensing devices. For example, [26], [28], [51], [57], 

[59], [60], [72], [74], [77] used a Vicon/MoCap system to compare information related to gait 

from sensing devices; [37], [61], [67], [81] had Optotrack as reference system; Oqus Qualysis was 

the evaluation system of [62], [66]; [49], [68] used a DIPP Motion Pro system; Micron Tracker 

H40 was used in [49], [53]; and six other studies used a Selspot II in [65], a video system in [58], 

a BTS Bioengineering optoelectronic system in [52], a Bonita B10 in [73], a Lotus 3D MA-3000 in 

[63], and a Motion Analysis OWL Digital Real Time system in [64].  

Although there are many optical systems available on the market, the all equipment and 

the software are too expensive. Thus, Tracker software [174] is an alternative, free, and modelling 

tool capable of video analysis built on Open Source Physics (OSP). In a brief explanation about the 

software, the user only needs a regular camera, and then he has to define the size of the calibration 

stick (calibration process in the video), define the position of the coordinate system, define the 

object’s centre of mass, and select the video’s time interval of interest. With this procedure, the 

user can obtain relevant information from an object’s trajectory like distance, velocity, rotation 

angle, among other parameters. Further, this software will be used as a ground truth system. The 

sampling frequency used was 30Hz. 

6.2.4. Experimental Protocol   

The aim of this stage is to assess all methods and find the method that gives closest results 

to reality. The experimental protocol has four stages. 1) The calibration procedure takes 20 seconds 

for methods A, B and PM. Method C lasts 150 seconds. In this stage, raw data are stored, and 

information for normalization phase is obtained, namely, the maximum and minimum values of 

the axes of the Acc and the Mag, and the Gyro’s offsets. This last information will be compared 

according to the implemented methods, and the errors between method A and the other methods 

will be calculated for the Acc and the Mag. Since Gyro’s offsets were obtained similarly in the four 

methods, in this stage the difference of the offsets values between on-body positions and “on 
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horizontal surface” position will be determined instead. On-body positions are represented in       

Fig. 6.4. 2) Then, two trials are performed: i) IMU is at a stationary position different from those 

depicted in Fig. 6.3; and ii) a subject walked 4 meters front, turned around, and returned to the 

starting position with the IMU on the thigh as depicted in Fig. 6.4. Both trials are made for each 

sensory module of the system. In this stage, normalized data and obtained angles are compared 

according to the different methods by RMSE. In this experiment, Method A is considered the ground 

truth method, since this method is strongly used in the literature and normally accepted as the 

more reliable [173]. 3) A modified version of the PM will be performed in order to overcome some 

problems that PM method presented. So, in this stage, all methods and the modified PM will be 

compared with an optical reference system. This optical reference will determine rotation angles 

of the sensing device (roll, pitch and yaw), and the respective data will be used as ground truth. 4) 

Finally, Mahony [175] and Madgwick [176] filters used to obtain roll, pitch and yaw angles, were 

tested and compared with the results of the implemented CF. A simple trial was performed by 

rotating the sensing device 90º around z-axis to one side and return to the starting position. The 

yaw angles obtained from each filter were compared by RMSE.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4 - Sensors' attachment location to measure Gyro’s 

offsets. 
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6.3. Results 

6.3.1. Stage 1 

At the stage 1 of the experimental protocol, normalization parameters from each calibration 

method were obtained, and they will be compared in this sub-section. As mentioned before, all 

results were compared to the results of the method A because this method is considered the 

calibration’s ground truth method. The first step was to determine the difference between 

maximum and minimum values of methods B, C and PM with the maximum and minimum values 

of the method A. This difference is called as error and the percentage of this error in the 4g scale, 

in the case of the Acc, and 0.88 Gauss, in the case of the Mag, was further determined for each 

module. The mean error percentage is available at Table 6.1 in the case of the Acc, and Table 6.2 

in the case of the Mag. 

Table 6.1 - Error Percentage of the Maximum and Minimum values when compared to the homologous values of the 

Method A – Acc case 

Methods MAX X (%) MAX Y (%) MAX Z (%) MIN X (%) MIN Y (%) MIN Z (%) 

B 0.344±0.357 0.362±0.113 2.618±2.071 0.353±0.460 0.316±0.235 2.123±1.685 

C 2.688±2.025 1.052±0.397 1.762±1.285 2.132±2.298 1.370±0.611 3.087±2.440 

PM 2.633±1.879 2.426±1.961 0.006±0.003 2.816±1.775 2.761±2.100 4.735±3.666 

From Table 6.1, it is possible to observe that the lowest error percentage (0.006%±0.003%) 

occurs in the maximum value of z-axis when method PM was used. However, the biggest value 

(4.735%±3.666%) occurred in the same axis with the same method, although in other direction. In 

general, Method B is more close to the method A. 

Table 6.2 - Error Percentage of the Maximum and Minimum values when compared to the homologous values of the 

Method A – Mag case 

Methods MAX X (%) MAX Y (%) MAX Z (%) MIN X (%) MIN Y (%) MIN Z (%) 

B 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 

C 1.595±1.282 7.050±2.647 4.894±4.170 2.263±1.252 8.487±3.445 5.184±3.489 

PM 5.275±6.366 7.706±5.067 8.230±8.185 3.966±3.265 10.796±4.387 5.499±3.394 

Table 6.2 demonstrates that method B is equal to method A, since they use the same 

procedure to calibrate the Mag. However, when methods C and PM are compared to method A the 

difference is huge. Methods C and PM are very close to each other. 
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Gyro’s offsets are also a concern in the calibration procedure. All methods use the same 

procedure to determine the Gyro’s offsets, and there is no difference between them. Thus, each 

sensory module was attached to three different body segments (thigh, shank, and trunk), and the 

subject was static for 20 seconds. Finally, the offsets measured in these three positions were 

compared to the offsets obtained when each sensory module was at Position 1. The error 

percentage in the 1000º/s scale was calculated and the mean is presented in Table 6.3. 

Table 6.3 - Error Percentage of the Gyro’s Offsets in three body segments when compared to the homologous values 

when IMU was at Position 1 

Position X (%) Y (%) Z (%) 

Thigh 0.007±0.004 0.011±0.002 0.009±0.005 

Shank-lateral 0.009±0.008 0.014±0.009 0.010±0.007 

Trunk 0.020±0.009 0.013±0.009 0.009±0.004 

 As can be seen from Table 6.3, the influence of the human movement at a static position 

is very small. The highest error percentage was in the trunk (0.020%±0.009%) in the x-axis. 

6.3.2. Stage 2 

In this second stage, the RMSEs between all methods for normalized data and angles were 

calculated. The RMSEs between methods for the normalized data were only obtained for the Acc 

and the Mag, because all methods used the same procedure to obtain Gyro’s offsets. In this 

particular case, the RMSEs between methods were obtained for each axis of each sensory module. 

The RMSEs between methods for roll, pitch and yaw angles were also obtained for each sensory 

module. Finally, further results are the calculated mean of the RMSEs previously mentioned.   

6.3.2.1. Stationary position  

Concerning the situation when the sensory module was at a stationary position, the RMSEs 

between methods for the normalized data are available at Tables 6.4 to 6.9. In turn, the information 

of the obtained RMSEs between methods for the angles is presented in Tables 6.10 to 6.12. 

Table 6.4 - Mean of the RMSEs between methods for normalized data – Acc x-axis 

 A B C 

A    

B 0.0119±0.0116   

C 0.0170±0.0205 0.0255±0.0184  

PM 0.0116±0.0149 0.0120±0.0073 0.0250±0.0199 
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Table 6.5 - Mean of the RMSEs between methods for normalized data – Acc y-axis 

 A B C 

A    

B 0.0190±0.0141   

C 0.0200±0.0148 0.0361±0.0087  

PM 0.0163±0.0124 0.0333±0.0090 0.0039±0.0028 
 

Table 6.6 - Mean of the RMSEs between methods for normalized data – Acc z-axis 

 A B C 

A    

B 0.0023±0.0011   

C 0.0150±0.0123 0.0143±0.0145  

PM 0.0039±0.0036 0.0030±0.0037 0.0157±0.0137 

As mentioned before, the normalized data has values between -1 and 1. So, the mean of 

the RMSEs can tell a percentage directly. In the case of the Acc, all methods are very close to each 

other with errors never exceeding 0.04. In this particular case, method C is the most distant method 

of all. On the other hand, in general, PM is the closest method to the method A. 

Table 6.7 - Mean of the RMSEs between methods for normalized data – Mag x-axis 

 A B C 

A    

B 0±0   

C 0.0115±0.0072 0.0115±0.0072  

PM 0.0792±0.0613 0.0792±0.0613 0.0718±0.0649 
 

Table 6.8 - Mean of the RMSEs between methods for normalized data – Mag y-axis 

 A B C 

A    

B 0±0   

C 0.0359±0.0287 0.0359±0.0287  

PM 0.2408±0.1481 0.2408±0.1481 0.2115±0.1191 
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Table 6.9 - Mean of the RMSEs between methods for normalized data – Mag z-axis 

 A B C 

A    

B 0±0   

C 0.0152±0.0204 0.0152±0.0204  

PM 0.1344±0.1203 0.1344±0.1203 0.1414±0.1427 

Concerning the Mag normalized data, the PM is the method that presents the highest 

values. Method B is equal to the method A because used the same calibration procedure. In turn, 

method C is close to methods A and B. 

Table 6.10 - Mean of the RMSEs between methods for orientation angles – Roll (SI: degrees) 

 A B C 

A    

B 1.0686±0.7963   

C 0.7500±0.5836 1.7089±0.7013  

PM 0.8170±0.5048 1.7617±0.7195 0.1230±0.0962 
 

Table 6.11 - Mean of the RMSEs between methods for orientation angles – Pitch (SI: degrees) 

 A B C 

A    

B 0.6802±0.6701   

C 1.0310±1.2030 1.5184±1.0731  

PM 0.7019±0.8113 0.6992±0.4083 1.4850±1.1599 
 

Table 6.12 - Mean of the RMSEs between methods for orientation angles – Yaw (SI: degrees) 

 A B C 

A    

B 2.3359±1.7141   

C 6.7515±6.6974 7.5287±9.4404  

PM 20.6554±9.3094 21.6129±11.4436 14.2054±6.6301 

 

The results of the means of the RMSEs between methods for orientation angles reveal that 

methods B, C and PM have mean RMSE values less than 1.1º when compared to method A in roll 

and pitch angles. In fact these three methods are close to each other with values never exceeding 

1.8º. However, for yaw angles in Table 6.12 the results get worse, and PM is the method with the 

highest values of RMSE. In this situation, only method B has the closest value to method A. 
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6.3.2.2. Walking trial 

In a similar way to the previous section, the RMSEs between methods for the normalized 

were obtained for each sensory module and the mean of RMSEs is presented in Tables 6.13 to 

6.18. The mean of the RMSEs between methods for the orientation angles is shown in Tables 6.19 

to 6.21. 

Table 6.13 - Mean of the RMSEs between methods for normalized data – Acc x-axis 

 A B C 

A    

B 0.0069±0.0030   

C 0.0244±0.0273 0.0243±0.0239  

PM 0.0599±0.0873 0.0246±0.0102 0.0417±0.0274 
 

Table 6.14 - Mean of the RMSEs between methods for normalized data – Acc y-axis 

 A B C 

A    

B 0.0061±0.0037   

C 0.0484±0.0237 0.0489±0.0213  

PM 0.0833±0.0651 0.0836±0.0637 0.0445±0.0346 
 

Table 6.15 - Mean of the RMSEs between methods for normalized data – Acc z-axis 

 A B C 

A    

B 0.0102±0.0062   

C 0.0232±0.0151 0.0260±0.0163  

PM 0.0849±0.0629 0.0844±0.0646 0.0700±0.0460 

Contrary to the case of the stationary position, the PM was the method with the highest 

mean RMSE values. Method B remains the closest method to the method A on any axis. 

Table 6.16 - Mean of the RMSEs between methods for normalized data – Mag x-axis 

 A B C 

A    

B 0±0   

C 0.0424±0.0611 0.0424±0.0611  

PM 0.0872±0.0667 0.0872±0.0667 0.0794±0.0727 
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Table 6.17 - Mean of the RMSEs between methods for normalized data – Mag y-axis 

 A B C 

A    

B 0±0   

C 0.0422±0.0336 0.0422±0.0336  

PM 0.2687±0.1366 0.2687±0.1366 0.2410±0.0949 
 

 

Table 6.18 - Mean of the RMSEs between methods for normalized data – Mag z-axis 

 A B C 

A    

B 0±0   

C 0.0167±0.0101 0.0167±0.0101  

PM 0.1549±0.0976 0.1549±0.0976 0.1575±0.1165 

 

Concerning the Mag’s normalized data, the PM is the method that presents the highest 

values again. Method C is close to methods A and B. However with values never lower than 0.0167. 

Table 6.19 - Mean of the RMSEs between methods for orientation angles – Roll (SI: degrees) 

 A B C 

A    

B 0.4311±0.3388   

C 1.0742±0.5004 1.2228±0.8381  

PM 4.7248±3.3217 4.8330±3.4568 4.0545±2.6675 
 

Table 6.20 - Mean of the RMSEs between methods for orientation angles – Pitch (SI: degrees) 

 A B C 

A    

B 0.3230±0.1096   

C 1.1558±1.2525 1.0958±1.0200  

PM 3.8709±3.5233 3.9537±3.3964 4.4018±3.2594 
Table 6.21 - Mean of the RMSEs between methods for orientation angles – Yaw (SI: degrees) 

 A B C 

A    

B 0.5433±0.3999   

C 7.7405±7.5122 7.9362±7.4291  

PM 21.0741±14.4848 21.1964±14.3796 22.9910±12.8997 
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 Once again, as well as in the case of the normalized data, PM mean RMSE values increased 

when compared to the case of the stationary position. In this case, in roll and pitch angles, the 

mean RMSE values are never lower than 3.8º when compared to methods A, B, and C. In Table 

6.21, PM mean RMSE values are tremendously different when compared to other methods. Figure 

6.5 depicts the typical graphs of the roll, pitch, and yaw angles obtained from different calibration 

methods. 

 

  

 

 

 

 

 

 

6.3.3. Stage 3 

In the third stage, the sensing device number 6, which was the one that had the best 

results in the last 2 stages, was attached to a cylindrical stick as depicted in Fig. 6.6. As procedure, 

the stick was rotated 90º degrees to the right, and then it was rotated 180º to the left. At the same 

time, data from the sensing device was collected, and a smartphone’s camera recorded the 

movements from a viewpoint where was possible to record the rotation. The axis to rotate must be 

as perpendicular as possible to the plane of the camera. Through Tracker software, the roll, pitch 

and yaw rotation angles were obtained positioning the sensory module attached to the stick. So, 

performing the same rotation moves with the stick, it was possible to obtain each rotation angle in 

three different moments. Finally, due to Mag’s high error calibration values obtained through the 

PM and described in the last two stages, a new modified version of the PM emerged (PM2), and 

will be presented in these results. The difference between this new method and the original PM is 

Figure 6.5 - Walking trial angles of the thigh: a) roll; b) pitch; and c) yaw. 

a) b) 

c) 
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that PM2 uses the Mag’s calibration values from method A. Further, RMSEs between all calibration 

methods and the optical data were obtained, and Table 6.22 contains these results. Figure 6.7 

depicts the typical evolution of the angles in the described rotation trial for roll, pitch and yaw. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6 - Tracker software environment working with a rotation trial. 

b

) 

Figure 6.7 - Rotation angles of stage 3 experiment: a) Roll; b) Pitch; and c) Yaw. 

a) b) 

c) 
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Table 6.22 - RMSEs between calibration methods and the optical reference 

Methods Roll Pitch Yaw Mean ± STD 

A 5.4652º 7.2370º 5.4990º 6.0671º±1.0133º 

B 5.3585º 6.6144º 5.0903º 5.6877º±0.8136º 

C 5.3144º 6.5354º 9.1881º 7.0126º±1.9805º 

PM 5.2083º 6.6624º 4.9055º 5.5921º±0.9392º 

PM2 5.2223º 7.0489º 4.8837º 5.7183º±1.1647º 

 

Considering Table 6.22, it is possible to retain that PM is, in general, the closest method 

to the optical reference. PM2 was also good, but PM was better. Method B also demonstrates 

better results when compared to methods A and C. Method C is clearly the method with worst 

results. RMSEs of the Roll, Pitch, and Yaw angles are considered as normal. 

6.3.4. Stage 4 

Different sensor fusion algorithms were applied to the normalized data in order to obtain 

rotation angles of the sensing device. Specifically, two filters were implemented: Madgwick which 

was applied with and without Mag, and the filter made by Mahony that was also applied with and 

without Mag. From the same trial, yaw angles were obtained and the RMSEs between the signals 

were calculated. This information is available in the Table 6.23. Figure 6.8 depicts the different 

results of the described trial.  

Table 6.23 - RMSEs between different sensor fusion algorithms and the optical reference 

 
CF Madgwick Mahony Madgwick w/o Mag Mahony w/o Mag Opt. Ref. 

CF      5.499º 

Madgwick 7.5103º     9.8444º 

Mahony 7.9017º 13.1867º    3.9757º 

Madgwick w/o Mag 8.5871º 1.6302º 14.4491º   11.044º 

Mahony w/o Mag 6.8666º 12.0118º 1.6737º 13.2116º  2.849º 

Through Table 6.23, it is possible to observe a clear approximation between the results of 

the Madgwick/Mahony filter with or without Mag. The difference in angles between each filter, 

using or not using Mag is less than 2º. Madgwick and Mahony results are very different when 

compared to the optical reference. The RMSE value of the Madgwick is higher than 9º with and 
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without Mag. When the Mag is not used in the Mahony filters, the result is closer to the CF with a 

RMSE of 6.8666º. The Mahony filter with or without using Mag reveals great results as can be seen 

in the Fig. 6.8. The RMSE of this filter when compared to the optical reference is less than 4º. 

 

 

 

  

 

 

 

 

6.4. Discussion 

With regard to phase 1, considering the Acc case, it is possible to retain that PM is the 

closest method to method A in the z-axis maximum value. This happens because the PM calibration 

procedure was performed at the position 1 of the Fig. 6.3. Theoretically, the sensor raw data for 

any axis should be 8192 for positive axis, and -8192 for negative axis in the positions described in 

Fig. 6.3. However, that is not what happens in real sensors, and those differences caused this 

errors in PM. Calibrating this way, the axes close to acceleration vector will be close to the real 

value, however in the opposite direction, the maximum/minimum values will not be as close as 

intended. In the case of the Mag these differences are higher and that is the reason why the error 

percentages are higher. 

Gyro’s offsets measured on-body were very close to those measured in a horizontal surface. 

That shows this gyro’s static calibration can be done on-body. The highest value recorded occurred 

when the sensory module was at the trunk, mainly due to the natural breathing that causes 

movements in the abdomen. 

Figure 6.8 - Yaw angles obtained through a CF, Madgwick filter (w/ and w/o Mag), and Mahony filter (w/ and w/o 

Mag). 
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In stage 2, considering the stationary position trial, the PM reveals closest results to 

method A, as well as the other methods. This happens, essentially, because the static position is 

similar to the calibration static position. When the subject performed the trials with the previous 

normalization parameters, the error increased in the normalized data and, consequently, in the 

orientation angles, which is expected. However, the waveform is very similar. 

In the stage 3, in general, PM revealed that was the best method in the experiment, 

however the rest of the methods were also close. RMSEs of the Roll, Pitch, and Yaw angles were 

in accordance to the literature. 

The procedure of stage 4 revealed, as expected, that Mahony and Madgwick filters can 

also be used as sensor fusion algorithms to obtain orientation angles. However, results obtained 

from the Mahony filter were closest to the optical reference with a RMSE less than 4º, which is a 

very interesting and good result.  
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Chapter 7 – Pre-Fall Detection System 

The main goal of this thesis was to be able to estimate a fall. In order to achieve this 

prediction, and according to the literature, a F and PF states were considered relevant to be 

detected. In this chapter, an offline F and PF detection system will be implemented and tested by 

using data from sensing devices attached to body segments. This chapter will be divided in four 

major parts: i) implementation of all process, which includes collecting data from sensing devices 

through trials in health young people, calculation of metrics, selection of the most relevant metrics 

through PCA, construction of ASMs, and their test; ii) Construction of a decision cascade based on 

built ASMs. This second stage intends to distinguish and classify automatically normal gait and F 

and PF’s situations (locomotion modes). iii) Use of a CNN also to classify different types of 

locomotion modes. In addition to classifying the different types of locomotion modes, the results of 

this stage will be used to compare ASMs and neural networks. And iv) Validation of both approaches 

proposed by comparing between the implemented classifiers in indoor trial. 

7.1. Stage 1 

Firstly, it is certainly of interest to understand the function of the first stage. As described 

in the Figure 7.1, sensors’ raw data were collected from trials, and these data from five sensing 

devices were synchronized in time, interpolated in case of loss of frames, and normalized through 

a calibration process (Method A – Chapter 6). Subsequently, each normalized gait cycle was 

extracted from the data through a step detector algorithm present in [163], which uses a sensing 

device on the upper foot and it is capable of determining the stance and swing phases. This 

normalized version of sensor data is phase-indexed, which eliminates issues with the rhythmicity 

of locomotion. For each gait cycle, the above mentioned metrics were calculated (See Chapter 3). 

Gait metrics are truly important to characterize human locomotion. However, due to their quantity, 

a preliminary study based on PCA analysis will be important to determine which features are 

Figure 7.1 - Block diagram of the first stage. 
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 Figure 7.2 – Trial i) in the gymnasium – Subject (blue point) walks forward (Top – w/o F; Down – w/ F where the F’s 

location is represented by the red X). 

relevant to characterize the human gait and to be used on the ASMs. Finally, ASMs will be 

constructed to be used in the next stage. To do so, 75% of collected data were used as train data, 

and the rest were used as test data. Best parameters of the ASMs were obtained through a receiver 

operating characteristic (ROC) analysis.   

7.1.1. Trials 

A total of 12 subjects (3 Females and 9 Males; 25.33±6.33 years old; 66.92±10.07 kg; 

1.74±0.11 m) performed three different trials, namely: i) Walk forward (WF) (Fig. 7.2); ii) walk in 

circle (both sides – right and left (CR and CL)) (Fig. 7.3); iii) walk forward bypassing an obstacle 

(both sides – OR and OL) (Fig. 7.4). All trials were performed at a gymnasium, and they were 

repeated three times without a simulated F and other three times with a simulated F, which is a F 

ordered by the responsible of the trials and does not occur in normal daily life situations. An amount 

of five sensing devices were used attached to the lower back, to both back thighs, and to both feet. 

Figure 7.5 depicts the attachment location of the sensing devices. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.4 – Trial iii) in the gymnasium – Subject (blue point) walks 10m forward bypassing an obstacle (Top – w/o 

F – right and left; Down – w/ F where the F’s location is represented by the red X).  

Figure 7.3 – Trial ii) in the gymnasium – Subject (blue point) walks in circles (Top – w/o F – right and left; Down – 

w/ F where the F’s location is represented by the red X).  
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7.1.2. PCA 

The PCA is able to reduce the dimensionality of a data set consisting of a large number of 

interrelated variables [177]. Thus, PCA is a data analysis tool to identify patterns in a data set, and 

express their similarities and differences. Once these patterns have been found, the data can be 

reduced by obtaining a smaller set of points. Thus, given a set of correlated points, the PCA uses 

orthogonal transformations to transform them into fewer uncorrelated points (major components 

or principal components - PCs), and which are ordered so that the first few retain most of the 

variation present in all of the original variables [177]. These points are calculated in order to 

minimize the loss of information that the initial points contain. Each main component must have 

greater variance than the next element, and the first point must present the greatest variability. 

Within the scope of the applications of this method, the points with greater variation are           

chosen [178],[179]. 

 In this thesis, in order to perform the PCA, data is separated in gait cycles and organized 

(Fig. 7.6) into a n-by-m matrix where each column (m) represents a variable (gait metric), and each 

row (n) represents an observation of that variable per gait cycle. Usually, it is necessary to calculate 

Figure 7.5 - Sensing devices attachment location used for the trials (Dark sensing devices are in the back of the 

body; Red numbers represent the physical addresses of the sensing devices).  

3 

7 14 

6 13 
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the mean on each dimension of an array with a dataset (Case I). However, the PCA will be also 

performed for each sample of each variable as depicted in Fig. 7.7 (Case II). Usually in literature, 

Case I is implemented, however Case II brings more information to the feature selection. The 

output of the PCA is an m-by-m matrix where each column represents the principal components, 

and each row represents a variable. Concerning the PCs, the first column is the most significant 

one, and the last column is the less significant one. Since it is intended to extract the variables with 

greater variability, each element of the output matrix of PCA is squared (b elements). Then, the 

number of relevant PCs is obtained according to the Kaiser’s rule/criterion [177], where only PCs 

whose variances exceed 1 are selected (or 10% in case of percentage). Then, a similar proportion 

of PCs is obtained for each variable, and variables are selected to be used in the next stage if their 

PC value is greater than 
1

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 (𝑚)
. This means that variables with great 

contributions to the variability of the data are selected. In this squared matrix, the sum of each 

column is one. In Case II (Fig. 7.7), there will be as many matrices (before PCA) as data samples 

(usually, 100 samples). So, in the end of the process, all squared matrices will be summed, and 

the proportion of each variable will be obtained (PC value). Once again, variables are selected to 

be used in the next stage if their PC value is greater than 
1

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 (𝑚)
. 

Figure 7.6 - Set of steps to obtain the most relevant variables (Case I). 
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The PCA procedure was performed four times. One for each type of locomotion mode 

collected during the explained trials. The designation of each type of locomotion mode is available 

on Table 7.1, accompanied by a description for each type. This discrimination was carried out with 

the purpose of classify different states of human activity, in particular in the F’s domain. 

Table 7.1 – Classification of collected data 

Locomotion Mode Description 

Walk Forward - WF Observations of normal gait from walk forward trials 

Global Observations of normal gait from WF, OR, OL, CR, and CL trials 

PF Observations of the gait cycle before the F’s situation 

F Observations of the F’s situation 

 

7.1.3. ASMs 

Several failure detection systems include particle filters [180] and neural-network based 

approaches [181], [182]. However these are highly focused in industrial and wheeled robots, and 

up to our knowledge there is still no such framework proposed regarding biped locomotion in 

humans using IMUs. Hence it is necessary to establish a structure or framework that stores relevant 

perceptual information in a consistent form so that it can be used in the future to monitor and 

Figure 7.7 - Set of steps to obtain the most relevant variables (Case II). 
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improve movement execution, a skill memory of sorts. Thus, the notion of ASM was proposed by 

Pastor et al. [183]. An ASM illustrates the most common values and variation of perceptual data 

when executing a certain task that is performed repeatedly in a similar way. It is called associative 

because the memory itself is not solely based on sensor information, but rather on the association 

of this specific repeatedly information (sensor footprint) with the corresponding movement, skill or 

end task [184]. In other words, manipulation tasks often decompose into a sequence of skills, 

where each skill can be seen as a stereotypical movement (movement primitives), with respect to 

its goal frame. Assuming that movement dictates sensory feedback, sensory traces can be 

associated with the movement primitive (e.g. encoded as Dynamical Motion Primitives - DMPs), 

forming ASMs [183]. Thus, if a certain task is repeated in a similar way as a typical task, which 

means the perceptual data is inside the variation of the common values, it is considered that this 

task corresponds to the typical one. Otherwise, it is considered an unsuccessful trial and a failure 

since the typical task was not recognized. Figure 7.8 depicts the test data set of a particular skill 

or variable. This test data set contains successful (green) and unsuccessful (red) trials, and the 

ASM is illustrated by the area inside the two blue lines (± weighted STD).  

Mathematically, the most common values of a skill or variable are represented in an ASM 

as the average of the several training trials 𝑋̅𝐴𝑆𝑀 , and the variation of perceptual data when 

Figure 7.8 – Test data set of the left gripper right finger force cell. Example presented in [185]. The weighted 

standard deviation (blue line) was computed from the training set. The failure condition for all unsuccessful trials was 

detected correctly after an average of 2.4 seconds (shaded area). 
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executing a certain task is represented by a weighted STD, 𝑧𝜎̂𝐴𝑆𝑀 , around the 𝑋̅𝐴𝑆𝑀. These values 

are calculated for each instant 𝑛 of the trial. Thus, a tolerance interval is established for each set 

of ASMs according to: 

𝑋𝑡𝑟𝑖𝑎𝑙(𝑛) > 𝑋̅𝐴𝑆𝑀(𝑛) − 𝑧𝜎̂𝐴𝑆𝑀(𝑛)  ⋀  𝑋𝑡𝑟𝑖𝑎𝑙(𝑛) < 𝑋̅𝐴𝑆𝑀(𝑛) + 𝑧𝜎̂𝐴𝑆𝑀(𝑛) 

 

(7.1) 

Where 𝑋𝑡𝑟𝑖𝑎𝑙  is the variable’s data of the current trial, and 𝑧 represents the zscore which 

is very important to have a high confidence level (empirically determined). If the condition in          

Eq. 7.1 is satisfied, then the null hypothesis of being a successful trial is not rejected and the 

variable’s data is assumed to be in conformity with the expected values - there are no signs of 

failure conditions. If, on the other hand, 𝑋𝑡𝑟𝑖𝑎𝑙(𝑛) is out of the confidence bounds established in 

Eq. 7.1, then there is a high probability of failure occurring, or that movement objective is not 

achieved at the end of the trial. Whether or not the current trial is flagged as failure depends on 

the thresholds for failure detection: the minimum number of sensors (M) and the minimum number 

of consecutive instants failing (N). Simply put, if the system detects at least M sensors failing for N 

instants consecutively, then it is predicted that, based on the previous experiences stored into the 

ASM, task verification will fail. 𝑧, M, and N are all variables determined empirically. 

Usually, in the literature, each trial is evaluated according to a cost threshold, 𝐶𝑥, 

characterizing all training data. This value, 𝐶𝑥, is used to obtain the weights of each trial, which 

will influence the calculation of the average, 𝑋̅𝐴𝑆𝑀, and the STD, 𝜎̂𝐴𝑆𝑀 . Although this is a common 

practice in the literature, in this work the costs will not be calculated, which means that each 

training trial will have the same weight as the rest trials. This can be done because only good trials 

were used from the entire data.  

ASMs also allow to learn predictive models, which can be used to e.g. cope with uncertainty 

and noise in the perceptual system of the robots. ASMs have been successfully used to address 

several important issues towards an autonomous manipulation platform [183]. 

 Having a general skill library which allows to e.g. grasp an object robustly, the 

sequence of skills has to be determined based on the sensory feedback of the 

execution. For example, [183] showed how to incrementally determine a correct 

skill sequence despite perceptual errors using ASMs. 
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 Errors both in the perceptual and action system are inevitable. Predictive models 

learned from ASMs allow to predict failures in an online fashion [185]. 

 For robust manipulation errors have to be detected online and possible successor 

skills selected in real time. In [186] this problem is formulated as a data-driven 

online decision making problem, integrating visual, acoustic, and haptic sensors, 

as well as the system state to make real time decisions using the sensory 

information provided by the ASMs. 

Besides, interesting open research questions related to ASMs and manipulations are: 

Automatic skill decomposition; Learning good representation from unsupervised sensory 

information; and better failure incorporation. 

Overall, in this work, IMUs’ data from human gait were used, and locomotion is a periodic 

task and this knowledge should be considered when building an ASM. The associative variable’s 

traces should consider a gait cycle and not a time frame of the movement (the entire trial – all 

steps). Accordingly, perceived variable’s signals during successful walking should match the 

predicted ones during a gait cycle. This provides a generalized representation of a rhythmic task 

that can be loaded at the beginning of each period, eliminating the issues associated with 

movement periodicity. Additionally, this structure adds time-invariance to the locomotion task - the 

skill memory does not depend on the time but rather on the period or phase of the gait cycle. So, 

from all trials mentioned before, gait cycles and F’s situations (from beginning to end of a F) were 

extracted and resampled to 100 samples, where a sample represents a percentage point of human 

gait, for a more intuitive and generic representation. Note that this representation is invariant to 

movement duration and thus better suited for an ASM. Therefore, all these gait cycles, F and PF’s 

situations will be designated from now on as motion periods. 

In order to successfully complete stage 1 of this chapter, it was necessary to construct at 

least four sets of ASMs. One for each type of locomotion mode (Table 7.1), and each set of ASMs 

contains as many stereotypical variables as the relevant metrics selected by PCA procedure for 

each type of locomotion mode (Table 7.1). It was also necessary to perform a ROC analysis to 

determine empirically the 𝑧, M, and N values. For this purpose the results are cross-validated with 

separate train and test data subsets. 75% of all motion periods were used to construct the sets of 

ASMs, and the rest of the data was used to test the sets of ASMs and to determine 𝑧, M, and N 

values through a ROC analysis [177]. 
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7.1.4. Evaluation of classification performance 

In order to evaluate the performance of ASMs based classifier in locomotion mode 

recognition, three dimensions, accuracy, sensitivity and specificity are commonly used. These 

metrics are obtained based on a confusion matrix [187], being determined through function 

“classperf” of MATLAB®. Accuracy, as expressed in equation (7.2), is defined as the classifier’s 

ability to accurately recognize the gait patterns in the classification. TP, FP, TN and FN correspond 

to true positive, false positive, true negative and false negative values, respectively [147]. 

  Accuracy (%) =  
TN+TP

TP+TN+FP+FN
× 100%  (7.2) 

Sensitivity, or True Positive Rate (TPR), presented in equation (7.3), measures the 

proportion of actual positives which are correctly identified as such. 

  Sensitivity (%) =  
TP

TP+TN
× 100%  (7.3) 

Specificity (SPC), showed in equation (7.4), measures the proportion of negatives which 

are correctly identified as such [147]. It is possible to determine the negative likelihood ratio (NLR), 

a ratio between false and true negatives, through a confusion matrix [188]. 

  Specificity (%) =  
TN

TN+FP
× 100%  (7.4) 

Besides, conclusions about the performance of the failure detection algorithm were based 

on a detection score computed from sensitivity and specificity values [189]: 

  Detection score =  √𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦2 + 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦2  (7.5) 

Which can be interpreted as inversely proportional to the distance to the optimal operation 

point of maximal (100%) sensitivity and specificity - a higher detection score implies better 

performance when detecting failure conditions. 
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7.1.5. Results 

7.1.5.1. PCA 

First, the PCA procedure was made for Global’s locomotion mode. Due to the great amount 

of gait cycles (970), there are more observations than variables (228), which is the ideal situation 

when the PCA procedure is used to select the relevant metrics. So, statistically, the validity of this 

procedure can be claimed. 

The first outcome of the PCA is the scree plot. Through this plot for each PCA procedure, 

and the application of a criterion (Criterion of Kaiser in this particular case), it is possible to select 

the number of relevant PCs, which will influence the selection of the relevant metrics. For this first 

step, the obtained scree plots for the two PCA procedures are represented in the Figs. 7.9 and 

7.10.  

According to the criterion of Kaiser, in both procedures, the number of selected PCs is 

three. However, there is a difference in the percentage explained between procedures. In Figure 

7.9, the cumulative percent explained of the three first PCs is higher than 60%, what it is not verified 

in procedure II (Fig. 7.10). Then, using the information contained in the three PCs in both 

Figure 7.9 - Scree Plot of the PCA procedure I when using the global walking locomotion mode. 
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procedures, relevant metrics were extracted. From PCA procedure I, 27 metrics were selected, 

however, 41 metrics were identified as relevant from the PCA procedure II. Relevant metrics 

extracted from both procedures are represented in the following table. 

Table 7.2 – Relevant metrics identified from both PCA procedures (Global Data) 

From Table 7.2, it is possible to retain that PCA procedure II identified more relevant 

metrics than PCA procedure I. Besides that, PCA procedure II identified metrics that are used in 

PCA Procedure I PCA Procedure II PCA Procedure I & II 

42) Pitch_6 43) ApEn_Gyr_Z_13 7)  Mag_Y_7 
20) ApEn_Acc_X_3 
22) ApEn_Gyr_Y_3 
24) ApEn_Mag_X_3 
26) ApEn_Mag_Z_3 
28) ASMA_6 
30) SVM_6 
38) WD_Mag_Y_13 

19)  Gait_Events 
21) ApEn_Acc_Z_3 
23) ApEn_Gyr_Z_3 
25) ApEn_Mag_Y_3 
27) ApEn_Gyr_Y_13 
29) ASMA_13  
34) WD_Mag_Y_6  
39) WD_Mag_Z_13 

1) Mag_X_3 
3) Mag_X_6 
5) Mag_Z_6 
8) Mag_Z_7 
10) Mag_Y_13 
12) Mag_X_14 
14) Pitch_3 
16) Pitch_7 
18) Pitch_14 
32) WD_Mag_Z_3 
35) WD_Mag_X_7 
37) WD_Mag_X_13 
41) WD_Mag_Z_14 

2) Mag_Z_3 
4) Mag_Y_6 
6) Mag_X_7 
9) Mag_X_13 
11) Mag_Z_13 
13) Mag_Z_14 
15) Yaw_6 
17) Pitch_13 
31) WD_Mag_X_3 
33) WD_Mag_X_6 
36) WD_Mag_Z_7 
40) WD_Mag_X_14 

Figure 7.10 - Scree Plot of the PCA procedure II when using the global data. 
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the scientific community concerning the study of Fs such as ASMA and SVM. Thus, for now on, in 

the next steps, it will be used only the PCA procedure II to identify the relevant metrics.    

The second step consists in performing the same process using data from WF. Note that 

this second step had fewer observations (129 gait cycles) than the number of variables (228). 

Figure 7.11 depicts the scree plot of PCA procedure II. This time the number of selected PCs 

decreases to two, and the cumulative percent explained was 47.14%, which is lower when 

compared to the results of the previous step.  

 

 

 

 

 

 

 

 

 

 

From PCA procedure II were extracted 44 relevant metrics, and their description is 

available on Table 7.3. Comparing to the results obtained in the previous step (Table 7.2), it is 

possible to claim that the number of relevant metrics is higher, and metrics like SVd or SMA appear. 

The third step focused on the PF data, identifying the relevant metrics once again through 

the PCA procedure II. As in the previous step, the number of observations (135 gait cycles) is less 

than the number of variables (228). According to the scree plot depicted in Fig. 7.12, it is possible 

to observe that the number of PCs that respect the criterion of Kaiser is three. 

 

 

Figure 7.11 - Scree Plot of the PCA procedure II when using the Walking Forward (WF) data. 
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Table 7.3 – Relevant metrics identified from PCA procedure II (WF Data) 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

This time, 45 relevant metrics were selected through the PCA procedure II (Table 7.4), 

which is a very close number to that obtained in the previous step (44). However, there are quite 

differences in the selected metrics when compared to results of Table 7.3. Therefore, there is a 

clear predominance of the Mag and metrics derived from this sensor. 

PCA Procedure II – WF data 

1) Mag_X_3 
7) Mag_Z_7 
13) Mag_Z_13 
19) ApEn_Acc_Z_3 
25) ApEn_Mag_Y_7 
31) ASMA_13 
37) SMA_13 
43) WD_Mag_Z_13 

2) Mag_Z_3 
8) Acc_Y_13 
14) Mag_X_14 
20) ApEn_Gyr_Y_3 
26) ApEn_Acc_Y_13 
32) SVM_6 
38) WD_Mag_X_3 
44) WD_Mag_X_14 

3) Acc_Y_6 
9) Acc_Z_13 
15) Mag_Z_14 
21) ApEn_Gyr_Z_3 
27) ApEn_Gyr_X_13 
33) SVM_13 
39) WD_Mag_X_6 
 

4) Gyr_X_6 
10) Gyr_X_13 
16) Gait_Events 
22) ApEn_Mag_X_3 
28) ApEn_Gyr_Y_13 
34) SVd_13 
40) WD_Mag_X_7 

 

5) Mag_X_6 
11) Mag_X_13 
17) ApEn_Acc_X_3 
23) ApEn_Mag_Y_3 
29) ApEn_Mag_Y_14 
35) Z2_Vert_Acc_13 
41) WD_Mag_X_13 

 

6) Mag_X_7 
12) Mag_Y_13 
18) ApEn_Acc_Y_3 
24) ApEn_Mag_Z_3 
30) ASMA_6 
36) SMA_6 
42) WD_Mag_Y_13 

 

Figure 7.12 – Scree Plot of the PCA procedure II when using the PF data. 
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Figure 7.13 - Scree Plot of the PCA procedure II when using the F data. 

 

Table 7.4 – Relevant metrics identified from PCA procedure II (PF Data) 

Finally, as last step, relevant metrics from F data were extract once again from the same 

procedure previously used. Due to the criterion of Kaiser, the number of selected PCs is two like 

when was used WF data. Figure 7.13 depicts the scree plot created with the PCA procedure using 

F data. Once again, the number of observations (134) is less than the number of variables (228).  

  

 

 

 

 

 

 

 

 

 

In this step, the number of selected metrics through the PCA procedure II was 30, which 

is an inferior value when compared to the two previous steps. As observed previously in Table 7.4, 

it was verified once again a clear predominance of the Mag and metrics derived from this sensor 

PCA Procedure II – PF data 

1) Mag_X_3 
7) Mag_Z_7 
13) Pitch_3 
19) Joint_Ang_L 
25) ApEn_Mag_Y_3 
31) ASMA_6 
37) WD_Mag_X_6 
43) WD_Mag_Z_13 

2) Mag_Z_3 
8) Mag_X_13 
14) Pitch_6 
20) ApEn_ Acc_Y_3 
26) ApEn_Mag_Z_3 
32) ASMA_13 
38) WD_Mag_Y_6 
44) WD_Mag_X_14 

3) Mag_X_6 
9) Mag_Y_13 
15) Yaw_6 
21) ApEn_ Acc_Z_3 
27) ApEn_Gyr_Y_13 
33) SVM_6 
39) WD_Mag_X_7 
45) WD_Mag_Z_14 

4) Mag_Y_6 
10) Mag_Z_13 
16) Pitch_7 
22) ApEn_ Gyr_X_3 
28) ApEn_Gyr_X_14 
34) SVd_13 
40) WD_Mag_Z_7 

 

5) Mag_ Z_6 
11) Mag_X_14 
17) Pitch_14 
23) ApEn_ Gyr_Y_3 
29) ApEn_Gyr_Z_14 
35) WD_Mag_X_3 
41) WD_Mag_X_13 

 

6) Mag_X_7 
12) Mag_ Z_14 
18) Gait_Events 
24) ApEn_ Gyr_Z_3 
30) ApEn_Mag_Y_14 
36) WD_Mag_Z_3 
42) WD_Mag_Y_13 
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(Table 7.5). Overall, from this PCA procedure the number of variables (228) was reduced to 61 

non-repeated and relevant variables distributed among the four locomotion modes. Figure 7.14 

depicts all metrics and locomotion modes they belong. 

Table 7.5 – Relevant metrics identified from PCA procedure II (F’s Data) 

 

Legend: 

 

 

 

PCA Procedure II – F data 

1) Mag_X_3 
7) Mag_X_7 
13) Mag_X_14 
19) ApEn_Acc_X_7 
25) WD_Mag_X_7 

2) Mag_ Y_3 
8) Mag_Y_7 
14) Mag_Y_14 
20) ApEn_Gyr_Y_7 
26) WD_Mag_Y_7 

3) Mag_Z_3 
9) Mag_Z_7 
15) Mag_Z_14 
21) ApEn_Acc_X_14 
27) WD_Mag_Z_7 

4) Mag_X_6 
10) Mag_X_13 
16) Gait_Events 
22) ApEn_Gyr_Y_14 
28) WD_Mag_Y_13 

5) Mag_Y_6 
11) Mag_Y_13 
17) ApEn_Mag_Z_3 
23) WD_Mag_Y_3 
29) WD_Mag_Z_13 

6) Mag_Z_6 
12) Mag_ Z_13 
18) ApEn_Acc_Y_6 
24) WD_Mag_Z_6 
30) WD_Mag_Y_14 

Mag_X_3 Mag_Z_3 Acc_Y_6 Gyr_X_6 Mag_X_6 Mag_Y_6 

Mag_Z_6 Mag_X_7 Mag_Y_7 Mag_Z_7 Acc_Y_13 Acc_Z_13 

Gyr_X_13 Mag_X_13 Mag_Y_13 Mag_Z_13 Mag_X_14 Mag_Z_14 

Pitch_3 Pitch_6 Yaw_6 Pitch_7 Pitch_13 Pitch_14 

Gait_Events Joint_Ang_L ApEn_Acc_X_3 ApEn_Acc_Y_3 ApEn_Acc_Z_3 ApEn_Gyr_X_3 

ApEn_Gyr_Y_3 ApEn_Gyr_Z_3 ApEn_Mag_X_3 ApEn_Mag_Y_3 ApEn_Mag_Z_3 ApEn_Mag_Y_7 

ApEn_Acc_Y_13 ApEn_Gyr_X_13 ApEn_Gyr_Y_13 ApEn_Gyr_X_14 ApEn_Gyr_Z_14 ApEn_Mag_Y_14 

ASMA_6 ASMA_13 SVM_6 SVM_13 SVd_13 Z2_Vert_Acc_13 

SMA_6 SMA_13 WD_Mag_X_3 WD_Mag_Z_3 WD_Mag_X_6 WD_Mag_Y_6 

WD_Mag_X_7 WD_Mag_Z_7 WD_Mag_X_13 WD_Mag_Y_13 WD_Mag_Z_13 WD_Mag_X_14 

  WD_Mag_Z_14   

 Global, WF, PF, F  WF, F   
 Global, PF  WF   
 Global, PF, F  PF   
 Global, WF, F  WF, PF, F   
 Global     

Figure 7.14 – Non-repeated and relevant metrics identified through PCA procedure and the indication to which group 

they belong. 
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7.1.5.2. ASMs 

Concerning the construction of the sets of ASMs, 75% of each type of data were used as 

training data. So, from 129 WF gait cycles, 97 were used as training data. From 970 Global gait 

cycles, 727 were used. 101 PF motion periods were used in a total of 135, and 100 F motion 

periods were also used to train F’s set of ASMs. Consequently, 4 sets of ASMs were constructed 

(one for each locomotion mode). Each set of ASMs contains as many stereotypical variables (ASMs) 

as the relevant variables selected by PCA procedure for each locomotion mode (Table 7.1). Figure 

7.15 depicts four examples of stereotypical variables (only 𝑋̅𝐴𝑆𝑀 ± 𝜎̂𝐴𝑆𝑀).   

One of the initial doubts about the type of data was whether PF data should be considered 

as normal gait or abnormal gait. Hence, after the sets of ASMs were constructed, a total of eight 

ROC analyses were performed. Table 7.6 contains the designation and the description of each ROC 

analysis. For each ROC analysis, 𝑧 value ranged from 1 to 5, M ranged from 3 to 6, and N ranged 

from 1 to 6. The chosen criterion to select the best combination of parameters was the criterion of 

the minimal Euclidian distance. 

Figure 7.15 – Examples of ASMs. a) Gyr_X_6 from WF set of ASMs; b) SVM_6 from Global set of ASMs; c) 

Mag_Z_13 from PF set of ASMs; d) Mag_Y_3 from F set of ASMs. 
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Table 7.6 – Different ROC analyses and their considerations 

Designation Training Data Description 

1) ASM WF** WF PF data were not used in the tests 

2) ASM WF* WF PF data as non-normal gait 

3) ASM WF WF PF data as normal gait 

4) ASM Global* Global PF data as non-normal gait 

5) ASM Global Global PF data as normal gait 

6) ASM Fall F PF data as normal gait (different from F data) 

7) ASM PF∆ PF PF different from other types of data 

8) ASM PF PF PF data as normal gait 

 

The first ROC analysis did not count with the PF’s data. Under these circumstances, the 

best combination of parameters was found: 𝑧=3.2, M=5, and N=6. Respective ROC curve is 

depicted in Fig. 7.16. Moreover, the results could not be better. All gait cycles from WF and Global’s 

data were considered as non-failures. On the other hand, all motion periods from F’s data were 

considered as failures. Table 7.7 contains the predicted conditions from the WF’s set of ASMs. 

Table 7.7 – Predicted conditions - ASM WF** (FP–False Positive; TN–True Negative; TP–True Positive; FN–False 

Negative) 

Locomotion mode FP TN TP FN 

WF 0 32   

Global 0 243   

F   34 0 

 

In addition to this study, we also tried to understand, among the variables, those in which 

more failures or situations outside the range of the set were detected. It is expected that metrics 

measured in the axis perpendicular to the direction of movement (mediolateral axis) have less 

failures. Figure 7.17 shows a histogram for all 44 metrics counting the number of failures per 

variable or metric. 
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Figure 7.17 reveals that in all failure’s situations, variables 1, 5, 6, 11, and 14 (Mag X-axis 

from all sensing devices – Numbering in Table 7.3) have never been outside the normal range of 

the ASM values. This means that no change was registered in the direction perpendicular to the 

Figure 7.16 – ROC curve of the first ROC analysis – ASM WF**. 

Figure 7.17 – Histogram of the number of failures per metric – ASM WF**. 
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movement. On the other hand, variables 2, 9, 13, and 43 (Mag_Z_3, Acc_Z_13, Mag_Z_13, and 

WD_Mag_Z_13, respectively – Numbering in Table 7.3) have been outside the normal range of 

the ASM values more than 200 times. All these variables have axes parallel to the sagittal plane of 

the subject. Once obtained the best parameters, it is possible to observe the ASMs of this WF’s 

set, as well as the successful and unsuccessful trials. Figure 7.18 depicts some examples of ASMs 

of this WF’s set of ASMs.  

In the second ROC analysis, PF’s data were considered as non-normal gait. So, F’s 

situations or PF’s data were considered as failures, while the remaining data (WF and Global) were 

considered as non-failure. The best combination of parameters was: 𝑧=3.4, M=3, and N=2. 

Respective ROC curve is depicted in Fig. 7.19. This time, not all WF’s gait cycles (3) or Global’s 

gait cycles (36) were considered as true negatives as they should. Even PF’s data was not 

successfully identified as non-normal gait since 50% of the test’s data were considered as false 

Figure 7.18 – Examples of ASMs. a) Gyr_X_6; b) Acc_Z_13; c) WD_Mag_Z_13; d) Mag_Z_13 (Green – Successful 

motion periods; Red – Unsuccessful motion periods; Blue – Weighted STD). 
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negative. However F’s data were successfully identified as failure, because 100% of the test’s data 

were considered as true positive. Table 7.8 contains all this information. 

Table 7.8 – Predicted conditions-ASM WF* (FP–False Positive; TN–True Negative; TP–True Positive; FN–False 

Negative) 

Locomotion mode FP TN TP FN 

WF 3 29   

Global 36 207   

F   34 0 

PF   17 17 

 

Furthermore, again a histogram for all 44 metrics counting the number of failures per 

variable or metric was made (Fig. 7.20). As in the previous analysis, variables 1, 5, 6, 11 and 14 

(Mag X-axis from all sensing devices – Numbering in Table 7.3) have never been outside the normal 

range of the ASM values. However, this time, only variables 2 and 13 (Mag_Z_3 and Mag_Z_13, 

respectively – Numbering in Table 7.3) have been outside the normal range of the ASM values 

Figure 7.19 - ROC curve of the second ROC analysis – ASM WF*. 
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more than 200 times. Under these circumstances, the successful and unsuccessful motion periods 

concerning these two variables are depicted in Fig. 7.21 as well as the weighted standard deviation 

of the respective ASMs.   

The third ROC analysis was the last one that was made to the set of ASMs whose training 

data are WF. This time, PF’s data were considered as normal gait like WF and Global’s data. So, 

Figure 7.20 - Histogram of the number of failures per metric – ASM WF*. 

Figure 7.21 - Examples of ASMs. a) Mag_Z_3; b) Mag _Z_13 (Green – Successful motion periods; Red – 

Unsuccessful motion periods; Blue – Weighted STD). 
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only F’s situations data were considered as failures. Thus, the best combination of parameters was 

𝑧=2.8, M=6, and N=6. The ROC curve of this ROC analysis is depicted in Fig. 7.22. Contrary to 

the previous ROC analysis, the results (Table 7.9) were quite good since only one gait cycle was 

considered a false positive in a total of 275 (Global and WF). In 34 PF’s motion periods, only two 

were considered as false positive, and none F’s motion period was considered as false negative.  

Table 7.9 - Predicted conditions-ASM WF (FP–False Positive; TN–True Negative; TP–True Positive; FN–False 

Negative) 

Locomotion mode FP TN TP FN 

WF 0 32   

Global 1 242   

F   34 0 

PF 2 32   

From the histogram of the Fig.7.23, it is possible to observe that the same variables (1, 5, 

6, 11 and 14 - Mag X-axis from all sensing devices – Numbering in Table 7.3) identified in the last 

two ROC analysis have never been outside the normal range of the ASM values. Variables 2, 9, 

Figure 7.22 - ROC curve of the third ROC analysis – ASM WF. 
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and 13 (Mag_Z_3, Acc_Z_13, and Mag_Z_13) appear again as the variables that have been 

outside the normal range of the ASM values more than 200 times. Examples of successful and 

unsuccessful motion periods can be found in Fig. 7.24. 

 

The fourth ROC analysis had Global’s motion periods as training data. In this ROC analysis, 

PF’s data were considered as non-normal gait. So, F’s situations and PF’s data were considered 

Figure 7.23 - Histogram of the number of failures per metric – ASM WF. 

Figure 7.24 – Examples of ASMs. a) Acc_Z_13; b) Mag _Z_13 (Green – Successful motion periods; Red – 

Unsuccessful motion periods; Blue – Weighted STD). 
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as failures, while the remaining data (WF and Global) were considered as non-failure. The best 

combination of parameters was: 𝑧=3.2, M=3, and N=1, and the respective ROC curve is depicted 

in Fig. 7.25. This time, not all WF’s gait cycles (7) or Global’s gait cycles (38) were considered as 

true negatives as they should. PF’s data was not successfully identified even as non-normal gait 

since 16 motion periods of the test’s data were considered as false negative. However F’s data 

were successfully identified as failure, because only one in 34 of the test’s data were considered 

as false negative. These results (Table 7.10) were not as good as the previous ones. 

Table 7.10 - Predicted conditions-ASM Global* (FP–False Positive; TN–True Negative; TP–True Positive; FN–False 

Negative) 

Locomotion mode FP TN TP FN 

WF 7 25   

Global 38 205   

F   33 1 

PF   18 16 

  

Figure 7.25 – ROC curve of the fourth ROC analysis – ASM Global*. 
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Taken into account the histogram of the Fig. 7.26, it is possible to retain that there are no 

variables that have been outside the normal range of the ASM values more than 200 times. Only 

three have more than 100 failures (7, 11, and 39 – Mag_Y_7, Mag_Z_13, and WD_Mag_Z_13 – 

Numbering in Table 7.2). On the other hand, there are more variables that had no failures, namely 

variables 1, 3, 9, and 12 (Mag X-axis from all sensing devices except number 7 – Numbering in 

Table 7.2). These findings do not differ so much from the previous ones. Examples of successful 

and unsuccessful motion periods, concerning this ROC analysis, can be found in Fig. 7.27. 

Figure 7.26 – Histogram of the number of failures per metric – ASM Global*. 

Figure 7.27 – Examples of ASMs. a) Mag_Y_7; b) WD_Mag _Z_13 (Green – Successful motion periods; Red – 

Unsuccessful motion periods; Blue – Weighted STD). 
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Following the fourth ROC analysis, a new analysis was carried out considering the PF’s 

data as normal gait like WF and Global’s data. Only F’s data were considered as potential failures. 

Hence the best combination of the parameters was achieved (𝑧=4.2, M=4, and N=1) through the 

ROC curve (Fig. 7.28). Overall, the results (Table 7.11) were quite good because only 6 motion 

periods of normal gait were considered as false positive (WF – 1, Global – 3, and PF - 2), and all 

F’s test data were identified as true positive (failure). However, the results of the third ROC analysis 

(WF’s data as training data) were better. 

Table 7.11 – Predicted conditions-ASM Global (FP–False Positive; TN–True Negative; TP–True Positive; FN–False 

Negative) 

Locomotion mode FP TN TP FN 

WF 1 31   

Global 3 240   

F   34 0 

PF 2 32   

Figure 7.28 – ROC curve of the fifth ROC analysis – ASM Global. 
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Furthermore, again a histogram for all 41 metrics counting the number of failures per 

variable or metric was made (Fig. 7.29). This time, the number of variables without detected 

failures is higher (14). Those variables are 1, 2, 3, 4, 6, 8, 9, 10, 12, 13, 14, 16, 18, and 27 

(Mag_X_3, Mag_Z_3, Mag_X_6, Mag_Y_6, Mag_X_7, Mag_Z_7, Mag_X_13, Mag_Y_13, 

Mag_X_14, Pitch_7, Pitch_14, and ApEn_Gyr_Y_13, respectively – Numbering in Table 7.2). On 

the other hand, the number of failures per metric is less when compared to other previous ROC 

analyses. Only, two metrics have more failures than 15, namely 11 and 39 (Mag_Z_13 and WD_ 

Mag_Z_13). Examples of successful and unsuccessful motion periods, concerning these 

considerations, can be found in Fig. 7.30. 

Figure 7.29 - Histogram of the number of failures per metric – ASM Global. 

Figure 7.30 – Examples of ASMs. a) Mag_Z_13; b) WD_Mag _Z_13 (Green – Successful motion periods; Red – 

Unsuccessful motion periods; Blue – Weighted STD). 
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The sixth ROC analysis focuses on the set of ASMs for F’s situations. In this particular case, 

the notion of failure or non-failure is totally different from the previous ROC analyses. This time, it 

was considered failure every motion periods different from F’s situations. So, PF, Global and WF’s 

data were considered failure, and F’s data were considered non-failure instead. Therefore, the best 

combination of the parameters was achieved (𝑧=1.7, M=6, and N=4) through the ROC curve      

(Fig. 7.31). The results (Table 12) were considered as fair because not all WF (11), Global (39), 

and PF’s gait cycles (7) were considered as true positives as they should. Concerning the F’s data, 

6 in 34 were identified as false positive. 

Table 7.12 – Predicted conditions-ASM F (FP–False Positive; TN–True Negative; TP–True Positive; FN–False 

Negative) 

Locomotion mode FP TN TP FN 

WF   21 11 

Global   204 39 

F 6 28   

PF   27 7 

Figure 7.31 – ROC curve of the sixth ROC analysis – ASM F. 
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Taken into account the histogram of the Fig. 7.32, it is possible to observe that there are 

no variables that have no failures’ situations. Since the number of failures is higher, because WF, 

Global and PF’s data were considered as predictable failures, the number of failures per metric 

reach values higher than 100 to more than 2500. Five variables have more than 2500 failures (1, 

3, 4, 7 and 13 – Mag_X_3, Mag_Z_3, Mag_X_6 and Mag_X_14 – Numbering in Table 7.5). 

Examples of successful and unsuccessful motion periods, concerning this ROC analysis, can be 

found in Fig. 7.33.  

 

Figure 7.32 – Histogram of the number of failures per metric – ASM F. 

Figure 7.33 – Examples of ASMs. a) ApEn_Acc_X_7; b) Mag _Z_3 (Green – Successful motion periods; Red – 

Unsuccessful motion periods; Blue – Weighted STD). 
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The last two ROC analyses considered the PF’s data as training data of the set of ASMs. 

Firstly, PF’s data were considered as different from WF, Global and F’s data. In the last case, PF’s 

data were considered as normal gait like WF and Global’s data. Thus, this is a similar consideration 

to the third and fifth ROC analyses’ considerations. In the seventh ROC analysis, the best 

combination of the parameters was 𝑧=1.8, M=5, and N=4. Respective ROC curve is depicted in 

Fig. 7.34. The results (Table 13) were considered as poor because, in general, concerning WF, 

Global and F’s data, it had more false negatives than true positives. Concerning the PF’s data, 9 

in 34 were identified as false positive. 

Table 7.13 – Predicted conditions-ASM PF∆ (FP–False Positive; TN–True Negative; TP–True Positive; FN–False 

Negative) 

Locomotion mode FP TN TP FN 

WF   12 20 

Global   113 130 

F   17 17 

PF 9 25   

 

Figure 7.34 – ROC curve of the seventh ROC analysis – ASM PF∆. 
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As verified in the last histogram, the number of times that a variable went out of the range 

of the respective ASM is high (Fig. 7.35). First, there are no variables that have no failures’ 

situations. And second, there are five variables that have more than 2500 failures (1, 3, 6, 8 and 

11 – Mag X-axis from all sensing devices – Numbering in Table 7.4). Given the considerations 

made for this particular situation, it is considered normal to have a huge number of failures. 

Examples of successful and unsuccessful motion periods, concerning this ROC analysis, can be 

found in Fig. 7.36. 

Figure 7.35 – Histogram of the number of failures per metric – ASM PF∆. 

Figure 7.36 – Examples of ASMs. a) ASMA_6; b) SVd_13 (Green – Successful motion periods; Red – Unsuccessful 

motion periods; Blue – Weighted STD). 
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The best combination of the parameters in the last ROC analysis was 𝑧=3.4, M=5, and 

N=1. Respective ROC curve is depicted in Fig. 7.37. Once again, considering the PF’s data as 

normal gait like WF and Global’s data, the results (Table 14) were considered as good. In general, 

the number of false positives was low (6 in a total of 309 motion periods). On the other hand, all 

predictable failures (true positives) were confirmed as failures. This finding indicates that the PF’s 

data, once again, are closer to the normal gait data. 

Table 7.14 – Predicted conditions-ASM PF (FP–False Positive; TN–True Negative; TP–True Positive; FN–False 

Negative) 

Locomotion mode FP TN TP FN 

WF 1 31   

Global 4 239   

F   34 0 

PF 1 33   

 

Figure 7.37 – ROC curve of the eighth ROC analysis – ASM PF. 
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Furthermore, the histogram depicted in the Fig. 7.38 reveals that there is a high number 

(9 in 45) of variables without detected failures. Those variables are 1, 2, 3, 6, 11, 12, 16, 17, and 

27 (Mag_X_3, Mag_Z_3, Mag_X_6, Mag_X_7, Mag_X_14, Mag_Z_14, Pitch_7, Pitch_14, and 

ApEn_Gyr_Y_13, respectively – Numbering in Table 7.4). On the other hand, the number of 

failures per metric is less when compared to other previous ROC analyses. Only, three metrics 

have more failures than 25, namely 10, 21 and 43 (Mag_Z_13, ApEn_Acc_Z_3 and WD_ 

Mag_Z_13). Examples of successful and unsuccessful motion periods, concerning these 

considerations, can be found in Fig. 7.39. 

Figure 7.38 – Histogram of the number of failures per metric – ASM PF. 

Figure 7.39 – Examples of ASMs. a) ApEn_Acc_Z_3; b) Mag_Z_6 (Green – Successful motion periods; Red – 

Unsuccessful motion periods; Blue – Weighted STD). 
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In order to summarize all relevant information in tables, Table 7.15 contains the best 

combination of parameters for each ROC analysis, as well as the value of the minimal Euclidian 

distance. On the other hand, Table 7.16 contains the values of the sensitivity, specificity, detection 

score, false positive rate, and false negative rate for each ROC analysis. 

Table 7.15 – Best combinations of parameters and the minimal Euclidean distance for each ROC analysis 

ASM set (ROC analysis) z M N Minimal Euclidean Distance 

ASM WF** 3.2 5 6 0 

ASM WF* 3.4 3 2 0.2874 

ASM WF 2.8 6 6 0.0097 

ASM Global* 3.2 3 1 0.2988 

ASM Global 4.2 4 1 0.0194 

ASM Fall 1.7 6 4 0.2553 

ASM PF∆ 1.8 5 4 0.6018 

ASM PF 3.4 5 1 0.0194 

 

 

Table 7.16 – Metrics of each ROC analysis (TPR – True Positive Rate) 

Metric 
ASM 
WF** 

ASM 
WF* 

ASM 
WF 

ASM 
Global* 

ASM 
Global 

ASM 
Fall 

ASM 
PF∆ 

ASM 
PF 

Sensitivity (TPR) 100% 75% 100% 75% 100% 81.55% 45.95% 100% 

Specificity (SPC) 100% 85.82% 99.03% 83.64% 98.06% 82.35% 73.53% 98.06% 

Detection score 1.41 1.14 1.407 1.12 1.4006 1.159 0.8671 1.4006 

False Positive Rate 
(1-SPC) 

0% 14.18% 0.97% 16.36% 1.94% 17.65% 26.47% 1.94% 

False Negative 
Rate (1-TPR) 

0% 25% 0% 25% 0% 18.45% 54.05% 0% 
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7.2. Stage 2 

The second stage focuses on the construction of a classifier of motion periods based on 

the constructed sets of ASMs, and this is therefore possible only with the results of the first stage. 

The first step was the construction of a decision cascade based on built sets of ASMs with the 

intention of classifying a motion period as one of four things, namely: 1) normal gait; 2) F; 3) PF 

step; and 4) other type. The decision cascade is shown in Fig. 7.40 and its explanation is given 

below.   

Decision cascade uses relevant metrics to classify motion periods. As first step, it was 

decided to check if the motion period is considered as normal set (Normal gait). If a non-failure 

happens then the all process is stopped and the motion period is labelled as “Normal gait”. 

Otherwise, it is necessary to verify other conditions. The first condition to be checked is the falling 

situation. In this situation, a F is detected if a non-failure situation is detected, which means that 

the motion period’s data should be inside the weighted STD of the respective set of ASMs. If a 

Figure 7.40 – Decision cascade to classify collected motion periods. 
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failure is detected in the ASM_F, then the PF’s condition is the last one to be verified. Once again, 

if a failure is detected, the final answer is “Other” which will label the motion period. Otherwise, a 

PF’s motion period is detected. 

The order to check or classify the motion period was decided based on the results of the first 

stage. Basically, the WF’s set of ASMs obtained the best results, even when compared to the results 

of the Global’s set of ASMs. Then, between F’s set of ASMs and PF’s set of ASMs, the first one had 

better results. So, in order to have better results in the classification process, the presented order 

in Fig. 7.40 was established. To test the decision cascade was used the test’s data of the stage 1, 

and two considerations were made separately. The first consideration is to treat PF’s data as 

different from F, WF and Global’s data. The other consideration is to treat PF’s data as normal gait 

like WF and Global’s data. 

7.2.1. Results 

A total of 343 motion periods were used (WF – 32; Global – 243; F – 34; PF - 34) to test 

the decision cascade. The results of the first consideration are available on the Table 7.17. In this 

consideration, the parameters used for WF’s set of ASMs were 𝑧=3.4, M=3, and N=2, and the 

parameters used for PF’s set of ASMs were 𝑧=1.8, M=5, and N=4. On the other hand, Table 7.18 

contains the results of the second consideration. This time, the parameters of the WF’s set of ASMs 

were 𝑧=2.8, M=6, and N=6, and the parameters used for PF’s set of ASMs were 𝑧=3.4, M=5, and 

N=1. The respective accuracies will be also presented. 

Table 7.17 – Results of the decision cascade when PF’s data were considered as different                                 

from the other types of data 

Locomotion 
mode 

Normal 
Gait 

F PF Other 
Well 

Classified 
Percentage 

(%) 

WF 29 1 0 2 29 90.63% 

Global 207 2 3 31 207 85.19% 

F 0 26 0 8 26 76.47% 

PF 17 2 10 5 10 29.41% 

 

The first result is not optimal due to the low percentages in the recognition of PF’s gait 

cycles, but can be considered as good. Obviously, from the results of the first stage, it is possible 
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to retain that PF’s data is more close to the WF and Global’s data than F’s data. However, from 

the 343 motion periods, 272 were well classified. Thus, under these circumstances, the accuracy 

of this decision cascade is 79.3%. 

Table 7.18 – Results of the decision cascade when PF’s data were considered like WF and Global’s data 

Locomotion 
mode 

Normal 
Gait 

F PF Other 
Well 

Classified 
Percentage 

(%) 

WF 32 0 0 0 32 100% 

Global 242 0 1 0 243 100% 

F 0 26 0 8 26 76.47% 

PF 32 0 1 1 34 97.06% 

When PF’s data were considered as normal gait or similar to WF and Global’s motion 

periods, the results improved. 334 motion periods were well classified in a total of 343. PF’s data 

were classified as normal gait mostly. Only 1 motion period was identified as PF. The accuracy of 

the decision cascade was 97.38%. 

7.3. Stage 3 

7.3.1. Convolutional Neural Networks 

Deep learning is a machine learning technique that learns features and tasks directly from 

data, where data can be images, text, or sound. This key technology achieves recognition accuracy 

at higher levels than ever before. Due to recent advances, deep learning has been improved to the 

point where deep learning outperforms humans in some tasks classifying objects in images. 

Although deep learning was idealized in the 1980s, it only began to be useful recently due to two 

main reasons: Deep learning requires i) large amounts of labelled data; and ii) substantial 

computing power (high-performance GPUs have a parallel architecture that is efficient for deep 

learning) [190].  

Neural network architectures are commonly used in most deep learning methods, and the 

term “deep” usually refers to the number of hidden layers in the neural network (Fig. 7.41). 

Traditional neural networks only have 2-3 hidden layers, while deep networks can have a high 

number e.g. 150 [190].  
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CNNs are essential tools for deep learning and were inspired from the biological structure 

of a visual cortex, which contains arrangements of simple and complex cells [191]. A CNN 

convolves learned features with input data, and uses 2D convolutional layers, making this 

architecture well suited to processing 2D data, such as images [190], [192]. This type of deep 

neural network eliminates the need for manual feature extraction, which is the big difference 

between machine learning and deep learning, so it is not necessary to identify features to classify 

images. In turn, features are extracted directly from images. The relevant features are not pre-

trained. They are learned while the network trains on a collection of images instead [190], [192]. 

Thus, deep learning models can be highly accurate.  

In this work, deep learning (CNN) was chosen over machine learning because CNN 

provides automatic feature extraction and a high-performance GPU is available for training process 

[190]. The number of types of data (3 labels – Normal gait, PF, and F) is quite small, and the 

number of collected motion periods is of the order of a thousand, more specifically, 1368.  

Since CNN is a classifier by nature, it is not necessary to use all metrics from all previously 

constructed sets of ASMs. This time, only the 41 relevant metrics obtained from the PCA procedure 

that used Global’s data will be used in the CNN, because this particular PCA procedure is the most 

valid one. In fact, it is the only PCA procedure done that the number of observations is greater than 

the number of variables. Thus, each motion period will be represented as a matrix with 100 rows 

(samples) and 41 columns (metrics). 

As CNN it was used an online available Matlab® toolbox hagaygarty/mdCNN supporting 

1D, 2D and 3D kernels [193]. Once each motion period is represented by a matrix, each one will 

be regarded as an image (2D). The default size of each input image is 28x28 [193], so each motion 

Figure 7.41 - Layers that constitute a neural network, which consist of a set of interconnected nodes [190]. 
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period will be first resampled and then resized, as depicted in Fig. 7.42. As in the first stage, the 

same training data will be used to train the CNN, and the same test data will be used to get the 

accuracy of the classifier. Finally, two neural networks were trained and tested. One considered 

PF’s data as normal gait (Case 1), and the other considerer PF’s data as different from the other 

locomotion modes (Case 2). Results of the accuracy were obtained for both situations.  

  

7.3.2. Results 

For the first case, the trained CNN was able to achieve 100% of accuracy with the test 

data, exemplarily distinguishing the normal gait from F’s situations. In the second case, the results 

were less good, having the trained CNN reached an accuracy of 81.92%. From 275 normal gait 

cycles, 230 were identified as normal gait, and the rest 44 were classified as PF’s situation and 1 

as F’s situation. The total of 34 F’s motion periods were identified correctly. Finally, from 34 PF’s 

motion periods, only 17 were correctly identified, and the rest was included in the group of normal 

gait. The following table contains the results of the second case. Overall, the accuracy in both cases 

were better when compared to the results of the last stage. 

Table 7.19 – Results of the Case 2 of the stage 3 (Input image: 28x28) 

Locomotion mode Normal Gait F PF Total Success rate (%) 

WF & Global 230 1 44 275 83.64% 

F 0 34 0 34 100% 

PF 17 0 17 34 50% 

Since the input image’s default size 28x28 represents loss of information, the size of the 

input image was changed to 100x41. The exact same size of the matrix that contains the relevant 

information of each motion period. This last attempt to get better results was only performed when 

Figure 7.42 – Processes of resampling and resizing to use data as input in the CNN. 
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PF’s data were considered as different from other types of data, because in the other situation the 

accuracy was 100% and it can’t be improved. With this change, the accuracy improved to 92.71%, 

which is a great result. All F’s motion periods were all classified correctly. In a total of 34 PF’s 

motion period, 30 were well identified and 4 were considered as normal gait. 254 normal gait 

cycles were well classified, and only 21 were considered as PF’s motion period. The results are 

available in Table 7.20. 

Table 7.20 – Results of the Case 2 of the stage 3 (Input image: 100x41) 

Locomotion mode Normal Gait F PF Total Success rate (%) 

WF & Global 254 0 21 275 93.26% 

F 0 34 0 34 100% 

PF 4 0 30 34 88.24% 

 

7.4. Stage 4 

In the last stage, a new set of small indoor trials was performed in order to test the 

implemented classifiers in a different and more complex scenario. Thus, a subject (Male, 23 years 

old, 1.83m, 65Kg) perform a simple walking trial where at the end he could F on a sofa or stop. A 

total of 6 trials were performed, where in 3 the subject simulated a F, and in the other 3 he just 

stopped instead of F. This walking trial consists in walk forward, turn to the right, climb a small 

step, and stop or F on the sofa in the delineated finish line. Figure 7.43 depicts the top view of the 

walking trial. 

 

 

 

 

 

 

 

 

 

 

 Figure 7.43 – Top view of the walking trial performed in stage 4. 
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As performed in the last stages, two considerations will be taking into account, namely: i) 

PF’s data will be considered as normal gait (Case 1); and ii) PF’s data will be considered as different 

from the other locomotion modes (Case 2). Results of the accuracy were obtained for both 

situations and for both classifiers. In the first case, there will only be 2 labels (normal gait - 1; F’s 

situation - 2). In the other case, there will be 3 labels (normal gait - 1; F’s situation - 2; PF’s situation 

- 3). 

Starting with the ASMs based classifier, the results for the first case are depicted in       

Table 7.21, where the accuracy of the classifier was 83.33%. On the other hand, Table 7.22 

contains the same information as the previous table but for the second case. This time the accuracy 

was 45.83%. 

Table 7.21 – Results of the Case 1 of the stage 4 (ASMs based classifier) 

Locomotion mode Normal Gait F PF Other Total Success rate (%) 

WF & Global 18 0 0 0 18 100% 

F 1 0 1 1 3 0% 

PF 2 0 0 1 3 66.67% 

 

Table 7.22 – Results of the Case 2 of the stage 4 (ASMs based classifier) 

Locomotion mode Normal Gait F PF Other Total Success rate (%) 

WF & Global 11 0 0 7 18 61.11% 

F 0 0 0 3 3 0% 

PF 1 0 0 2 3 0% 

 

Concerning the CNN classifier, the results for the case 1 are shown in Table 7.23, where 

the accuracy was 91.67%. In turn, the information about the case 2 is available on Table 7.24. 

Under these circumstances the accuracy was 75%. 

Table 7.23 – Results of the Case 1 of the stage 4 (CNN) 

Locomotion mode Normal Gait F Total Success rate (%) 

WF & Global 18 0 18 100% 

F 2 1 3 33.33% 

PF 3 0 3 100% 
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Table 7.24 – Results of the Case 2 of the stage 4 (CNN) 

Locomotion mode Normal Gait F PF Total Success rate (%) 

WF & Global 16 0 2 18 88.89% 

F 2 1 0 3 33.33% 

PF 2 0 1 3 33.33% 

 

7.5. Discussion 

The PCA procedure proved to be very important, due to the reduction of the number of 

metrics from 228 to 61 non-repeatable between types of data. With this reduction, it was expected 

that not only would the relevant information continue to the next steps, but also the computational 

weight would be reduced and thus the processing time shortened. Another important fact about 

these results is the high predominance of the Mag and metrics derived from Mag in the outcomes 

of the PCA procedures. Obviously, this can be a complicated issue in future works due to the 

ferromagnetic influences in indoor environments. In these tests, trials were performed in an 

environment free of these ferromagnetic influences, however results will be totally different if trials 

are carried out in indoor environments, not only in the PCA procedures but also in the next steps 

of this failure detection system. Furthermore, only one PCA procedure has more observations than 

variables. However, the results are close to each other. At least, there are 25 common metrics 

between all different locomotion modes.  

Concerning the results of the ASMs block, it is certain that results show that the PF’s data 

is very close to normal gait data (WF & Global). Every time PF’s data was considered similar to WF 

and Global’s data, the results were optimal. On the other hand, when PF’s data were considered 

as different from other types of data the results were greatly reduced. For example, when the PF’s 

set of ASM was constructed, its sensitivity was less than 50%. The study of the number of failures 

per metric, represented by several histograms, reveals that, generally, data from the x-axis of the 

Mag of all sensing devices have no leakage record beyond the weighted standard deviation values. 

There is only one exception when the PF’s set of ASMs was constructed and the weighted STD was 

low. In this particular situation, those metrics have failed greatly. These metrics are measured on 

a perpendicular axis to the sagittal plane, which means that they are measured on a perpendicular 

axis to the direction of movement. Still, Mag_Z_3, Acc_Z_13, Mag_Z_13, and WD_Mag_Z_13 

were the variables that have been outside the normal range of the respective ASM values more 
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times. All of them are parallel to the direction of movement. Thus, the results presented for this 

study were expected. 

Finally, the results of the ASMs based classifier and the CNN were very impressing and 

promising due to the high accuracy presented in both classifiers and also due to the used amount 

of data. Obviously, it would be expected that the CNN would have better results. In fact, in both 

scenarios, that was verified. When PF’s data were considered as normal gait, the accuracy was 

100% for the CNN and 97.38% for the ASMs based classifier. On the other hand, when PF’s data 

were considered as different from other types of data, the accuracy was 81.92% for the CNN and 

79.3% for the other classifier. However, the difference is quite small between values, which 

highlights the ASMs based classifier when compared to a deep learning technique. One fact that 

highlights the ASMs is the fact that only the ASMs based classifier can indicate the moment of 

failure, which is truly important to know better the human gait and to direct studies to more specific 

parts of the human gait. This is the only way to gain a deeper understanding of F prevention.  

Concerning the tests with the CNNs, when the size of the input image was changed to use 

all information of each motion period, the accuracy improved to 92.71% in the second case (PF’s 

data as different from other types of data). This result is very impressive and demonstrates that, in 

fact, PF’s data have differences from normal gait. Perhaps, more data will help ASMs based 

classifier to achieve better results under these circumstances. 

Taken into account the results of the stage 4, it is possible to claim that CNN had a better 

performance over the ASMs based classifier again. The performed trials had different movements 

from those recorded previously to construct both classifiers. The inclusion of a step, a curve, and 

a F on a sofa make classification much more difficult for classifiers. Even, in this situation, the F is 

not complete, because, in previous trials, the F was complete near the ground, which it is not 

happening in this particular case.   
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Chapter 8 – Conclusions 

As described throughout this master’s thesis, IMUs or sensing devices are devices with a 

wide range of applications in human gait, where their use can bring about quite interesting 

advantages when compared to other techniques and approximates the gait monitoring to the AAL 

environments. Nowadays, this device, whose constitution is easy to understand, presents 

innumerable variants of its concept through trademarks that constantly try to overcome the 

disadvantages of this device, making it more perfect. However, research groups have also 

contributed greatly to this evolution. 

Currently, a considerable number of people present abnormal gait patterns as 

consequence of neurological diseases or muscular weakness. Consequently, the occurrence of Fs 

in these people is seen as a major risk that can lead people to fatal or non-fatal injuries, which are 

very costly. Therefore, it is necessary to achieve effective methodologies to assist and rehabilitate 

the impaired walking. According to the state of the art in Fs, one thing is granted:  Fs are a huge 

problem to the elderly population and any effort to avoid or prevent a F can save many lives. 

Research groups and commercial brands focused in F detection systems based in sensors that 

constitute IMUs, however, they realized that only detecting Fs would not be enough to prevent or 

save lives. So, it is necessary to create F risk assessment models to diagnose patient’s risk and 

give them the proper treatment, although still having the gap of not preventing impact in case of 

F, being necessary to estimate Fs or detect PFs. Thus, PF detection systems became crucial 

devices that can actually save lives by detecting a F some time before it happens. Some studies 

achieved great results, however it really needs to be more accurate, reliable, and practical, and 

future works will focus on these aspects essentially through support vector machines or other types 

of classifiers. 

Chapter 4 addresses the improvement of a real time monitoring gait system able to provide 

for an intuitive real time visual interface and real-time data visualization and recording with 3D 

IMUs. The first and most important conclusion to be drawn from this chapter is that in fact the use 

of an intuitive interface greatly facilitates the interaction between the user and the presented 

system. In addition, the interface created has all the proposed requirements obtained from a 

previous analysis of the system. Consequently, the use of this system is much more practical and 

interactive. The intervention of a large group of survey participants also greatly helped to 
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understand the strengths and weaknesses of the interface, and in general the participants 

considered the Matlab® GUI as "Good", which reaffirms that the objectives initially proposed were 

achieved. Based on these assessments some changes were delineated and included in the 

proposed GUI. 

Concerning the validation process of the IMUs based system in Chapter 5, it is possible to 

conclude that this system can be used to collect data from gait’s trials and separate and process 

data correctly. According to the communication protocol’s experiment, it is consensual that the 

presence of other wireless communications affect the good performance of the system. So, in order 

to overcome this difficulty, it would be advantageous to change the frequency band of the 

communication protocol depending on the location where the data is collected. Therefore, an 

unused frequency band or a frequency band in which its signal is weak should be chosen. The 

distance between sensory modules and the base station can also affect the number of lost frames. 

The presence of electrically conductive metals such as copper inside the laboratory, can reflect 

and absorb the radio waves and consequently interfer with their transmission. Thus, this can also 

be a reason why so many frames were lost in this environment and in the corridor. The number of 

sensory modules can also affect the loss of frames due to overlapping of message signals or 

frames. However, the gait speed has almost no influence on the loss of frames. 

According to the verification of the sensors’ typical signals, it is possible to claim the validity 

of the system due to the similarities between the typical signals presented in the scientific literature 

and those measured by the IMUs based system. Concerning the comparisons performed in the 

foot and in the thigh, IMUs’ system had a good behaviour measuring correctly the walk forward 

event. In the first topic, Mag proved to be the one with least noise, and in the second topic, Gyro 

proved to be ready to measure normal thigh variations. On the last topic (Lower back), there was 

no complete similarity due to gait speed. From this experiment it is highly recommended the use 

of a low-pass filter to reduce the noise presented in the sensors’ measures. 

The results for knee F-E angles are in accordance with the literature. This error range is 

within the values found in the gait analysis literature when using IMUs. The implemented knee 

angle measurement system based on IMUs is able to be used in gait analysis, however in future 

work the results can be improved with other calibration methods or a post-processing procedure. 

Further, note that the determination of the angles was out of the scope of this work and the author 

would have to check if other methods instead of the ones used for orientation estimation would 

provide for better results. 
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Taking into account the calibration tests, chapter 6, it is possible to claim that the PM, 

theoretically, should be the calibration method if the sensors were ideal. However, its results show 

a small error when compared to other methods. Even Gyro’s offsets measured on-body were very 

close to those measured in a horizontal surface. Once again, and as in the previous validation 

results, the RMSE values of the several calibration’s methods when compared to an optical 

reference are in accordance with the scientific literature. In general, calibration’s procedures make 

the IMUs’ system more accurate in estimating the angles of the sensory modules. 

In this thesis, the major concepts of human gait classification were demonstrated offline 

and detailed comparisons were evaluated due to the implementation of two different methods 

present in literature, namely: ASMs and CNNs. From these results, it was concluded which is the 

more adequate procedure to apply in the human classification. In fact, it was concluded that the 

combination of different types of features (gait parameters or metrics) provides a more robust tool 

for detection of user’s locomotion since each type of feature contributes with distinct information 

regarding the gait pattern. Additionally, it was concluded that the selection of the most 

discriminative features contributes either to improve the performance of the locomotion mode 

recognition, either to reduce the computation cost of this process. In this case, PCA revealed itself 

as an important procedure in this metrics’ reduction. According to the PCA procedure, the results 

from this part revealed that Mag’s sensors or metrics derived from this sensor are relevant. 

However, this can be dangerous if the IMUs’ system is used in indoor environments where the 

ferromagnetic influence is high. 

Concerning the classification phase of the locomotion mode recognition, the CNN classifier 

was selected for implementation due to its advantages as pointed out in the revised studies. Its 

results were better than the ASMs based classifier. However, in the way it was implemented, it is 

not possible to know when a change was detected. On the other hand, the ASMs based classifier 

provides this information. Indeed, the characteristics of this supervised machine learning approach 

that supports its better results are: convergence to a global optimal, avoiding the local minima and 

over-fitting in the training process; ability to minimize both structural and empirical risk leading to 

a better generalization for new data classification even with a limited training data set, producing 

stable and reproducible results; capacity of operate with nonlinear and multidimensional data, as 

parameters of gait. 

The work herein presented enables to answer the RQs outlined in Chapter 1. 
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 RQ1: What are the most used sensors to perform gait monitoring? Can the drift 

be compensated in the IMUs based system? And under what conditions? This RQ 

is addressed in Chapter 2. 

According to the literature, there are several techniques to monitor human gait. However, 

in the wearable field, the most used sensors are Acc, Gyr and Mag. Based on the surveys 

accomplished in this thesis, drift cannot be removed entirely from the estimation of angles. 

However, it can be greatly reduced by the use of a Mag as an input in a sensor fusion’s algorithm. 

Without this sensor, the error is higher. The estimated angles by an IMU when compared to an 

optical reference would be more different as time goes by, and the RMSE value between signals 

would increase. Overall, drift occurs more in indoor environments due to the ferromagnetic 

influence. In this type of environment, the Mag does not give reliable measures, and generally it is 

not used. Usually, the use of sensor fusion algorithms helps in the reduction of this error. 

 RQ2: What are the most commonly used sensors in F or PF detection systems? 

This RQ is addressed in Chapter 3. 

The commonly used sensors in the field of Fs are the sensors that constitute sensing 

devices. They are essentially used in commercial devices that detect F’s situations. Through this 

sensors it is possible to obtain metrics such as e.g.: SVM, SMA, ASMA, or SVd.  

 RQ3: To what extent does the GUI help to improve the user-system relationship? 

What is the reliability of the proposed ALSM? This RQ is addressed in Chapter 4. 

To overcome the limitations of the IMUs based system of the CMEMS, a Matlab GUI was 

created to fulfil certain requisites. According to a performed inquiry, users identified the GUI as 

intuitive and easy to use. In general, the opinions about the Matlab GUI were positive. This interface 

helps to understand what is happening in real-time. All information of the system is there. 

Concerning the ALSM, it was used several times with no failures or loss of information. 

 RQ4: Considering the used wireless IMUs based system, how many IMUs can be 

connected to the base station without problems? What can be done to increase 

the number of connected modules? This RQ is addressed in Chapter 5. 



 

  147 

 

At least 3 modules can be connected to the base station without problems in any 

environment. With this number of modules, the percentage loss of frames is low, and at a short 

distance from the base station it is near 0%. If the user pretends to use more modules with few 

losses of frames, he needs to pay attention to the following points: i) Use the modules as close to 

the base station as possible; ii) Select the freer frequency’s channel; iii) Use fully charged batteries; 

and iv) Do not use the modules too close to each other. 

 RQ5: Given the sampling frequency of the system, is it possible to get the data of 

the human gait correctly? This RQ is addressed in Chapter 5.  

In this master’s thesis, a comparison between sensors’ signals measured by the IMUs 

based system and typical signals from the scientific literature was performed. In there it is possible 

to see some examples of typical signals and the homologous signal measured by the CMEMS’ 

system, and the similarities are huge. So, by using a 30 Hz as sampling frequency it is possible to 

acquire data of the human gait correctly. Theoretically, a human stride is given per 1-2s, which 

represents a range of frequency of 0.5-1 Hz. So, the sampling frequency of 30 Hz respects the 

Theorem of Nyquist.   

 RQ6: Is it possible to perform an on-body calibration without major errors? This 

RQ is addressed in Chapter 6. 

In Chapter 6 was proved that the Gyro’s offsets measured on-body were very close to those 

measured in a horizontal surface. Concerning other sensors (Acc and Mag), what should be 

measured equally by all axes does not happen. In fact, there are no ideal sensors that measure 

equally in all directions. However, the error’s difference to other calibration methods is relevant, 

although the error in the calculation of the angles is in agreement with the literature. 

 RQ7: Which are the metrics with greater potential to detect F and PF’s situations 

in the implemented classifiers? This RQ is addressed in Chapter 7.  

Mag’s sensors or metrics derived from this sensor measured in the anteroposterior 

direction are the metrics with greater potential do detect these particular situations, according to 

the results obtained in the Chapter 7. Obviously, it was expected that metrics with components in 
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the direction of the movement could have more importance or relevance in this area, because they 

vary much more than those that are measured in a perpendicular direction. 

 RQ8: Which is the best classifier to be used in the recognition of normal gait, F 

and PF’s modes of locomotion? This RQ is addressed in Chapter 7.  

In Chapter 7 was proved that the CNN based classifier presented better results in terms 

of accuracy. However, it has some disadvantages since this CNN was not constructed by the author 

or the team. With the CNN based classifier it is not possible to know what metrics failed or when 

it failed. At the moment, only the ASMs based classifier is able to give that information. Perhaps 

more gait data will allow better results in both classifiers, and possibly bring the ASMs based 

classifier closer to the CNN based classifier. 

 

Hereupon, it is concluded that the delineated goals and RQs raised in introduction of this 

thesis were addressed. Besides, it was verified that the developed work during the master’s thesis 

improved the applicability of the IMUs based system from CMEMS, as well as contributed to 

knowledge with a general and robust tool for offline detection of F and PF’s situations. 

Consequently, the classification strategies herein proposed and validated become closer to the 

ideal system that contains a F detection system and a F forecasting system.  

8.1. Future work 

As future work it is necessary to realize experiments of subjects walking in other different 

locomotion modes, such as ascending/descending stairs; start/stop walking; sit-to-stand/stand-to-

sit; walking with changes in speed; and others. As well as collecting data from different types of F. 

Basically it is pretended to have a system capable not only to say if a normal gait or a F or PF’s 

situation is happening, but also how it is happening and what the subject is doing. Also more data 

from more trials will increase greatly the classifier’s accuracy. In the case of the CNN, it requires 

a huge amount of data in order to the results being more reliable. 

The implementation of the classifiers was only offline. Nevertheless, an online 

implementation in the IMUs based system would be a great step to a new and innovative product 

as long as the results of the classifiers with new and more data were promising. It is also suggested 

an additional reduction of the metrics so that the computational weight decreases and, therefore, 

the data processing is faster. Given the results of Chapter 7, it is possible to retain that there are 
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metrics that never leave the limits of their ASMs. Therefore, a study on the influence of the 

disappearance of these metrics on the accuracy of the classifier should be done. Another statistical 

method, which also removes the relevant metrics, must be experienced. The metrics excluded in 

this study (e.g. stride length, walking velocity or other metrics with one value per gait cycle) should 

also be included in this study in the future. Moreover, an important study about the time of detection 

of F and PF’s situations will be truly important.   

Additionally, in order to overcome the lack of a database of human gait, it would be 

interesting to build such database with relevant gait parameters acquired from healthy and/or 

elderly subjects during walking over different conditions of speed and ground, and using an IMUs 

based system. Obviously, IMUs should be in specific positions of the body according to a specific 

orientation. This database could be available to be used for diverse tasks relative to the gait 

analysis, and also it could be used to increase the data of the used CNN and get more accurate 

results.  

The IMUs’ system can also be improved in the future with some changes at the hardware 

level. Firstly, the antennas should be changed to narrow beam adaptive antennas in order to 

prevent or mitigate the risk of interference. The battery should be also changed to smartphone’s 

batteries with the same voltage due to their high value of milliampere hour (mAh). Sometimes, this 

value of mAh is ten times superior when compared to the value of the current batteries of the 

system. Besides, smartphone’s batteries are rechargeable and durable. The base station can also 

be programmed to select automatically the least used frequency channel every time the system is 

used. Then, the entire system should be tested for different sampling frequencies and distances 

between IMUs and the base station in different environments. Meanwhile, the team is planning to 

develop a new IMU-based system.  

As a future work, it is also suggested to execute trials with the base station and the sensory 

modules in different rooms of an indoor environment. A future study that focus on the interference 

of conductive metals in this system it is highly recommended, which may allow meet new 

limitations, as well as new resolutions of existing problems. And concerning the validation of the 

joint angle measurement system, it is proposed that adduction/abduction and internal/external 

rotation angles should also be performed in the validation process. 

Concerning the Matlab® GUI, there are some improvements that should be made in order 

to get closer to commercial softwares. Add a real-time virtual 3D visualization of the monitored 
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subject without all the problems that it entails, and information panels about the real-time status 

of the subject obtained from the constructed online classifier. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  151 

 

References 

[1] J. Rueterbories, E. G. Spaich, B. Larsen, and O. K. Andersen, “Methods for gait event 

detection and analysis in ambulatory systems,” Med. Eng. Phys., vol. 32, no. 6, pp. 545–

552, 2010. 

[2] D. J. Fish, “Pathology Forum: Characteristic Gait Patterns in Neuromuscular Pathologies,” 

J. Prosthetics Orthot., vol. 9, no. 2, pp. 163–167, 1997. 

[3] A. Muro-de-la-Herran, B. Garcia-Zapirain, and A. Mendez-Zorrilla, “Gait analysis methods: 

An overview of wearable and non-wearable systems, highlighting clinical applications,” 

Sensors (Switzerland), vol. 14, no. 2, pp. 3362–3394, 2014. 

[4] S. D. Berry and R. Miller, “Falls: Epidemiology, Pathophysiology, and Relationship to 

Fracture,” Curr. Osteoporos. Rep., vol. 6, no. 4, pp. 149–154, 2008. 

[5] Institute of Medicine, The Second Fifty Years: Promoting Health and Preventing Disability. 

Washington, D. C., 1992. 

[6] S. Heinrich, K. Rapp, U. Rissmann, C. Becker, and H. H. K??nig, “Cost of falls in old age: 

A systematic review,” Osteoporos. Int., vol. 21, no. 6, pp. 891–902, 2010. 

[7] E. R. Burns, J. A. Stevens, and R. Lee, “The direct costs of fatal and non-fatal falls among 

older adults - United States,” J. Safety Res., vol. 58, pp. 99–103, 2016. 

[8] M. A. Hanson, H. C. Powell, A. T. Barth, J. Lach, and B. P. Maïté, “Neural network gait 

classification for on-body inertial sensors,” in Proceedings - 2009 6th International 

Workshop on Wearable and Implantable Body Sensor Networks, BSN 2009, 2009, pp. 

181–186. 

[9] S. Nadeau, C. Duclos, L. Bouyer, and C. L. Richards, “Guiding task-oriented gait training 

after stroke or spinal cord injury by means of a biomechanical gait analysis,” Prog. Brain 

Res., vol. 192, pp. 161–180, 2011. 

[10] SENSO 2012, “SENSO Supports,” 2012. [Online]. Available: https://www.senso-

connect.com/our-fall. [Accessed: 29-Mar-2017]. 

[11] Tunstall Healthcare, “iVi Intelligent Pendant.” [Online]. Available: 

http://www.tunstall.co.uk/solutions/ivi. [Accessed: 29-Mar-2017]. 

[12] T. Tamura, T. Yoshimura, M. Sekine, M. Uchida, and O. Tanaka, “A wearable airbag to 

prevent fall injuries,” IEEE Trans. Inf. Technol. Biomed., vol. 13, no. 6, pp. 910–914, 2009. 



152 

 

[13] P. Macedo, J. A. Afonso, L. A. Rocha, and R. Simoes, “A Telerehabilitation System Based 

on Wireless Motion Capture Sensors,” in PhyCS - Proceedings of the International 

Conference on Physiological Computing Systems, 2014, pp. 55–62. 

[14] W. Tao, T. Liu, R. Zheng, and H. Feng, “Gait analysis using wearable sensors,” Sensors, 

vol. 12, no. 2, pp. 2255–2283, 2012. 

[15] S. L. Patterson, M. M. Rodgers, R. F. Macko, and L. W. Forrester, “Effect of treadmill 

exercise training on spatial and temporal gait parameters in subjects with chronic stroke: A 

preliminary report,” J. Rehabil. Res. Dev., vol. 45, no. 2, pp. 221–228, 2008. 

[16] T. Liu, Y. Inoue, and K. Shibata, “Development of a wearable sensor system for quantitative 

gait analysis,” Meas. J. Int. Meas. Confed., vol. 42, no. 7, pp. 978–988, 2009. 

[17] S. T. Boerema, L. Van Velsen, L. Schaake, T. M. Tonis, and H. J. Hermens, “Optimal Sensor 

Placement for Measuring Physical Activity with a 3D Accelerometer,” Sensors (Switzerland), 

vol. 14, pp. 3188–3206, 2014. 

[18] E. Campo, S. Bonhomme, M. Chan, and D. Esteve, “Remote tracking patients in retirement 

home using wireless multisensor system,” in e-Health Networking Applications and Services 

(Healthcom), 2010 12th IEEE International Conference on, 2010. 

[19] S. Beynon, J. L. Mcginley, F. Dobson, and R. Baker, “Correlations of the Gait Profile Score 

and the Movement Analysis Profile relative to clinical judgments,” Gait Posture, vol. 32, no. 

1, pp. 129–132, 2010. 

[20] M. Sekine, T. Tamura, M. Akay, T. Fujimoto, T. Togawa, and Y. Fukui, “Discrimination of 

Walking Patterns Using Wavelet-Based Fractal Analysis,” IEEE Trans. Neural Syst. Rehabil. 

Eng., vol. 10, no. 3, pp. 188–196, 2002. 

[21] D. A. Winter, “Kinematic and Kinetic Patterns in Human Gait: Variability and Compensating 

Effects,” vol. 3, pp. 51–76, 1984. 

[22] Y.-C. Lin, B.-S. Yang, and Y.-T. Yang, “People Recognition by Kinematics and Kinetics of 

Gait,” pp. 1996–1999, 2009. 

[23] F. Höflinger, J. Müller, R. Zhang, L. M. Reindl, and W. Burgard, “A Wireless Micro Inertial 

Measurement Unit ( IMU ),” IEEE Trans. Instrum. Meas., vol. 62, no. 9, pp. 2583–2595, 

2013. 

[24] N. Ahmad, R. A. R. Ghazilla, N. M. Khairi, and V. Kasi, “Reviews on Various Inertial 

Measurement Unit (IMU) Sensor Applications,” Int. J. Signal Proccesing Syst., vol. 1, no. 2, 

pp. 256–262, 2013. 



 

  153 

 

[25] E. Palermo, S. Rossi, F. Marini, F. Patanè, and P. Cappa, “Experimental evaluation of 

accuracy and repeatability of a novel body-to-sensor calibration procedure for inertial 

sensor-based gait analysis,” Meas. J. Int. Meas. Confed., vol. 52, no. 1, pp. 145–155, 

2014. 

[26] P. Picerno, A. Cereatti, and A. Cappozzo, “Joint kinematics estimate using wearable inertial 

and magnetic sensing modules,” Gait Posture, vol. 28, no. 4, pp. 588–595, 2008. 

[27] S. Kobashi, Y. Tsumori, S. Imawaki, S. Yoshiya, and Y. Hata, “Wearable knee kinematics 

monitoring system of MARG sensor and pressure sensor systems,” 2009 IEEE Int. Conf. 

Syst. Syst. Eng., pp. 3–8, 2009. 

[28] S. Qiu, Z. Wang, H. Zhao, and H. Hu, “Using Distributed Wearable Sensors to Measure and 

Evaluate Human Lower Limb Motions,” IEEE Trans. Instrum. Meas., vol. 65, no. 4, pp. 

939–950, 2016. 

[29] O. J. Woodman, “An introduction to inertial navigation,” Cambridge, 696, 2007. 

[30] “LIS331DLH - MEMS digital output motion sensor ultra low-power high performance 3-axes 

‘nano’ accelerometer,” 2009. 

[31] P. A. Hölzl, B. G. Zagar, and S. Member, “Improving the Spatial Resolution of Magneto 

Resistive Sensors via Deconvolution,” IEEE Sens. J., vol. 13, no. 11, pp. 4296–4304, 2013. 

[32] M. D. Djurić-Jovičić, N. S. Jovičić, and D. B. Popović, “Kinematics of Gait: New Method for 

Angle Estimation Based on Accelerometers,” Sensors (Switzerland), no. 11, pp. 10571–

10585, 2011. 

[33] A. Sant’ Anna, N. Wickstr??m, H. Eklund, R. Z??gner, and R. Tranberg, “Assessment of Gait 

Symmetry and Gait Normality Using Inertial Sensors: In-Lab and In-Situ Evaluation,” in 

Communications in Computer and Information Science, vol. 357 CCIS, J. Gabriel, J. Schier, 

S. Van Huffel, E. Conchon, C. Correia, A. Fred, and H. Gamboa, Eds. Berlin, Heidelberg: 

Springer Berlin Heidelberg, 2013, pp. 239–254. 

[34] D. Novak et al., “Automated detection of gait initiation and termination using wearable 

sensors,” Med. Eng. Phys., vol. 35, no. 12, pp. 1713–1720, 2013. 

[35] A. Laudanski, S. Yang, and Q. Li, “A concurrent comparison of inertia sensor-based walking 

speed estimation methods,” Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, pp. 

3484–3487, 2011. 

[36] A. Valtazanos, D. K. Arvind, and S. Ramamoorthy, “Using wearable inertial sensors for 



154 

 

posture and position tracking in unconstrained environments through learned translation 

manifolds,” Proc. 12th Int. Conf. Inf. Process. Sens. networks - IPSN ’13, p. 241, 2013. 

[37] Q. Li and J. Zhang, “Post-trial anatomical frame alignment procedure for comparison of 3D 

joint angle measurement from magnetic/inertial measurement units and camera-based 

systems.,” Physiol. Meas., vol. 35, no. 11, pp. 2255–68, 2014. 

[38] Xsens, “IMU Inertial Measurement Unit.” [Online]. Available: 

https://www.xsens.com/?gclid=CN-voaCpl9ECFQ2eGwod-e8OOA. [Accessed: 09-Nov-

2016]. 

[39] InterSense, “IMU Inertial Measurement Unit.” [Online]. Available: 

http://www.intersense.com/. [Accessed: 09-Nov-2016]. 

[40] Technaid, “Motion Analysis.” [Online]. Available: http://www.technaid.com/. [Accessed: 

09-Nov-2016]. 

[41] I Measure U, “Maximise athletic potential unencumbered by injury.” [Online]. Available: 

http://imeasureu.com/. [Accessed: 09-Nov-2016]. 

[42] Noraxon, “Human Movement Metrics - Research and Medical Solutions for EMG, Kinetics 

and Kinematics.” [Online]. Available: http://www.noraxon.com/. [Accessed: 09-Nov-

2016]. 

[43] SparkFun, “What is SparkFun?” [Online]. Available: 

https://www.sparkfun.com/static/about. [Accessed: 09-Nov-2016]. 

[44] M. Benocci, L. Rocchi, E. Farella, L. Chiari, and L. Benini, “A Wireless System for Gait and 

Posture Analysis Based on Pressure Insoles and Inertial Measurement Units,” in Pervasive 

Computing Technologies for Healthcare, 2009. PervasiveHealth 2009. 3rd International 

Conference on, 2009. 

[45] J. Barton, A. Gonzalez, J. Buckley, B. O’Flynn, and S. C. O’Mathuna, “Design , Fabrication 

and Testing of Miniaturised Wireless Inertial Measurement Units ( IMU ),” in Electronic 

Components and Technology Conference, 2007. ECTC ’07. Proceedings. 57th, 2007, pp. 

1143–1148. 

[46] Y.-L. Tsai, T.-T. Tu, H. Bae, and P. H. Chou, “EcoIMU : A compact , wireless , gyro-free 

inertial measurement unit based on two triaxial EcoIMU : A Dual Triaxial-Accelerometer 

Inertial Measurement Unit for Wearable Applications,” no. January, 2011. 

[47] K. Y. Lim et al., “A Wearable , Self-Calibrating , Wireless Sensor Network for Body Motion 

Processing,” in IEEE International Conference on Robotics and Automation, 2008. ICRA 



 

  155 

 

2008, 2008, pp. 1017–1022. 

[48] L. Ambrozic, M. Gorsic, S. Slajpah, R. Kamnik, and M. Munih, “Wearable sensory system 

for robotic prosthesis,” in International Journal of Mechanics and Control, 2014, vol. 15, 

no. 1, pp. 53–59. 

[49] S. Tadano, R. Takeda, and H. Miyagawa, “Three Dimensional Gait Analysis Using Wearable 

Acceleration and Gyro Sensors Based on Quaternion Calculations,” Sensors (Switzerland), 

vol. 13, pp. 9321–9343, 2013. 

[50] T. Seel, J. Raisch, and T. Schauer, “IMU-Based Joint Angle Measurement for Gait Analysis,” 

pp. 6891–6909, 2014. 

[51] M. M. Hamdi, M. I. Awad, M. M. Abdelhameed, and F. A. Tolbah, “Lower limb motion 

tracking using IMU sensor network,” 2014 Cairo Int. Biomed. Eng. Conf., pp. 28–33, 2014. 

[52] S. Lambrecht et al., “Inertial sensor error reduction through calibration and sensor fusion,” 

Sensors (Switzerland), vol. 16, no. 2, pp. 1–16, 2016. 

[53] A. Leardini, G. Lullini, S. Giannini, L. Berti, M. Ortolani, and P. Caravaggi, “Validation of the 

angular measurements of a new inertial-measurement-unit based rehabilitation system: 

comparison with state-of-the-art gait analysis,” J. Neuroeng. Rehabil., vol. 11, no. 1, pp. 

136–143, 2014. 

[54] F. Feldhege et al., “Accuracy of a custom physical activity and knee angle measurement 

sensor system for patients with neuromuscular disorders and gait abnormalities,” Sensors 

(Switzerland), vol. 15, no. 5, pp. 10734–10752, 2015. 

[55] G. Blumrosen and A. Luttwak, “Human Body Parts Tracking and Kinematic Features 

Assessment Based on RSSI and Inertial Sensor Measurements,” Sensors (Switzerland), vol. 

13, pp. 11289–11313, 2013. 

[56] D. Novak, M. Gorsic, J. Podobnik, and M. Munih, “Toward Real-Time Automated Detection 

of Turns during Gait Using Wearable Inertial Measurement Units,” pp. 18800–18822, 

2014. 

[57] A. Ahmadi et al., “3D Human Gait Reconstruction and Monitoring Using Body-Worn Inertial 

Sensors and Kinematic,” J. IEEE SENSORS, pp. 1–9, 2016. 

[58] Z. Fang, T. Yu, L. Chen, S. Chen, and C. Wang, “Optimal Thigh Dip Angle Reduction By 

Acceleration And Angular Velocity Sensing,” no. 2012, pp. 1158–1163, 2015. 

[59] S. Minto, S. Member, D. Zanotto, E. M. Boggs, and G. Rosati, “Validation of a Footwear-



156 

 

Based Gait Analysis System with Action-Related Feedback,” IEEE Trans. Neural Syst. 

Rehabil. Eng., vol. 24, no. 9, pp. 1–10, 2015. 

[60] V. Joukov, M. Karg, and D. Kulic, “Online tracking of the lower body joint angles using IMUs 

for gait rehabilitation,” Conf. Proc.  ... Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. IEEE Eng. 

Med. Biol. Soc. Annu. Conf., vol. 2014, pp. 2310–2313, 2014. 

[61] A. Laudanski, B. Brouwer, and Q. Li, “Measurement of Lower Limb Joint Kinematics using 

Inertial Sensors During Stair Ascent and Descent in Healthy Older Adults and Stroke 

Survivors,” J. Healthc. Eng., vol. 4, no. 4, pp. 555–576, 2013. 

[62] F. Öhberg, R. Lundström, and H. Grip, “Comparative analysis of different adaptive filters 

for tracking lower segments of a human body using inertial motion sensors,” Meas. Sci. 

Technol. Meas. Sci. Technol, vol. 24, no. 24, pp. 85703–85703, 2013. 

[63] S. Sessa, M. Zecca, Z. H. Lin, L. Bartolomeo, H. Ishii, and A. Takanishi, “A Methodology for 

the Performance Evaluation of Inertial Measurement Units,” J. Intell. Robot. Syst., vol. 71, 

no. 2, pp. 143–157, 2013. 

[64] G. Tao, Z. Huang, Y. Sun, S. Yao, and J. Wu, “Biomechanical model-based multi-sensor 

motion estimation,” 2013 IEEE Sensors Appl. Symp. SAS 2013 - Proc., pp. 156–161, 

2013. 

[65] S. J. M. Bamberg, A. Y. Benbasat, D. M. Scarborough, D. E. Krebs, and J. a Paradiso, “Gait 

analysis using a shoe-integrated wireless sensor system.,” IEEE Trans. Inf. Technol. 

Biomed., vol. 12, no. 4, pp. 413–23, 2008. 

[66] S. Zihajehzadeh, P. K. Yoon, B. S. Kang, and E. J. Park, “UWB-Aided Inertial Motion Capture 

for Lower Body 3-D Dynamic Activity and Trajectory Tracking,” IEEE Trans. Instrum. Meas., 

vol. 64, no. 12, pp. 3577–3587, 2015. 

[67] T. Beravs, P. Reberšek, D. Novak, J. Podobnik, and M. Munih, “Development and validation 

of a wearable inertial measurement system for use with lower limb exoskeletons,” 11th 

IEEE-RAS Int. Conf. Humanoid Robot., no. October 26-28, pp. 212–217, 2011. 

[68] R. Takeda, S. Tadano, A. Natorigawa, M. Todoh, and S. Yoshinari, “Gait posture estimation 

by wearable acceleration and gyro sensor,” IFMBE Proc., vol. 25, no. 9, pp. 111–114, 

2009. 

[69] Y. Guo, G. Zhao, Q. Liu, Z. Mei, K. Ivanov, and L. Wang, “Balance and knee extensibility 

evaluation of hemiplegic gait using an inertial body sensor network.,” Biomed. Eng. Online, 

vol. 12, p. 83, 2013. 



 

  157 

 

[70] Y. Guo, D. Wu, G. Liu, G. Zhao, B. Huang, and L. Wang, “A low-cost body inertial-sensing 

network for practical gait discrimination of hemiplegia patients.,” Telemed. J. E. Health., 

vol. 18, no. 10, pp. 748–54, 2012. 

[71] K. Kawano, S. Kobashi, M. Yagi, K. Kondo, S. Yoshiya, and Y. Hata, “Analyzing 3D knee 

kinematics using accelerometers, gyroscopes and magnetometers,” 2007 IEEE Int. Conf. 

Syst. Syst. Eng. SOSE, 2007. 

[72] G. Ligorio, E. Bergamini, I. Pasciuto, G. Vannozzi, A. Cappozzo, and A. Sabatini, “Assessing 

the Performance of Sensor Fusion Methods: Application to Magnetic-Inertial-Based Human 

Body Tracking,” Sensors, vol. 16, no. 2, pp. 1–14, 2016. 

[73] A. M. Sabatini, G. Ligorio, and A. Mannini, “Fourier-based integration of quasi-periodic gait 

accelerations for drift-free displacement estimation using inertial sensors,” Biomed. Eng. 

Online, vol. 14, no. 1, p. 106, 2015. 

[74] S. Bakhshi, M. H. Mahoor, and B. S. Davidson, “Development of a body joint angle 

measurement system using IMU sensors,” 33rd Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 

Conf., vol. 2011, pp. 6923–6, 2011. 

[75] N. C. Bejarano, E. Ambrosini, A. Pedrocchi, G. Ferrigno, M. Monticone, and S. Ferrante, “A 

novel adaptive, real-time algorithm to detect gait events from wearable sensors,” IEEE 

Trans. Neural Syst. Rehabil. Eng., vol. 23, no. 3, pp. 413–422, 2015. 

[76] Y. Chen, W. Hu, Y. Yang, J. Hou, and Z. Wang, “A method to calibrate installation orientation 

errors of inertial sensors for gait analysis,” 2014 IEEE Int. Conf. Inf. Autom. ICIA 2014, no. 

61174027, pp. 598–603, 2014. 

[77] E. Palermo, S. Rossi, F. Patanè, and P. Cappa, “Experimental evaluation of indoor magnetic 

distortion effects on gait analysis performed with wearable inertial sensors.,” Physiol. 

Meas., vol. 35, no. 3, pp. 399–415, 2014. 

[78] J. Favre, R. Aissaoui, B. M. Jolles, J. A. de Guise, and K. Aminian, “Functional calibration 

procedure for 3D knee joint angle description using inertial sensors,” J. Biomech., vol. 42, 

no. 14, pp. 2330–2335, 2009. 

[79] Xensor Integration, “Datasheet XEN-1210,” 2011. 

[80] M. Kyrarini, X. Wang, and A. Graser, “Comparison of vision-based and sensor-based 

systems for joint angle gait analysis,” 2015 IEEE Int. Symp. Med. Meas. Appl. MeMeA 2015 

- Proc., pp. 375–379, 2015. 



158 

 

[81] J. Zhang, A. C. Novak, B. Brouwer, and Q. Li, “Concurrent validation of Xsens MVN 

measurement of lower limb joint angular kinematics.,” Physiol. Meas., vol. 34, no. 8, pp. 

N63-9, 2013. 

[82] R. Khusainov, D. Azzi, I. E. Achumba, and S. D. Bersch, “Real-time human ambulation, 

activity, and physiological monitoring: taxonomy of issues, techniques, applications, 

challenges and limitations,” Sensors (Basel)., vol. 13, no. 10, pp. 12852–12902, 2013. 

[83] U. Laessoe, H. C. Hoeck, O. Simonsen, T. Sinkjaer, and M. Voigt, “Fall risk in an active 

elderly population--can it be assessed?,” J Negat Results Biomed, vol. 6, p. 2, 2007. 

[84] M. Kangas, A. Konttila, I. Winblad, and T. Jämsä, “Determination of simple thresholds for 

accelerometry-based parameters for fall detection,” Annu. Int. Conf. IEEE Eng. Med. Biol. - 

Proc., pp. 1367–1370, 2007. 

[85] H. Luukinen, M. Herala, K. Koski, R. Honkanen, P. Laippala, and S.-L. Kivelä, “Fracture 

Risk Associated with a Fall According to Type of Fall Among the Elderly,” Osteoporos. Int., 

vol. 11, no. 7, pp. 631–634, 2000. 

[86] P. Boissy, S. Choquette, M. Hamel, and N. Noury, “User-based motion sensing and fuzzy 

logic for automated fall detection in older adults.,” Telemed. J. E. Health., vol. 13, no. 6, 

pp. 683–693, 2007. 

[87] J. Huang, P. Di, K. Wakita, T. Fukuda, and K. Sekiyama, “Study of Fall Detection Using 

Intelligent Cane Based on Sensor Fusion,” Int. Symp. Micro-NanoMechatronics Hum. Sci. 

MHS 2008. Nagoya, 6-9 Nov., pp. 495–500, 2008. 

[88] J. Huang, W. Xu, S. Mohammed, and Z. Shu, “Posture estimation and human support using 

wearable sensors and walking-aid robot,” Rob. Auton. Syst., vol. 73, pp. 24–43, 2015. 

[89] M. Mubashir, L. Shao, and L. Seed, “A survey on fall detection: Principles and approaches,” 

Neurocomputing, vol. 100, pp. 144–152, 2013. 

[90] T. Zhang, J. Wang, L. Xu, and P. Liu, “Using Wearable Sensor and NMF Algorithm to Realize 

Ambulatory Fall Detection,” ICNC 2006 Adv. Nat. Comput., vol. 4222, pp. 488–491, 2006. 

[91] M. Kangas, I. Vikman, J. Wiklander, P. Lindgren, L. Nyberg, and T. Jamsa, “Sensitivity and 

specificity of fall detection in people aged 40 years and over,” Gait posture, vol. 29, pp. 

571–574, 2009. 

[92] M. J. Mathie, A. C. Coster, N. H. Lovell, and B. G. Celler, “Accelerometry : providing an 

integrated , practical method for long-term , ambulatory monitoring of human movement,” 

Physiol. Meas., vol. 25, no. 2, 2004. 



 

  159 

 

[93] M. A. Estudillo-Valderrama, L. M. Roa, J. Reina-Tosina, and D. Naranjo-Hernandez, “Design 

and Implementation of a Distributed Fall Detection System,” IEEE Trans. Inf. Technol. 

Biomed., vol. 13, no. 6, pp. 874–881, 2009. 

[94] R. Igual, C. Medrano, and I. Plaza, “Challenges, issues and trends in fall detection 

systems.,” Biomed. Eng. Online, vol. 12, no. 1, p. 66, 2013. 

[95] C. F. Lai, S. Y. Chang, H. C. Chao, and Y. M. Huang, “Detection of cognitive injured body 

region using multiple triaxial accelerometers for elderly falling,” IEEE Sens. J., vol. 11, no. 

3, pp. 763–770, 2011. 

[96] J. T. Perry, S. Kellog, S. M. Vaidya, J.-H. Youn, H. Ali, and H. Sharif, “Survey and evaluation 

of real-time fall detection approaches,” 2009 6th Int. Symp. High Capacit. Opt. Networks 

Enabling Technol., pp. 158–164, 2009. 

[97] N. D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and A. T. Campbell, “A survey of 

mobile phone sensing,” IEEE Commun. Mag., vol. 48, no. 9, pp. 140–150, 2010. 

[98] K. Aminian and B. Najafi, “Capturing human motion using body-fixed sensors: Outdoor 

measurement and clinical applications,” Comput. Animat. Virtual Worlds, vol. 15, no. 2, 

pp. 79–94, 2004. 

[99] R. Gigi et al., “Deviations in gait metrics in patients with chronic ankle instability: a case 

control study.,” J. Foot Ankle Res., vol. 8, no. 1, p. 1, 2015. 

[100] A. Elbaz, A. Mor, G. Segal, R. Debi, N. Shazar, and A. Herman, “Novel classification of knee 

osteoarthritis severity based on spatiotemporal gait analysis,” Osteoarthr. Cartil., vol. 22, 

no. 3, pp. 457–463, 2014. 

[101] F. Bianchi, S. J. Redmond, M. R. Narayanan, S. Cerutti, and N. H. Lovell, “Barometric 

pressure and triaxial accelerometry-based falls event detection,” IEEE Trans. Neural Syst. 

Rehabil. Eng., vol. 18, no. 6, pp. 619–627, 2010. 

[102] J. J. Kavanagh and H. B. Menz, “Accelerometry: A technique for quantifying movement 

patterns during walking,” Gait Posture, vol. 28, no. 1, pp. 1–15, 2008. 

[103] N. Wang, E. Ambikairajah, N. H. Lovell, and B. G. Celler, “Accelerometry based 

classification of walking patterns using time-frequency analysis,” Proc. 29th Int. Conf. IEEE 

EMBS, vol. 2007, pp. 4899–902, 2007. 

[104] M. Iosa, T. Marro, S. Paolucci, and D. Morelli, “Stability and harmony of gait in children 

with cerebral palsy,” Res. Dev. Disabil., vol. 33, no. 1, pp. 129–135, 2012. 



160 

 

[105] B. Kaluža and M. Luštrek, “Fall detection and activity recognition methods for the 

confidence project: a survey,” in In Proceedings of the 12th International Multiconference 

Information Society 2008, 2008, pp. 22–25. 

[106] D. M. Karantonis, M. R. Narayanan, M. Mathie, N. H. Lovell, and B. G. Celler, 

“Implementation of a real-time human movement classifier using a triaxial accelerometer 

for ambulatory monitoring,” IEEE Trans. Inf. Technol. Biomed., vol. 10, no. 1, pp. 156–

167, 2006. 

[107] J. M. Kang, T. Yoo, and H. C. Kim, “A wrist-worn integrated health monitoring instrument 

with a tele-reporting device for telemedicine and telecare,” IEEE Trans. Instrum. Meas., vol. 

55, no. 5, pp. 1655–1661, 2006. 

[108] Jiangpeng Dai, Xiaole Bai, Zhimin Yang, Zhaohui Shen, and Dong Xuan, “PerFallD: A 

pervasive fall detection system using mobile phones,” 2010 8th IEEE Int. Conf. Pervasive 

Comput. Commun. Work. (PERCOM Work., pp. 292–297, 2010. 

[109] G. Wu and S. Xue, “Portable preimpact fall detector with inertial sensors,” IEEE Trans. 

Neural Syst. Rehabil. Eng., vol. 16, no. 2, pp. 178–183, 2008. 

[110] T. Zhang, J. Wang, P. Liu, and J. Hou, “Fall Detection by Embedding an Accelerometer in 

Cellphone and Using,” J. Comput. Sci., vol. 6, no. 10, pp. 277–284, 2006. 

[111] J. Klucken et al., “Unbiased and Mobile Gait Analysis Detects Motor Impairment in 

Parkinson’s Disease,” PLoS One, vol. 8, no. 2, 2013. 

[112] Skyguard, “MySOS Mandown,” 2014. [Online]. Available: 

https://gadgetcommunities.wordpress.com/2014/09/11/. [Accessed: 29-Mar-2017]. 

[113] CareTech, “SensorBand II,” 2017. [Online]. Available: 

http://www.caretech.com.au/products-/fall-sensor.html. [Accessed: 28-Mar-2017]. 

[114] Alert-it Care Alarm Technology, “Badge-iT Fall Detector,” 2016. [Online]. Available: 

http://alert-it.co.uk/#Badge-iTFall-and-Personal-Alarm-Badge. [Accessed: 28-Mar-2017]. 

[115] Visonic, “Fall detector MCT-241MD PERS,” 2017. [Online]. Available: 

http://www.visonic.com/Products/Wireless-Emergency-Response-Systems/Fall-detector-

mct-241md-pers-wer. [Accessed: 29-Mar-2017]. 

[116] Vitalbase, “Vitalbase,” 2016. [Online]. Available: http://www.vitalbase.co.uk/. [Accessed: 

29-Mar-2017]. 

[117] Climax Technology Co. Ltd, “Climax Fall Sensor,” 2017. [Online]. Available: 

http://climax.manufacturer.globalsources.com/si/6008800221031/pdtl/Fall-



 

  161 

 

prevention/1046434163/Fall-Sensor.htm. [Accessed: 29-Mar-2017]. 

[118] Tynetec, “Tynetec Fall Detector,” 2017. [Online]. Available: 

http://www.tynetec.co.uk/telecare-devices/wrist-worn-fall-detector. [Accessed: 29-Mar-

2017]. 

[119] Blue Alert Medical Alarm Company, “Blue Alert Fall Detection Sensor.” [Online]. Available: 

http://www.bluealertalarm.com/index.cfm?page=equipment. [Accessed: 29-Mar-2017]. 

[120] CSEM SA., “CSEM Wrist Fall Detection,” 2017. [Online]. Available: 

http://www.csem.ch/home. [Accessed: 29-Mar-2017]. 

[121] Tynetec, “Tynetec Wrist Worn Fall Detector,” 2017. [Online]. Available: 

http://www.tynetec.co.uk/telecare-devices/wrist-worn-fall-detector. [Accessed: 29-Mar-

2017]. 

[122] N. Pannurat, S. Thiemjarus, and E. Nantajeewarawat, “Automatic fall monitoring: a review,” 

Sensors (Basel)., vol. 14, no. 7, pp. 12900–12936, 2014. 

[123] S. G. Brauer, Y. R. Burns, and P. Galley, “A prospective study of laboratory and clinical 

measures of postural stability to predict community-dwelling fallers.,” J. Gerontol. A. Biol. 

Sci. Med. Sci., vol. 55, no. 8, pp. M469–M476, 2000. 

[124] K. Berg, “Measuring balance in the elderly: preliminary development of an instrument,” 

Physiother. Canada, vol. 41, no. 6, 1989. 

[125] D. PW, W. DK, C. J, and S. S, “Functional reach: a new clinical measure of balance,” J 

Gerontol, vol. 45, no. 6, 1990. 

[126] S. Brauer, Y. Burns, and P. Galley, “Lateral reach: a clinical measure of medio-lateral 

postural stability.,” Physiother. Res. Int., vol. 4, no. 2, pp. 81–88, 1999. 

[127] K. D. Hill, J. Bernhardt, A. M. McGann, D. Maltese, and D. Berkovits, “A New Test of 

Dynamic Standing Balance for Stroke Patients: Reliability, Validity and Comparison with 

Healthy Elderly,” Physiother. Canada, vol. 48, no. 4, 1996. 

[128] M. N. Nyan, F. E. H. Tay, and M. Z. E. Mah, “Application of motion analysis system in pre-

impact fall detection,” J. Biomech., vol. 41, no. 10, pp. 2297–2304, 2008. 

[129] E. A. N. Kim, S. Z. Mordiffi, W. H. Bee, K. Devi, and D. Evans, “Evaluation of three fall-risk 

assessment tools in an acute care setting,” J. Adv. Nurs., vol. 60, no. 4, pp. 427–435, 

2007. 

[130] D. Oliver, M. Britton, P. Seed, F. C. Martin, and A. H. Hopper, “Development and evaluation 



162 

 

of evidence based risk assessment tool (STRATIFY) to predict which elderly inpatients will 

fall: case-control and cohort studies.,” BMJ, vol. 315, no. 7115, pp. 1049–53, 1997. 

[131] D. Podsiadlo and S. Richardson, “The Timed ‘Up &amp; Go’: A Test of Basic Functional 

Mobility for Frail Elderly Persons,” J. Am. Geriatr. Soc., vol. 39, no. 2, pp. 142–148, 1991. 

[132] D. Barthel and F. Mahoney, “Baltimore City Medical Society Functional Evaluation : the 

Barthel Index,” Md. State Med. J., vol. 14, pp. 56–61, 1965. 

[133] S. L. Vaught, “Gait, balance, and fall prevention.,” Ochsner J., vol. 3, no. 2, pp. 94–7, 

2001. 

[134] D. Van Dyke, B. Singley, K. G. Speroni, and M. G. Daniel, “Evaluation of fall risk assessment 

tools for psychiatric patient fall prevention: a comparative study,” J. Psychosoc. Nurs. Ment. 

Heal. Serv., vol. 52, no. 12, pp. 30–35, 2014. 

[135] Centers for Disease Control and Prevention, “STEADI - Older Adult Fall Prevention,” 2017. 

[Online]. Available: https://www.cdc.gov/steadi/. [Accessed: 27-Mar-2017]. 

[136] B. Najafi, D. G. Armstrong, and J. Mohler, “Novel Wearable Technology for Assessing 

Spontaneous Daily Physical Activity and Risk of Falling in Older Adults with Diabetes,” J. 

Diabetes Sci. Technol., vol. 7, no. 5, pp. 1147–1160, 2013. 

[137] A. Leone, G. Rescio, A. Caroppo, and P. Siciliano, “A wearable EMG-based system pre-fall 

detector,” Procedia Eng., vol. 120, pp. 455–458, 2015. 

[138] M. N. Nyan, F. E. H. Tay, and E. Murugasu, “A wearable system for pre-impact fall 

detection,” J. Biomech., vol. 41, no. 16, pp. 3475–3481, 2008. 

[139] A. Lopez-Yunez et al., “A novel approach for high speed wireless pre-fall detection 

multisensory system,” Midwest Symp. Circuits Syst., pp. 857–859, 2014. 

[140] J. Liu, X. Zhang, and T. E. Lockhart, “Fall Risk Assessments Based on Postural and Dynamic 

Stability Using Inertial Measurement Unit,” Saf. Health Work, vol. 3, no. 3, p. 192, 2012. 

[141] J. Liu, T. E. Lockhart, M. Jones, and T. Martin, “Local Dynamic Stability Assessment of 

Motion Impaired Elderly Using Electronic Textile Pants,” IEEE Trans. Autom. Sci. Eng., vol. 

5, no. 4, pp. 117–122, 2013. 

[142] J. B. Dingwell and J. P. Cusumano, “Nonlinear time series analysis of normal and 

pathological human walking,” Chaos An Interdiscip. J. Nonlinear Sci., vol. 10, no. 4, p. 848, 

2000. 

[143] T. E. Te Lockhart and J. Liu, “Differentiating fall-prone and healthy adults using local 

dynamic stability,” Ergonomics, vol. 51, no. 12, pp. 1860–1872, 2008. 



 

  163 

 

[144] V. Lugade, V. Lin, A. Farley, and L. S. Chou, “An artificial neural network estimation of gait 

balance control in the elderly using clinical evaluations,” PLoS One, vol. 9, no. 5, pp. 1–8, 

2014. 

[145] S. A. England and K. P. Granata, “The influence of gait speed on local dynamic stability of 

walking,” October, vol. 25, no. 2, pp. 172–178, 2007. 

[146] T. E. Lockhart, R. Soangra, J. Zhang, and X. Wu, “Wavelet based automated postural event 

detection and activity classification with single IMU,” Biomed. Sci. Instrum., vol. 49, no. 

Cdc 2010, pp. 224–233, 2013. 

[147] J. Zhang, T. E. Lockhart, and R. Soangra, “Classifying lower extremity muscle fatigue during 

walking using machine learning and inertial sensors,” Ann. Biomed. Eng., vol. 42, no. 3, 

pp. 600–612, 2014. 

[148] H. B. Menz, S. R. Lord, and R. C. Fitzpatrick, “Acceleration patterns of the head and pelvis 

when walking on level and irregular surfaces,” Gait Posture, vol. 18, no. 1, pp. 35–46, 

2003. 

[149] J. Baek, G. Lee, W. Park, and B. Yun, “Accelerometer signal processing for user activity 

detection,” Knowledge-Based Intell. Inf. Eng. Syst., vol. Lecture No, pp. 610–617, 2004. 

[150] F. Wu, H. Zhao, Y. Zhao, and H. Zhong, “Development of a wearable-sensor-based fall 

detection system,” Int. J. Telemed. Appl., vol. 2015, 2015. 

[151] Q. T. Huynh, U. D. Nguyen, K. T. Liem, and B. Q. Tran, “Detection of Activities Daily Living 

and Falls Using Combination Accelerometer and Gyroscope,” in 5th International 

Conference on Biomedical Engineering in Vietnam, vol. 46, Springer, Cham, 2015, pp. 

184–189. 

[152] F. R. Allen, E. Ambikairajah, N. H. Lovell, S. Member, and B. G. Celler, “An Adapted 

Gaussian Mixture Model Approach to Accelerometry- Based Movement Classification Using 

Time-Domain Features,” New York, pp. 3600–3603, 2006. 

[153] C. J. Chen and L. S. Chou, “Center of mass position relative to the ankle during walking: A 

clinically feasible detection method for gait imbalance,” Gait Posture, vol. 31, no. 3, pp. 

391–393, 2010. 

[154] H. G. Kang and J. B. Dingwell, “Intra-session reliability of local dynamic stability of walking,” 

Gait Posture, vol. 24, no. 3, pp. 386–390, 2006. 

[155] D. Lafond, H. Corriveau, R. Hébert, and F. Prince, “Intrasession reliability of center of 



164 

 

pressure measures of postural steadiness in healthy elderly people,” Arch. Phys. Med. 

Rehabil., vol. 85, no. 6, pp. 896–901, 2004. 

[156] M. Benoussaad, B. Sijobert, K. Mombaur, and C. A. Coste, “Robust foot clearance 

estimation based on the integration of foot-mounted IMU acceleration data,” Sensors 

(Switzerland), vol. 16, no. 1, pp. 1–13, 2015. 

[157] D. Trojaniello, A. Cereatti, N. Valeri, A. Ravaschio, and U. Della Croce, “Foot clearance 

estimation during overground walking and obstacle passing using shank-worn MIMU in 

healthy elderly and Parkinson’s disease subjects,” Gait Posture, vol. 42, no. December, p. 

S25, 2015. 

[158] InvenSense, “MPU-6000 and MPU-6050 Product Specification,” 2013. 

[159] Honeywell, “3-Axis Digital Compass IC,” 2011. 

[160] J. A. Afonso, H. D. Silva, P. Macedo, and L. A. Rocha, “An enhanced reservation-based 

MAC protocol for IEEE 802.15.4 networks,” Sensors, vol. 11, no. 4, pp. 3852–3873, 2011. 

[161] M. Kochlán, J. Micek, and P. Ševcik, “2 . 4GHz ISM Band Radio Frequency Signal Indoor 

Propagation,” in Federated Conference on Computer Science and Information Systems, 

2014, vol. 2, pp. 1027–1034. 

[162] M. Fitzmaurice, “USE OF 2.4 GHZ FREQUENCY BAND FOR COMMUNICATIONS BASED 

TRAIN CONTROL DATA COMMUNICATIONS SYSTEMS,” in Joint Rail Conference, 2006, 

pp. 263–267. 

[163] A. R. Jiménez, F. Seco, C. Prieto, and J. Guevara, “A comparison of pedestrian dead-

reckoning algorithms using a low-cost MEMS IMU,” WISP 2009 - 6th IEEE Int. Symp. Intell. 

Signal Process. - Proc., no. April 2017, pp. 37–42, 2009. 

[164] M. Susi, V. Renaudin, and G. Lachapelle, “Motion mode recognition and step detection 

algorithms for mobile phone users,” Sensors (Switzerland), vol. 13, no. 2, pp. 1539–1562, 

2013. 

[165] N. P. Fey, A. M. Simon, A. J. Young, and L. J. Hargrove, “Controlling Knee Swing Initiation 

and Ankle Plantarflexion With an Active Prosthesis on Level and Inclined Surfaces at Variable 

Walking Speeds,” IEEE J. Transl. Eng. Heal. Med., vol. 2, no. August, 2014. 

[166] RoMeLa (Robotics & Mechanisms Lab), “DARwIn OP: Open Platform Humanoid Robot for 

Research and Education.” [Online]. Available: http://www.romela.org/darwin-op-open-

platform-humanoid-robot-for-research-and-education/. [Accessed: 25-Jan-2017]. 

[167] Trossen Robotics, “Darwin-OP Humanoid Research Robot - Deluxe Edition.” [Online]. 



 

  165 

 

Available: http://www.trossenrobotics.com/p/darwin-OP-Deluxe-humanoid-robot.aspx. 

[Accessed: 26-Jan-2017]. 

[168] T. Pham et al., “DARwIn OP Fabrication Manual,” 2011. 

[169] F. Dunn, I. Parberry, and A. . Fallis, 3D Math Primer for Graphics and Game Development, 

2nd Edition, 2nd ed., vol. 53, no. 9. A K Peters/CRC Press 2011, 2011. 

[170] S. Bonnet, C. Bassompierre, C. Godin, S. Lesecq, and A. Barraud, “Calibration methods 

for inertial and magnetic sensors,” Sensors Actuators, A Phys., vol. 156, no. 2, pp. 302–

311, 2009. 

[171] D. Jurman, M. Jankovec, R. Kamnik, and M. Topič, “Calibration and data fusion solution 

for the miniature attitude and heading reference system,” Sensors Actuators, A Phys., vol. 

138, no. 2, pp. 411–420, 2007. 

[172] ST-Microelectronics, “Application note Using LSM303DLH for a tilt compensated electronic 

compass,” 2010. 

[173] L. Cucu, “Applying Kalman Filtering on a Quadruped Robot,” 2012. 

[174] Open Source Physics - OSP, “Tracker Video Analysis and Modeling Tool,” 2017. [Online]. 

Available: http://physlets.org/tracker/. [Accessed: 03-Mar-2017]. 

[175] R. Mahony, S. Member, T. Hamel, and J. Pflimlin, “Nonlinear Complementary Filters on 

the Special Orthogonal Group,” IEEE Trans. Automat. Contr., vol. 53, no. 5, pp. 1203–

1218, 2008. 

[176] S. O. H. Madgwick, “An efficient orientation filter for inertial and inertial/magnetic sensor 

arrays,” 2010. 

[177] I. T. Jolliffe, Principal Component Analysis, Second Edi. Springer, 2002. 

[178] A. Singh, “PCA in Remote sensing,” pp. 1680–1682. 

[179] W. Liu, “Variants of Principal Components Analysis,” pp. 1083–1086, 2007. 

[180] C. Plagemann, C. Stachniss, and W. Burgard, “Efficient failure detection for mobile robots 

using mixed-abstraction particle filters,” Springer Tracts Adv. Robot., vol. 22, pp. 93–107, 

2006. 

[181] M. Dev Anand, T. Selvaraj, and S. Kumanan, “Fault detection and fault tolerance methods 

for industrial robot manipulators based on hybrid intelligent approach,” Adv. Prod. Eng. 

Manag., vol. 7, no. 4, pp. 225–236, 2012. 

[182] A. L. Christensen, Fault Detection in Autonomous Robots. 2008. 



166 

 

[183] P. Pastor, M. Kalakrishnan, L. Righetti, and S. Schaal, “Towards associative skill 

memories,” in IEEE-RAS International Conference on Humanoid Robots, 2012, pp. 309–

315. 

[184] P. Pastor et al., “From dynamic movement primitives to associative skill memories,” Rob. 

Auton. Syst., vol. 61, no. 4, pp. 351–361, 2013. 

[185] P. Pastor, M. Kalakrishnan, S. Chitta, E. Theodorou, and S. Schaal, “Skill Learning and 

Task Outcome Prediction for Manipulation,” IEEE Int. Conf. Robot. Autom., pp. 3828–3834, 

2011. 

[186] D. Kappler, P. Pastor, M. Kalakrishnan, W. Manue, and S. Schaal, “Data-Driven Online 

Decision Making for Autonomous Manipulation,” in rss, 2015. 

[187] H. Asadi, R. Dowling, B. Yan, and P. Mitchell, “Machine learning for outcome prediction of 

acute ischemic stroke post intra-arterial therapy,” PLoS One, vol. 9, no. 2, pp. 14–19, 

2014. 

[188] A. M. S. Muniz et al., “Comparison among probabilistic neural network, support vector 

machine and logistic regression for evaluating the effect of subthalamic stimulation in 

Parkinson disease on ground reaction force during gait,” J. Biomech., vol. 43, no. 4, pp. 

720–726, 2010. 

[189] J. André, C. Santos, and L. Costa, “Skill Memory in Biped Locomotion: Using Perceptual 

Information to Predict Task Outcome,” J. Intell. Robot. Syst. Theory Appl., vol. 82, no. 3–

4, pp. 379–397, 2016. 

[190] MathWorks, “Deep Learning: 3 things you need to know,” 2017. [Online]. Available: 

https://www.mathworks.com/discovery/deep-learning.html. [Accessed: 07-Jul-2017]. 

[191] H. Hubel and T. N. Wiesel, “Receptive fields of single neurones in the cat’s striate cortex,” 

J. Physiol., vol. 148, pp. 574–591, 1959. 

[192] K. P. Murphy, Machine Learning: A Probabilistic Perspective. Cambridge, Massachusetts: 

The MIT Press, 2012. 

[193] H. Garty, “hagaygarty/mdCNN,” 2017. [Online]. Available: 

https://www.mathworks.com/matlabcentral/fileexchange/58447-hagaygarty-mdcnn. 

[Accessed: 07-Jul-2017]. 

[194] VBOX Automotive, “VBOX Inertial Measurement Unit - Overview.” [Online]. Available: 

https://www.vboxautomotive.co.uk/index.php/en/products/modules/inertial-

measurement-unit. [Accessed: 30-Dec-2016]. 



 

  167 

 

[195] M. J. Thompson, M. Li, and D. A. Horsley, “Low power 3-axis lorentz force navigation 

magnetometer,” Proc. IEEE Int. Conf. Micro Electro Mech. Syst., no. 3, pp. 593–596, 2011. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



168 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  169 

 

Appendices 

Appendix 1 

The main characteristics of the sensors that constitute the sensing devices are available in 

the following tables for Acc, Mag, Gyro, and temperature sensor, respectively. 

Table I - Acc’s main characteristics 

Parameter Description Units 

Supply Voltage 2.375-3.46 V 

Full-Scale Range ±2; ±4; ±8; ±16 g 

Sensitivity Scale Factor 16.384; 8.192; 4.096; 2.048 LSB/g 

Sensitivity Change vs. Temperature ±0.02 %/ºC 

Power Spectral Density 400 µg/√Hz 

Normal Operating Current (only) 500 µA 

 

Table II – Mag’s main characteristics 

Parameter Description Units 

Supply Voltage 2.16-3.6 V 

Full-Scale Range ±8 Gauss 

Resolution 5 Mili-Gauss 

Linearity 0.1 ±%FS 

Hysteresis ±25 ppm 

Cross-Axis Sensitivity ±0.2% ±%FS/Gauss 

Average Current Draw 100 µA 

 

Table III – Gyro’s main characteristics 

Parameter Description Units 

Supply Voltage 2.375-3.46 V 

Full-Scale Range ±250; ±500; ±1000; ±2000 °/s 

Sensitivity Scale Factor 131; 65.5; 32.8; 16.4 LSB/(°/s) 

Power Spectral Density 0.005 °/s/√Hz 

Normal Operating Current (only) 500 µA 
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Table IV – Temperature sensor’s main characteristics 

Parameter Description Units 

Supply Voltage 2.375-3.46 V 

Range -40 to +85 °C 

Sensitivity 340 LSB/°C 

Temperature Offset -521 LSB 

Linearity ±1 °C 

 

 


