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DYNAMICAL MODELLING OF HYDRAULIC EXCAVATOR CONSIDERED AS A MULTIBODY 
SYSTEM 
 
Rosen Mitrev, Dragoslav Janošević, Dragan Marinković 
 

Original scientific paper 
This paper considers the development of a plane multibody mechanical model of a hydraulic excavator simultaneously containing an open kinematic chain 
and closed loops. The Lagrange multiplier technique is used for modelling of the constrained mechanical systems. This approach is used for working out 
the dynamic equations of excavator motion in the case of performing transportation and digging operations. The excavator is considered as a rigid body 
system and detailed governing equations of the mechanical and hydraulic systems are presented. The performed verification and a typical digging task 
simulation show the applicability of the model for study of the excavator motion simulation. Simulation results of the machine’s response are provided. It 
is shown that the digging process considerably influences the mechanical and hydraulic system parameters. Such models can be used for training 
simulators, sizing components and system design. 
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Dinamičko modeliranje hidrauličnog bagera kao sustava sastavljenog od više tijela 
 

Izvorni znanstveni članak 
Rad se bavi razvojem mehaničkog modela hidrauličnog bagera od više tijela koji u isto vrijeme sadrži otvoreni kinematički lanac i zatvorene petlje. Za 
modeliranje ograničenih mehaničkih sustava primijenjena je tehnika Lagrangeova faktora. Taj se pristup primjenjuje za dobivanje dinamičkih jednadžbi 
kretanja bagera kod obavljanja prijenosa i operacija kopanja. Bager se smatra sustavom krutog tijela i predstavljaju se detaljne jednadžbe za uređenje 
mehaničkih i hidrauličnih sustava. Izvršena provjera i simulacija tipičnog kopanja pokazuju primjenjivost sustava za proučavanje simulacije kretanja 
bagera. Daju se simulacijski rezultati reakcije stroja. Pokazano je da postupak kopanja znatno utječe na parametre mehaničkog i hidrauličkog sustava. 
Takvi se modeli mogu koristiti za obučavanje simulatora, dimenzioniranje sastavnih dijelova i dizajniranje sustava. 
 
Ključne riječi: dinamički model od više tijela; hidraulični bager; Lagrangeov factor  
 
 

 

1 Introduction  
  

The hydraulic excavators are widely used in 
construction, mining and other areas of the modern 
industry. Their main function is to perform digging 
operations with consecutive transport of the excavated 
material to the transport vehicle. A typical excavator (Fig. 
1) consists of a traveling body 1, a swing body 2 and a 
front digging manipulator 3 by which digging operations 
are performed. The manipulator consists of a number of 
moving elements, main of which are the boom 3a, the 
stick 3b and the bucket 3c. Though hydraulic driving 
systems have some drawbacks, they are extensively used 
for controlling the excavator links mainly because they 
can overcome large forces, which originate from the 
interaction between the bucket and the excavated 
material. The moving elements of the digging manipulator 
are controlled by hydraulic cylinders 4, which are 
connected to the links directly or through transmission 
linkages 5, see Fig.1. 
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Figure 1 Typical structure of a hydraulic excavator 

In the last decades, modelling of the excavator 
dynamics is a topic of increasing interest for different 
kind of specialists. Dynamical modelling of the 
excavators is crucial for designers of the mechanical and 
hydraulic systems as it enables reduction of prototyping 
costs and a better insight into the mechanical system 
behaviour. 

 Numerous researches have been focused onto the 
dynamics of various earthmoving, construction and 
similar machines [1÷4]. The complexity and the degree of 
refinement of the developed dynamical models depend on 
their purpose. The dynamical models of excavators 
developed by different researchers are intended mainly 
for the following purposes: 1) control and automation 
applications [5÷12]; 2) design of the mechanical and 
hydraulic systems [2, 13, 14, 15]; 3) study of the 
interaction with environment [16÷19]; 4) training 
simulators [20]; 5) identification of the excavator 
parameters [21, 22, 23]. 

Typically, the mechanical system of the excavator is 
modelled as a group of interconnected bodies which 
undergo large displacements and rotations in the plane or 
3D space. The bodies are connected to each other by 
different types of joints and are subjected to forces, 
generated from the hydraulic actuators, gravity and 
interaction between the bucket and the excavated soil. 
Usually, the manipulators are modelled as consisting of 
only open kinematic chain links - boom, stick and bucket 
[7, 8, 17, 24, 25, 26] under the assumption that geometry 
and inertial parameters of these elements have the main 
contribution to the dynamic behaviour of the mechanical 
system. Equations of motion are systematically derived in 
straightforward manner through usage of Denavit-
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Hartenberg convention and application of Lagrange or 
Newton-Euler formalism. 

From the topology point of view, the digging 
manipulators of different types of excavators are based on 
the combination of open kinematic chain, formed by the 
boom, stick and bucket, and closed kinematic chain 
mechanisms, formed by the hydraulic cylinders and 
transmission linkages, see Fig. 1 and Fig. 2. 

 

       
                           a)                                                         b) 

Figure 2 Digging manipulators of different excavators  
a) Terex O&K Tripower system; b) Mecalac 

 
The modern enhancement of the computational 

methods [27] and manufacturing materials [28], also the 
optimization of the metal structure design [29] leads to 
light-weight links of the excavator digging manipulator. 
These points out that the weight of the closed kinematic 
chain links (primarily the hydraulic cylinders links and 
transmitting linkages) cannot be ignored compared to the 
weight of the open kinematic chain links. For example, 
for excavator CAT330DL, CAD modelling shows that the 
mass of the hydraulic cylinders and transmitting linkages 
is about 25.% of the overall mass of the digging 
manipulator. Sleiman et al. [9] also concluded that inertial 
parameters of hydraulic actuators of excavator 12 MXT 
Mecalac should be considered in the dynamical 
modelling. 

One way to increase the precision of the excavator 
dynamical model is to consider the inertial parameters of 
the actuators and linkages as constant and to include them 
in the inertial parameters of the open kinematic chain 
links as it is made in [5]. This approach, as well as the full 
neglect of inertial parameters of the closed loops 
mechanical links, does not ensure the dynamic 
equivalency of mechanisms and adequate representation 
of the real structure. A refined dynamical model has to 
take into account the inertial properties of the elements of 
the closed loops, formed by the hydraulic cylinders and 
links of the transmitting mechanisms, i.e. the excavator 
has to be considered as a multibody system with more 
than three links – boom, stick and bucket.  

There are a few studies to date which deal with the 
modelling of the excavators and similar hydraulically 
driven machines as multibody systems. Reference [13] 
describes a geometric method for formulation of 
constrained multi-loop linkage dynamics which is applied 
to a large mining excavator. The domain decomposition 
method with iteration is proposed and applied to dynamic 
simulation of hydraulic excavators in [30]. Linjama and 
Virvalo [31] have presented a low order dynamic model 
for multilink flexible hydraulic cranes.  A mathematical 
model of large-scale mobile construction manipulator, 
represented by a coupled system of nonlinear ordinary 
differential equations and formulated in minimal 
coordinates, is developed in [32]. Based on Kane dynamic 

equations, analytical dynamic model for 6 DOF industrial 
robotic manipulator containing two closed chains and 10 
links is developed [33]. Reference [21] investigates the 
modelling and control of a full-scale unmanned excavator 
vehicle. The developed model takes into account the 
kinematics and dynamics of the mobile vehicle and the 
excavation manipulator. Fox et al. [34] have adopted the 
multibody approach and DAE formulation of excavator 
and front loader dynamics and used their own software 
for simulation of the prescribed trajectories.  

A key problem in the dynamic simulation of the 
excavators is the coupling of the mechanical system and 
hydraulic drive systems. These subsystems affect each 
other during digging or transport operations and their 
simultaneous investigation can give deep understanding 
of the full system behaviour.  One way to model such 
interaction between subsystems is to analytically 
formulate the equations of motion of mechanical system 
and the governing equations of the hydraulic system [35]. 
These equations are integrated simultaneously in time as a 
single system of equations or a solution can be obtained 
by co-simulation in different specialized numerical codes. 
Hydraulic differential equations are stiff and suitable 
numerical solvers must be employed. Another widely 
applied approach for modelling hydro-mechanical 
systems is the use of multi-domain simulation tools [27, 
36]. 

In the last decades, computer oriented methodology, 
based on Lagrange multiplier technique is developed and 
widely used [37]. This efficient modelling technique is 
suitable for systematic multibody system modelling. 
Adoption of this approach, combined with the use of 
modern computer algebra systems, facilitates individual 
researchers and designers in the development of 
dynamical models of multibody systems comprising tens 
of bodies without care about difficulties when performing 
symbolic and numeric calculations and visualization of 
results. 

According to the defined problems, the main goal of 
this paper is to develop a plane multibody mechanical 
model of a hydraulic excavator simultaneously containing 
an open kinematic chain and closed loops with 
capabilities for calculation of the excavator dynamical 
parameters and joint forces during transportation and 
digging operations. 

Below, the Lagrange multiplier technique is used for 
modelling of the constrained mechanical systems. The 
excavator is considered as a rigid body system and 
detailed governing equations of the mechanical and 
hydraulic systems are presented. The performed 
verification and a typical digging task simulation 
demonstrate the applicability of the model in the analysis 
of the excavator motion. 

 
2 Mechanical system modelling 

 
The dynamic simulation of the mechanical systems 

with closed loops is more difficult than the open 
kinematic chain. The main difference originates from the 
fact that the closed loop systems have fewer degrees of 
freedom than the number of connected bodies. The 
relative motion of the elements depends on each other and 
is determined by a solution of loop closure equations. To 
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define the configuration of the system unambiguously the 
number of required coordinates is greater than the number 
of degrees of freedom. 

Reading through the dynamics literature, large 
variety of methods is available to formulate the excavator 
dynamics, including the iterative Newton-Euler dynamic 
formulation, the Lagrangian formulation, Kane’s method, 
and others. Lagrange equations of the first kind are well 
established in the analytical mechanics and suitable for 
derivation of equations of the multibody systems with 
closed loops: 
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where L = T − U is the Lagrangian function of the 
mechanical system; T is the kinetic energy of the system; 
U is the potential energy of the system; qe, e = 1, 2,..., n 
is the set of n dependent coordinates; Qe are the 
generalized externally applied forces, acting along the 
generalized coordinates. In the case of body centroidal 
coordinate system this vector consists of terms 
originating from springs, dampers and actuators forces; 
ϕf, f = 1, 2,…, m is a set of independent constraint 
equations; λf are called Lagrange multipliers. 

Eq. (1) represents n equations with (n+m) unknowns. 
In order to have the number of equations sufficient to 
obtain the solution, it is necessary to provide additional m 
equations. The obvious choice is to use the algebraic 
constraints (2) which along with Eqs. (1) constitute a set 
of differential algebraic equations (DAE’s) of index 3: 

 
mf,)t,q(f  ,...,2 ,10 ==f                                              (2) 

 
By writing Eqs. (1) and Eqs. (2) together, one obtains a 
system of DAE’s consisting of (n+m) equations with 
(n+m) unknowns. This approach leads to a large system 
of loosely coupled equations that can be solved for the 
generalized coordinates and Lagrange multipliers. The 
vector of Lagrange multipliers is used to determine the 
generalized reaction forces. 

For the purpose of the present study, the hydraulic 
excavator mechanical system is defined as a set of rigid 
bodies, connected by rotational or translational pairs. All 
bodies can move relative to each other in the plane. Each 
body has a mass mk and mass moment of inertia with 
respect to its mass centre Jk. In order to specify the 
position of the excavator, it is necessary to define 
coordinates that specify the location of the mass centre of 
each body and points at which the bodies are 
interconnected. Fig. 3 shows the geometrical relationship 
that exists between the global and local representations of 
the points and vectors on the body. The {x0y0} is the 
global reference frame and the origin of the body fixed 
coordinate system (c.s.) {xkyk} is placed at the centre of 
mass of body k. The position and orientation of body k are 
specified by the position vector Rk and the angle of 
rotation φk of the xk axis of the body fixed local c.s {xkyk} 
relative to the x0 axis of the global c.s. The angle φk is 
considered as positive if the rotation of the xk axis from 
the positive x0 axis is counter clockwise. A fixed point P 

on body k can be located from the origin of the local c.s. 
{xkyk} by the vector k

Pu  and from the origin of the global 

c.s. {x0y0} by the vector k
Pr , see Fig. 3.  

 

 
Figure 3 Position and orientation of a body relative to the global 

reference frame 
 
Vectors kR and k

Pr  have components that vary with time: 
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One can write the following relationship about the 
position of an arbitrary point P measured with respect to 
the global c.s.: 
 

kkkk
PP uARr +=                                                               (4) 

 
where Ak is the rotation matrix of the body k: 
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The position of the point P is represented in the local 
coordinate system by two constant coordinates: 
 

[ ]TPPP
kkk yx=u                                                              (6) 

 
In summary, the position and orientation of the кth body in 
the xy plane can be represented by three generalized 
coordinates xk, yk and φk: 
 

T] , ,[ kkkk yx ϕ=q                                                          (7) 
 

For a system of k planar bodies, the vector of generalized 
coordinates is a 3k vector q: 
 

T111 ],,,...,,,[ kkk yxyx ϕϕ=q                                         (8) 
 

Since the considered planar model of the excavator 
consists of 12 bodies (see Fig. 4), the vector of 
generalized coordinates of the entire mechanical system 
is: 
 

T121212222111 ],, ,...,,,,,,[ ϕϕϕ yxyxyx=q                    (9) 
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In terms of the generalized coordinates, kinetic and 
potential energies of the mechanical system are 
represented by Eq. (10) and Eq. (11) respectively 
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where g is the Earth gravitational acceleration. 
 
2.1 Constraint equations 
 

Schematic representation of the considered excavator 
mechanical system is shown in Fig. 4. 

 

The presented excavator model (Fig. 4) comprises the 
base body 12 (which consist of traveling and swing 
bodies, represented as a single body) and 11 elements of 
the front digging manipulator – 3 bodies from the open 
kinematic chain (boom, stick and bucket) and 8 bodies 
from the closed kinematic chains (hydraulic cylinders and 
fourbar parts). Fig. 4 shows the global reference frame, 
located at the point A and the body fixed coordinate 
frames {x1y1}, {x2y2}, etc. By means of Fig. 4 one can 
identify the kinematic pairs which impose constraints on 
the relative motion between the links. In a whole, the 
mechanical model of the excavator consists of 12 bodies 
which are connected with each other by 12 revolute and 3 
translational joints. In addition, the base body is 
connected to the ground by springs and dampers RS, QU 
and QT, which represent the compliant tires, caterpillar 
chains or hydraulic support. 
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Figure 4 Multibody model of a hydraulic excavator 

 

 
Figure 5 Schematic representation of two bodies, connected by a 

revolute joint 
 

Mathematically, constraints between the bodies are 
expressed by constraint equations. In order to find the 
constraint equations for a revolute joint, let us consider 
the schematic representation of a revolute joint 
connecting links i and j as shown in Fig. 5. From the 
figure it is clear that the position vector of the joint P as 
defined using the absolute coordinates of body i must be 
equal to the position vector of the same point as defined 
in terms of the absolute coordinates of body j 
 

0uARuAR =−−+ jjjiii
PP                                         (12) 

 
which yields two scalar equations (for x and y axes): 
 

0sincossincos PPPP =+−−−+ jjjjjiiiii yxxyxx jjjj (13) 

0cossincossin PPPP =−−−++ jjjjjiiiii yxyyxy jjjj (14) 
 

The hydraulic cylinders are represented as consisting 
of two elements - cylinder tube i and piston with piston 
rod j. These elements are restricted in motion with respect 
to each other by means of a translational pair and can be 
connected to other links by a revolute joint. Origins of the 
local coordinate systems are at the centres of mass of the 
links i

CP  and j
CP , which lie on the longitudinal axis of the 

cylinder. Each link is characterized by geometrical 
parameters, mass and mass moment of inertia with respect 
to its centre of mass. Fig. 6 shows a schematic 
representation of a translational joint between links i and j 
of the hydraulic cylinder. The line of translation of the 
joint coincides with the longitudinal axis of the cylinder. 
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Figure 6 Schematic representation of a hydraulic cylinder 

 
A constraint is required to eliminate the relative 

translation between the links in a direction perpendicular 
to the line of translation. To formulate this constraint, the 
two vectors s and d shown in Fig. 6 must remain parallel. 
It is convenient to define these vectors by locating three 
reference points: the end points Qi and Kj of the cylinder 
and an additional point i

CP  which lies on the line of 
translation: 
 













−
−

= ii

ii

yy
xx

Q

Qs , 








−
−= ij

ij

yy
xx

K

Kd                                      (15) 

 
The first constraint equation of the translational pair 
follows from the fact that the vector product of the two 
parallel vectors is zero 
 

0ds =×                                                                        (16) 
 

which is equivalent to: 
 

0))(())(( QKKQ =−−−−− iiijijii yyxxyyxx                 (17) 
 

where 
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Since the x-axes of the coordinate systems coincide with 
the line of translation of the pair, a constraint equation 
that eliminates the relative rotation between the two 
bodies can be written as: 
 

0=− ji jj                                                                    (21) 
 

The same equations are used in the case of translational 
joint between links, for example for modelling of 
excavator telescopic stick. 
 
2.2 Modelling of the hydraulic cylinder force and compliant 

supporting structure 
 

When a hydraulic cylinder extends or retracts, it 
moves a link and exerts a force on it. The force, applied 
by the hydraulic cylinder consisting of bodies i and j due 

to the action of the hydraulic pressures onto the piston 
areas is 

 

2211
/ ApApF ji

p −=                                                      (22) 
 

where A1 and A2 are the actuator piston area and the 
actuator rod area, respectively. 

Because of considerable friction forces that exist in 
the excavator hydraulic cylinders [38], the resistive force 
Fr which opposes movements of the piston consists of a 
linear viscous term ( ) jijiji

v lbF /// =  and a Coulomb 

friction term ( ) ji
c

jiji
f FlF /// sign = : 
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where ji
cF /  denotes the magnitude of the Coulomb 

friction force between the seals and the cylinder tube; 
jib /  is a viscous friction coefficient; jil /  is the velocity 

of the distance change between points i
CP  and j

CP . Thus, 
the total force generated by the hydraulic cylinder is 
directed along the longitudinal axis of the cylinder and 
has a magnitude ji

hcF / : 
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To restrict the movement of the piston in the limits of the 
stroke, in Eq. (24) a force ji

hsF /  is introduced which 
imitates hard stops at the ends of the cylinder stroke: 
 

( ) ( )
( )

( ) ( ) 0

00

0

/
0

//
0

//

//
0

/

//
0

///
0

//

/

<−−−

≤−≤

>−−−−

=
jijijijiji

hs

jijiji

jijijijijijiji
hs

ji
hs

llifllc

Lllif

LllifLllc

F  (25) 

 
where by ji

hsc /  is denoted the contact stiffness at the ends 
of the cylinder stroke; jiL /  is the stroke of the cylinder. 

When the controlling valve of the hydraulic circuit is 
in its spring cantered position, the cylinder is locked. In 
this case the cylinder acts as a supporting structure with 
constant length and behaves like an oil spring due to the 
compliance of the hydraulic oil. It dissipates the energy 
due to the viscous and friction forces in the cylinder. 
Resistant force ji

rF / , which opposes movements of the 
links, consists of a linear viscous term, Coulomb friction 
term and spring force ( )jijijiji

c llcF /
0

/// −= : 
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v
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where ci/j is the oil spring stiffness constant; jil /  is the 
current spring length and jil /

0  is the undeformed spring 
length. In this case, the force in the hydraulic cylinder is  
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The base body of the excavator is in contact with the 
ground through the supporting structure which can 
comprise compliant tires, caterpillar chains or hydraulic 
supports. If the deformation of the supporting structure is 
small, one can consider that the contact of the base body 
with the ground is achieved through linear springs and 
dampers (see Fig. 4) and Eq. (26) with suitable stiffness 
and damping coefficients is used. The compliance of the 
supporting structure is represented by springs and 
dampers in x and y directions. 

The current spring or hydraulic cylinder length jil /  is 
calculated as 

 

( ) j/ij/ij/ij/il P
T

PP rrr ==                                           (28) 

 
and j/i

Pr  is the position vector of point Pi with respect to 

point Pj  , i.e. jjjiiijij/i
PPPPP uARuARrrr −−+=−= . 

Let us use ( ) ijj/ij/i lˆ PP rr =  to denote a unit vector 

along the line of action of the force ji
hcF / . The velocity 

jil /  of the change of distance between points i
CP  and j

CP  
is obtained through differentiation of Eq. (28):  
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where )( ji

jA  denotes the first derivative of the rotation 
matrix (5) 
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The force acting along the cylinder axis is reduced to the 
centre of mass of the body i (see Fig. 6) yielding the 
generalized force components iX

hcQ  and iY
hcQ : 
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The same applied to body j gives: 
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where I is the 2 by 2 identity matrix. Note that the 
generalized moment is zero because the force ji

hcF /  acts 
along the cylinder axis and passes through the origin of 
the link local coordinate system. 

Since the spring and dampers, which represent the 
tires or caterpillar chains, generally do not pass through 

the origin of the local coordinate system (Fig. 7), the 
generalized moment has a value different from zero. In 
this case the vector of generalized forces and moments is 
in the form (34) and (35). 

 

 
Figure 7 Schematic representation of the base body 
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2.3 Modelling of the resistant force due to the soil-bucket 

interaction 
 
The interaction between the bucket and the excavated 

soil during digging operations is a problem that is not 
fully cleared-up in the literature, primarily due to its 
complexity. Different models have been suggested and 
are used to determine the resistant digging forces [39, 40, 
41]. A widely used practice-oriented approach is to 
assume that excavated soil exerts a resistive force Pd 
which is applied to the bucket tip at point T, see Fig. 8.  
This resistant force is computed as a sum of the resistant 
forces from cutting the soil, friction between the bucket 
and soil and filling of the bucket [40]. The tangential 
component (along line t-t) of the digging force t

dP  is 
computed according to the following approximate relation 
that was experimentally confirmed:  

 
kwhPt

d =                                                                       (36) 
 

where h is the thickness of the cut slice of soil, w is the 
width of the bucket and k is the specific digging 
resistance, which includes all three mentioned resistances. 
Its values are determined experimentally and, for 
example, are between 200 and 300 kPa for wet clay. 

The normal component of the soil resistance is 
calculated as 

 
t

d
n

d PP ψ=                                                                       (37) 
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where ψ = 0.1−0.45 is a coefficient which depends on 
many factors of which the main ones are: the digging 
angle, digging conditions, type of the soil and the wear of 
cutting edge. Taking into account Eq. (36) and Eq. (37), 
the magnitude of the digging force Pd is computed as: 
 

2
d 1 ψ+= kwhP                                                          (38) 

 
The digging force has variable value because of the 
variable thickness h of the cut slice along the digging 
trajectory d-d, see Fig. 8.  Additionally, the experimental 
research shows that the magnitude of the digging force 
has random oscillatory character, caused by periodic soil 
failures during forward movement of the bucket [42].  

The vector of the generalized forces 3
dQ  applied to 

the bucket’s (body 3) centre of mass due to the digging 
force is computed as 
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where 3

dP  is the vector of the digging force components, 
projected onto the c.s. {x3y3} axes 
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where γ is the angle between the axis x3 and the digging 
force direction. 
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Figure 8 Digging force and loading of the bucket 

 
3 Hydraulic system modelling 

 
The typical digging process is conducted by the 

consecutive motions of the stick and the bucket, which are 
driven by high pressure hydraulic cylinders. Each cylinder 
is a part of an independent hydraulic circuit, which is 
driven by its own hydraulic pump. The pumps are driven 
by a single engine. The extension or retraction of the 
single hydraulic cylinder is controlled by a symmetric 
zero-lapped four-way spool valve. The flow to the 
cylinder is controlled by the position of the valve spool. 
Fig. 9 shows a fragment of the simplified schematic of the 
hydraulic circuit for driving the stick and bucket 
cylinders. 
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Figure 9 Fragment of the hydraulic circuit and parameters used in the 

modelling 
 

When the four-way valve is in its spring cantered 
position, the cylinder is hydraulically locked and the 
pump flows into the tank. In this case, if a force is applied 
to the rod, cylinder behaves like an oil spring. When the 
four-way valve is actuated into the flow path 
configuration of the left envelope, the cylinder is 
extended against the force load. When the four-way valve 
is actuated in the right envelope configuration, the 
cylinder retracts and the oil from the piston chamber 
flows into reservoir. To capture the main dynamic effects 
in the hydraulic cylinder chambers, a simplified 
dynamical model of the hydraulic circuit is presented. 

Since the hydraulic fluid is compressible, it is 
necessary to consider its effect on the overall dynamic 
performance of the excavator. The problem of the linear 
hydraulic actuator modelling is well described in the 
standard textbooks [43]. Analytical model of the 
hydraulic system includes orifice flow equations and fluid 
compressibility equations for the oil volumes. 

The flow through the four-way valve is a nonlinear 
function of the pressure drop across the valve orifices and 
of the orifice size. The flow through the valve orifices (for 
turbulent flow) will be introduced as Q1 (from the pump 
to the left chamber of the stick hydraulic cylinder) and Q2 
(from the right chamber of the stick hydraulic cylinder to 
the tank): 
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                     (41)   
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where Cd denotes the  orifice discharge coefficient; w is 
the valve area gradient; )(1 txv is the valve opening as a 
function of time; ρ is the oil density; ps is the supply 
pressure; p0 is the drain pressure; p1 and p2 are the 
pressures in the left and in the right chambers of the stick 
cylinder respectively. Displacement of the valve spool 
from the central position creates a pressure difference 
across the hydraulic cylinder, and the resulting fluid flow 
causes a movement of the piston.  

Important parts of the excavator hydraulic circuit are 
pressure relief valves PRV1- PRV4. They should prevent 
excessive increase of pressure in the hydraulic cylinder 
chambers, caused by the inertia loads and increased 
resistant forces during digging. If the dynamics of the 
PRV valves is neglected, then the passing flow through 
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the valves is described by the following piecewise defined 
function: 

( ) 41,0if ,0
0if ,

cr

crcrv ...kpp
ppppkQ

k

kkk
PRV =≤−

>−−=         (43) 

where pcr is the relief valve cracking pressure; k
PRVQ  is the 

flow, passing through the PRVk; kv is the slope coefficient 
of the valve static characteristic. Typically, for the 
hydraulic excavators the cracking pressure of the PRV is 
set to be 25 % over the rated pressure in the hydraulic 
circuit. 

 The continuity equation of the compressible oil, 
which originates from the mass conservation law, is given 
as follows: 

t
PV

t
VQQ

d
d

d
dΣΣ outin β

+=−   (44) 

In Eq. (44) V is the initial volume of liquid subjected to 
compression, dV and dP are the changes in pressure and 
volume, ΣQin is the total input flow of the fluid, and ΣQout 
is the total output flow of the fluid, β is the bulk  modulus. 
Using the continuity principle and taking into account the 
fluid compressibility, one can write expressions for the 
left and right chambers pressure: 
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where V1 and V2 denote the constant oil volumes in the 
hydraulic cylinder chambers and connecting hoses; x1 is 
the piston displacement; l1 is the stroke of the piston. 

Similar equations can be written for the bucket 
hydraulic circuit. Also, it is considered that: 1) the leak 
flows of the valve and hydraulic cylinder are negligible; 
2) the hydraulic pump is modelled as a constant pressure
source, independent of the fluid flow. 

4 Governing equations of the multibody system 

Taking into account Lagrange equations (1), 
expressions for the kinetic and potential energies, 
respectively Eqs. (10)÷(11), constraint equations for the 
rotational Eq. (13) and Eq.(14), the translational Eq. (17) 
and Eq. (21) pairs, expressions for the generalized digging 
force Eq. (39) and expressions for the generalized forces 
from the hydraulic cylinders Eq. (32), Eq. (33) and  
spring-damper elements Eq. (34), Eq. (35), one can 
generate equations of motion of the multibody system, 
shown in Fig. 4. The system of equations which describes 
the motion of the excavator elements consists of: 

1) 36 differential equations of second order – one
equation for every generalized coordinate - Eq. (9); 

2) 30 constraint equations – 2 equations for every of
12 rotational joints and two for every of 3 translational 
joints; 

3) 6 hydraulic equations of the first order – two
equations for the pressures in the chambers of the boom, 
stick and bucket hydraulic cylinders. 

This system of DAE equations of index 3 can be 
solved by well-known specialized numerical solvers as 
DASSL, IDA or other, implemented in different 
computing environments. More practical approach is to 
solve system of equations as ODE’s. To do this one must 
obtain the acceleration kinematic equations by 
differentiating Eqs. (2) twice with respect to time: 

0=ff       (47) 

Since the derivatives ef q∂∂f  are already computed 
during the derivation of Lagrange Eqs. (1), the following 
formula is used to compute ff : 
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Since acceleration constraints are used, the simultaneous 
solution of Eqs. (1) and Eqs. (2) does not guarantee that 
the coordinate and velocity constraints are not violated as 
the integration of equations progresses. A method by 
Baumgarte is introduced [37] to control the constraint 
violation, which ensures asymptotic stability of the 
system. This stabilization method modifies the 
acceleration constraints by adding two feedback terms 
and replaces Eq. (47) by Eq. (49): 

02 2 =++ fff fβfαf           (49) 

where α and β are positive constants, chosen for sufficient 
fast decrease of the errors. 

A generated set of equations containing 36 second 
order differential equations, 30 modified acceleration 
constraint equations and 6 hydraulic equations is 
represented in a matrix form as a system of first order 
differential equations and solved for the state vector x  

FxA =    (50) 

where 
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and M is diagonal mass matrix; Φq is the Jacobian matrix 
of the system, which is referred to the matrix of partial 
derivatives of the position constraints with respect to the 
array of coordinates; Φ is the vector of position constraint 
equations; 0 is a zero matrix; I is an identity matrix; QE is 
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a vector, containing external forces (weights of links and 
digging force); Qd is a vector, containing quadratic 
velocity terms; h is a vector, containing right hand sides 
of hydraulic equations for corresponding hydraulic 
cylinders; p is a vector, containing pressures in the 
hydraulic cylinder chambers. Also, it is accepted that 

λμ = . 
The matrix equation Eq. (50) is computed at each 

simulation time step and solved for q , v , μ  and p  using 
a standard matrix inversion routine, after which in each 
integration time step the state vector is integrated. This 
procedure is repeated until the final time is reached. As a 
result of the solution procedure, vectors of the generalized 
coordinates and velocities for each body together with the 
vector of Lagrange multipliers for each kinematical pair 
and pressures in the hydraulic cylinders are obtained. 
 

0 s 1.09 s 2.18 s

3.27 s 4.36 s 5.45 s

6.54 s 7.63 s 8.72 s

9.81 s 10.9 s 12 s

 
a) All elements have mass and inertial parameters 

 
b) Only the boom, stick and bucket have mass and inertial parameters 

Figure 10 Trajectory of the bucket tip 
 
5 Numerical experiment and discussions 
 

The developed system of differential equations (50) is 
used to perform a numerical experiment with the inertial 
and geometrical data for the excavator CAT330DL. The 
overall mass of the excavator is 36 000 kg, mass of the 
boom m1=5027 kg, mass of the stick is m2=3264 kg, mass 
of the bucket is m3=2380 kg, overall mass of the 
hydraulic cylinders and transmission linkages elements is 
2750 kg. As it was stated earlier, one of the main 
capabilities of the developed dynamical model is the 
inclusion of the mass and mass moments of inertia of the 

driving hydraulic cylinders and fourbar transmitting 
mechanism elements in the dynamical model. To 
demonstrate the effect of these additional mechanical 
elements on the movement of the system, a simulation of 
the system motion is carried out for the following two 
cases: 1) the motion of the mechanical system when all 12 
mechanical elements have mass and inertial parameters; 
2) the motion of the same mechanical system when the 
masses of the hydraulic cylinders elements and fourbar 
elements are ignored. In both cases the simulation is 
performed only under the action of the gravitational 
forces without considering the hydraulic circuits (free fall 
of the system). In Fig. 10a) a sequence of animation 
frames and trajectory of point L (bucket tip) is presented, 
obtained during the simulation of the system motion in 
the first case. In Fig. 10b) the trajectory of the point L is 
shown, obtained as a result of the simulation of the 
system motion in the second case. As one can see, in the 
two cases the motion of the system is different.  

Fig. 11 gives the graphs of the kinetic -1, potential - 2 
and total energies - 3 of the system. As expected, the total 
energy of the system is constant. 
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Figure 11 Kinetic, potential and total energies (in Joules) of the system 

as a function of time 
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Figure 12 Extensions of the hydraulic cylinders (in meters) as a function 

of time (in seconds): 1) stick; 2) bucket; 3) boom 
 

The graph of the energies, visual review and 
animation of the system motion are used for a verification 
of the developed dynamical model. 

To demonstrate the capabilities of the developed 
dynamical model a numerical experiment is conducted 
and the dynamics of an excavator is studied during the 
digging operation. The digging task is performed by the 
stick and bucket motions which leads to the bucket filling 
along a digging trajectory. The length of the simulated 
digging task is 12 seconds. It consists of a stick hydraulic 
cylinder extension in the time interval from 0 s to 8 s, 
followed by a bucket hydraulic cylinder extension in the 
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time interval from 4 s to 10 s and during this time period 
the boom is fixed and serves as a supporting structure, see 
Fig. 12. The stick and bucket motions are performed by 
the corresponding hydraulic circuit valve opening )(txi

v  
as a function of time according to Fig. 13. 
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Figure 13 Valve openings )(1 txv and 2 ( )vx t  (in meters) as a function 

of time  
 

Fig. 14 depicts a sequence of animation frames, consisting 
of geometrical configuration and bucket tip trajectory. 
 

0 s 1.09 s 2.18 s

3.27 s 4.36 s 5.45 s

6.54 s 7.63 s 8.72  s

9.81 s 10.9 s 12 s

 
Figure 14 Sequence of animation frames from the simulation of the 

digging task 
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Figure 15  Pressures (in Pascals) in the hydraulic cylinders chambers: 1 

and 2 - stick hydraulic cylinder; 3 and 4- bucket hydraulic cylinder 
 

As a result of the integration of the dynamical 
equations, the following graphs are received: 1) Fig. 15 
shows the time evolution of the pressures in the hydraulic 
cylinders chambers: 1 and 2 - of the stick, 3 and 4 - of the 
bucket; Fig. 16 depicts the linear velocities of the piston 

rods of the hydraulic cylinders: 1 - of the stick, 2-of the 
bucket, 3 - of the boom. In Fig. 17 the x and y components 
of the rotational joints reactions are shown: 1 and 2 - of 
the boom, 3 and 4 - of the stick, 5 and 6 – of the bucket. 
Fig. 18 gives the x - 1 and y -2 coordinates and rotation 
angle 3 of the base body 12. Finally, in Fig. 19 the 
velocity of the point L - 3 and its projections onto the x- 
(curve 1) and y-axes (curve 2).  
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Figure 16 Hydraulic cylinders velocities (in m/s): 1 –stick, 2 - bucket, 3-

boom 
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Figure 17 x and y components of joints forces (in Newtons): 1 and 2 -

joint A; 3 and 4 - joint D; 5 and 6 - joint G 
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Figure 18 Position (in meters) of mass centre and rotation of the 

excavator base: 1 and 2 - x and y coordinates; 3 - rotation 
 

2 4 6 8 10 12

1.0

0.5

0.5

1.0
3

2

1
 

Figure 19 Velocities (in m/s) of the bucket tip – point L; 1 – x 
projection; 2 – y projection; 3 – full velocity 
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Validation of the developed model is one of the most 
difficult tasks. Inertial and geometrical parameters of the 
mechanical system can be easily obtained by the CAD 
model, but other parameters such as elasto-damping 
parameters of the tires, parameters of the hydraulic 
system and digging forces must be experimentally 
obtained. 
 
6 Conclusions  
 

Dynamical analysis is an essential part of the 
excavator design process. This process is highly iterative 
and a number of iterations are needed for achieving 
satisfactory design. The design of a system, containing 
subsystems from hydraulic and mechanical domains is 
difficult and the modelling technique must take into 
account their interaction when performing technological 
operations. The hydraulic actuator controlling the digging 
manipulator has its own dynamics due to the presence of 
inertial parameters of their elements and compressibility 
of the hydraulic oil. The internal forces which arise in the 
mechanical system during digging operations, pressures 
and flows in the hydraulic system are decisive for 
reliability and strength calculations of the excavator 
elements. That is why dynamical models suitable for 
investigation of the mechanical system during different 
parts of duty cycle have to be available. For precise 
design, strength and reliability calculations or simulation 
refined dynamical model of excavator manipulator is 
required. 

This paper studied issues related to the development 
of a plane multibody mechanical model of a hydraulic 
excavator simultaneously containing an open kinematic 
chain and closed loops. The inclusion of large number of 
links increases the complexity of the dynamic model and 
numerical problems during the integration process of 
equations of motion. 

The Lagrange multiplier technique plays a key role in 
the modelling of the constrained mechanical systems. In 
case of rigid body systems, this approach leads to a well-
known class of differential-algebraic equations. This 
approach is used for working out the dynamic equations 
of excavator motion in the case of performing 
transportation and digging operations. The excavator is 
considered as a rigid body system and detailed governing 
equations of the mechanical and hydraulic systems are 
presented. Such models can be used for developing 
training simulators, component sizing, and system design.  

The performed verification and a typical digging task 
simulation demonstrated the applicability of the 
developed dynamical model for study of the excavator 
motion simulation. Simulation results of machine’s 
response were provided. It was shown that the digging 
process considerably influences the mechanical and 
hydraulic system parameters. By simulation of various 
external influences such as impact or random forces one 
can explore mechanical and hydraulic systems response. 
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