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Introduction
During pregnancy, progressive physiological changes fundamental 

to supporting the metabolic demand of the growing fetus increases a 
woman’s micronutrient requirement [1]. Characteristic elevations 
in oxygen consumption, central hemodynamic alterations, and 
oxidative stress, are essential to fetal development and contribute to 
the long standing recognition of pregnancy as a vulnerable period 
which is important in determining life-long health. It is important 
to ensure that women receive adequate macro and micronutrition 
prior to and throughout pregnancy to optimise their capacity to 
manage these physiological challenges and ensure the well-being of the 
growing fetus. Micronutrient deficiencies have been associated with 
significantly higher reproductive risks both in the conception period 
and throughout the course of gestation [2-4] and may include anaemia, 
pregnancy induced hypertension and preeclampsia, fetal growth 
restriction, labour complications leading to increased maternal and 
fetal morbidity or mortality [5,6].

Pregnant women living in developing countries or from low-income 
areas of developed nations can often be exposed to inadequate macro 
and micronutrition. Suboptimal consumption results in lower than 
average pregnancy weight gains as a possible result of limited access 
to and intake of animal products, fruits, vegetables and fortified foods 
[7]. During pregnancy the increased nutritional demands placed on key 
maternal physiological systems may exacerbate pre-existing suboptimal 
micronutrient status and contribute to the increased prevalence of adverse 
maternal and fetal outcomes in these populations [8]. 

It is well established that women living in developed countries are 
on average better nourished in terms of macronutrient intakes due to 
the relatively ease of access to the appropriate foods. However, excessive 

intakes of carbohydrates, fats and proteins in these populations has 
seen an increasing prevalence of health conditions such as obesity, 
hyperlipidaemia and Type 2 diabetes [9]. Significant evidence suggests 
that these metabolic conditions increase the incidence of pregnancy 
complications such as preeclampsia, preterm delivery and gestational 
diabetes [10-12]. Even in these populations of the developed world 
which are adequately meeting their macronutrient requirements, it has 
been suggested that women may also be suffering from micronutrient 
deficiencies prior to or as a result of the increased demands of 
pregnancy, as well as the result of maternal genetics, smoking, infection 
and alterations in nutrient absorption and utilisation [13,14]. 

In the developed world there has been a shift towards the utilisation 
of multivitamin supplements during pregnancy to meet the increased 
requirements of folate, iron and B group vitamins widely accepted as 
important for the establishment of a healthy pregnancy. Comprehensive 
supplementation has been linked with improved pregnancy outcomes 
[15-17] and these multivitamin preparations may be of value to maternal 
metabolism by overcoming multiple micronutrient deficiencies [13]. 
Information regarding the importance of trace element micronutrition 
in pregnancy is sporadic and varies depending on the availability of 
population based and supplementation studies.  The current paper will 
focus on the potential importance of eight essential trace elements; 
magnesium, copper, zinc, calcium, iodine, manganese, selenium and 
iron, in the course and outcome of pregnancy.  
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Abstract
The physiological challenges and metabolic demands of pregnancy increase maternal nutritional requirements for 

macro and micronutrients, critical for the establishment and maintenance of a healthy pregnancy. Trace elements are 
essential for a variety of cellular processes, and their deficiency has been linked to complications of pregnancy such 
as preeclampsia, preterm delivery and small for gestational age babies. Growing evidence suggests that populations 
of both developing and developed nations may be at risk of sub-optimal micronutrient intakes and that micronutrient 
supplementation may provide a cost-effective and safe strategy to improve pregnancy outcomes. This review evaluates 
the importance of essential trace element micronutrition in pregnancy and discusses the benefits of supplementation 
on maternal outcomes and fetal development. The potential importance of key essential trace elements; magnesium, 
copper, zinc, calcium, iodine, manganese, selenium and iron are discussed and their importance in pregnancy 
considered. 
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Methods
The present paper summarises the available data on magnesium, 

copper, zinc, calcium, iodine, manganese, selenium and iron that are 
an essential part of micronutrition in human pregnancy. This study 
utilised a search of electronic databases OVID (MEDLINE), PubMed, 
and The Cochrane Library for articles published in English without 
date restriction. The procedure was concluded by the perusal of the 
reference sections of all relevant articles or reviews, a manual search of 
key journals and abstracts from the field of pregnancy and nutrition.

Search terms were entered by combining the terms supplement 
terms including; micronutrient, multivitamin and trace element with 
pregnancy specific terms such as pregnancy, preterm labour, preterm 
delivery, preeclampsia and pregnancy complications. Pregnancy 
specific search terms were also utilised in combination with specific 
trace element search terms such as copper, calcium, magnesium, zinc, 
iodine, manganese, selenium and iron.

Following initial identification of all publications related to the 
search topics above, a careful screening process, following PRISMA 
Guidelines, was undertaken to eliminate duplicates, limit studies to 
those conducted in humans and those studies with a clearly defined 
intervention protocol (Figure 1).

Results for Essential Trace Elements
Magnesium 

Humans require relatively large amounts of magnesium in order 
to activate various essential metabolic enzymes [5] that they obtain 
from sources such as meat and diary products, bread, cereals, and 
vegetable. The recommended daily intake (RDI) of magnesium for the 

general population is 300 to 350 mg/day [18] (Table 1). Magnesium 
deficiencies are infrequent in individuals with access to a balanced diet 
though additional magnesium supplementation may be required to 
meet the demands of pregnancy.  It is therefore recommended that a 
daily intake of up to 400 mg/day of magnesium should be consumed 
for the duration of pregnancy [18] (Table 1). 

Magnesium plays a significant role in blood pressure regulation. 
Through its effect on calcium channels in vascular smooth muscle, 

magnesium produces arterial relaxation and the subsequent lowering 
of peripheral and cerebral vascular resistance, vasospasm, and arterial 
blood pressure which is of benefit during pregnancy [19]. With such 
an important role in blood pressure regulation it is not surprising 
that magnesium deficiency has been linked to preeclampsia [20,21], 
a hypertensive disorder of pregnancy which may commonly be 
characterised by significantly lower serum magnesium levels than 
non-pregnant, healthy individuals [20].  The combination of effects on 
blood pressure, its capacity to act as a blood brain barrier protectant 
and anticonvulsant has seen magnesium rise to be one of the most 
commonly used medications in the treatment of preeclampsia. Since 
the early 1900s magnesium sulphate has been administered for the 
control of eclamptic convulsions with an associated reduction of 
maternal mortality [22] and is considered an essential component of 
treatment for women with severe preeclampsia. 

In the later stage of pregnancy, magnesium has been found to influence 
the initiation of uterine contractility and therefore onset and progression 
of labour. Low serum magnesium has been suggested as a marker for 
patients with a high risk of preterm parturition [19] and supplementation 
with magnesium for the duration of the pregnancy has been proposed as a 
possible preventive against preterm delivery [19]. 

Adequate levels of magnesium can be found in most normal 
balanced diets, and there are concerns surrounding the safety 
of magnesium supplementation at doses up to 3 times normal 
concentrations advocated during eclamptic treatment [23]. In reality, 
magnesium toxicity is rare when administered using oral supplements 
due to the fact that 90% of magnesium will be excreted by the kidneys. 
Careful consideration must be given when administering bolus doses 
via an IV or IM route to ensure renal function can handle the excretion 
load to avoid serum magnesium elevations. Adverse maternal effects 
regarding magnesium toxicity include death from overdose [24], 
increased bleeding time [25-27], increased blood loss at delivery [28], 
slowed cervical dilation  and increased pulmonary odema [29] . 

Copper 

Copper is found in all plant and animal tissues and is important 
for its biological roles in connective tissue formation, iron metabolism, 
melatonin production, cardiac function, immune function, and 
central nervous system development [30].  The essentiality of copper 
for haematopoiesis makes it especially important during pregnancy 
considering the significant maternal hemodynamic changes associated 
with increasing gestation. Copper is also an essential cofactor for 
antioxidant enzymes, including Copper/Zinc superoxide dismutase 
(SOD) and cytochrome C oxidase [31]. Both are expressed in 
maternal and fetal tissues during pregnancy and play an important 
role in combatting the oxidative stress associated with pregnancy. 
Without this protective mechanism, elevations in oxidative stress may 
contribute to poor pregnancy outcomes such as preeclampsia, fetal 
growth restriction and sporadic miscarriage [32]. 

The RDI of copper for the general population is 1.2 mg/day with 
an increase to 1.3 mg/day recommended during pregnancy and an UL 

Figure 1: Schematic representation of methodology.
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intake of 10 mg/day [18] (Table 1). Copper can be found in dietary 
sources such as shellfish, nuts, seeds, legumes, bran, liver and organ 
meats and individuals need to ensure they eat a healthy, varied diet 
to reduce their risk of developing copper deficiency and associated 
complications. There is currently no reliable biomarker for copper 
status and as such it is difficult to establish copper levels in individuals 
or populations. Analysis of dietary copper intakes suggest that females 
are generally consuming below the recommended levels which may 
lead to deficiency states when copper requirements increase during 
pregnancy [33]. 

Zinc 

Zinc is essential for multiple aspects of metabolism [34] through 
its incorporation in antioxidant proteins (Cu/Zn SOD) [35], zinc 
dependent enzymes, binding factors and transporters that are required 
for cell replication, division, differentiation, maturation and adhesion 
[36]. Approximately 95% of the body’s zinc is located within cells and 
dietary sources of zinc include meat, seafood, legumes and whole-grain 
cereals [34]. The RDI for zinc is 8 mg/day with an UL intake of 40 mg/
day [18] (Table 1).

Zinc plays an important role during pregnancy and lactation, 
including embryogenesis, fetal growth, development and milk 
secretion. Depending on zinc bioavailability in the diet, about 2-4mg 
of additional zinc is required during pregnancy to meet physiological 
demand [37]. Up to 82% of pregnant women worldwide are considered 
to have insufficient zinc intakes [38]. It is estimated that maternal 
zinc requirements during the third trimester of pregnancy increase 
to approximately double that of non-pregnant women [5] as a result 
of the progressive decline in the maternal zinc concentration due to 
haemodilution and the increased transfer to the growing fetus [39]. 
Zinc deficiencies have been associated with complications of pregnancy 
and delivery, such as preeclampsia, premature rupture of membranes, 
preterm delivery, fetal growth retardation and congenital abnormalities 
[34]. Severe zinc deficiency is rare and isolated to several geographic 
regions [37] and associated with significant effects on pregnancy 
outcomes including prolonged labour and fetal growth restriction. 

There have been a number of studies examining the effects of 
zinc supplementation on the duration of pregnancy and incidence of 
preterm delivery. Supplementation resulted in a lengthened average 
duration of pregnancy, reduction in the incidence of preterm delivery 
and increases in the average birth weight of infants that was associated 
to increased time spent in utero [38]. Zinc supplementation during 
pregnancy has shown benefits by reducing the incidence of pregnancy 
induced hypertension, low birth weight infants and preterm delivery [40].

Calcium

Calcium is transported across the placenta via an active transport 
mechanism to help meet the demands of tissue and bone development 
in the growing fetus. As a result women require an increased intake of 
calcium during pregnancy [41] in order to maintain maternal calcium 
balance and bone density. Calcium cannot be manufactured in the 

body, and daily calcium requirements must be met by the diet with the 
vast majority supplied by the consumption of dairy products. The RDI 
of calcium during pregnancy is 1300 mg/day which is a 300 mg/day 
increase from the RDI for the general population [18] (Table 1). The 
upper limit of calcium intake is 2500 mg/day. 

Despite the fact that adequate calcium requirements can be met 
through dietary intake, supplementation is recommended during 
pregnancy as deficiency can be harmful to the long term bone health 
of the mother and the developing fetus. The impact of calcium 

supplementation varies according to baseline calcium intake and pre-
existing risk factors. Calcium supplementation with at least 1000 mg/
day has been associated with the prevention of pregnancy induced 
hypertension, preeclampsia, preterm birth and lowered the risk of 
hypertensive complication of pregnancy [42,43].

Calcium has been widely investigated for its relationship to 
preeclampsia. Several studies have associated a reduction in calcium 

intake to an increased risk of preeclampsia. Low calcium intakes 
may precede the development of hypertension by stimulating the 
release of parathyroid hormone and renin which results in increased 
intracellular calcium [44] and corresponding increases in vascular 
resistance and vasoconstriction. Insufficient calcium consumption has 
also been associated with the depletion of calcium stores in the bone 
that can potentially weaken the skeletal system in pregnant women. 
Calcium supplementation, has been associated with a 50% reduction 
in the risk of developing pregnancy induced hypertension [45] and has 
been found to reduce uterine smooth muscle contractility and prevent 
preterm labour and delivery [46]. 

Iodine 

Iodine is an essential component of the thyroid hormones 
thyroxine (T4) and triiodothyronine (T3), critical for normal growth 
and the development of most organs, especially the brain. In its natural 
form,  iodine can be found in sea water, marine plants and minerals in 
the soil. Iodine content in food and water is dependent upon factors 
such as altitude, rainfall and soil microbes [47].

Iodine plays a critical role in neuropsychological development of 
the fetus throughout gestation and its role begins at the peri-conception 
period [48].The fetus is entirely dependent on the maternal supply 
of iodine until 13-15 weeks gestation [48], after this time the fetus 
develops the ability to recycle and reuse iodine but is still ultimately 
dependent on the maternal supply [49]. The thyroid stores iodine from 
the diet, and iodine uptake by the thyroid increases during pregnancy.  
Provided iodine intake is adequate, stores of thyroid hormone will be 
sufficient to support both mother and fetus, however may decrease 
to approximately 40% that of preconception levels in cases of iodine 
deficiency [47,50]. 

Ensuring adequate iodine status among women of reproductive 
age has received high priority by the World Health Organisation 
(WHO), especially for populations in iodine deficient regions [51]. The 
recommended range of iodine supplementation during pregnancy is 

Magnesium Copper Zinc Calcium Iodine Manganese Selenium Iron
RDI  Female adult 320 mg/day 1.2 mg/day 8 mg/day 1000 mg/day 150 mcg/day 5.0 mg/day 60 mcg/day 18 mg/day

 Pregnancy 350 mg/day 1.3 mg/day 11 mg/day 1300 mg/day 220 mcg/day 5.0 mg/day 65 mcg/day 27 mg/day
 Upper limit 350 mg/day 10 mg/day 40 mg/day 2500 mg/day 1100 mcg/day NP 400 mcg/day 45 mg/day

Abbreviations: RDI, recommended dietary intake; NP, not possible to set – may be insufficient evidence or no clear level for adverse effects. Values taken from the 
National Health and Medical Research Council [19]

Table 1: Requirements of trace element intakes in the general population and during pregnancy.
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between 200-250mcg/day increased from 150 mcg/day for the general 
population and should be administered in the form of potassium iodide 
as it is more bioavailable. The UL intake of iodine is 1100 mcg/day 
[18] (Table 1). Urinary iodine concentration (UIC) is the universally 
accepted measure of iodine status and is an excellent indicator for 
recent iodine intake [52]. 

Iodine deficiency can lead to inadequate thyroid hormone 
production, which can result in disorders such as goitre, hypothyroidism, 
cretinism, decreased fertility, miscarriage and trophoblastic disorders 
[53]. It is also well documented that deficiencies of selenium, iron and 
vitamin A can exacerbate the effects of iodine deficiency [54]. Iodine 
deficiency disorders can be prevented through supplementation before 
or during the first three months of gestation [55]. Studies on iodine 
supplementation during pregnancy have shown a positive impact on 
maternal and neonatal outcomes such as significant reductions in the 
rates of prematurity and stillbirths [51]. The benefits of correcting 
iodine imbalance far outweigh the risks of supplementation, as long as 
the iodine dose is within the recommended pregnancy specific limits. 
Caution needs to be taken when selecting prenatal supplement as they 
vary in iodine content. 

Selenium

Selenium in its elemental form is rare, and occurs naturally in a 
number of inorganic forms, including selenide, selenate and selenite. 
Selenium is an essential trace element that plays an important role in 
human health and is well known for its involvement in the synthesis 
of numerous selenoproteins, including endogenous antioxidants 
glutathione peroxidase (GPx), thioredoxin reductase (ThxRed), 
selenoprotein-P [56] and iodothyronine deiodinases [57]. 

Dietary selenium is obtained from foods such as nuts (especially 
Brazil nuts), cereals, meat, fish, eggs, dairy products, fruit and 
vegetables. The selenium content of food is directly dependent upon its 
bioavailability in the soil and therefore is subject to regional variation. 
The RDI of selenium for the general population is 60mcg/day with an 
additional 10mcg recommended during pregnancy and lactation [18] 
(Table 1). 

Pregnancy is associated with a progressive reduction in selenium 
concentration that is further exacerbated through conditions such as 
obesity and some other pregnancy specific complications [58-60]. It is 
hypothesised that the reduction in selenium may be the consequence 
of haemodilution [61] from maternal plasma expansion, increased 
transport of selenium to the fetus [61] and as a result of increased 
utilisation for the synthesis of seleno dependant antioxidant proteins 
required to combat the increased oxidative demands of pregnancy 
[62]. Such reductions in selenium concentration during pregnancy 
combined with regional variations in selenium intake place pregnant 
women at risk of suboptimal selenium intake [63] and as a result may 
experience reduced antioxidant enzyme status during pregnancy. 

Oxidative stress is defined as an imbalance between the generation of 
reactive oxygen species and the ability of biological systems to neutralise 
free radicals. Pregnancy is associated with increased levels of oxidative 
stress and an increased reliance on antioxidant proteins. A wealth of 
scientific literature suggests that oxidative stress during pregnancy 
may play a role in adverse pregnancy outcomes such as spontaneous 
abortion, miscarriage [64-67], preeclampsia [68], gestational diabetes, 
premature rupture of membranes (causing preterm birth) and uterine 
growth restriction [69-73]. GPx and ThxRed are essential antioxidant 
enzymes that contain selenium in the form of selenocysteine in their 
active site. Selenium is required for the expression and activity of these 

enzyme systems and selenium supplementation has been found to 
increase the activity of these enzymes both in vitro and in vivo [74]. 
There is substantial evidence that maternal selenium concentration 
and GPx activities are reduced in pre-eclamptic pregnancies [75,76] so 
selenium supplementation could reduce placental oxidative stress and 
thus improve pregnancy outcomes. 

Manganese

Manganese is an essential element found in rocks, soil and water. 
Dietary sources of manganese including wheat, brown rice, spinach, 
pineapple and soybeans and it is crucial for a number of biological 
and physiological processes including immune function, regulation of 
cellular energy, reproduction, digestion, bone growth and blood clotting 
[77]. Manganese also functions as a cofactor for many enzymatic 
reactions including amino acid, lipid, protein and carbohydrate 
metabolism [78]. Its utilisation in the antioxidant manganese 
superoxide dismutase (Mn–SOD) is well documented for its protection 
of the placenta from oxidative stress [79]. Manganese therefore plays a 
critical role in normal prenatal and neonatal development and is vital 
that mothers are informed about the importance of adequate intake 
peri and post conception. 

The primary source of manganese is through food intake and for 
the general population the RDI of manganese is 5 mg/day and remains 
unchanged for pregnant women. Insufficient data is available to set 
an UL intake of manganese [18] (Table 1). In adults approximately 
1-5% of ingested manganese is absorbed, with women absorbing a 
significantly higher percentage than males [77]. It is generally believed 
that manganese deficiencies cannot arise in humans because it is 
widely available in foods commonly eaten, however foods will only 
contain the amount of manganese that is available in the soil on which 
it has been grown. Current farming methods have the potential to 
cause manganese deficiencies and recent global studies have found a 
particularly low level of manganese in some food samples [80]. 

Serum manganese levels increase throughout pregnancy [81,82] 
and it crosses the placenta via active transport mechanisms [83]. 
Manganese is one of the least studied micronutrients and there is 
currently minimal data published about supplementation of manganese 
in human pregnancy [5]. To date studies have shown lower blood 
manganese concentrations in women delivering growth restricted 
infants compared to healthy controls, suggesting that manganese may 
be important in promoting fetal growth [84]. A more recent study 
reported lower umbilical cord manganese concentration in neonates 
born to mothers with preeclampsia compared to controls [85]. 

It is well established that exposure to high doses of manganese 
can result in elevations in tissue manganese levels. If excessive 
accumulation of manganese occurs in the central nervous system it 
can cause Parkinson’s type syndrome referred to as Manganism [77]. 
Currently there is little known about the effects of excess manganese on 
the developing human fetus or pregnancy outcomes.

Iron

Iron is an essential component of haemoglobin, myoglobin, 
cytochromes and enzymes involved in redox reactions. Haemoglobin is 
important for oxygen transport to tissues and almost two thirds of the 
body’s iron is found bound to haemoglobin. Wholegrain cereals, meats, 
fish and poultry are the major contributors of dietary iron intake and 
the RDI of iron for the general female population is 8-18 mg/day with 
an UL intake of 45 mg/day [18] (Table 1). Inadequate iron intake can 
result in varying degrees of deficiency ranging from iron depletion to 
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iron deficiency anaemia. Ensuring adequate iron intake is particularly 
important for women in order to supply the increased demand resulting 
from menstruation and pregnancy. During pregnancy rapid tissue 
growth, increasing fetal demand and the expansion of maternal red cell 
mass, causes a fall in haemoglobin concentration with approximately 
38% (32 million globally) of pregnant women considered anaemic 
[86,87]. The RDI of iron during pregnancy increases to 27 mg/day with 
an UL intake of 45 mg/day [18] (Table 1). Anaemia during pregnancy 
is defined as a haemoglobin (Hb) value below the lower limits of its 
normal range (Hb<110 g/L [87]) during the first or third trimester, or 
lower than 105 g/L during the second trimester. Iron deficiency anaemia 
is the most common cause of anaemia during pregnancy worldwide 
[88] and is increasingly associated with multiple pregnancies, teenage 
pregnancies and high parity pregnancies [89-91]. Well known clinical 
presentations of iron deficiency anaemia are tiredness, weakness, 
lethargy and irritability. The fetus is relatively protected from the 
effects of iron deficiency by up-regulation of placental iron transport 
proteins [92] but there is some evidence for the association between 
maternal iron deficiency and adverse pregnancy outcomes such as 
preterm deliveries and small for gestational age infants [93-97].

International organisations have been advocating routine iron 
supplementation for pregnant women in areas of high anaemia 
prevalence, although conjecture still surrounds recommended doses 
and regimens. Gastrointestinal side effects are the most common 
adverse effects associated with iron supplementation and may present 
at upper level intakes. With an established tolerable UL intake based 
on gastrointestinal side effects of 45 mg/day [98], this is a daily dose 
much lower than international recommendations of 60 mg/day with an 
increased dose of up to 120 mg/day in regions considered iron deficient 
or if the women is anaemic [99]. Iron supplementation has been shown 
to significantly reduce the risk of low birth weights [100] and improve 
haemoglobin concentrations in pregnant women, reducing the risk of 
maternal anaemia and subsequent adverse pregnancy outcomes.

Discussion
During pregnancy the increased metabolic demands on both macro 

and micro nutrition place significant stress on the maternal physiological 
system. It is important that women receive adequate micronutrition 
on a daily basis to reduce the risk of potential adverse pregnancy and 
fetal outcomes. Focusing on the essential trace elements; magnesium, 
copper, zinc, calcium, iodine, manganese, selenium and iron, it is clear 
all play and important role during pregnancy and deficiencies prior to 
or during gestation may lead to adverse outcomes for both the mother 
and fetus. Such complication include; anaemia, hypertension, fetal 
growth restriction, preeclampsia, labour complications and even death. 

Regional variations in trace element concentration in food may 
leave some populations at risk of suboptimal micronutrient status. 
As a result increasingly significant proportions of women are turning 
to pregnancy specific micronutrient supplements to provide them 
with increased folate and support their bodies prior to and during 
pregnancy. With this in mind it is important to not only consider 
the role of trace elements in pregnancy but the possible benefits of 
combining these elements with essential vitamins.  Trace elements 
such as selenium and zinc in combination with vitamins A, B6, B12, C, 
D, E, folate, have been found to improve immune function and reduce 
placental oxidative stress and are considered important in supporting 
the maternal system to deal with the physiological stress of pregnancy 
[51,101] through the modulation of maternal and fetal metabolism, 
reductions in inflammation and the support placentation [13] 

When the literature supporting the role of micronutrient 
supplementation during pregnancy is considered more broadly, 
there is a number of cohort based studies that suggest the use of 
multivitamin/minerals during pregnancy may significantly reduce the 
risk of developing preeclampsia [15,17,102,103], preterm delivery [16] 
and improve pregnancy outcome [104]. This growing body of evidence 
may be of particular importance to supporting health care practitioners 
working in maternal health to provide targeted nutritional counselling 
particularly in populations with reduced baseline micronutrient status.  
In conclusion, daily supplementation throughout pregnancy with 
a multivitamin preparation may be an important and cost effective 
measure to reduce the risk of pregnancy complications associated with 
suboptimal trace element intakes.
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