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Abstract 23 

Coastal ecosystems, such as estuaries, salt marshes, mangroves, and seagrass meadows, 24 

comprise some of the world’s most productive and ecologically significant ecosystems. 25 

Currently, the predominant factor considered in valuing coastal wetlands as fish habitats is 26 

the contribution they make to offshore, adult fish stocks via ontogenetic migrations. 27 
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However, the true value of coastal nurseries for fish is much more extensive, involving 28 

several additional, fundamentally important ecosystem processes. Overlooking these broader 29 

aspects when identifying and valuing habitats risks suboptimal conservation outcomes, 30 

especially given the intense competing human pressures on coastlines and the likelihood that 31 

protection will have to be focussed on specific locations rather than across broad sweeps of 32 

individual habitat types. We describe 10 key components of nursery habitat value grouped 33 

into three types:  1) Connectivity and population dynamics (includes connectivity, 34 

ontogenetic migration and seascape migration), 2) Ecological and ecophysiological factors 35 

(includes ecotone effects, ecophysiological factors, food/predation trade-offs and food webs), 36 

and 3) Resource dynamics (includes resource availability, ontogenetic diet shifts and 37 

allochthonous inputs). By accounting for ecosystem complexities and spatial and temporal 38 

variation, these additional components offer a more comprehensive account of habitat value. 39 

We explicitly identify research needs and methods to support a broader assessment of nursery 40 

habitat value. We also explain how, by better synthesising results from existing research, 41 

some of the seemingly complex aspects of this broader view can be addressed efficiently.  42 

Keywords: Nursery ground – Ecosystem mosaic – Coastal wetland – Estuary – Fish 43 

 44 

 45 

Introduction 46 

Coastal wetlands comprise some of the most valuable ecosystems on the planet (van den Belt 47 

2011, Elliott & Whitfield 2011), and yet are among the most threatened (Bassett et al. 2013). 48 

Their position at the interface of land and sea means they occupy locations that are highly 49 

prized by humans, leading to unprecedented and rapidly increasing threats from intense 50 
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population pressure, rapid, large-scale development, and climate change (Hughes et al. 2009, 51 

Corn and Copeland 2010).  This conjunction of high value and intense threats makes a 52 

detailed understanding of the functioning of coastal wetlands essential if they are to be 53 

managed and protected for future generations (Elliott & Kennish 2011).  54 

One value that is increasingly recognised for all types of coastal wetlands, whether they are 55 

estuaries, saltmarshes, mangrove forests, seagrass meadows or floodplain swamps, is their 56 

role as nursery grounds for aquatic species of immense ecological, cultural and economic 57 

importance (Beck et al. 2001, Mumby and Hastings 2008). This nursery value stems from the 58 

provision of habitat, refuge, food, favourable physical conditions and advantageous 59 

hydrodynamics (Nagelkerken et al. in press). However, the provision of these services is 60 

complex. Not only do the values manifest at a variety of scales (e.g. habitat or food provided 61 

at a local scale, versus physical conditions at a whole of ecosystems level) but, rather than 62 

being a function of a single habitat, their values are usually conferred by a mosaic of 63 

interacting habitats (Sheaves 2009, Berkström et al. 2012) and may rely on processes or 64 

inputs derived from well beyond the wetlands themselves (Beger et al. 2010). Many of the 65 

processes that underpin nursery function may not be a feature of a spatial habitat at all; for 66 

example, reliance on the delivery of allochthonous sources of production to support food 67 

webs (Connolly et al. 2005), or the temporal coincidence of recruitment and the availability 68 

of suitable prey resources (Robertson and Duke 1990). Nursery function is further 69 

complicated by the diversity of life-history strategies of the species occupying these systems 70 

(Elliott et al. 2007, Potter et al. in press). 71 

Although estuarine and coastal ecosystems have long been recognised as nurseries for fish 72 

and crustaceans (Boesch and Turner 1984), it was not until the seminal work of Beck et al. 73 

(2001) that the concept was formalised. However, the ideas of Beck et al. (2001) and their 74 

modification by Dahlgren et al. (2006) focus on one aspect of nursery ground value; the 75 
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supply of juveniles from discrete spatial units of nursery habitat to adult populations. Such 76 

approaches only consider contribution that can be measured in terms of the movement of 77 

juvenile numbers/biomass, so do not capture the complex dynamics that support nursery 78 

function. While these approaches represent a significant step forward, comprehensive nursery 79 

identification and valuation requires that the complex, dynamic nature of nursery ground 80 

function needs to be recognised (Able 2005, Mumby and Hastings 2008, Sheaves 2009, 81 

Potter et al. in press) and consolidated into identification and valuation if nursery function is 82 

to be maintained in the face of ever increasing anthropogenic pressures (Nagelkerken et al. in 83 

press).  84 

There are two aspects to the value of nursery grounds to fish: (1) their value in supporting 85 

successful nursery ground occupation, and (2) the value to recipient populations and 86 

ecosystems (Fig. 1). Most current concepts of nursery ground value (e.g. Beck et al. 2001, 87 

Dahlgren et al. 2006) relate to the output of juveniles from nursery grounds that reach 88 

offshore (e.g. Reis-Santos et al. 2012), but the mechanisms that drive this contribution to 89 

recipient populations are incompletely understood. Recognition of the significance of the 90 

processes which regulate juvenile populations within nursery habitats is nothing new (e.g. 91 

Minello et al. 2003), and the need to evaluate this information in the context of entire 92 

lifecycles is increasingly recognised (Huijbers et al. 2013, Baker et al. 2014, Vasconcelos et 93 

al. in press).  However, current approaches to the valuation of nurseries ultimately treat the 94 

processes driving nursery function as a black box by simply measuring what emerges at the 95 

end as emigrants to the adult populations. The resulting rankings of nursery grounds fail to 96 

provide managers with information on how to protect key processes that underpin nursery 97 

value and function.  Furthermore, focusing management and further research on the identified 98 

‘important’ nursery habitats is risky because the habitat units identified will rarely contain all 99 

the elements that support the nursery function we aim to protect. 100 



5 
 

Nursery ground value is the net result of a complex of interacting factors that vary from 101 

situation to situation. Some involve seascape structure and function directly (Hammerschlag 102 

et al. 2010), but others extend to include complex ecological interactions and resource 103 

dynamics, and often involve a complex of cross-habitat and cross-ecosystem movements. 104 

This complexity needs to be considered in the context of differences in the composition of 105 

fish assemblages using coastal nurseries in different parts of the world (Sheaves 2012, Potter 106 

et al. in press) that is likely to result in different mixes of factors being important in different 107 

regions. Understanding this complexity and the relative importance of different factors, is the 108 

key to meaningful nursery identification and valuation, and is the raw material needed to 109 

inform population conservation decision support systems (Beger et al. 2010). Conversely, a 110 

lack of evaluation of the complexity is the recipe for superficial assessment (Harris and 111 

Heathwaite 2012) that is likely to miss the most critical contributors to value. Consequently, 112 

we build on earlier work to develop a framework for a more comprehensive understanding of 113 

nursery ground value, by considering the range of contributions of nurseries to sustaining 114 

local production, replenishing adult stocks and influencing recipient ecosystems. We also 115 

consider approaches available to identify the range of factors underpinning nursery value at a 116 

particular site, the extent to which they contribute to nursery value and the factors that need 117 

to be taken into account to inform comprehensive, effective and well-grounded management 118 

decisions. At face value, recognising and including this complexity seems a difficult task, but 119 

most of the research needed to underpin this consolidation is already being conducted; it just 120 

needs to be integrated and extended.  121 

 122 

Factors Supporting Successful Nursery Ground Occupation 123 

Connectivity and Population Dynamics 124 
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At an operational level of supporting the lives of juvenile fish, nurseries comprise a complex 125 

mosaic of interacting habitat units and the connectivities enabling their interaction (Sheaves 126 

2009). The importance of juvenile habitat is well recognised, and is a key driver for the 127 

identification of essential fish habitat in the USA (e.g. Froeschke et al. 2013) and Europe 128 

(Vasconcelos et al. in press). However current definitions for identifying nursery habitats 129 

emphasise the habitats which leave a distinctive chemical signature or are the habitats from 130 

which juveniles can be most readily sampled (Gillanders 2005). This disregards the fact that 131 

many aquatic species shift habitats during their time within the nursery (Kimirei et al. 2011), 132 

and that other critical habitats might only be occupied transiently (Tupper 2007) or indirectly 133 

support nursery value (Connolly et al. 2005). 134 

Connectivity (Fig. 1a): Ontogenetic habitat shifts, the use of transitory and temporary 135 

habitats (Potter et al. in press), and the use of a mosaic of habitats within the nursery seascape 136 

(Nagelkerken et al. in press) attest to the central importance of connectivity in supporting 137 

nursery ground value (Vasconcelos et al. 2011). Yet connectivity is more than just the 138 

movement of individuals among habitats; it is a facilitator that enables a variety of critical 139 

ecological functions to support nursery value (Sheaves 2009). For instance, deriving maximal 140 

nursery ground value relies on spatio-temporal matching  between the functional requirement 141 

to use the particular habitat (e.g. refuge), the occurrence of appropriate resources (e.g. 142 

flooded marsh surface) and physical conditions in the habitat (e.g. oxygen levels), and it is 143 

connectivity that allows this complex matching to occur. The facilitating role of connectivity 144 

is pervasive (Beger et al. 2010), and it is a key factor supporting most ecological interactions 145 

conferring nursery ground value.  146 

Ontogenetic migrations (Fig. 1b): Ontogenetic migrations occur at a range of scales, from 147 

movements along freshwater to marine gradients (Russell and Garrett 1985, McBride et al. 148 

2001, Davis et al. 2012), and movements within local habitat mosaics (Nagelkerken 2009, 149 
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Grol et al. 2011). Local scale migrations include both easily identifiable meso-term habitat 150 

shifts (e.g. seagrass to mangrove to patch reefs (Nagelkerken et al. 2000a)) and ephemeral 151 

habitat occupancy (e.g. initial settlement habitats (Dahlgren and Eggleston 2000, Grol et al. 152 

2011)) that is more difficult to detect. Not only do ontogenetic habitat shifts exist across a 153 

range of dependencies, from facultative (Milton et al. 2008) to more obligate (Potter et al. in 154 

press), but they may vary spatially (Kimirei et al. 2011). For instance, Haemulon 155 

flavolineatum, one of the most common Caribbean ontogenetic shifters, moves from rubble 156 

habitat to seagrass beds to mangroves to rocky substratum in some geographic locations 157 

(Grol et al. 2011), but from rubble habitat to sea urchin spines to seagrass beds to lagoonal 158 

patch reefs in others (Ogden 1988).  159 

Seascape migrations (Fig. 1c): On shorter time scales, feeding migrations and movements to 160 

refugia are vital facilitators of key nursery functions, and connect multiple habitats within the 161 

nursery seascape (Sheaves 2005, Verweij and Nagelkerken 2007). In situations where large 162 

tidal differences occur, intertidal habitats such as salt marsh or mangrove roots are only 163 

available periodically (Minello et al. 2012), leading to regular tidal migrations. Even in cases 164 

where tides do not play a major role, many organisms show predictable diurnal movements 165 

between shelter habitats and foraging grounds (Hammerschlag et al. 2010). Seascape 166 

structure, the spatial patterning of prey and predator species, and the hydrodynamics and 167 

geomorphology of the ecosystem all play important roles in structuring such animal 168 

movements across habitats (Nagelkerken 2007, Baker et al. 2013).  169 

Ecological and Ecophysiological Factors 170 

Ecotone effects (Fig. 1d): Ecotones are important contributors to nursery ground value. 171 

Indeed, estuarine nurseries occur in transitional waters between freshwater reaches and the 172 

sea and have been defined as traditional ecosystems in their own right (Basset et al. 2013). 173 
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Animal communities often show strong spatial patterning within the seascape, and it is 174 

especially at the edges of habitats where highest species richness and densities are observed 175 

(Dorenbosch et al. 2005, Johnston and Sheaves 2007). For example, fish densities in seagrass 176 

beds can decrease with distance away from patch reefs (Valentine et al. 2008), and the 177 

highest fish and crustacean densities are found at the seaward fringes of salt marsh (Minello 178 

et al. 2003) and mangroves forests (Vance et al. 1996). As boundaries that need to be crossed 179 

moving between habitats, ecotones are also areas where risks can be greatest (Hammerschlag 180 

et al. 2010), and so are points where population structuring factors like predation focus can be 181 

particularly influential (Sheaves 2005, Baker and Sheaves 2009b). 182 

Ecophysiological factors (Fig. 1e): Physical factors and physiological abilities are critical in 183 

determining spatial (Sheaves 1996a, Harrison and Whitfield 2006) and temporal (Attrill and 184 

Power 2004) patterns of nursery ground occupancy. This manifests at a diversity of scales; 185 

for instance relating to ontogeny of habitat use (McBride et al. 2001), seasonal occurrence of 186 

necessary physical conditions (Davis et al. 2012) and nutrients (Abrantes and Sheaves 2010), 187 

long-term patterns of nursery utilisation (Sheaves 1998), variations in optimal nursery 188 

habitats (Hurst and Conover 2002), or responses to multi-year climatic cycles (Sheaves et al. 189 

2007). Consequently, in many systems nursery provision will change substantially over time 190 

(Minello et al. 2012), providing advantage to different species under different conditions. 191 

Differing behavioural and physiological abilities allow different species, and even different 192 

ontogenetic stages, to access and use different nursery grounds or use nursery grounds in 193 

different ways. Air breathing organs in species such as tarpon (Megalops spp.) allow them to 194 

utilise hypoxic wetland nurseries (Seymour et al. 2008), while barramundi (Lates calcarifer) 195 

juveniles are able to access hypersaline wetlands from which predators and competitors are 196 

excluded (Russell and Garrett 1985). Even in deeper estuarine waters hypoxia can exclude 197 

species from habitats during periodic hypoxic events (Pihl et al. 1991, Switzer et al. 2009). In 198 



9 
 

response, many estuary species can detect and avoid areas of low dissolved oxygen 199 

concentration (Wannamaker and Rice 2000). Not only do different salinity preferences 200 

contribute to nursery habitat partitioning by co-occurring juvenile fish (Davis et al. 2012), but 201 

physical conditions can have substantial influences on growth rates of juveniles (Del Toro-202 

Silva et al. 2008), with salinity and temperature regimes often having more substantial 203 

influences on growth than diet (Baltz et al. 1998). Eco-physiological effects can be complex, 204 

interacting with ecological processes to effect changes in nursery value for different juvenile 205 

stages. For instance, ecophysiological differences allow young juvenile California halibut, 206 

Paralichthys californicus, to occupy estuaries with abundant prey and few predators from 207 

which larger juveniles are excluded because of narrower salinity and temperature tolerances 208 

(Madon 2002). 209 

Food/Predation Trade-Offs (Fig. 1f): Juveniles utilising nurseries face a complex trade-off 210 

between the need to obtain sufficient, appropriate prey, and minimising predation risk 211 

(Sogard 1992, Baker and Sheaves 2007). This trade-off can profoundly affect nursery ground 212 

value, and the quantity and quality of sub-adults migrating to adult habitats (Walters and 213 

Juanes 1993, Kimirei et al. 2013). The need to access prey-rich areas can initiate or 214 

necessitate behaviour that exposes juveniles to increased predation risk (Alofs and Polivka 215 

2004, Sheaves 2005) or to forage in areas that support poor growth rates (Sogard 1992, 216 

Harter and Heck 2006). In fact, the underlying mechanisms that drive habitat shifts are often 217 

related to minimizing the ratio of mortality risk to growth rates (Werner and Hall 1988, 218 

Halpin 2000), because profitable habitats for food acquisition are often riskier in terms of 219 

probability of predator encounter (Hammerschlag et al. 2010). Predation is usually the largest 220 

source of mortality for juvenile fish (Harter and Heck 2006), so high risk areas, such as 221 

transition zones between refuge and feeding areas (Hammerschlag et al. 2010) may represent 222 

ecological bottlenecks. For example, predatory activity at these locations can control the 223 
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supply of recruits to nursery grounds (MacGregor and Houde 1994, Brown et al. 2004) and 224 

the supply of juveniles from nursery grounds to adult populations (Yurk and Trites 2000, 225 

Friedland et al. 2012), and so provide the opportunity for predatory control of nursery 226 

populations (Baker and Sheaves 2009b). In addition, these refuge-food acquisition trade-offs 227 

vary between species (Camp et al. 2011) meaning that nursery ground values may differ 228 

markedly depending on the species involved. 229 

Food webs (Fig. 1g): Predators have a strong top-down control on food webs. While 230 

nurseries have typically been assumed to harbor few predators, recent studies have shown a 231 

more complex picture (Baker and Sheaves 2009a, Dorenbosch et al. 2009). Although 232 

standing stock of predators may be low much of the time, immigrating predators from 233 

adjacent systems can produce profound predatory effects on nursery fish during their short 234 

foraging forays (Baker and Sheaves 2009a). Moreover, many nursery species shift 235 

ontogenetically to higher piscivory while still occupying nurseries (Baker and Sheaves 236 

2009a). The spatio-temporal presence of predators and their specific gape sizes will 237 

determine to what degree they control fish populations in nurseries. Secondly, interspecific 238 

interactions may determine which species ultimately are responsible for greatest export to 239 

adjacent ecosystems. Recruitment of nursery fish may be highly variable in time, and feeding 240 

habitat and food availability may be limiting during nursery occupancy (Igulu et al. 2013). 241 

Competitive exclusion from optimal foraging habitats among species may be an important 242 

determinant of the winners and losers of nursery habitat use in terms of growth, survival, and 243 

successful movement to consecutive habitats. 244 

Resource Dynamics 245 

The availability, distribution and quality of resources within the nursery are critical 246 

parameters underpinning nursery ground value, the pattern of use of resources, and ultimately 247 
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the outcome of nursery ground residence. Resource use is complex, varying along stage-248 

specific, time-specific and purpose-specific axes. 249 

Resource availability (Fig. 1h): Nursery grounds are often nutritionally rich ecosystems 250 

maximizing cohort growth during nursery ground residence (Yanez-Arancibia et al. 1994), 251 

and marine organisms invest heavily in rapid growth during their early life stages. Prey 252 

quantity and quality affect growth (Sogard 1992, Scharf et al. 2006) because of substantial 253 

differences in the energetic value of different prey types (Ball et al. 2007). Although fish may 254 

be able to switch to alternative prey (Gartland et al. 2006), there are limits to this ability to 255 

adapt (Nobriga and Feyrer 2008), and particular prey may be required at particular life stages 256 

(Robertson and Duke 1990, Baker and Sheaves 2005). Consequently, the quality, quantity 257 

and availability of food resources is an important factor in nursery value, although food 258 

acquisition often necessitates trade-offs with predation avoidance (see above). High quality 259 

nursery grounds are also those that provide optimal habitats relative to the full range of life-260 

history functions (Nagelkerken and van der Velde 2002, Nagelkerken et al. in press), such as 261 

juvenile settlement (Dahlgren and Eggleston 2000, Grol et al. 2011), foraging (Nagelkerken 262 

et al. 2000b, Harter and Heck 2006) and refuge (Ellis and Gibson 1995, Sheaves 1996b, 263 

Gorman et al. 2009).  264 

Ontogenetic diet shifts (Fig. 1i): Complex seascape dynamics, with juveniles obtaining 265 

resources from different habitats during different phases of their nursery residence, mean that 266 

the development of complicated and variable food webs is inevitable (Nagelkerken et al. 267 

2006). Due to ontogenetic dietary shifts, many juveniles change their trophic identity during 268 

nursery occupation. Profound changes in diet over development mean they may not even 269 

participate in the same trophic web throughout nursery occupation. For example, juvenile 270 

Platycephalus fuscus initially feed almost entirely on amphipods and so participate in a food 271 

web based on benthic productivity, while larger juveniles in the same habitat switch to 272 
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feeding extensively on planktivorous fish (Baker and Sheaves 2005). Such ontogenetic diet 273 

shifts are widespread among estuarine and coastal fishes (Elliott et al. 2007), and the 274 

availability of the different food items that are preferentially selected through ontogeny is an 275 

important driver of the realized growth during nursery occupancy.  276 

Allochthonous inputs (Fig. 1j): In marine systems water is an effective vector for the 277 

movement of energy and nutrients among habitats, allowing substantial trophic subsidies that 278 

affect the structure of animal populations in recipient systems (Deegan 1993). In some 279 

situations, animals are sustained by food webs based on autotrophic production within their 280 

habitat (e.g. juvenile fish in seagrass meadows in the Mediterranean (Vizzini et al. 2002), and 281 

animals on saltmarshes in subtropical Australia (Guest and Connolly 2004)). Often, however, 282 

nutrition is derived ultimately from plants or algae growing elsewhere. Organic matter from 283 

seagrass meadows can sustain food webs in adjacent habitats (Heck et al. 2008), supporting 284 

production in both temperate (e.g. Connolly et al. 2005) and tropical (e.g. Melville and 285 

Connolly 2005) systems, while mangroves also have been shown to support fish production 286 

in adjacent estuarine (Abrantes and Sheaves 2009a) or coastal waters (Bouillon et al. 2008) in 287 

certain situations. Stable isotope analysis has demonstrated both the detrital pathway for this 288 

transfer and the fact that movement of nutrients can also occur through in-welling from 289 

coastal to intertidal waters (Connolly et al. 2005). 290 

The Support of Recipient Populations and Ecosystems by Nursery Grounds 291 

The conventional view of nursery ground value (e.g. Heck et al. 1997, Beck et al. 2001) 292 

emphasises the contribution of juveniles from inshore nurseries to recipient (usually offshore) 293 

populations, and its crucial role in supplying adult populations with new individuals. The 294 

migration of juveniles also represents the biologically-mediated export of nutrients, 295 

incorporated into juvenile biomass during nursery residence, donated to offshore systems 296 
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(Deegan 1993, Beck et al. 2001). The export of biomass was suggested by Beck et al. (2001) 297 

to be the best integrative measure of the contribution of juveniles to future generations. 298 

However, the numbers and biomass of individuals that reach adult stocks represent only part 299 

of the contribution that juveniles using nursery grounds make to recipient populations and 300 

ecosystems (Fig. 1, 2). 301 

Diverse trophic contributions: From the moment of recruiting to the nursery ground the 302 

abundance of a cohort is continually and exponentially pruned back by mortality (Yanez-303 

Arancibia et al. 1994, Doherty et al. 2004). As abundance declines individual biomass 304 

increases until a very small number (relative to those recruiting) of large individuals emigrate 305 

from the nursery ground (Yanez-Arancibia et al. 1994, Sheaves et al. 2013) transferring their 306 

accumulated biomass to offshore habitats (Deegan 1993), where they may be ultimately 307 

measured as contributing to adult stocks (Beck et al. 2001) (Fig. 2a). However, most 308 

individuals, and a significant proportion of the biomass, do not survive to emigrate (Deegan 309 

1993, Yanez-Arancibia et al. 1994, Baker et al. 2014) and so do not figure in calculations of 310 

exported biomass.  However, these individuals are critical to nursery ground value by 311 

forming what is essentially a sacrificial nursery component that allows other nursery 312 

individuals to survive (Sandin and Pacala 2005, Svenning et al. 2005) (Fig. 2b). In doing so, 313 

they provide food for juvenile predators within the nursery (Minello et al. 1989, Baker and 314 

Sheaves 2005) (Fig. 2c) that ultimately translocate accumulated nutrients offshore during 315 

their ontogenetic migrations (Thorson 1971, Werry et al. 2011) (Fig .2a), and for transient 316 

predators from offshore feeding within the nursery (Begg and Hopper 1997) that return 317 

offshore exporting biomass accumulated in the nursery ground (Fig. 2d). These juveniles also 318 

form critical links in nursery food webs (Abrantes and Sheaves 2009a, b) (Fig. 2e), provide a 319 

vehicle for transferring production among habitats (Rozas and LaSalle 1990), and form 320 

critical components of trophic relays where intermediate prey link production sources in one 321 
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habitat with higher consumers in another (Kneib 1997) (Fig. 2f). When viewed this way, the 322 

nursery cohort is largely made up of individuals comprising a critical resource in the trophic 323 

functioning of the nursery and adjacent connected ecosystems, with the survivors 324 

representing surplus individuals not consumed in powering the system. Valuing a nursery 325 

based only on the biomass of individuals that reach adult stocks clearly overlooks a diversity 326 

of processes critical to the function of these systems (Sheaves et al. 2006) because the relative 327 

contributions from different nurseries of individuals that ultimately reach the adult stocks 328 

does not reflect the full production output of each nursery or their contributions to the support 329 

of other species.  Although specifically quantifying all the components of biomass transfer 330 

will rarely be practical given our current knowledge bases, quantification is not the primary 331 

issue. Recognising that the true value of trophic contributions from nursery grounds is much 332 

more extensive than can be measured as exported biomass alone is critical for the effective 333 

management of nursery function, and to developing approaches to begin to quantify those 334 

additional contributions.  335 

 336 

Export of process: The influence of nursery grounds on offshore ecosystems is not confined 337 

to the contribution of individuals to adult populations or biomass translocation, but extends to 338 

effects on key processes in the recipient ecosystems (Fig. 2g). Connectivity to mangrove 339 

nursery grounds influences overall community structure and resilience on many Caribbean 340 

coral reefs. Because dominant herbivores have an obligate mangrove nursery phase the 341 

presence of mangroves has a substantial impact on the numbers of herbivores on adjacent 342 

reefs, thus regulating the beneficial effects of herbivory in those systems (Mumby et al. 343 

2004), and greatly increases resilience of mid-shelf reefs to severe hurricane disturbances 344 

(Mumby and Hastings 2008). At the other end of trophic webs, as well as contributing to the 345 

export of biomass, the movement of juvenile bull sharks, Carcharhinus leucas, from coastal 346 
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nurseries (Curtis et al. 2011, Heupel and Simpfendorfer 2011) represents the supply of sub-347 

adult and adult high-level predators (Marshall and Bennett 2010) that can be major influences 348 

on offshore predation dynamics (Hunsicker et al. 2012) and severely impact lower trophic 349 

levels through trophic cascades (Myers et al. 2007). The export of process extends to 350 

biological controls, with juvenile grouper from mangrove nurseries having the potential to 351 

control populations of invasive lionfish on Caribbean coral reefs (Maljkovic et al. 2008). The 352 

growing awareness of the complexity of interactions between different environmental realms 353 

and the importance of connectivities at all scales in supporting ecological functioning (Beger 354 

et al. 2010) suggests that many more effects of nurseries on ecological processes in recipient 355 

ecosystems are likely to be recognised as our understanding of linkages between ecosystems 356 

becomes more sophisticated. As with developing a more complete understanding of the 357 

spectrum of contributions from trophic interactions, developing a more complete 358 

understanding of the process links emanating from nursery grounds to influence recipient 359 

ecosystems is critical to developing a comprehensive understanding of the true value of 360 

nursery grounds. 361 

Current situation:  Approaches available to identify the full value of 362 

nurseries  363 

The value of any juvenile habitat depends on its complex contributions to the sustainability of 364 

populations and the functioning of replenishing and recipient ecosystems. Recognising the 365 

lack of a framework for identifying valuable nurseries, Beck et al. (2001) proposed an 366 

approach to rank nursery grounds based on the total biomass contributed from different 367 

putative nursery habitats. This was an important advance, recognising the need to compare 368 

contributions across all possible nursery habitats. However, this is only a first step, because 369 

comprehensive identification, valuation and management of estuarine and coastal nurseries 370 



16 
 

for fish requires detailed understanding of the range of processes supporting nursery value 371 

(Jones et al. 2002), and of the full value of outputs to recipient ecosystems (Mumby and 372 

Hastings 2008). Additionally, while ranking nurseries may provide guidance for prioritising 373 

areas for conservation very broadly, it is of limited value for managers charged with 374 

maintaining nursery function in the face of impacts at specific locations. The increasingly 375 

urgent need to understand and maintain ecosystem function across the globe is driven far 376 

more by the need to manage ever-increasing anthropogenic impacts, and multiple coastal 377 

users with conflicting usages, to our environment than by a desire to totally protect functional 378 

ecosystem units.  It would be better, therefore, if protection and management of nursery 379 

grounds is not based solely on a ranking of the relative value of different putative nurseries. 380 

The approach we are recommending aligns with the broader shift to managing marine 381 

systems to conserve ecosystem functioning rather than focusing on individual species or 382 

habitat units (Foley et al. 2010). 383 

Determining the relative contributions of putative nurseries to adult stocks in terms of 384 

numbers or biomass can often be achieved via retrospective determination of movement of 385 

individuals from particular nurseries to the adult population using artificial or natural markers 386 

(Gillanders et al. 2003, Gillanders 2005). For example, otolith chemistry may distinguish 387 

occupation of one coastal bay or estuary rather than another (Yamane et al. 2010, Reis-Santos 388 

et al. 2012), or differentiate between use of particular salinity zones (Albuquerque et al. 2012, 389 

Webb et al. 2012), or distinguish use of particular seascape components (Gillanders and 390 

Kingsford 1996). However, while natural markers can be used to define spatial units 391 

contributing most biomass to recipient adult populations, they are really only able to identify 392 

areas that can be most easily distinguished (e.g. ones that leave an otolith chemical 393 

signature), and are unlikely to be able to identify important habitats occupied for short 394 

periods (e.g. initial settlement habitats (Dahlgren and Eggleston 2000, Grol et al. 2011)), 395 
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habitats that are used intermittently (foraging and sheltering habitats (Sheaves 2005, Verweij 396 

et al. 2007)), and linkages and pathways among habitats (Nagelkerken 2007, Hammerschlag 397 

et al. 2010). Moreover, they provide little information on how habitats are used or on the 398 

processes and functions (e.g. food web resilience or resource dynamics) that are critical to 399 

nursery value but are not specifically related to a particular spatial unit.  400 

There are also practical limitations to the use of ranking based on the contribution of spatial 401 

units. As well as providing scant information on process, approaches such as otolith 402 

microchemistry frequently do not allow identification of juvenile habitats at the scale where 403 

key processes operate, the scale used by the juveniles themselves, or at a scale amenable to 404 

management action (Gillanders et al. 2003). It will often not be feasible for management to 405 

protect the entire unit identified; all of one bay, all of one salinity zone or all of one seascape 406 

component. As a result, managers will often seek to minimize impacts within the unit 407 

identified as a nursery. However, many supporting processes and negative impacts arise well 408 

beyond a specific unit of habitat, so unless the specific values and supporting processes of 409 

particular sub-units and connectivities are known, such spatial prioritization is likely to fail. 410 

Ranking of nurseries assumes that nursery components have independent contributions to 411 

nursery value (Beger et al. 2010). However, the complex nature of nursery ground provision, 412 

with multifaceted interactions transcending individual spatial units, means that identification 413 

of nursery habitat cannot be approached as a static process in which individual habitats and 414 

life phases are singled out. Ignoring these interactions could be justified when it is possible to 415 

conserve a whole ecosystem (e.g. whole estuary or whole of coastal seascape) containing all 416 

units contributing to nursery function; as is the case with large protected areas. More often, 417 

management will need to work with much more specific units. The ranking process then 418 

provides little help, and may even be misleading because it suggests that one area can be 419 

protected at the expense of others. Even if ranking could be achieved at an appropriate scale 420 
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to enable relative valuation of different spatial units, it intrinsically disregards the critical 421 

importance of interactions among ensembles of habitat units (Sheaves 2009, Grol et al. 2011), 422 

the importance of connectivity among the habitat units (Beger et al. 2010), and the 423 

importance of habitats only occupied transiently (Nagelkerken et al. in press).  424 

Solutions:  Approaches available to identify the true value of nurseries  425 

Determining how nursery value is influenced by connectivity, habitat type, habitat diversity, 426 

ecological interactions and trophic process seems like a complex task, but the type of 427 

information needed is already being collected; it just needs to be recombined, extended and 428 

refocused specifically on understanding nursery function. Not only can particular techniques 429 

contribute to understanding different aspects of nursery value (columns of ticks in Table 1) 430 

but combining various approaches can provide rich and extensive detail on specific aspects of 431 

nursery value (rows of ticks in Table 1).  432 

To illustrate: connectivity studies using natural and artificial markers are becoming the 433 

principal techniques for determining biomass or numeric contributions from alternative 434 

nurseries to adult stocks (see above). However, marker studies have broader applicability 435 

(Table 1). Not only can they provide valuable inputs to understanding of nursery values 436 

ranging from ontogenetic migration to export of process but, when combined with other 437 

techniques, can contribute to a much deeper understanding of many aspects of nursery value. 438 

For example, combined with data including food web and fish-habitat relationship 439 

information, gleaned from stable isotope, dietary, observational and capture studies, they can 440 

provide information on ontogenetic migration, seascape migration, ecotone effects and 441 

connectivity itself (Table 1: rows 1a-2a). Similarly, contributions to juvenile predator 442 

biomass can be informed by: stable isotope and dietary studies used to define nursery food 443 

webs; dietary, observational, capture and tethering studies supplying information on predator 444 
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identification and dynamics; and energetics and condition studies determining juvenile 445 

growth and health (Table 1: row 4d). 446 

Many other solutions are indicated in Table 1. These are far from exhaustive and a variety of 447 

other possibilities and combinations of approaches are likely to be fruitful. In particular, it 448 

will usually be possible to define more specific detail when the ideas are applied to particular 449 

cases and the studies are considered in explicit spatial and temporal contexts. The 450 

possibilities of the information that can be gleaned using multiple techniques should expand 451 

quickly as new combinations of approaches are successfully applied to new problems.  452 

Conclusion 453 

A historical analysis of nursery-function studies shows progressive development of this 454 

important field: (1) the recognition that inshore habitats harbor high densities of juvenile fish 455 

(1970s; e.g. Weinstein 1979)), (2) the study of community structures of individuals nursery 456 

habitats (1980s; e.g. Robertson and Duke 1987), (3) the quantification of consecutive habitat 457 

usage by different life stages of fish (1990s; e.g. MacPherson 1998), (4) development of 458 

conceptual frameworks that identify critical nursery habitats (2000s; e.g. Beck et al. 2001), 459 

(5) recent studies that have used these frameworks in a quantitative way to identify primary 460 

nursery habitats (Tupper 2007, Huijbers et al. 2013). We are now at a stage where we need to 461 

take a step forward, building on these advances by developing an understanding of the 462 

processes that drive the productivity and maintenance of these identified key nurseries, and to 463 

go beyond valuation based simply on export of number or biomass, by incorporating the 464 

complex of factors that contribute to nursery value to provide a more comprehensive 465 

understanding of true nursery value. Only through this comprehensive understanding can we 466 

confidently identify the habitat mosaics and underlying connectivities/processes that are 467 

important to conserve to maintain nursery production and replenishment of recipient 468 
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ecosystems. Ongoing degradation of coastal ecosystems increases the imperative for more 469 

complete understanding. Rapid loss of nursery habitats and escalating habitat fragmentation 470 

increase the pressure to conserve critical habitats and maintain ecosystem function. The 471 

identification of nursery habitats at a whole of habitat-unit scale, as is currently advocated, 472 

will not suffice in fragmented seascapes or in the face of specific impacts at particular 473 

locations. Consequently, an understanding of the complex processes that underlie nursery 474 

function is needed to support selection of appropriate fragments that can still provide key 475 

nursery functions. Failure to incorporate this complexity into conservation approaches and 476 

reserve design risks incomplete or inaccurate identification of key habitats and connectivities, 477 

and leads to significant potential for unexpected negative outcomes (Harris and Heathwaite 478 

2012). Our current perspective provides a conceptual framework that can aid progress 479 

towards more complete understanding of nursery ground value, utilising data that are already 480 

available in the literature. It is only by continuing development of detailed understanding of 481 

the true value of nursery grounds and their functioning that we can hope to effectively protect 482 

these systems into the future. 483 
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 488 

Figure Captions 489 

Figure 1: Components of Nursery Ground Value. Each component is described and discussed 490 

in the text. 491 

Figure 2: Support of recipient ecosystems from nursery grounds is more than just export of 492 

new individuals to adult stocks and the biologically mediated nutrient translocation they 493 
represent (a). Individuals lost through mortality within the nursery facilitate the survival of 494 
those that ultimately emigrate (b), as prey participate in the continued transfer of biomass to 495 
local (c) and immigrating predators that feed in the nursery and subsequently move to 496 
recipient habitats transferring biomass (d), form important prey and critical links in food 497 
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webs that support nursery value (e), contribute to trophic relays as they are fed on during 498 

emigration (f), and influence key processes in recipient ecosystems (g).  499 
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Table 1: Solutions matrix: types of studies (bottom column titles) providing categories of information (top column titles) contributing 

to resolving aspects of nursery ground value (row information). Numbers at left reflect those in Fig. 1 (1a-1j) and Fig. 2 (2a-2e), 

hence 2e depicted in Fig. 2 lies in the upper half of the table as part of ‘Support for Nursery Occupation’. Temporal scales: short 

= minutes to hours, meso = days to weeks, life-history = a sequence of changes over time relating to life-history events, all = 

relevant to all temporal scales. Spatial scales: local = within a local area or habitat, system = relating to a mosaic of habitats 

used by juveniles or a whole system (e.g. an estuary), all = relevant to all spatial scales.  
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