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Over the last century, the successful attenuation of multiple bacterial and viral pathogens has led

to an effective, robust and safe form of vaccination. Recently, these vaccines have been evaluated

as delivery vectors for heterologous antigens, as a means of simultaneous vaccination against two

pathogens. The general consensus from published studies is that these vaccine vectors have the

potential to be both safe and efficacious. However, some of the commonly employed vectors, for

example Salmonella and adenovirus, often have pre-existing immune responses in the host and

this has the potential to modify the subsequent immune response to a vectored antigen. This

review examines the literature on this topic, and concludes that for bacterial vectors there can in

fact, in some cases, be an enhancement in immunogenicity, typically humoral, while for viral

vectors pre-existing immunity is a hindrance for subsequent induction of cell-mediated responses.

Introduction

In the fields of medicine and veterinary medicine, there are
numerous live, attenuated bacterial and viral vaccines in use
today worldwide. The safety and efficacy of such vaccines is
well established and allows further development as vector
systems to deliver antigen originating from other pathogens.
Various attenuated bacteria, including Escherichia coli,
Vibrio cholerae, lactic acid bacteria (LAB), specifically
Lactococcus lactis, Mycobacterium, Listeria, Shigella and
Salmonella, have been tested for the targeted delivery of
heterologous antigens of bacterial, viral and parasitic origin
into a variety of animal hosts (Bahey-El-Din et al., 2010;
Innocentin et al., 2009; Johnson et al., 2011; Tobias et al.,
2008, 2010; Tobias & Svennerholm, 2012). Bacteria such as
E. coli and lactic acid bacteria have recently gained favour, as
E. coli is a commensal and lactic acid bacteria are present in
most fermented food items and are therefore naturally
present in the host. They are also a much safer option than
traditional attenuated vaccines in children and immune-
compromised people. As this review discusses the effects of
pre-existing immune responses to attenuated vaccines,
further discussion of LAB and E. coli as potential vectors
will not be undertaken; however, the reader is directed to
several interesting reviews (Bermúdez-Humarán et al., 2011;
Wells & Mercenier, 2008).

Intracellular bacteria from the genera Mycobacterium (Guleria
et al., 1996), Listeria (Gentschev et al., 2001), Shigella (Levine

et al., 1997) and Salmonella (Dougan et al., 1987) are

considered to be suitable candidates for the delivery of

vaccine antigens due to their capability to induce robust T

cell immune responses (Alderton et al., 1991; Lo et al., 1999;

Mastroeni et al., 2001; Mittrücker & Kaufmann, 2000;

Nauciel, 1990). Salmonella is one genus that has been well

examined as a vector, building on the extensive research

available on the micro-organism’s physiology and patho-

genesis (Basso et al., 2000; Killeen & DiRita, 2000; Sirard

et al., 1999; Ward et al., 1999). There exist several

commercial vaccines that are used as anti-Salmonella

vaccines in humans and animals (e.g. Ty21a for typhoid

fever in humans, several Salmonella serovars against

salmonellosis in chickens and other animals). The general

strategy for vectoring heterologous antigen is depicted in

Fig. 1. The first clinical trial of a recombinant, which was

conducted over 20 years ago using an attenuated Salmonella

as a delivery vector, led to the widespread testing of this

bacterium as a mucosal delivery system for antigens from

non-Salmonella pathogens (Dougan et al., 1987). These

studies have demonstrated the utility of live bacteria to

deliver expressed antigens and DNA vaccines to the host

immune system (Atkins et al., 2006; Husseiny & Hensel,

2008; Jiang et al., 2004; Kirby et al., 2004). Since then several

other intracellular bacterial vectors have been successfully

tested for their capability to deliver a variety of antigens

from various pathogens, as well as vaccination against

cancer. One genus which has been widely tested as vector is

Listeria. Listeria species are Gram-positive intracellular3These authors contributed equally to this work.
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food-borne pathogens. The advantages of Listeria are that it
can invade a variety of cells, including antigen presenting
cells (APCs). After invading the host cell, Listeria resides
inside the phagosome; however, it can escape the phago-
some with the help of listeriolysin O (LLO; Hly) and reside
in the cytoplasm of the cells, thereby efficiently presenting
antigen to both CD8 and CD4 T cells (Cossart & Mengaud,
1989; Kaufmann, 1993; Pamer et al., 1997). Several studies
have demonstrated the effectiveness and ease of using
Listeria monocytogenes to deliver heterologous vaccine
antigens and DNA vaccines (Brockstedt et al., 2004; Jensen
et al., 1997; Johnson et al., 2011; Peters et al., 2003; Shen
et al., 1995; Yin et al., 2011).

Similarly, various viral vectors have been successfully tested
for their capability to deliver heterologous vaccine
antigens, and this generally results in the induction of
strong CTL immune responses. In the veterinary field,
there are numerous viral vector vaccines that are currently
licensed for use in livestock and domesticated animals.
These recombinant vaccines are based on both DNA
viruses (such as fowlpox virus-based vaccines which target
avian influenza virus and fowlpox virus, or vaccinia virus-
based vectors against the rabies virus in wildlife) and RNA
viruses [such as Newcastle disease virus-based vaccines to
be used in poultry or yellow fever virus (YFV)-based
vaccines to be used in horses against West Nile virus]
(Draper & Heeney, 2010). Based on the safety record in the
veterinary field, many viruses have been studied for human
use as a vector in vaccine development (Beukema et al.,
2006; Esteban, 2009; Schirrmacher & Fournier, 2009;

Stoyanov et al., 2010; Weli & Tryland, 2011). Amongst
them, YFV (YF-17D strain) was the first to be licensed for
use in humans, where the cDNAs encoding the envelope
proteins of YFV were replaced with the corresponding
genes of an attenuated Japanese encephalitis virus strain,
SA14-14-2 (Appaiahgari & Vrati, 2010; Rollier et al., 2011).
Poxviruses are also studied extensively as candidate vectors
for human use, among which attenuated derivatives of
vaccinia virus [such as modified vaccinia virus Ankara
(MVA) and New York attenuated vaccinia virus NYVAC
strains] are the most promising vectors (Esteban, 2009;
Gómez et al., 2008; Rimmelzwaan & Sutter, 2009). They are
ideal candidate vectors due to their large DNA-packing
capacity and their thermal and genetic stability (Minke
et al., 2004). The NYVAC vector has been shown to induce
CD4+ T cell-dominant responses, and MVA induces both
CD4+ and CD8+ T cell responses (Mooij et al., 2008). The
adenovirus (Ad) vector is another of the most widely
evaluated vectors to date to express heterologous antigens,
due to ease of production, safety profile, genetic stability,
the ease of DNA genome manipulation, and the ability to
stimulate both innate and adaptive immune responses and
induce both T and B cell responses (Alexander et al., 2012;
Fitzgerald et al., 2003; Gabitzsch & Jones, 2011; Lasaro &
Ertl, 2009; Vemula & Mittal, 2010; Weyer et al., 2009).
They have been extensively examined as a delivery vector in
several preclinical and clinical studies for infectious
diseases such as anthrax, hepatitis B, human immunodefi-

ciency virus (HIV)-1, influenza, measles, severe acute
respiratory syndrome (SARS), malaria and tuberculosis

(a)             (b)            M        N           pMOInv  

  
98 

64  
 
50  
 
 
36  
 
 
 
 
22 

Fig. 1. (a) General approach to using bacteria as vaccine vectors. In this case, the heterologous antigen is depicted as being
expressed on the bacterial surface. (b) Salmonella secretion of heterologous antigen. STM-1 was engineered to secrete a
haemolysin protein. Western blot probed with anti-haemolysin antisera. M, Marker lane (in kDa); N, concentrated growth
medium after STM-1 growth (no plasmid); pMOInv, medium after growth of STM-1 with the pMOInv plasmid, encoding
haemolysin.
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(Chengalvala et al., 1994; Gao et al., 2006; Hashimoto et al.,
2005; Hsu et al., 1992; Limbach & Richie, 2009; Radosevic
et al., 2007; Shiver et al., 2002).

However, before vectored vaccines can be used in the human
population they need to satisfy several important criteria.
Safety is a major concern, as even a low level of toxicity is
unacceptable (of course the minor discomfort that accom-
panies many vaccinations is normal). Secondly, a vaccine
should be inexpensive, so that it can be administered to a
large population at minimal cost, and this is particularly
important in resource-poor countries (Killeen & DiRita,
2000). Similar constraints apply to veterinary vaccines, with
cost often an even more important consideration. Finally,
long-lasting cellular and (where appropriate) humoral
immune responses to the vectored antigen must be induced
following administration of these vaccines, preferably with a
single dose (Atkins et al., 2006).

As some of the vectors in use will have been seen by the host
immune system prior to vaccination, whether the presence
of pre-existing immune responses is detrimental for the
further development of a vector-based vaccine scheme, or
can augment responses to the vectored antigen, needs to be
considered in detail. This is the subject of this review. In
discussing the possible effects on pre-existing immunity, the
natural immunity to the vector needs to be considered.
Therefore, considering a vector such as Salmonella, if a host
has previously been infected there will exist robust B and T
memory responses, and as such, when a vaccination is
delivered, an anamnestic response to the Salmonella antigens
will be induced (while the response to the vectored antigen
will be a primary response). This will theoretically reduce the
exposure of the heterologous antigen to the immune system,
as the vector is rapidly cleared. Surprisingly, as will be seen in
some of the examples given below, this can have results that
differ depending on the magnitude of the response to the
vectored antigen. Similarly, for virally vectored antigens, the
existence of pre-existing immunity to the vector (particu-
larly neutralizing antibody) will restrict delivery of the virus
into cells, thereby effectively reducing the dose of the
vectored antigen. Again, this might be expected to result in a
reduction in the antigenicity of the vectored antigen.

Effects of prior immunological exposure to
vectors – bacterial vectors

In the case of bacterial vectors, the effect of pre-existing
immune responses has only been tested using Salmonella
serovars and Listeria spp. Concern that prior immunological
experience of the host with either the homologous
Salmonella vector strain or a related strain might comprom-
ise its ability to deliver heterologous vaccine antigen was first
raised in 1987 (Dougan et al., 1987). Bao and Clements
subsequently reported experimental evidence of the con-
sequences of prior exposure of animals to the vector strain
(Bao & Clements, 1991). This work showed that both serum
and mucosal antibody responses against the foreign antigen
were in fact upregulated in animals with prior exposure to

the vector strain. Whittle & Verma (1997) reported similar
findings. Mice immunized via the intra-peritoneal route
with a Salmonella dublin aroA mutant expressing hetero-
logous antigen after being exposed to the same vector
showed a higher immune response to the vectored antigen in
comparison to mice without any immunological memory
against the vector.

Subsequently, several studies have been conducted to
examine the effect of pre-existing immunity in the host
against Salmonella. These results are summarized in Table 1.
The various reports are contradictory in their findings and
seem to paint a rather confusing picture. Some studies
concluded that pre-existing immunity against the Salmonella
vector leads to stronger immune responses against the
delivered antigen (Bao & Clements, 1991; Jespersgaard et al.,
2001; Kohler et al., 2000a, b; Metzger et al., 2004; Saxena
et al., 2009; Sevil Domènech et al., 2008; Whittle & Verma,
1997), with others considering pre-existing immunity to be a
limiting factor in the long-term use of Salmonella as an
efficient vector for antigen delivery (Attridge et al., 1997;
Gahan et al., 2008; Roberts et al., 1999; Sevil Domènech et al.,
2007; Vindurampulle & Attridge, 2003a, b).

A slight majority of the studies listed in Table 1 (10 versus
eight) indicate the upregulation of immune responses after
animals have been exposed to either homologous or related
strains before the delivery of heterologous antigen using a
Salmonella vector. A study by Metzger and co-workers on
human volunteers using Salmonella Typhi as a vector
suggested that there was no change in the T cell immune
response against the heterologous antigen in human
volunteers who were exposed to empty vector in compar-
ison with volunteers who were immunologically naive of
the vector strain (Metzger et al., 2004). In these subjects,
humoral responses were moderately elevated in pre-
exposed individuals. Similarly, Saxena et al. (2009)
indicated higher humoral and T cell responses in mice
pre-exposed to homologous or heterologous Salmonella
strains. The interleukin 4 (IL4) response was significantly
higher when the animal host was exposed to the
homologous strain, whereas pre-exposure to a related
species did not have such an impact on IL4 responses.
Conversely interferon (IFN)-c responses were higher,
irrespective of the strain to which mice were pre-exposed.
This study also indicated that the presence of homologous
or heterologous opsonizing antibodies leads to a higher
uptake of Salmonella by macrophages in vitro, which may
explain the higher immune responses in exposed mice. As
may be expected, uptake was higher when homologous sera
were used as the opsonin rather than heterologous sera.
This is depicted in Fig. 2.

Conversely, there are reports that indicate that pre-existing
immunity against the bacterial vector downregulates
immune responses against the delivered heterologous
antigen using similar or related vectors. Attridge and co-
workers reported that the presence of immunity against the
bacterial vector prior to the delivery of vectored antigenic
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Table 1. Summary of published reports and their conclusions

NA, Not applicable; ND, not determined.

Vaccine

recipient

Vaccine vector Pre-existing immunity

organism

Vectored antigen CMI response Humoral

response

Reference

Mouse S. dublin S. dublin NA ND + Bao & Clements (1991)

Mouse S. dublin S. typhimurium NA ND ++ Bao & Clements (1991)

Mouse S. typhimurium S. typhimurium Glucan-binding domain of

glucosyltransferase, Streptococcus mutans

ND ++ Jespersgaard et al. (2001)

Mouse S. typhimurium S. typhimurium Haemagglutinin, Porphyromonas gingivalis ND ++ Kohler et al. (2000a, b)

Human S. typhi Ty21a S typhi Ty21a Urease subunits A and B, Helicobacter pylori No change ++ Metzger et al. (2004)

Mouse S. typhimurium S. typhimurium Ovalbumin, G. gallus ++ +++ Saxena et al. (2009)

Mouse S. typhimurium Salmonella enterica

serovar Enteritidis

Ovalbumin, G. gallus ++ ++ Saxena et al. (2009)

Mouse S. dublin S. typhimurium Fusion protein of Yersinia outer protein E

and p60 from L. monocytogenes

++ ND Sevil Domènech et al. (2008)

Mouse S. typhimurium S. dublin Fusion protein of Yersinia outer protein E

and p60 from L. monocytogenes

++ ND Sevil Domènech et al. (2008)

Mouse S. dublin S. dublin Envelope protein, Murray Valley

encephalitis virus

ND +++ Whittle & Verma (1997)

Mouse S. stanley S. stanley Fimbrial protein K88, E. coli ND 222 Attridge et al. (1997)

Mouse S. stanley Salmonella strasbourg Fimbrial protein K88, E. coli ND 2 Attridge et al. (1997)

Mouse S. typhimurium S. typhimurium C fragment of tetanus toxin,

Clostridium tetani

ND 22 Gahan et al. (2008)

Mouse S. typhimurium S. typhimurium C fragment of tetanus toxin, C. tetani ND 222 Roberts et al. (1999)

Mouse S. typhimurium S. dublin C fragment of tetanus toxin, C. tetani ND 22 Roberts et al. (1999)

Mouse S. typhimurium S. typhimurium Fusion protein of Yersinia outer protein E

and p60 from L. monocytogenes

222 ND Sevil Domènech et al. (2007)

Mouse S. stanley S. stanley Fimbrial protein K88, E. coli ND 222 Vindurampulle & Attridge (2003b)

Mouse S. dublin S. stanley Fimbrial protein K88, E. coli ND 222 Vindurampulle & Attridge (2003b)
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protein can downregulate immune responses in mice against
the delivered antigen (Attridge et al., 1997). Similar results
were reported by Roberts et al. (1999) and Vindurampulle &
Attridge (2003a, b). However, the latter authors found that
the hypo-responsiveness could be largely eliminated by
exposing animals to the foreign antigen prior to vector-
priming (Vindurampulle & Attridge, 2003b). Unfortunately,
this would appear to be impractical for an immunization
regimen!

A study presented by Gahan et al. (2008) immunized mice
with S. Typhimurium expressing C fragment of tetanus
toxin antigen from an expression plasmid or as a DNA
vaccine. Vaccinated mice developed humoral responses to
LPS and tetC (for the plasmid-bearing vaccines). Animals
from all groups (including a previously unvaccinated
group) were immunized on day 182 with Salmonella
expressing tetC. At this time, the anti-LPS and tetC titres
were beginning to wane. Fourteen days after the second
immunization, the colonization of various mouse organs
was assessed. The ability to colonize was found to be
significantly reduced in groups that had been previously
vaccinated with Salmonella. In view of this finding, it was
perhaps not surprising that at day 210 the LPS titres were
not significantly different between groups receiving one or
two vaccinations. More interestingly, mice that had been
primed with Salmonella alone, and then boosted with
Salmonella expressing tetC, induced much lower anti-tetC
responses than mice that had not been primed. This argues
strongly that prior immunological immunity to the vector
can seriously dampen subsequent antigen-specific humoral
responses. Whether the same is true for cellular responses
was not evaluated.

Other studies have evaluated cellular responses. A study by
Sevil Domènech and colleagues reported that pre-existing
anti-vector immunity seriously compromises CD8+

responses in mice when exposed to a similar strain used
as vector (Sevil Domènech et al., 2007). In contrast,
another study by the same authors reported that animals
exposed to related vectors induce much higher CD8+

responses when compared with animals which do not have
any pre-existing Salmonella immunity (Sevil Domènech
et al., 2008). The difference between these two studies was
that in the first, the prime and boost were with identical
serovars, while in the second study, different serovars were
used. This may point to a way of avoiding downregulation
of CD8 responses by pre-existing immunity. This is
important, as one of the advantages of using Salmonella
(an intracellular pathogen) is that strong cellular immune
responses can be induced.

It must be noted that in the case of Salmonella vaccines,
effects other than strictly immunological responses (par-
ticularly adaptive responses) should be considered. In the
context of innate immunity, it was shown that administra-
tion of non-virulent Salmonella to gnobiotic pigs elimi-
nated disease following challenge with a virulent strain
(Foster et al., 2003). Interestingly, protection was not by
competitive exclusion, as the virulent strain was in high
numbers in the gut but did not distribute systemically. The
protection was proposed to be mediated by the infiltration
of a large number of polymorphonuclear leukocytes into
the gut, and although perhaps impractical as a general
prophylactic (as the time between vaccination and
infection is short), this may be an option for short-term
or perhaps therapeutic vaccination (as reviewed by Foster
et al., 2012).

Chickens (Gallus gallus) are a natural animal reservoir for
Salmonella, which makes them an important source of
Salmonella-associated gastroenteritis in humans. The ability
to use oral Salmonella vaccines to immunize against
heterologous pathogens would be of enormous benefit to
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opsonized with serum from mice exposed to Salmonella enteriditis; &, opsonized with serum from mice exposed to STM-1.
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the poultry industry in both broiler and layer flocks. Both
vertical and horizontal transmission is associated with
Salmonella in chickens (Liljebjelke et al., 2005). Vertical
transmission via in ovo transmission is particularly important,
because if there is prior exposure to the vaccine strain,
subsequent vaccination using an oral Salmonella vector could
be severely compromised. A considerable number of studies
on cross-protective immunity and competitive exclusion have
been undertaken in chickens. Protective cross-reactive
immunity against Salmonella strains has been demonstrated
against both homologous and heterologous challenges (Beal
et al., 2006), although cross-serogroup protection was not
strong. Furthermore, a recent study reported that pre-
treatment of newly hatched chickens with different
Salmonella strains could produce a complete invasion–
inhibition effect on any subsequent exposure to both
homologous and heterologous strains (Methner et al.,
2010). Pre-exposure with a highly invasive form of
Salmonella Enteritidis caused a large influx of heterophils to
the caecal mucosa in 1-day-old chicks, and subsequent
heterologous caecal colonization was inhibited for a period of
48 h (Methner et al., 2010). The implications of this kind of
colonization-inhibition study on the immunological status of
the affected chickens are yet to be fully elucidated. It should be
noted that the studies listed in Tables 1 and 2 are controlled
laboratory studies, with the possibility of a competitive
exclusion component to immunity not discussed.

Similarly studies of L. monocytogenes and the effects of pre-
existing immune responses indicate conflicting results. A
study by Bouwer et al. (1999) indicates that pre-existing
immune responses against the Listeria vector do not
diminish immune responses against the delivered hetero-
logous antigen, and a similar study by Starks et al. (2004)
also concluded that prior exposure of mice to the empty
Listeria vector did not influence anti-cancer immune
responses when a similar mutant was used as a carrier of
a melanoma cancer antigen. Similar findings were reported
by Whitney et al. (2011) in rhesus macaques in which L.
monocytyogens was used as a carrier of gag-HIV antigen.
Conversely, studies by Stevens et al. (2005) in which L.
monocytogens was used to deliver feline immunodeficiency
virus (FIV) gag protein and as a carrier of DNA vaccines to
vaccinate cats against FIV envelope protein indicated lower
immune responses against the delivered antigen in cats
exposed to empty Listeria vector in comparison with naive
animals (Stevens et al., 2005). Similar findings have been
reported by Tvinnereim et al. (2002) and Leong et al.
(2009). However, taken together, these studies conclude
that prior exposure of host animals to empty vector does
not abrogate immune responses to the vectored antigen,
but only reduces them somewhat. Only the study by Vijh
et al. (1999) indicated that exposure to the empty vector
may completely abrogate immune responses against the
delivered antigens (Vijh et al., 1999). However, these
studies also indicate that downregulation of antigen-
specific immune responses is highly dependent on dose
and time. Leong et al. (2009) also demonstrated that the

negative impact of vector-specific immune responses can
also be countered by repeated immunization with the same
vaccine and dose; this in effect leads to higher priming of
naive T cells against the delivered antigen. Of course, such
repeated vaccination may not be practicable in real-world
situations.

Effects of prior immunological exposure to
vectors – viral vectors

Despite the many advantages which viral vectoring can offer,
pre-existing immunity is a major obstacle of many viral-
vectored vaccines, such as Ad serotype 5 or herpes simplex
virus type 1 (HSV-1), where the rate of seroprevalence to
these viruses is very high [40–45 % and 70 % (or more) of the
US population, respectively] (Hocknell et al., 2002; Pichla-
Gollon et al., 2009). Vector-specific antibodies may impede
the induction of immune responses to the vaccine-encoded
antigens, as they may reduce the dose and time of exposure
of the target cells to the vaccinated antigens (Pichla-Gollon
et al., 2009; Pine et al., 2011). In a large-scale clinical trial
(STEP) of an Ad serotype 5 (AdHu5)-based HIV-1 vaccine,
the vaccines showed a lack of efficacy and tended to increase
the risk of HIV-1 infection in vaccine recipients who had
pre-existing neutralizing antibodies to AdHu5 (Buchbinder
et al., 2008). For an HSV-1-based vector vaccine, it has been
demonstrated that pre-existing anti-HSV-1 immunity
reduced, but did not abolish, humoral and cellular immune
responses against the vaccine-encoded antigen (Hocknell
et al., 2002; Lauterbach et al., 2005). However, Brockman
and Knipe found that the induction of durable antibody
responses and cellular proliferative responses to HSV-
encoded antigen were not affected by prior HSV immunity
(Brockman & Knipe, 2002). Similarly, pre-existing immun-
ity to poliovirus has little effect on vaccine efficacy in a
poliovirus-vectored vaccine (Mandl et al., 2001). Different
effects of pre-existing immunity on the efficacy of recom-
binant viral vaccine vectors are summarized in Table 2.
There are several approaches to avoiding pre-existing vector
immunity, such as the use of vectors derived from non-
human sources, using human viruses of rare serotypes (Kahl
et al., 2010; Lasaro & Ertl, 2009), heterologous prime–boost
approaches (Liu et al., 2008), homologous reimmunization
(Steffensen et al., 2012) and removing key neutralizing
epitopes on the surface of viral capsid proteins (Gabitzsch &
Jones, 2011; Roberts et al., 2006). The inhibitory effect of
pre-existing immunity can also be avoided by masking the
Ad vector inside dendritic cells (DCs) (Steffensen et al.,
2012). In addition, mucosal vaccination or administration of
higher vaccine doses can overcome pre-existing immunity
problems (Alexander et al., 2012; Belyakov et al., 1999;
Priddy et al., 2008; Xiang et al., 2003).

Concluding remarks and perspective

As we search for new vaccine approaches for the array of
pathogens for which none is yet available, revisiting proven
vaccines and developing these further has gained
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momentum. Hence, attenuated bacteria and viruses which

have a long history of efficacy and safety are being brought

into use. While very attractive, a common theme in these

experimental approaches has been the limitations that pre-

existing immunity to the vector may pose. However, as this

examination of the relevant literature shows, there is a

rather confusing picture, with some studies in fact

indicating that pre-existing immunity may be a friend,

rather than foe.

Few studies using viral vectors have reported on the

influence of pre-existing immunity on humoral responses.

Generally speaking, for bacterial-delivered antigens, the

humoral responses were influenced by pre-existing

immunity, with slightly more studies finding augmentation

rather than diminution. Why is there variation? This may

be due to several factors, including the type of Salmonella

used and its invasiveness. Dunstan and colleagues tested

the ability of six isogenic Salmonella serovar Typhimurium

strains harbouring different mutations for their ability to

induce immune responses against the C fragment of

tetanus toxin and concluded that the strain which had

the least ability to colonize Peyer’s patches induced the

lowest immune responses (Dunstan et al., 1998).

Similarly, the boosting time and nature of the antigen used
might be important. Attridge and colleagues indicated the
importance of boosting time. In one experiment, boosting
mice at 10 weeks led to complete inhibition of antibody
responses against the delivered heterologous antigen;
however, when the mice were boosted at 4 weeks, the
downregulation of antibody responses was not so prom-
inent (Attridge et al., 1997). A similar study conducted by
Kohlers and colleagues shows that boosting at 7 weeks after
pre-exposing animals to empty vector leads to lower
antigen-specific IgG and secretory IgA responses; however,
boosting at 14 weeks leads to higher IgG and secretory IgA

responses (Kohler et al., 2000b). This is in conflict with the
above result, although it should be mentioned that they
used different Salmonella species. Vindurampulle and
Attridge also examined the impact of the Salmonella strain
and the nature of the antigens used. In their study, they
used S. Dublin and Salmonella Stanley aroA mutants to
deliver E. coli K88 and LT-B antigens, and concluded that
the effect of pre-existing immunity depends on both the
strain used and the type of antigen delivered (Vindurampulle
& Attridge, 2003b).

All these studies on the effect of pre-existing immunity

discuss the impact on humoral responses. Sevil Domenech

and colleagues reported that pre-exposing animals to the

homologous Salmonella vector leads to a significant

reduction in CD8+ responses; however, exposure of

animals to a heterologous strain leads to significantly

higher CD8+ responses (Sevil Domènech et al., 2007,

2008). Saxena and colleagues also reported that antigen-

specific T cell responses were either similar or significantly

higher, with no downregulation in T cell responses

observed after pre-exposing mice to either homologous

or heterologous strains (Saxena et al., 2009).

For viral vectors, the impact of cell-mediated immunity
was more pronounced, and as depicted in Table 2, almost
always resulted in a reduction in the subsequent immune
response. Presumably this is because viruses will induce
neutralizing antibody on the first dose, and in subsequent
doses this antibody will limit the number of transduced
cells, therefore limiting the responses. This is particularly a
problem with a common viral vector such as Ad, where a
large proportion of the population will have immuno-
logical memory against common serotypes (Lasaro & Ertl,
2009). As these authors conclude, it will be possible to
utilize such vectors only by developing vaccines from
alternative serotypes. It may be that a vector such as

Table 2. Different effects of pre-existing immunity on the efficacy of recombinant viral vaccine vectors

ND, Not determined.

Vaccine

recipient

Vaccine

vector

Pre-existing

immunity

organism

Vectored antigen CMI response Humoral

response

Reference

Mouse Poliovirus Poliovirus Chicken ovabumin 2 No change Mandl et al. (2001)

Mouse HSV HSV Chicken ovabumin 222 222 Lauterbach et al. (2005)

Mouse HSV HSV E. coli b-galactosidase No change No change Brockman & Knipe (2002)

Mouse Ad Ad HIV-1 gag 222 ND Pichla-Gollon et al. (2009)

Human Ad Ad HIV-1 gag/pol/nef 22 ND McElrath et al. (2008)

Mouse Ad Ad H5 haemagglutinin 2 2 Alexander et al. (2012)

Mouse Ad Ad Ovabumin/glycoprotein of

lymphocytic

choriomeningitis virus

2 ND Steffensen et al. (2012)

Mouse Ad Ad H5 haemagglutinin and

N1 nucleoprotein

22 22 Pandey et al. (2012)
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attenuated influenza virus, with the ability to easily develop
reassortants, will be useful in this context.

In addition, immunological memory in the form of
opsonizing antibody certainly plays an important role in
the early uptake of Salmonella by macrophages and DC.
This may be beneficial, as the live bacterial vector used for
delivery purposes harbours mutations in genes encoding
proteins responsible for their survival in the animal host.
This not only encumbers their ability to cause disease,
making them safe live vectors, but also limits the number
of replications. The presence of opsonizing antibodies
should mean a higher level of bacterial uptake, leading to
higher presentation to the immune system and therefore
a better immune response. We have previously shown
that this is indeed the case (Saxena et al., 2009) (depicted
in Fig. 2). It would be of great benefit to address these
issues not only in mice but also in other organisms such
as chickens, which are the most likely host to be targeted
for the use of live Salmonella vectors, specifically where
the vaccines are developed for use in livestock and
poultry.

To summarize, bacterial vectors such as Salmonella and
viral vectors such as Ad show great promise as delivery
vehicles for heterologous antigens; however, prior exposure
to the vector must be considered. By judicious selection of
the strain/serotype it will be possible to avoid the negative
effects and it may indeed be possible to positively influence
the response, particularly for humoral immunity.
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