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Abstract 

Investigation of genes, using data analysis and computer based methods, has gained 

widespread attention in solving human cancer classification problem. DNA microarray 

gene expression datasets are readily utilized for this purpose. In this paper, we propose 

a feature selection method using improved regularized linear discriminant analysis 

technique to select important genes, crucial for human cancer classification problem. 

The experiment is conducted on several DNA microarray gene expression datasets and 

promising results are obtained when compared with several other existing feature 

selection methods. 

 

Introduction 

Feature selection methods play significant role in identifying crucial genes related to 

human cancers. It helps in understanding the gene regulation mechanism of cancer 

heterogeneity. DNA microarray gene expression data, consisting of several thousands of 

gene expression profiles, has been used widely in the past for cancer classification 

problem (Golub et al., 1999; Hastie et al., 2001; Khan et al., 2001; Armstrong, 2002). 

The high feature dimensionality (i.e., number of gene expression profiles) compared to 

the low number of samples, degrades the generalization performance of the classifier 

and increases its computational complexity. This problem is known as small sample size 

(SSS) problem (Fukunaga, 1990). These datasets along with feature selection methods 

provide vital information and assistance in comprehending biological and clinical 

characteristics. Since not all the genes are associated to cancer classification task, it is 

necessary to remove unimportant genes using feature selection or computational data 

analysis methods. 

 

Various feature selection methods have been developed (Golub et al., 1999; Furey et al., 

2000; Guyon et al., 2002; Li and Wong, 2003; Tan and Gilbert, 2003; Ding and Peng, 

2003; Cong et al., 2005; Wang and Gehan, 2005; Banerjee et al., 2007; Pavlidis et al., 

2001; Thomas et al., 2001; Pan, 2002; Dudoit et al., 2002; Saeys et al., 2007; Nie et al., 

2010; Sharma et al., 2011, 2012a, 2012b, 2012c; Wu et al., 2011; Sharma et al., 2013a & 

2013b), which can be broadly categorized into two main groups: filter methods and 

wrapper methods. The filter methods are classifier independent whereas the wrapper 
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methods are classifier dependent. Filter-based methods are computationally economical 

and follow an open-loop approach: the selection of genes is independent of the classifier. 

Therefore, the relevance of the extracted genes is obtained from a scoring procedure 

that uses intrinsic properties of the genes’ expression profiles. Wrapper-based methods 

(like SVM-RFE1) can provide high classification accuracy but are computationally 

intensive and follow closed-loop approaches that depend on the classifier for gene 

selection. Although wrapper-based methods yield high classification accuracy, the gene 

sets they select do not necessarily possess biologically or clinically relevant attributes.  

 

In this paper, we propose a feature selection method using regularized linear 

discriminant analysis (RLDA) technique (Friedman, 1989). This feature selection 

method falls under the filter method category as it does not require a classifier during 

training process to select features.  

 

RLDA technique is one of the few pioneering techniques in the pattern classification 

literature. RLDA technique is used in the cases where SSS exist. In RLDA, a small 

perturbation, known as the regularization parameter 𝛼, is added to within-class scatter 

matrix 𝐒𝑊, to overcome SSS problem. The matrix 𝐒𝑊 is approximated by 𝐒𝑊 + 𝛼𝐈 and 

the orientation matrix is computed by eigenvalue decomposition (EVD) of (𝐒𝑊 + 𝛼𝐈)−1𝐒𝐵, 

where 𝐒𝐵 is between-class scatter matrix. RLDA has been applied in face recognition 

and bioinformatics area (Dai and Yuen, 2003, 2007; Guo et al., 2007). In RLDA, it can be 

computationally expensive to find the optimum value of the parameter 𝛼 as heuristic 

approach (e.g. cross-validation procedure, Hastie et al., 2001) is applied. The value of 

the parameter could be sensitive and noisy especially when the number of training 

samples is scarce. In human cancer classification problem, the DNA microarray gene 

expression datasets, usually have very limited number of training samples which could 

adversely affect the classification performance of the RLDA technique. 

 

In order to find the gene subset associated with human cancers, we first determine the 

value of 𝛼 for RLDA technique without using any heuristic approach. We call our 

procedure as improved RLDA technique. We use improved RLDA technique recursively 

to obtain crucial genes important for cancer classification task. The proposed feature 

                                                   
1
 SVM-RFE (Guyon et al., 2002) is a wrapper based method. It is an iterative method which works 

backward from an initial set of features. The SVM aims to find maximum margin hyperplane between the 

two classes to minimize classification error using some kernel function.  
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selection method has been applied on several DNA microarray gene expression datasets 

and promising results have been obtained. 

 

In the past, SVM has also applied recursively in SVM-RFE method (Guyon et al., 2002) 

to select features. SVM-RFE is a wrapper based method. It is an iterative method which 

works backward from an initial set of features. The SVM aims to find maximum margin 

hyperplane between the two classes to minimize classification error using some kernel 

function. The selection of features by SVM-RFE is computationally intensive. It has 

some other drawbacks as well due to applying maximum margin criterion between two 

classes (Zhou et al., 2010). On the other hand, RLDA based recursive feature selection 

method, separates the two classes by 1) shrinking within class variance, and 2) 

increasing the between class variance.   

 

Basic descriptions 

In this section we describe the basic notations used in the paper. Let X = {𝐱1, 𝐱2, … , 𝐱𝑛} 

denote 𝑛 training samples (or feature vectors) in a 𝑑-dimensional space having class 

labels Ω = {𝜔1, 𝜔2, … , 𝜔𝑛}, where 𝜔 ∈ {1,2, … , 𝑐} and 𝑐 is the number of classes. The 

dataset X can be subdivided into 𝑐 subsets X1, X2,…, Xc, where Xj belongs to class 𝑗 

and consists of 𝑛𝑗 number of samples such that 𝑛 = ∑ 𝑛𝑗
𝑐
𝑗=1 . The data subset Xj ⊂ X 

and X1 ∪ X2 ∪…∪ Xc = X. If 𝛍𝑗 = 1/𝑛𝑗 ∑ 𝐱𝐱∈𝐗𝑗
 is the centroid of Xj and 𝛍 = 1/n ∑ 𝐱𝐱∈𝐗  

is the centroid of X, then the total scatter matrix 𝐒𝑇, within-class scatter matrix 𝐒𝑊 

and between-class scatter matrix 𝐒𝐵 are defined as (Duda and Hart, 1973; Sharma and 

Paliwal, 2008a, 2008b; Xu and Yan, 2009; Sharma and Paliwal, 2012; Huang, 2012a, 

2012b) 

 𝐒𝑇 = ∑ (𝐱 − 𝛍)(𝐱 − 𝛍)T
𝐱∈𝐗 , 

 𝐒𝑊 = ∑ ∑ (𝐱 − 𝛍𝑗)(𝐱 − 𝛍𝑗)
T

𝐱∈𝐗𝑗

𝑐
𝑗=1 , 

and 𝐒𝐵 = ∑ 𝑛𝑗
𝑐
𝑗=1 (𝛍𝑗 − 𝛍)(𝛍𝑗 − 𝛍)

T
. 

In SSS problem, 𝑑 > 𝑛, which will make scatter matrices singular. Let 𝑟𝑡 be the rank of 

𝐒𝑇 matrix. The eigenvector decomposition of 𝐒𝑇 can be given as 

 𝐒𝑇 = [𝐔1, 𝐔2] [
𝚲𝑇

0
] [

𝐔1
T

𝐔2
T],   (1) 

where 𝐔1 ∈ ℝ𝑑×𝑟𝑡  corresponds to eigenvalues 𝚲T  and 𝐔2 ∈ ℝ𝑑×(𝑑−𝑟𝑡)  corresponds to 

the zero eigenvalues. The matrix 𝐔1 is the range space of 𝐒𝑇 and the matrix 𝐔2 is the 

null space of 𝐒𝑇 . Since the null space of 𝐒𝑇  does not contain any discriminant 

information (Huang et al., 2002), the dimensionality can be reduced from 
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𝑑-dimensional space to 𝑟𝑡-dimensional space by applying principal component analysis 

(PCA) (Fukunaga, 1990; Sharma and Paliwal, 2007) as a pre-processing step. The range 

space of 𝐒𝑇 matrix, 𝐔1 ∈ ℝ𝑑×𝑟𝑡, will be used as a transformation matrix. In the reduced 

dimensional space the scatter matrices can be computed by: 𝐒𝑊 ← 𝐔1
T𝐒𝑊𝐔1  and 

𝐒𝐵 ← 𝐔1
T𝐒𝐵𝐔1. After this procedure 𝐒𝑊 ∈ ℝ𝑟𝑡×𝑟𝑡 and 𝐒𝐵 ∈ ℝ𝑟𝑡×𝑟𝑡 are reduced dimensional 

within-class scatter matrix and reduced dimensional between-class scatter matrix, 

respectively. 

 

Improved RLDA technique for feature selection 

In RLDA, the regularization of within-class scatter matrix 𝐒𝑊 is carried out by adding 

a perturbation term 𝛼 to the diagonal elements of 𝐒𝑊; i.e., 𝐒̂𝑊 = 𝐒𝑊 + 𝛼𝐈. The addition 

of 𝛼 will make within-class scatter non-singular and invertible. This would help to 

maximize the modified Fisher’s criterion  

𝐽(𝐰, 𝛼) =
𝐰T𝐒𝐵𝐰

𝐰T(𝐒𝑊 + 𝛼𝐈)𝐰
 ,                                                          (2)  

where 𝐰 ∈ ℝ𝑟𝑡×1 is the orientation vector. In order to avoid any heuristic approach in 

the determination of the parameter 𝛼, we solve equation 2 in the following manner. Let 

us denote function 𝑓 = 𝐰T𝐒𝐵𝐰 and a constraint function 𝑔 = 𝐰T(𝐒𝑊 + 𝛼𝐈)𝐰 − 𝑐 = 0, 

where 𝑐 > 0 be any constant. To find the constrained relative-maximum of function 𝑓 

under constrained curve 𝑔, we can use the method of Lagrange multipliers (Anton, 

1995) as follows: 

𝜕𝑓

𝜕𝐰
= 𝜆

𝜕𝑔

𝜕𝐰
 ,                                                                                     (3) 

where 𝜆 ≠ 0 is the Lagrange’s multiplier. Equation 3 is the Lagrange’s function where 

we are interested in finding the parameters (𝐰, 𝜆) that maximizes function 𝑓 under the 

constrained curve 𝑔. Substituting 𝑓 = 𝐰T𝐒𝐵𝐰 and 𝑔 = 𝐰T(𝐒𝑊 + 𝛼𝐈)𝐰 − 𝑐 in equation 

3, we get 

2𝐒𝐵𝐰 = 𝜆(2𝐒𝑊𝐰 + 2𝛼𝐰), 

or (
1

𝜆
𝐒𝐵 − 𝐒𝑊)𝐰 = 𝛼𝐰.    (4) 

The value of 𝛼𝐰 can be substituted in the constraint function 𝑔, this will give us, 

𝐰T𝐒𝐵𝐰 = λ𝑐.     (5) 

Also from the constraint function 𝐰T(𝐒𝑊 + 𝛼𝐈)𝐰 − 𝑐 = 0, we get 𝐰T𝐒̂𝑊𝐰 = 𝑐. Dividing 

this term in equation 5, we get 

λ =
𝐰T𝐒B𝐰

𝐰T𝐒̂𝑊𝐰
.                                                                                    (6) 

We can observe the following things from equation 6: 1) the left-hand term is the 
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Lagrange’s multiplier (in equation 4), and 2) the right-hand side is same as the Fisher’s 

modified criterion defined in equation 2. In order to obtain the value of 𝜆 in equation 6, 

we need to estimate 𝐒̂𝑊. If the matrix is not regularize (i.e., 𝛼 = 0) then 𝐒̂𝑊 = 𝐒𝑊. By 

this substitution, we can obtain approximate value of 𝜆 by maximizing 𝐰T𝐒B𝐰/𝐰T𝐒𝑊𝐰. 

Now to find the maximum value of 𝐰T𝐒B𝐰/𝐰T𝐒𝑊𝐰, we must have eigenvector 𝐰 

corresponding to the leading eigenvalue of 𝐒W
−1𝐒B. However, since 𝐒𝑊 is singular and 

non-invertible, 𝐒𝑊
+  can be used in place of 𝐒𝑊

−1, where 𝐒𝑊
+  is the pseudoinverse of 𝐒𝑊. 

From the EVD of 𝐒𝑊
+ 𝐒𝐵, we can find 𝜆𝑚𝑎𝑥 which is the largest eigenvalue of 𝐒𝑊

+ 𝐒𝐵. The 

value of 𝜆𝑚𝑎𝑥 can be substituted in equation 4 (where 𝜆 = 𝜆𝑚𝑎𝑥), this will enable us to 

find the value of 𝛼  by doing EVD of (
1

𝜆
𝐒𝐵 − 𝐒𝑊) . If 𝑟𝑏 = 𝑟𝑎𝑛𝑘(𝐒𝐵)  then EVD of 

(
1

𝜆
𝐒𝐵 − 𝐒𝑊) will give 𝑟𝑏 finite eigenvalues. Since the leading eigenvalue will correspond 

to the most discriminant eigenvector (Fukunaga, 1990; Sharma and Paliwal, 2007), 𝛼 

is taken to be the leading eigenvalue. Once the value of 𝛼  is determined, the 

orientation vector 𝐰 can be solved from 

(𝐒𝑊 + 𝛼𝐈)−𝟏𝐒𝐵𝐰 = γ𝐰.    (7) 

 

It can be shown from Lemma 1 that for improved RLDA technique, its maximum 

eigenvalue is approximately equal to the highest (finite) eigenvalue of Fisher’s criterion. 

 

Lemma 1: The highest eigenvalue of improved RLDA is approximately equivalent to the 

highest (finite) eigenvalue of Fisher’s criterion. 

Proof 1: From equation 7,  

𝐒𝐵𝐰𝑗 = 𝛾𝑗(𝐒𝑊 + 𝛼𝐈)𝐰𝑗,      (8) 

where 𝛼 is the maximum eigenvalue of (1/𝜆𝑚𝑎𝑥𝐒𝐵 − 𝐒𝑊) (from equation 4); 𝜆𝑚𝑎𝑥 ≥ 0 

is approximately the highest eigenvalue of Fisher’s criterion 𝐰T𝐒𝐵𝐰/𝐰T𝐒𝑊𝐰 (since 

𝜆𝑚𝑎𝑥 is the largest eigenvalue of 𝐒𝑊
+ 𝐒𝐵) (Liu et al., 2007); 𝑗 = 1 … 𝑟𝑏 and  𝑟𝑏 = 𝑟𝑎𝑛𝑘(𝐒𝐵). 

Substituting 𝛼𝐰 = (1/𝜆𝑚𝑎𝑥𝐒𝐵 − 𝐒𝑊)𝐰 (from equation 4, where 𝜆 = 𝜆𝑚𝑎𝑥) into equation 

8, we get, 

 𝐒𝐵𝐰𝑚 = 𝛾𝑚𝐒𝑊𝐰𝑚 + 𝛾𝑚(1/𝜆𝑚𝑎𝑥𝐒𝐵 − 𝐒𝑊)𝐰𝑚, 

or (𝜆𝑚𝑎𝑥 − 𝛾𝑚)𝐒𝐵𝐰𝑚 = 0. 

where 𝛾𝑚 = max (𝛾𝑗) and 𝐰𝑚 is the corresponding eigenvector. Since 𝐒𝐵𝐰𝑚 ≠ 0 (from 

equation 5), 𝛾𝑚 = 𝜆𝑚𝑎𝑥 and 𝛾𝑗 < 𝜆𝑚𝑎𝑥, where 𝑗 ≠ 𝑚. This concludes the proof. 

 

Corollary 1: The value of regularization parameter is non-negative; i.e., 𝛼 ≥ 0 for 

𝑟𝑤 ≤ 𝑟𝑡, where 𝑟𝑡 = 𝑟𝑎𝑛𝑘(𝐒𝑇) and 𝑟𝑤 = 𝑟𝑎𝑛𝑘(𝐒𝑊). 

Proof. Please see Appendix-III. 
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Computing equation 7 for all the values of 𝛾 will give the orientation matrix 𝐖 ∈

ℝ𝑟𝑡×𝑟𝑏, having 𝐰 as its column vectors. The orientation matrix 𝐖 is in 𝑟𝑡-dimensional 

space, however, it can be transformed to 𝑑-dimensional space by 𝐖 ← 𝐔1𝐖. Therefore, 

we get 𝐖 ∈ ℝ𝑑×𝑟𝑏 . Let a column vector 𝐰 ∈ 𝐖 be used to transform 𝑑-dimensional 

space to 1-dimensional space and 𝐱 ∈ 𝐗 be any feature vector, we have 

 𝑦 = 𝐰T𝐱, 

or 𝑦 = ∑ 𝑤𝑖𝑥𝑖
𝑑
𝑖=1 ,     (9) 

where 𝑤𝑖 and 𝑥𝑖 are the elements of 𝐰 and 𝐱, respectively. It can be envisaged that if 

|𝑤𝑖𝑥𝑖| ≈ 0 (where | ∙ | is the absolute value), then the 𝑖th element is not contributing 

for the value of 𝑦 in equation 9; i.e., it can be discarded without sacrificing much 

information. This concept can be extended for the orientation matrix 𝐖 and dataset 𝐗 

as 

 𝑧𝑖 = ∑ ∑ |𝑤𝑖𝑘𝑥𝑖𝑗|𝑛
𝑗=1

𝑟𝑏
𝑘=1     (10) 

where 𝑖 = 1,2, … , 𝑑. If 𝑧𝑖 ≈ 0, then 𝑖th feature can be discarded. Equation 10 can be 

applied recursively to discard unimportant features as follows: 

 

Step 0. Define 𝑞 ∈ (𝑛, 𝑑)2 and set 𝑙 = 𝑑.  

Step 1. Compute 𝐖 ∈ ℝ𝑙×𝑟𝑏 (see Table 1). 

Step 2. Compute 𝑧𝑖 using equation 10 for 𝑖 = 1,2, … , 𝑙. 

Step 3. Sort 𝑧𝑖 in descending order; i.e., if 𝑠 = 𝑠𝑜𝑟𝑡(𝑧𝑖) then 𝑠1 > 𝑠2 > ⋯ > 𝑠𝑙. 

Step 4. Discard least important feature corresponding to 𝑠𝑙. Let the cardinality of the 

remaining feature set be 𝑙 − 1 and data subset be 𝐗𝑙−1 ∈ ℝ𝑙×𝑛. 

Step 5. Conduct 𝐗 ← 𝐗𝑙−1 and 𝑙 ← 𝑙 − 1. 

Step 6. Continue Steps 1-5 until 𝑙 = 𝑞.  

 

The above process will give 𝑞-features with the data subset 𝐗𝑞 ∈ ℝ𝑞×𝑛, which can be 

used by a classifier to obtain classification performance. 

 

 

 

 

 

Table 1: Computation of the orientation matrix 𝐖 using improved RLDA technique. 

                                                   
2
 Since RLDA or Improved RLDA is a method for solving small sample size (SSS) problem, the value of q has to be 

in (𝑛, 𝑑). 
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Step 1. Compute range space of total scatter matrix 𝐒𝑇, 𝐔1 ∈ ℝ𝑑×𝑟𝑡, by applying PCA, 

where 𝑟𝑡 = 𝑟𝑎𝑛𝑘(𝐒𝑇). Using 𝐔1 , compute between-class scatter matrix and 

within-class scatter matrix in 𝑟𝑡  dimensional space: 𝐒𝐵 ← 𝐔1
T𝐒𝐵𝐔1  and 

𝐒𝑊 ← 𝐔1
T𝐒𝑊𝐔1, where 𝐒𝐵 ∈ ℝ𝑟𝑡×𝑟𝑡 and 𝐒𝑊 ∈ ℝ𝑟𝑡×𝑟𝑡. 

Step 2. Perform EVD of 𝐒𝑊
+ 𝐒𝐵 to find the highest eigenvalue 𝜆𝑚𝑎𝑥. 

Step 3. Perform EVD of (1/𝜆𝑚𝑎𝑥𝐒𝐵 − 𝐒𝑊) to find its highest eigenvalue, denote it as 𝛼. 

Step 4. Perform EVD of (𝐒𝑊 + 𝛼𝐈)−𝟏𝐒𝐵  to find 𝑟𝑏  eigenvectors 𝐰𝑗 ∈ ℝ𝑟𝑡×1 

corresponding to the leading eigenvalues, where 𝑟𝑏 = 𝑟𝑎𝑛𝑘(𝐒𝐵) . The 

eigenvectors 𝐰𝑗 are column vectors of the orientation matrix 𝐖′ ∈ ℝ𝑟𝑡×𝑟𝑏.  

Step 5. Compute the orientation matrix 𝐖 ∈ ℝ𝑑×𝑟𝑏  in 𝑑 -dimensional space: 𝐖 =

𝐔1𝐖′.  

 

The computational requirement for Step 1 of the technique (Table 1) would be 𝑂(𝑑𝑛2); 

for Step 2 would be 𝑂(𝑛3); for Step 3 would be 𝑂(𝑛3); for Step 4 would be 𝑂(𝑛3); and, 

for Step 5 would be 𝑂(𝑑𝑛2). Therefore, the total estimated for SSS case (𝑑 ≫ 𝑛) would 

be 𝑂(𝑑𝑛2). If the 𝑞 features are to be selected from the total 𝑑 features then total 

estimated computational complexity would be 𝑂(𝑑𝑛2(𝑑 − 𝑙)). 

 

Experimentation 

In this experiment we have utilized three DNA microarray gene expression datasets3. 

The description of these datasets is given as follows: 

 

SRBCT dataset (Khan et al., 2001): the small round blue-cell tumor dataset consists of 

83 samples with each having 2308 genes. This is a four class classification problem. The 

tumors are Burkitt lymphoma (BL), the Ewing family of tumors (EWS), neuroblastoma 

(NB) and rhabdomyosarcoma (RMS). There are 63 samples for training and 20 samples 

for testing. The training set consists of 8, 23, 12 and 20 samples of BL, EWS, NB and 

RMS respectively. The test set consists of 3, 6, 6 and 5 samples of BL, EWS, NB and 

RMS respectively. 

 

MLL Leukemia dataset (Armstrong et al., 2002): this dataset has 3 classes namely ALL, 

                                                   
3  Most of the datasets are downloaded from the Kent Ridge Bio-medical Dataset (KRBD) 

(http://datam.i2r.a-star.edu.sg/datasets/krbd/). The datasets are transformed or reformatted and made available by 

KRBD repository and we have used them without any further preprocessing. Some datasets which are not available 

on KRBD repository are downloaded and directly used from respective authors’ supplement link. The URL addresses 

for all the datasets are given in the Reference Section.  

http://datam.i2r.a-star.edu.sg/datasets/krbd/
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MLL and AML. The training set contains 57 leukemia samples (20 ALL, 17 MLL and 20 

AML) whereas the test set contains 15 samples (4 ALL, 3 MLL and 8 AML). The 

dimension of the MLL dataset is 12582. 

 

Acute Leukemia dataset (Golub et al., 1999): this dataset consists of DNA microarray 

gene expression data of human acute leukemia for cancer classification. Two types of 

acute leukemia data are provided for classification namely acute lymphoblastic 

leukemia (ALL) and acute myeloid leukemia (AML). The dataset is subdivided into 38 

training samples and 34 test samples. The training set consists of 38 bone marrow 

samples (27 ALL and 11 AML) over 7129 probes. The test set consists of 34 samples with 

20 ALL and 14 AML, prepared under different experimental conditions. All the samples 

have 7129 dimensions and all are numeric. 

 

The classification performance of the proposed feature selection method has been 

gauged by using the above three datasets. Tables 2, 3 and 4 show classification accuracy 

of the proposed method compared with several other existing feature selection methods 

on the SRBCT, MLL and Acute Leukemia datasets, respectively4. Four classifiers from 

WEKA (http://www.cs.waikato.ac.nz/ml/weka/) used are J4.8, Naïve Bayes, kNN (where 

𝑘 = 1) and SVM pairwise. The classification accuracy for the SRBCT and MLL datasets 

is obtained from Tao et al. 2004. For all the datasets, the features are ranked by 

Rankgene program (Su et al., 2003). The Rankgene program computes the features for 

the following feature selection methods: Information gain, Twoing rule, Sum minority, 

Max minority, Gini index, Sum of variances, t-statistic and One-dimensional SVM (Su 

et al., 2003). For all the datasets 150 genes are selected as selected by Tao et al., 2004. 

In addition, Lasso (Tibshirani, 1996) and filter MRMR (Peng et al., 2005) are used for 

feature selection. The Lasso method deflates the collinearity effect on the features. It 

produces sparse parameters that can be used to identify important genes. The number 

of features selected by Lasso on SRBCT, MLL and Acute Leukamia is 38, 39 and 165, 

respectively. The filter MRMR method select features based on maximal statistical 

dependency criterion based on mutual information. It can be observed from Table 2 that 

                                                   
4
 The cross-validation based results are shown in Appendix-I Section. The comparison of improved 

RLDA with different values of regularization parameter has been shown in Appendix-II Section. 

5
 Note that for all the feature selection methods except Lasso method the number of selected features is 

150 (in Tables 2,3 and 4). The Lasso method itself obtains the optimal number of selected features and 

therefore cannot be adjusted for a predefined number of selected features. 

http://www.cs.waikato.ac.nz/ml/weka/
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the proposed method achieves 75% classification accuracy using the J4.8 classifier; 90% 

classification accuracy using the Naïve Bayes classifier; 95% classification accuracy 

using the kNN classifier and 100% classification accuracy by the SVM pairwise 

classifier. In the three out of four cases the classification accuracy obtained by improved 

RLDA is the highest. Similarly, the classification accuracy on the MLL dataset (Table 3) 

is the highest for improved RLDA in three out of four cases method when compared with 

several other feature selection methods using four distinct classifiers. On the Acute 

Leukemia dataset (Table 4), the classification accuracy of improved RLDA is the highest 

for the J4.8 classifier (94%) and the SVM pairwise classifier (100%). In total of 12 cases 

(Tables 2-4), improved RLDA is giving highest results in eight cases. It can, therefore, 

be concluded that the proposed method is exhibiting promising results. 

 

Table 2: The classification accuracy of various feature selection methods using four distinct classifiers on 

the SRBCT dataset. 

 J4.8 Naïve Bayes kNN SVM pairwise 

Baseline accuracy 37% 37% 37% 37% 

Information gain 68% 68% 90% 90% 

Twoing rule 64% 73% 86% 82% 

Sum minority  68% 68% 90% 86% 

Max minority 46% 78% 90% 90% 

Gini index 64% 78% 90% 90% 

Sum of variances 54% 64% 90% 86% 

t-statistic 54% 64% 90% 86% 

One dimensional SVM 54% 64% 90% 86% 

Lasso 90% 70% 80% 75% 

Filter MRMR 65% 35% 55% 85% 

Improved RLDA 75% 90% 95% 100% 

 

Table 3: The classification accuracy of various feature selection methods using four distinct classifiers on 

the MLL dataset. 

 J4.8 Naïve Bayes kNN SVM pairwise 

Baseline accuracy 35% 35% 35% 35% 

Information gain 60% 74% 86% 100% 

Twoing rule 60% 86% 86% 100% 

Sum minority  68% 26% 80% 80% 

Max minority 74% 34% 74% 80% 

Gini index 60% 68% 86% 100% 

Sum of variances 60% 54% 86% 100% 

t-statistic 60% 54% 86% 100% 

One dimensional SVM 60% 54% 86% 100% 

Lasso 87% 100% 93% 93% 

Filter MRMR 100% 100% 93% 100% 

Improved RLDA 100% 93% 100% 100% 

 

 

Table 4: The classification accuracy of various feature selection methods using four distinct classifiers on 

the Acute Leukemia dataset. 
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 J4.8 Naïve Bayes kNN SVM pairwise 
Baseline accuracy 71% 71% 71% 71% 
Information gain 91% 100% 97% 97% 
Twoing rule 91% 97% 97% 97% 
Sum minority  91% 97% 97% 97% 
Max minority 91% 97% 97% 97% 
Gini index 91% 97% 97% 97% 
Sum of variances 91% 97% 97% 97% 
t-statistic 91% 100% 97% 97% 
One dimensional SVM 91% 85% 88% 97% 
Lasso 91% 94% 85% 91% 
Filter MRMR 65% 71% 74% 86% 
Improved RLDA 94% 94% 85% 100% 

 

Next, we considered different number of selected features by Improved RLDA and 

several feature selection method, and shown the evolution of the performance of the 

classifiers with respect to the number of selected features. The results are shown in 

Tables 5, 6 and 7. It can be observed from the Tables 5-7 that in most of the cases the 

average classification accuracy for Improved RLDA is consistently higher than other 

feature selection methods. 

 

Table 5: The classification accuracy as a function of the number of selected features of 
Improved RLDA and several feature selection methods using four distinct classifiers on 
the SRBCT dataset. 

Feature selection + classifier 10% of 
features 

20% of 
features 

30% of 
features 

Average 
classification 

accuracy 
Information gain + J4.8 65% 65% 65% 81.7% 
Information gain + Naïve Bayes 85% 65% 55% 
Information gain + kNN 100% 90% 90% 
Information gain + SVM 100% 100% 100% 
Twoing rule + J4.8 65% 65% 65% 82.1% 
Twoing rule + Naïve Bayes 85% 70% 55% 
Twoing rule + kNN 100% 90% 90% 
Twoing rule + SVM 100% 100% 100% 
Sum minority + J4.8 60% 65% 65% 79.6% 
Sum minority + Naïve Bayes 75% 55% 55% 
Sum minority + kNN 100% 95% 85% 
Sum minority + SVM 100% 100% 100% 
Max minority + J4.8 65% 65% 65% 83.3% 
Max minority + Naïve Bayes 95% 65% 65% 
Max minority + kNN 100% 90% 90% 
Max minority + SVM 100% 100% 100% 
Gini index + J4.8 65% 75% 75% 85.8% 
Gini index + Naïve Bayes 90% 70% 65% 
Gini index + kNN 100% 95% 95% 
Gini index + SVM 100% 100% 100% 
Sum of variances + J4.8 65% 65% 65% 79.2% 
Sum of variances + Naïve Bayes 60% 60% 55% 
Sum of variances + kNN 100% 90% 90% 
Sum of variances + SVM 100% 100% 100% 
Improved RLDA + J4.8 75% 75% 75% 88.3% 
Improved RLDA + Naïve Bayes 90% 90% 70% 
Improved RLDA + kNN 95% 95% 95% 
Improved RLDA + SVM pairwise 100% 100% 100% 
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Table 6: The classification accuracy as a function of the number of selected features of 
Improved RLDA and several feature selection methods using four distinct classifiers on 
the MLL dataset. 

Feature selection + classifier 10% of 
features 

20% of 
features 

30% of 
features 

Average 
classification 

accuracy 
Information gain + J4.8 67% 67% 67% 88.5% 
Information gain + Naïve Bayes 100% 100% 100% 
Information gain + kNN 87% 87% 87% 
Information gain + SVM 100% 100% 100% 
Twoing rule + J4.8 67% 67% 67% 88.5% 
Twoing rule + Naïve Bayes 100% 100% 100% 
Twoing rule + kNN 87% 87% 87% 
Twoing rule + SVM 100% 100% 100% 
Sum minority + J4.8 67% 67% 67% 88.5% 
Sum minority + Naïve Bayes 100% 100% 100% 
Sum minority + kNN 87% 87% 87% 
Sum minority + SVM 100% 100% 100% 
Max minority + J4.8 67% 67% 67% 88.5% 
Max minority + Naïve Bayes 100% 100% 100% 
Max minority + kNN 87% 87% 87% 
Max minority + SVM 100% 100% 100% 
Gini index + J4.8 67% 67% 67% 88.5% 
Gini index + Naïve Bayes 100% 100% 100% 
Gini index + kNN 87% 87% 87% 
Gini index + SVM 100% 100% 100% 
Sum of variances + J4.8 67% 67% 67% 88.5% 
Sum of variances + Naïve Bayes 100% 100% 100% 
Sum of variances + kNN 87% 87% 87% 
Sum of variances + SVM 100% 100% 100% 
Improved RLDA + J4.8 100% 100% 100% 96.2% 
Improved RLDA + Naïve Bayes 100% 100% 100% 
Improved RLDA + kNN 87% 87% 80% 
Improved RLDA + SVM pairwise 100% 100% 100% 

 

Table 7: The classification accuracy as a function of the number of selected features of 
Improved RLDA and several feature selection methods using four distinct classifiers on 
the Acute Leukemia dataset. 

Feature selection + classifier 10% of 
features 

20% of 
features 

30% of 
features 

Average 
classification 

accuracy 
Information gain + J4.8 91% 91% 91% 90.6% 
Information gain + Naïve Bayes 97% 100% 100% 
Information gain + kNN 77% 79% 79% 
Information gain + SVM 97% 94% 91% 
Twoing rule + J4.8 91% 91% 91% 89.1% 
Twoing rule + Naïve Bayes 94% 97% 97% 
Twoing rule + kNN 77% 76% 79% 
Twoing rule + SVM 97% 91% 88% 
Sum minority + J4.8 91% 91% 91% 88.3% 
Sum minority + Naïve Bayes 94% 97% 97% 
Sum minority + kNN 77% 73% 73% 
Sum minority + SVM 97% 91% 88% 
Max minority + J4.8 91% 91% 91% 89.2% 
Max minority + Naïve Bayes 94% 97% 97% 
Max minority + kNN 77% 77% 79% 
Max minority + SVM 97% 91% 88% 
Gini index + J4.8 91% 91% 91% 88.0% 
Gini index + Naïve Bayes 94% 97% 97% 
Gini index + kNN 79% 70% 70% 
Gini index + SVM 97% 91% 88% 
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Sum of variances + J4.8 91% 91% 91% 89.2% 
Sum of variances + Naïve Bayes 94% 97% 97% 
Sum of variances + kNN 77% 77% 79% 
Sum of variances + SVM 97% 91% 88% 
Improved RLDA + J4.8 91% 91% 91% 92.5% 
Improved RLDA + Naïve Bayes 97% 100% 100% 
Improved RLDA + kNN 88% 79% 82% 
Improved RLDA + SVM pairwise 97% 97% 97% 

 

Furthermore, we conducted experiments to see the biological significance of the selected 

features by the proposed method. We use SRBCT data as a prototype to show the 

biological significance using Ingenuity Pathway Analysis6. The selected 150 features 

from the proposed algorithm are used for this purpose. Out of 150 genes, 10 genes were 

found unmapped in IPA. The top five high level biological functions obtained are shown 

in Figure 1. In the figure, the y-axis denotes the negative of logarithm of p-values and 

x-axis denotes the high level functions. Since the cancer function is of paramount 

interest, we investigated them further. There are 61 cancer sub-functions obtained from 

the experiment. Top 25 cancer sub-functions with significant p-values are shown in 

Table 8. In IPA, the p-value reflects the enrichment of a given function to a set of 

focused genes. The smaller the p-value is, the less likely that the association is random, 

and the more significant the association. In general p-values less than 0.05 indicate a 

statistically significant, non-random association. The p-value is calculated using the 

right-tailed Fisher exact test (IPA, Available at: http://www.ingenuity.com) (Sharma et 

al., 2012a; 2012b). In the table, the p-values and the number of selected genes are 

depicted corresponding to the selected functions. The selected genes by the proposed 

method provide significant p-values above the threshold (as specified in IPA). This 

shows that the features selected by the proposed method contain useful information for 

discriminatory purpose and have biological significance. 

                                                   
6
 Ingenuity Pathway Analysis (IPA) (http://www.ingenuity.com) is a software that helps researchers to 

model, analyze, and understand the complex biological and chemical systems at the core of life science 

research. IPA has been broadly adopted by the life science research community. IPA helps to understand 

complex 'omics data at multiple levels by integrating data from a variety of experimental platforms and 

providing insight into the molecular and chemical interactions, cellular phenotypes, and disease processes 

of the system. IPA provides insight into the causes of observed gene expression changes and into the 

predicted downstream biological effects of those changes. Even if the experimental data is not available, 

IPA can be used to intelligently search the Ingenuity Knowledge Base for information on genes, proteins, 

chemicals, drugs, and molecular relationships to build biological models or to get up to speed in a 

relevant area of research. IPA provides the right biological context to facilitate informed decision-making, 

advance research project design, and generate new testable hypotheses.  
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Figure 1: Top five high level biological function on selected 150 genes of SRBCT by 

Improved RLDA based feature selection method. 

 

Table 8: Cancer sub-functions 

Functions p-value # Selected Genes 

metastatic colorectal cancer 6.99E-08 12 

tumorigenesis 1.01E-07 62 

neoplasia 5.05E-07 59 

cancer 6.97E-07 58 

uterine cancer 2.87E-06 19 

benign tumor 3.75E-06 17 

leiomyomatosis 1.06E-05 12 

carcinoma 1.11E-05 47 

adenocarcinoma 1.81E-05 17 

gastrointestinal tract cancer 2.60E-05 24 

colorectal cancer 3.46E-05 22 

uterine leiomyoma 5.62E-05 10 

metastasis 6.11E-05 13 

genital tumor 6.69E-05 22 

prostate cancer 1.42E-04 16 

trisomy 8 myelodysplastic syndrome 2.25E-04 2 

central nervous system tumor 2.87E-04 10 

digestive organ tumor 3.21E-04 27 

breast cancer 3.41E-04 20 

brain cancer 4.28E-04 9 

leukemia 6.88E-04 11 

hematologic cancer 7.14E-04 14 

endometrial carcinoma 8.86E-04 8 

neuroblastoma 1.25E-03 5 

hematological neoplasia 1.38E-03 15 
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endocrine gland tumor 1.42E-03 11 

tumorigenesis of carcinoma 1.54E-03 2 

B-cell leukemia 1.68E-03 6 

entrance of tumor cell lines 2.04E-03 2 

endometrial cancer 2.12E-03 7 

 

We have also carried out sensitivity analysis to check the robustness of the proposed 

method. For this purpose, we use the SRBCT dataset as a prototype and select top 100 

genes. After this selection, we contaminate the dataset by adding Gaussian noise, then 

applied the method again to find the top 100 genes. The generated noise levels are 1%, 

2% and 5% of the standard deviation of the original gene expression values. The number 

of genes which are common after contamination and before contamination is noted. This 

contamination of data and selection of genes are repeated 20 times. The average 

number of genes over 20 iterations is depicted in Figure 2. It can be observed from the 

figure that the proposed method is able to capture the majority of the original genes in 

the noisy environmental condition. 

 

In order to check the sensitivity analysis with respect to the classification accuracy, we 

contaminated the dataset by adding Gaussian noise (as above) and selected 150 features 

using the improved RLDA technique. The classification accuracy is obtained by using 

the SVM-pairwise classifier. The results are shown in Table 9. It can observed from 

Table 9 that for low level noise the degradation in classification performance is not 

enough. But when the noise level increases the classification accuracy deteriorates 

(especially on the MLL dataset and the Acute Leukemia dataset). 

 

Table 9: Sensitivity analysis with respect to classification accuracy on the SRBCT, MLL 

and Acute Leukemia dataset 

Noise level SRBCT MLL Acute Leukemia 

Without noise 100% 100% 97% 

1% 100% 100% 97% 

2% 100% 93% 96% 

5% 100% 79% 93% 

10% 100% 45% 59% 
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Figure 2: Sensitivity analysis for the proposed feature selection method on the SRBCT 

dataset at different noise levels. The y-axis depicts the average number of common 

genes over 20 iterations and x-axis depicts the added noise in percentage.  

 

Next, we carried out experimentation to obtain ROC curve and AUC analysis. For the 

ROC curve, we use sensitivity and specificity as the two measures. The sensitivity is 

given as 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒/(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒) and the specificity is given as 

𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒/(𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒). We varied the noise level and select 

150 genes using improved RLDA and then use SVM-pairwise to compute sensitivity and 

specificity. The ROC curve is shown in Figure 3. This curve shows the trade-off between 

sensitivity and specificity. The AUC provides the overall accuracy and is a useful 

parameter for comparing the performance. The high value of AUC parameter indicates 

high accuracy. The value of AUC is computed to be 0.9674 which is promising. 
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Figure 3: The ROC curve 

 

Conclusion 

In this paper, we presented a feature selection method using improved regularized 

linear discriminant analysis technique. Three DNA microarray gene expression 

datasets have been utilized to see the performance of the proposed method. It was 

observed that the method is achieving encouraging classification accuracy using small 

number of selected gene. The biological significance has also been demonstrated by 

performing functional analysis. Moreover, robustness of the method was exhibited by 

conducting sensitivity analysis and encouraging results are obtained. The sensitivity 

analysis with respect to classification accuracy and ROC curve have also been 

discussed. 

 

 

Appendix I 

In this section, we use cross-validation procedure to compute average classification 

accuracy using four distinct classifiers and the proposed feature selection method. 

Three datasets have been used for this purpose are SRBCT, MLL and Acute Leukemia. 

The classification accuracy using fold 𝑘 = 5 and fold 𝑘 = 10 are given in Tables A1, A2 

and A3. It can be observed that the classification accuracy obtained by 𝑘 -fold 

cross-validation procedure is comparably similar to the classification accuracy obtained 

in Tables 2-4. 
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Table A1: 𝑘-fold cross-validation using improved RLDA and four distinct classifiers on 

the SRBCT dataset. 

Fold J4.8 Naïve bayes kNN SVM pairwise 

𝑘 = 5 80% 89% 92% 100% 

𝑘 = 10 88% 92% 95% 100% 

 

Table A2: 𝑘-fold cross-validation using improved RLDA and four distinct classifiers on 

the MLL dataset. 

Fold J4.8 Naïve bayes kNN SVM pairwise 

𝑘 = 5 91% 94% 94% 95% 

𝑘 = 10 87% 93% 95% 97% 

 

Table A3: 𝑘-fold cross-validation using improved RLDA and four distinct classifiers on 

the Acute Leukemia dataset. 

Fold J4.8 Naïve bayes kNN SVM pairwise 

𝑘 = 5 91% 97% 87% 94% 

𝑘 = 10 87% 100% 95% 98% 

 

 

Appendix II 

In this appendix, we compare different values of regularization parameter with the 

proposed improved RLDA technique. In order to show this, we computed classification 

accuracy on four different values of 𝛼  for RLDA technique. These are 

𝛿 = [0.001,0.01,0.1,1] , where 𝛼 = 𝛿 ∗ 𝜆𝑊  and 𝜆𝑊  is the maximum eigenvalue of 

within-class scatter matrix. We applied 3-fold cross-validation procedure on a number 

of datasets and shown the results in columns 2-5 of Table A2. The last column of the 

table denotes the classification accuracy using improved RLDA technique.  

 

Table A4: Classification accuracy (in percentage) of RLDA and improved RLDA. The highest 

classification accuracies obtained are depicted in bold fonts. 

Database 𝜹 = 𝟎. 𝟎𝟎𝟏 𝜹 = 𝟎. 𝟎𝟏 𝜹 = 𝟎. 𝟏 𝜹 = 𝟏 Improved RLDA 

Acute Leukemia  98.6 98.6 98.6 100 100.0 

MLL  95.7 95.7 95.7 95.7 100.0 

SRBCT  100.0 100.0 100.0 96.2 100.0 

 

It can be observed from the table that the different values of the regularization 

parameter give different classification accuracies and therefore, the choice of the 
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regularization parameter affects the classification performance. Thus, it is important to 

select the regularization parameter correctly to get the good classification performance. 

It can be observed that for all the datasets, the proposed technique is exhibiting 

promising results. 

 

Appendix III 

Corollary 1: The value of regularization parameter is non-negative; i.e., 𝛼 ≥ 0 for 

𝑟𝑤 ≤ 𝑟𝑡, where 𝑟𝑡 = 𝑟𝑎𝑛𝑘(𝐒𝑇) and 𝑟𝑤 = 𝑟𝑎𝑛𝑘(𝐒𝑊). 

Proof 1: From equation 2, we can write 

𝐽 =
𝐰T𝐒𝐵𝐰

𝐰T(𝐒𝑊+𝛼𝐈)𝐰
 ,       A1 

where 𝐒𝐵 ∈ ℝ𝑟𝑡×𝑟𝑡 and 𝐒𝑊 ∈ ℝ𝑟𝑡×𝑟𝑡. We can rearrange the above expression as 

𝐰T𝐒B𝐰 = 𝐽𝐰T(𝐒𝑊 + 𝛼𝐈)𝐰     A2 

 

The eigenvalue decomposition (EVD) of 𝐒𝑊 matrix (assuming 𝑟𝑤 < 𝑟𝑡) can be given as  

𝐒𝑊 = 𝐔𝚲2𝐔T , where 𝐔 ∈ ℝ𝑟𝑡×𝑟𝑡  is an orthogonal matrix, 𝚲2 = [𝚲𝑤
2 0

0 0
] ∈ ℝ𝑟𝑡×𝑟𝑡  and 

𝚲𝑤 = 𝑑𝑖𝑎𝑔(𝑞1
2, 𝑞2

2, … , 𝑞𝑟𝑤

2 ) ∈ ℝ𝑟𝑤×𝑟𝑤 are diagonal matrices (as 𝑟𝑤 < 𝑟𝑡). The eigenvalues 

𝑞𝑘
2 > 0 for 𝑘 = 1,2, … , 𝑟𝑤. Therefore, 

 

𝐒𝑊
′ = (𝐒𝑊 + 𝛼𝐈) = 𝐔𝐃𝐔T, where 𝐃 = 𝚲2 + 𝛼𝐈 

or 𝐃−1/2𝐔T𝐒𝑊
′ 𝐔𝐃−1/2 = 𝐈     A3 

 

The between class scatter matrix 𝐒𝐵 can be transformed by multiplying 𝐔𝐃−1/2 on the 

right side and 𝐃−1/2𝐔T on the left side of 𝐒𝐵 as 𝐃−1/2𝐔T𝐒𝐵𝐔𝐃−1/2. The EVD of this 

matrix will give 

𝐃−1/2𝐔T𝐒𝐵𝐔𝐃−1/2 = 𝐄𝐃𝐵𝐄𝐓,     A4 

where 𝐄 ∈ ℝ𝑟𝑡×𝒓𝒕  is an orthogonal matrix and 𝐃𝐵 ∈ ℝ𝑟𝑡×𝑟𝑡  is a diagonal matrix. 

Equation A4 can be rearranged as 

𝐄𝐓𝐃−1/2𝐔T𝐒𝐵𝐔𝐃−1/2𝐄 = 𝐃𝐵,    A5 

Let the leading eigenvalue of 𝐃𝐵 is 𝛾 and its corresponding eigenvector is 𝐞 ∈ 𝐄. Then 

equation A5 can be rewritten as 

𝐞𝐓𝐃−1/2𝐔T𝐒𝐵𝐔𝐃−1/2𝐞 = γ,     A6 

The eigenvector 𝐞 can be multiplied right side and 𝐞T on left side of equation A3, we 

get 

𝐞T𝐃−1/2𝐔T𝐒𝑊
′ 𝐔𝐃−1/2𝐞 = 1     A7 



19 

 

 

It can be seen from equations A3 and A5 that matrix 𝐖 = 𝐔𝐃−1/2𝐄 diagonalizes both 

𝐒𝐵  and 𝐒𝑊
′ , simultaneously. Also vector 𝐰 = 𝐔𝐃−1/2𝐞  simultaneously gives 𝛾  and 

unity eigenvalue in equations A6 and A7. Therefore, 𝐰 is a solution of equation A2. 

Substituting 𝐰 = 𝐔𝐃−1/2𝐞 in equation A2, we get 

 

𝐽 = 𝛾; i.e., 𝐰 is a solution of equation A2.  

 

From Lemma 1, the maximum eigenvalue of expression (𝐒𝑊 + 𝛼𝐈)−𝟏𝐒𝐵𝐰 = γ𝐰  is 

𝛾𝑚 = 𝜆𝑚𝑎𝑥 > 0 (i.e., real, positive and finite). Therefore, the eigenvectors corresponding 

to this positive 𝛾𝑚 should also be in real hyperplane (i.e., the components of the vector 

𝐰 have to have real values). Since 𝐰 = 𝐔𝐃−1/2𝐞 with 𝐰 to be in real hyperplane, we 

must have 𝐃−1/2 to be real.  

 

Since 𝐃 = 𝚲2 + 𝛼𝐈 = 𝑑𝑖𝑎𝑔(𝑞1
2 + 𝛼, 𝑞2

2 + 𝛼, … , 𝑞𝑟𝑤

2 + 𝛼, 𝛼, … , 𝛼), we have 

𝐃−1/2 = 𝑑𝑖𝑎𝑔(1/√𝑞1
2 + 𝛼, 1/√𝑞2

2 + 𝛼, … ,1/√𝑞𝑟𝑤
2 + 𝛼, 1/√𝛼, … ,1/√𝛼). 

Therefore, the elements of 𝐃−1/2 , must satisfy 1/√𝑞𝑘
2 + 𝛼 > 0  and 1/√𝛼 > 0  for 

𝑘 = 1,2, … , 𝑟𝑤 (note 𝑟𝑤 < 𝑟𝑡); i.e., 𝛼 cannot be negative or 𝛼 > 0. Furthermore, if 𝑟𝑤 = 𝑟𝑡 

then matrix 𝐒𝑊 will be a non-singular matrix and its inverse will exist. In this case, 

regularization is not required and therefore 𝛼 = 0 . Thus, 𝛼 ≥ 0  for 𝑟𝑤 ≤ 𝑟𝑡 . This 

concludes the proof. 
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