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Novel bottom-up urban water demand forecasting model: Revealing the determinants,

drivers and predictors of residential indoor end-use consumption

Abstract

The purpose of this comprehensive study was to explore the principal determinants of six
residential indoor water end-use consumption categories at the household scale (i.e. namely
clothes washer, shower, toilet, tap, dishwasher, and bath), and to find an overarching research
design and approach for building a residential indoor water end-use demand forecasting
model. A mixed method research design was followed to collect both quantitative and
qualitative data from 210 households with a total of 557 occupants located in SEQ, Australia,
utilising high resolution smart water metering technology, questionnaire surveys, diaries, and
household water stock inventory audits. The principal determinants, main drivers, and
predictors of residential indoor water consumption for each end-use category were revealed,
and forecasting models were developed this study. This was achieved utilising an array of
statistical techniques for each of the six end-use consumption categories. Cluster analysis and
dummy coding were used to prepare the data for analysis and modelling. Subsequently,
independent #-test and independent one-way ANOVA extended into a series of bootstrapped
regression models were used to explore the principal determinants of consumption.
Successively, a series of Pearson's Chi-Square tests was used to reveal the main drivers of
higher water consumption and to determine alternative sets of consumption predictors.
Lastly, independent factorial ANOVA extended into a series of bootstrapped multiple
regression models was used for the development of alternative forecasting models. Key
findings showed that the usage physical characteristics and the demographic and household
makeup characteristics are the most significant determinants of all six end-use consumption
categories. Further, the appliances/fixtures physical characteristics are significant
determinants of all end-use consumption categories except the bath end-use category.
Moreover, the socio-demographic characteristics are significant determinants of all end-use
consumption categories except the tap and toilet end-use categories. Results also
demonstrated that the main drivers of higher end-use water consumption were households
with higher frequency and/or longer end-use events which are most likely to be those larger
family households with teenagers and children, with higher income, predominantly working
occupants, and/or higher educational level. Moreover, a total of 14 forecasting model
alternatives for all six end-use consumption categories, as well as three total indoor bottom-
up forecasting model alternatives were developed in this study. All of the developed
forecasting model alternatives demonstrated strong statistical power, significance of fit, met
the generalisation statistical criteria, and were cross-validated utilising an independent
validation data set. The paper concludes with a discussion on the most significant
determinants, drivers and predictors of water end-use consumption, and outlines the key
implications of the research to enhanced urban water planning and policy design.

Keywords: water end use consumption; water micro-components; smart meters; water
demand forecasting; water demand management
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1. Introduction
1.1. Urban water security and demand management

Availability of water is becoming more variable due to the rising severity of climate
change conditions. Consequences of such changing conditions are the unpredictable changing
rainfall patterns and the increasing frequency and severity of droughts. This, coupled with
growing populations and expanding economic development, results in escalating urban water
demands, making water a scarce resource in many regional and urban centres (Gleick 2011;
Jorgensen et al. 2009; Willis et al. 2010a, 2011b). Therefore, scarcity of water and the ability
to meet future water demands is one of the greatest concerns for many governments and
public utilities, considering the costs associated with sourcing new water supplies. This issue
necessitates water being very carefully managed on both the supply and demand sides across
the residential, commercial and industrial sectors. This is a common concern in South East
Queensland (SEQ) where this study took place, most of the dry Australian continent and also
to many other water scarce or variable regions internationally (Bates et al. 2008; Beal &
Stewart 2011; Commonwealth of Australia 2013b, c¢; Inman & Jeffrey 2006; Jiang 2009;
Turner et al. 2010).

Residential water consumption represents a significant component of overall water
consumption (Sadalla et al. 2012), forcing water authorities to invest significantly in the
development and implementation of a range of integrated urban water management (IUWM)
strategies and programmes in an attempt to ensure urban water security (Beal & Stewart
2011; Correljé et al. 2007; Stewart et al. 2010). Such strategies include the initiation of water-
saving measures, imposing water restrictions, rebate programmes for water-efficient fixtures,
dual-supply schemes (Beal & Stewart 2011; Mitchell 2006; Price et al. 2014; Willis et al.
2011b), visual display shower monitors (Stewart et al. 2011; Willis et al. 2010b), the
installation of rainwater tanks (Beal et al. 2011a, 2012¢; Coultas et al. 2012), source
substitution for toilet flushing and laundry (Anand & Apul 2011; Chen et al. 2013; Mourad et
al. 2011; Stewart et al. 2010), promoting water efficiency labelling schemes, pricing, and
conservation awareness programmes (Arbués et al. 2010; Inman & Jeffrey 2006; Mayer et al.
2004; Nieswiadomy 1992). These strategies and programmes aim at improving urban water
security through wiser, more conservative and sustainable water consumption to enable future

water demands to be met (Beal & Stewart 2011).

In SEQ, the implementation of such IUWM strategies and programmes has resulted in

large water consumption reductions and in greater social awareness of the value of water as a
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precious resource. However, water-regulating authorities usually follow a reactionary-based
approach in the design and implementation of water-regulating strategies, such as setting a
target consumption value to reduce water consumption during insecure water periods (Beal &
Stewart 2011). The effectiveness of such approaches depends on differences in location,
community attitudes and behaviours (Corral-Verdugo et al. 2003; Turner et al. 2005). In
addition, due to the lack of data at the end-use level, water savings associated with their
implementation are often estimated on the basis of limited evidence and with many
assumptions, leading to understated or grossly inaccurate values (Beal & Stewart 2011;
Stewart et al. 2010). This highlights the need for more detailed information about residential

water consumption at the end-use level (Stewart et al. 2010).

Disaggregation of residential water use improves understanding about how water
consumption is proportioned in households, and identifies determinants of water consumption
to allow an analysis of links between them based on subsets of consumers and end-use
consumption (Beal & Stewart 2011). Further, improved understanding about spatial and
temporal residential water consumption variability at the end-use level enables the
development and implementation of more effective IUWM strategies, programmes and
forecasting models (Beal & Stewart 2011, 2013). This can provide useful insights enabling
water authorities to pursue more proactive approaches to better manage urban water demand

and resources.

1.2. Water smart metering

More detailed information about how and where residential water is consumed (e.g.
shower, washing machine, dishwasher, tap, bathtub), is an essential requirement for the
development of more effective [IUWM strategies and programmes, and for a better evaluation
of water savings associated with their implementation (Beal & Stewart 2011; Cole & Stewart
2012; Willis 2011; Willis et al. 2011b, 2013). Moreover, such detailed knowledge about
water consumption can improve understanding of the key determinants of each end use to
form the basis of water consumption predictions and the development of improved demand
forecasting models (Blokker et al. 2010; Stewart et al. 2010). The development of such
forecasting models at an end-use scale is vital, but essential micro-component level models
created from detailed empirical water end-use events data registries (i.e. micro-level bottom-
up models) (Kenney et al. 2008; Willis et al. 2009c) are currently lacking. Improved
forecasting of total urban residential connection demands will be possible using the models

presented in this study.
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The emergence of advanced technologies such as water smart-metering enables the
creation of the required detailed data registries through real-time or near-real time-
monitoring, high-resolution interval metering, automated water meter reading (e.g. drive by
GPRS) and access to data from the Internet (Beal & Stewart 2011). Smart water metering
technology comprises high-resolution data capturing, logging and wireless communication
technologies, which facilitate the collection, storage, wireless transfer and subsequent
analysis of abundant and detailed data (i.e. water consumption flow quantities and time of
disaggregated end-use events) using computer software (Beal & Stewart 2011; Cole &
Stewart 2012; Willis et al. 2009¢; Nguyen et al. 2014; Nguyen et al. 2013a, b). Such detailed
and accurate water end-use data, when combined with socio-demographic, water stock
inventory, and residential attitude and behavioural factors, will facilitate the creation of
models capable of identifying determinants of residential water end-use consumption.
Knowledge of these determinants and consumption of each end use will explain aggregate

residential consumption and form the foundation for more robust demand forecasting models.

1.3. Water end-use studies

Due to the emerging necessity for residential water consumption disaggregation, a
number of end-use studies and forecasting models have been developed, aiming at
quantifying and predicting water demand for each end-use category (e.g. shower or washing
machine). Such studies and models have been mostly developed using mixed method
approaches with some degree of technology for water volume data capturing and social
surveys and/or sourced statistical information from available documents (e.g. historical
billing data, existing statistical reports or technical information from stock appliance
manufacturers) to estimate water end-use consumption using mathematical modelling
methods (Beal & Stewart 2011). Despite the undeniable usefulness of such studies and
models in water demand management and prediction, their ability to disaggregate
consumption into water end-use categories is limited in accuracy, thereby limiting prediction
accuracy. Therefore, utilising a combination of long-term actual measurement and
disaggregation of water end-use data (i.e. micro-component analysis), collected by high-
resolution water smart-metering technology and computer software, along with household
surveys, self-reported water usage diaries, and water appliances and fixtures audits collected
from metered households is considered the most robust and accurate foundation for the
development of urban water demand forecasting models. Although only a small number of

residential water end-use studies have been conducted using the combination of high-
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resolution smart-metering technologies, end-use software (e.g. Trace wizard®, Aquacraft
2010) and household surveys, such studies are becoming more popular (Beal & Stewart 2011;

Parker & Wilby 2013).

A number of end-use studies have been conducted in the United States of America
(DeOreo et al. 1996; Mayer & DeOreo 1999; Mayer et al. 2004), and more recently in New
Zealand (Heinrich 2007) and Sri Lanka (Sivakumaran & Aramaki 2010). Moreover, a
number of water micro-component studies have been conducted in the United Kingdom
(Barthelemy 2006; Creasey et al. 2007; Kowalski & Marshallsay 2005; Parker & Wilby
2013; Sim et al. 2007).

In Australia, only a few water end-use studies have been completed to date. Major
studies have been conducted in Perth, Western Australia (Loh & Coghlan 2003; Water
Corporation 2011) and in Melbourne, Victoria (Roberts 2005; Gato-Trinidad et al. 2011). In
Queensland, an end-use study recently was conducted in Gold Coast City (Willis 2011; Willis
et al. 2009a, b, ¢, 2010a, b, 2011a, b, 2013) in addition to a small study in Toowoomba, west
of Brisbane (Mead 2008). A summary of established averages of total and indoor daily per
capita water consumption volumes, along with indoor water end-use breakdown percentages

reported in previous Australian studies is provided in Table 1.

Insert Table 1

Another major study in Queensland was the South-East Queensland Residential End
Use Study (SEQREUS), commissioned in 2010 to gain a greater understanding of water end-
use consumption in the SEQ urbanised region. This study was funded by the Urban Water
Security Research Alliance (UWSRA)—a partnership between the Queensland Government,
CSIRO’s Water for Healthy Country Flagship, Griffith University and the University of
Queensland. The main aim of this alliance was to address urban water issues emerging in
SEQ and inform the implementation of an enhanced water strategy (Beal et al. 2011b; Beal &
Stewart 2011). The primary objective of the SEQREUS was to quantify and characterise
mains water end uses in single detached dwellings across four main regions (Sunshine Coast

Regional Council, Brisbane City Council, Ipswich City Council, and Gold Coast City
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Council) in SEQ. More information about the SEQREUS can be found in Beal and Stewart
(2011).

This paper describes a component of the greater SEQREUS and utilises a subset of
information collected during four different periods over two years: winter 2010 (baseline data
for model development); and summer 2010, winter 2011 and summer 2011 data for
validation of developed models. These data were obtained through long-term actual
measurement and disaggregation of water end-use data (i.e. micro-component analysis) using
high-resolution smart-metering technology and computer software, along with household
surveys, self-reported water usage diaries, and water appliances and fixtures audits collected
from metered households in SEQ. More information about the data collected in SEQREUS is
provided below. Utilising a subset of the available information, the objectives of current

research study are as presented next.

1.4. Research objectives
The key objectives of this study are to:

e Explore the principal determinants of consumption at the household scale for each of the
six residential indoor water end-use consumption categories, namely shower, clothes
washer, toilet, tap, dishwasher and bath.

e Create a series of forecasting models for each of the six residential indoor water end-use
consumption categories that are capable of generating average daily per-household
consumption predictions for each end-use category, where their summation can provide a

bottom-up evidence-based forecast of domestic water demand.

2. Residential water end uses

Residential household water-use components comprise indoor consumption, outdoor
consumption (e.g. irrigation, and activities such as swimming pool filling and car washing)
and leakage. This herein study scope purposely focuses only on the indoor water
consumption and its end-uses. Outdoor end uses and leakage categories have been excluded
from this present study since they are characterised by having much greater variability and
uncertainty and correlate with a largely different suite of determinants (Beal & Stewart 2013;
Britton et al. 2009, 2013), thereby requiring alternative modelling approaches and
longitudinal end use datasets (i.e. 5-10 years) to develop sufficiently robust relationships.

Residential household indoor water end-use consumption is dominated by showers, clothes
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washers, toilets, indoor taps, dishwashers and baths (Mayer & DeOreo 1999). Information
about these typical six indoor water end-use consumption categories collected in SEQREUS

provides the focus of the current research.

As discussed above, conducting end-use studies utilising smart-metering technology
and computer software enables the collection and accurate disaggregation of end-use flow
data, creating a repository of all residential water end-use events. Such detailed information
allows the study of influencing factors and their relationship with water consumption, to
improve current understanding of primary determinants for each residential water end use, as
well as improving the accuracy of demand forecasting models. This aids the design and
implementation of better targeted and more effective [IUWM strategic plans (e.g. showerhead
rebate/replacement programmes and social behaviour marketing) to reduce overall residential
consumption during insecure water periods, in addition to the flow-on energy and greenhouse
gas (GHG) conservation benefit associated with such consumption reductions (Beal et al.
2012a; Bertone et al. 2012; Lee & Tansel 2012; Zhou et al. 2013). A discussion on indoor

residential water end-use modelling and consumption-influencing factors follows.

3. Residential water demand modelling and forecasting

Water demand modelling and consumption prediction is complicated (Donkor et al.
2014; Hanif et al. 2013; House-Peters & Chang 2011) due to the nature of water demand as a
process. Residential water demand is an outcome of relationships and their interactions
between humans and urban natural systems, which are both multi-scale (e.g. individual,
household, regional and national) and cross-scale (i.e. spatial and temporal) in nature (House-
Peters & Chang 2011). This results in a large number of variables that can be hypothesised to
affect water demand, adding to the complexity of residential water demand forecasting
modelling (Donkor et al. 2014). Such variables range from micro-variables at the individual
scale (e.g. individual motivations and attitudes) to macro-variables at the national scale (e.g.
population growth and tourism). This complex nature requires the development of criteria for
the selection of an appropriate set of factors influencing water consumption to be used for
modelling residential water demand at a specific scale of consumption; in this case the
household scale. A discussion of such criteria in relation to the water consumption-

influencing factors covered in this study follows.
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3.1. Selection of consumption scale and unit of analysis

When conducting a study, it is necessary to have a clear understanding of level or
scale, and unit of analysis, for describing the context and structure of the problem under
study. Both scale and unit of analysis are important elements of the study design and
subsequent data analysis (Babbie 2012; Yurdusev 1993). Therefore, studying factors
influencing water consumption for the purpose of selecting those most appropriate for
modelling residential water demand at a specific scale (i.e. individual, household, district or
regional) is critical. For instance, Jorgensen et al. (2013a, b) found that some variables
measured at the individual scale (i.e. individual motivations and attitudes) were not
significant predictors of household water consumption, but did predict individual
consumption. Therefore, ensuring consistent use of scales, both of factors hypothesised to be
influencing water consumption and collected actual metered water consumption flow data, is
important for identifying the principal determinants of consumption and predictors of demand
at the selected scale (Jorgensen et al. 2013b). Thus, when predicting water demand for
individuals, attitudes and motivations ideally would play a bigger role in explaining

consumption than they do for household demand predictions, and similarly with other scales.

It might be considered that identifying residential water consumption drivers and
predictors of water demand for individuals would provide the best understanding of such a
complex natural system, as individual consumption represents the basic component shaping
water consumption at other scales in an ascending way (i.e. household, district, regional and
national). However, because of the difficulty of collecting water-consumption data at an
individual scale, neither (1) rescaling the unit of analysis from that at which actual metered
water consumption flow data were collected (e.g. litres per household L/hh) to another unit
(e.g. average litres per person L/p) by simply dividing collected consumption data at a
particular scale (e.g. household consumption) by number of persons in the household or
number of households in the region, for the purpose of studying consumption factors (e.g.
individual motivations and attitudes) or (2) modelling demand at another scale (e.g.

individual scale), will reconcile the different scales (Jorgensen et al. 2013b).

It has been reported in previous studies that the increase in household water
consumption is associated with an increase in the number of people in the household (Beal et
al. 2011b; Beal & Stewart 2011; Gato-Trinidad et al. 2011; Gato 2006; Turner et al. 2009;
Willis et al. 2009¢). However, such an increase is not linear, that is, the increase in water

consumption associated with an increase in household size by one person does not follow a
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fixed rate of increment (Bennett et al. 2012). This could be due to differing characteristics of
households (e.g. single adults, couple, family that might include younger children and
teenagers, males, females) in each household size category (number of occupants), in
addition to other socio-demographic characteristics (e.g. existence of a retired person in
household) (Beal & Stewart 2011). In contrast, it has been found that household per capita
consumption (PCC) decreases as household size increases, due to economies of scale (Arbués
et al. 2003; Beal et al. 2011b; Beal & Stewart 2011; Russell & Fielding 2010; Turner et al.
2009).

Arbués et al. (2000) demonstrated an optimum household size beyond which such
economies of scale vanish (Arbués et al. 2003). However, calculating average household
consumption on a per capita basis by simply dividing household consumption by the number
of people in the household involves an inherent assumption of equally apportioned PCC for
each household occupant, which does not account for the non-proportional nature of
differences in consumption associated with their different characteristics (e.g. age). Such
paradoxical assumptions when rescaling household consumption to average household PCC
work against identifying significant household characteristics associated with water
consumption at the household scale. This is simply due to distributing the non-equal portions
of household consumption contributed by each household occupant equally among all

occupants, diminishing the effect of their consumption characteristics.

Therefore, such rescaling might prevent capturing of the significance of household
makeup and socio-demographic characteristics (e.g. age, gender and retirement status) as
determinants of consumption at the household scale, and might be misleading in relation to
the direction of relationships between them and water consumption. For this reason, PCC
data are not considered to be the best for identifying determinants of residential water
consumption at the household scale, and would limit prediction accuracy of models
developed for that consumption scale (Hanif et al. 2013). However, it is worth mentioning
that after ensuring consistency of scales between predictors and metered water flow
consumption data at the modelling stage of water demand, predictions generated from such
forecasting models can be converted to a more standardised unit (such as average L/p) for
comparison with other reported studies. This also adds to the complexity of residential water
demand forecasting modelling, due to its implications for data-collection requirements,

quality, availability and the forecasting approach to be used.

10
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Despite the importance of individual householder attitudes as a key determinant
category of residential water end-use consumption, such information has not been included in
the current study due to the above constraints. This will ensure consistency of scales between
metered water consumption and the consumption factors to be studied. The purpose of this
study is to identify the determinants of consumption, as well as develop end-use forecasting
models at the household level. As the utilised data have been collected at the household scale,

average L/hh was used as the unit of analysis in this case.

In addition to the importance of ensuring consistency of scales when modelling water
demand, there are two other reasons for selecting the household, rather than the individual
scale, in this study. The first is the higher feasibility of water businesses collecting data on
household-scale determinants or predictors as input parameters in the developed end-use
forecasting models in this study, increasing their usability for future residential prediction and
planning. Water businesses have only limited ability to collect data on householder
motivations and attitudes, due to privacy concerns, difficulties in obtaining reliable attitude
data, and the likelihood that attitudes might be latent variables of other household
demographic characteristics, to name a few. The second reason for selecting the household
scale, as argued by Hanif et al. (2013), is that water consumption estimates made by water
suppliers based on PCC data usually vary significantly; thereby affecting the veracity of

models whose development is based on them.

3.2. Consumption-influencing factor relationships within and between consumption
scales

It is important to account for relationships and interactions between variables within
the same scale or between different scales of consumption when used as predictors in water
demand forecasting models to ensure prediction accuracy, especially when using statistical
modelling approaches such as regression (Billings & Jones 2008), as in this study. This will
also ultimately identify the complexity of such multi-scale relationships and interactions, and
their role in shaping residential water demand (House-Peters & Chang 2011). However, this
adds to the complexity of water demand modelling in terms of the forecasting approach to be

used, as well as methods of dealing with such relationships and interactions.

As consumption-influencing factors of other scales (i.e. individual, regional and
national) were not included in this study (for the reasons discussed above and because of the

specified scale and purpose of the models developed in this study), their relationship with the

11
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household consumption-influencing factors covered in this study were not included.
Nevertheless, it is worth mentioning that studying household consumption-influencing factors
such as the ones covered here might enable the identification of some potential associations
with consumption-influencing factors at other scales. For instance, studying the influence of
the makeup of households (including gender, age and income profiles) on water consumption
at the household scale enables the capturing of differences in household consumption
between different typologies of consumers that might be attributed to the attitudes of a
specific group of consumers. For example, this may enable exploration of the idea that
teenagers might have higher volume showers than adults, which could be inherently
attributed to their attitudes as influencing factors of shower consumption at the individual
scale. Therefore, the inclusion of such profiles when studying water consumption at the
household scale increases the capability of spatial end-use models in representing water
demand behavioural variability among different typologies of consumers. Such representation
helps overcome the difficulty of identifying, observing or measuring influential behavioural
factors to be studied or used as predictors of consumption at the individual scale (Rathnayaka

etal. 2011).

Relationships between consumption-influencing factors within the same scale (in this
case, the household scale) were accounted for and studied before including them as predictors
in the developed end-use forecasting models in the current study. Studying such relationships
enabled exploration of consumption drivers, which enabled the design of better conservation
targets. For instance, in the previous example that teenagers might have higher volume
showers than adults, studying the association between influencing factors enabled the
exploration of whether such higher consumption volume is due to more frequent or longer
showers by teenagers, or both. Further, studying such associations before including factors as
predictors in the demand forecasting models, helped to avoid multicollinearity issues in the
statistical modelling process. In addition, it provided a framework for the criteria of building
alternative forecasting models for each end-use category, as some predictors could act as

proxies for each other.

3.3. Demand forecasting modelling purpose, periodicity and horizon

Determinants of consumption to be used as demand predictors should be specified in
light of the purpose of the demand forecasting model to be developed. Donkor et al. (2014)
provided evidence that determinants of consumption and demand predictors might be

completely different at different forecasting periodicities (e.g. hourly, daily, monthly or

12
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annual) and horizons (e.g. short-, medium- or long-term) when utilised at different planning
levels (e.g. strategic, tactical or operational), even when using the same unit of analysis (e.g.
PCC). This adds further to the complexity of residential water demand forecasting modelling,
especially at an end-use level. This complexity is due to implications of data-collection
requirements (i.e. data periodicity and horizon), quality, availability, and selection of suitable
determinants and the forecasting approach (Donkor et al. 2014; House-Peters & Chang,
2011). Further, depending on the purpose of the forecasting model to be developed (i.e.
periodicity, horizon and planning level), forecasting approaches could range from simplistic
to complex, static to dynamic, deterministic to fuzzy or stochastic, parametric to non-
parametric, or hybrids thereof (Baumann et al. 1997; Billings & Jones 2008; Donkor et al.
2014; Fyfe et al. 2010; Galan et al. 2009; House-Peters & Chang 2011; Qi & Chang 2011).

The forecasting method used in this study is discussed in the supplementary material S-A.

Since the study described herein focuses on the spatial (rather than the temporal) side
of residential water consumption, and utilises a cross-sectional data set (i.e. average daily
consumption per household of metered household consumption across two-week periods in
winter 2010) collected in SEQREUS, it aims to identify the principal determinants of
consumption for each end-use, as well as to develop end-use forecasting models at the
household scale, facilitating predictions of very short-term water end-use average daily
demand. Therefore, factors influencing residential consumption that could be better captured
on a temporal or a longitudinal scale (e.g. population, water price, awareness, restrictions,
rebates, technology take-up rates, seasonality, temperature or rainfall) (Jacobs & Haarhoff
2004b; Rathnayaka et al. 2011) were not covered in this study due to the specified purpose of
the models in terms of their horizon and periodicity, as well as the nature of the available
data. In addition to the reasons discussed above for excluding factors associated with climate
and seasonality, previous studies reported a low level of fluctuation between summer and
winter indoor water end-use consumption (Beal & Stewart 2011; DeOreo et al. 1996;
Heinrich 2009; Howe & Linaweaver 1967; Jacobs & Haarhoff 2004a, b; Loh & Coghlan
2003; Loh et al. 2003; Willis et al. 2011b). Further, Roberts (2005) reported that the six
household indoor water end-use categories daily consumption covered in this study (shower,

clothes washers, toilets, indoor taps, dishwashers and baths) were non-seasonal.

To confirm non-seasonality in the indoor residential end use data used in the current
study, a series of one-way repeated measures analysis of variance (ANOVA) and Friedman’s

ANOVA tests were conducted for dependent means comparisons, using data collected in the

13



428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447

448
449

450

451

452

453

454

455

456

SEQREUS from 30 households’ metered average daily end-use consumption (i.e. average
L/hh/d) across four periods (winter 2010, summer 2010, winter 2011 and summer 2011)
(Figure 1 and Table 2). This was done to test for the significance of any change in average
end-use consumption of the same 30 households across different conditions (in this case, four
periods including two summer and two winter seasons). Further, a series of Kruskal-Wallis
tests were conducted for an independent means comparison of average metered end-use
consumption (L/hh/d) between 210 households in winter 2010 (collected in the SEQREUS)
and different households metered across the other three periods (48 households in summer
2010, 49 in winter 2011 and 53 in summer 2011, collected in the SEQREUS), excluding the
30 households utilised in the previous test, to ensure independent comparisons (Figure 2 and
Table 3). This was done to test whether the end-use consumption data set (consisting of 210
households’ metered consumption in winter 2010) used for models development in the
current study is representative of the other three data collection periods. The resulting F' and
¥ statistics (see Tables 2 and 3) revealed no significant differences (all p > .05) between
means of average demand (L/hh/d) for each of the six indoor end-use consumption categories
across the four periods, for both dependent and independent tests. This confirms that the six
indoor water end-use consumption categories are non-seasonal, and justifies the exclusion of
climatic and seasonal factors from this study. Further, this has ensured that the 210
households’ metered consumption in the winter 2010 dataset used for models development in

the current study is representative of end-use consumption across the other three periods.

The factors chosen for this study are now discussed in relation to the criteria presented

above for selecting factors influencing water consumption.

Insert Figure 1

Insert Table 2

Insert Figure 2
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Insert Table 3

4. Factors influencing residential indoor water end-use consumption

A number of factors have been found to influence residential indoor water
consumption. Such factors are mainly related to demographic, socio-demographic and water
stock efficiency characteristics. Demographic and socio-demographic factors such as
household occupancy and household income have been found to influence water
consumption (Beal et al. 2012b, 2013; Beal & Stewart 2011; Fielding et al. 2012; Kim et al.
2007; Matos et al. 2014; Mayer & DeOreo 1999; Renwick & Archibald 1998; Turner et al.
2009; Willis et al. 2009e, 2013). In addition, other studies have reported associations between
the use of water-efficient technologies in residential dwellings, and reduced water
consumption (Athuraliya et al. 2008; Beal & Stewart 2011; Beal et al. 2013; Heinrich 2007;
Inman & Jeffrey 2006; Lee et al. 2011; Mayer et al. 2004; Water Corporation 2011; Willis et
al. 2009¢, 2013).

Factors influencing water end-use consumption that are covered in the current study
generally fall into two main groups. The first encompasses the physical characteristics of Zow
water is consumed by household occupants, and water end-use fixtures and appliances, and it
comprises two categories of factors. The first category includes factors describing usage
physical characteristics and subjective or manual practices of end-use water consumption at
the household scale, which inherently and indirectly describe human consumption habits of
households when modelling residential indoor water demand as classified by Jacobs and
Haarhoff (2004b). Such factors represent the physical actions of consumers’ decisions about
how water is consumed, in terms of frequency, duration, volume and/or selection of
programme or operating modes for both discretionary (i.e. shower, bath and tap) and
automated/programmed (i.e. clothes washer, dishwasher and toilet) end uses. The second
category includes factors describing the physical characteristics of water end-use appliances
and fixtures installed and used in the residential dwelling. Such factors represent the water
stock efficiency level, type, capacity, size, number of fixtures and appliances used in
residential dwelling, and also the use of fixture add-ons (which are set or programmed by
manufacturers, making them out of the consumer’s control beyond the purchasing and

installation decision). These factors were included to study the role of the physical

15



488
489

490
491
492
493
494
495

496
497
498
499

500
501
502
503
504
505
506

507
508
509
510
511
512

513
514
515
516
517
518

characteristics of installed water end-use appliances and fixtures as well as fitted add-ons in

shaping household consumption.

The second group of factors encompasses those describing characteristics of who is
consuming water, which is represented by household characteristics and comprises two
categories of factors. The first category includes factors describing demographic
characteristics of household occupants including gender and age profiles. The second
category includes factors describing household socio-demographic characteristics such as

income level, predominant educational level and occupational status.

Detailed descriptions of the water consumption-influencing factors belonging to the
four categories of characteristics described above are provided next, along with a discussion
on the literature addressing relationships between them and each of the six indoor water end-

use consumption categories covered in this study.

4.1. Usage physical characteristics

Frequency-, duration- and volume-related characteristics of each of the six residential
water indoor end uses covered in this study are listed in Tables S1, S9, S16, S23, S30 and
S36 in supplementary material S—B. As defined earlier, such characteristics describe the
physical usage of water consumption for each end use, which is within the control of
household consumers. The frequency-related characteristics include average number of

clothes washer, shower, tap, toilet, dishwasher, and bath events.

The duration-related characteristics include average duration of shower and tap events
per household (in minutes). However, it does not include duration of bath events or events
related to other automated or programmed end uses (i.e. clothes washer, dishwasher and
toilet). This is because bathing duration does not determine the volume of water used, and
duration of water consumption for clothes washer, dishwasher and toilet events is

programmed by manufacturers and is beyond the consumers’ control.

The volume factor includes characteristics describing typical manual or subjective
practices in discretionary end-use consumption, as well as the usual choice of mode or
programme in automated or programmed ones that influence the amount of water consumed
in the household. Such characteristics include rinsing dishes before using a dishwasher,
rinsing food under running water, using a plug in the sink, average percentage of half flushes

from total number of flushes per household per day, normally selected water volume mode or
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programme for clothes washer (i.e. auto, low, medium and full), water level used to fill the

bathtub and selection of economy cycle programme or operating mode for dishwashers.

Usage physical characteristics are important for end-use consumption representation
and demand modelling. It is obvious that the more frequent, longer and higher volume the
water-consumption events, the higher the end-use consumption. However, such basic
consumption-influencing factors (i.e. frequency, duration and volume) when quantified and
studied with other factors (e.g. stock efficiency), could improve understanding about
principal determinants of each water end-use consumption, enabling better targeted
conservation strategies and more accurate potential saving estimations, and could be used as
predictors for more accurate water end-use demand modelling. Therefore, such factors have
been considered as essential input parameters for forming the mathematical structure in
residential indoor water end-use demand modelling and spatial consumption variability
representation (Beal & Stewart 2011; Jacobs & Haarhoff 2004b; Rathnayaka et al. 2011;
Roberts 2005). Additionally, the typical selection of economy cycle programmes when using
a dishwasher reduces the dishwasher end-use water consumption (Beal & Stewart 2011).
Further, the use of dual flush toilets reduces toilet end-use water consumption (Beal &
Stewart 2011; Walton & Holmes 2009). Therefore, consumption practices related to tap,
clothes washer and bath end uses as described above were also included to study their

influence on relevant end-use consumption categories.

4.2. End-use appliance and fixture physical characteristics

Characteristics related to water stock efficiency level, type, capacity or size, number
of fixtures/appliances, and fitted add-ons for each of the six residential water indoor end uses
covered in the current study are listed in Tables S1, S9, S16, S23, S30 and S36 in
supplementary material S—-B. Such physical characteristics of water end-use
appliances/fixtures used in a residential dwelling were included to study their role in shaping
household water end-use consumption, which is out of the consumer’s control. Water stock
efficiency level-related characteristics of all six end uses were categorised based on the
standardised technical performance (star ratings, zero to six) of household appliances/fixtures
developed by the Water Efficiency Labelling and Standards (WELS) scheme in Australia
(Commonwealth of Australia 2011). Such characteristics include stock efficiency star ratings
for showerhead, tap and bathtub tap fixtures (based on average flow rate, L/min.), clothes
washers (average litres per kilogram of clothes washed, L/kg), dishwashers (average litres per

place setting) and toilets (average litres per flush).

17



552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569

570
571
572
573
574
575
576

577
578
579
580
581
582
583

Appliance/fixtures-related characteristics include type of clothes washer (i.e. front or
top loader). However, type of toilets (i.e. single flush or dual flush toilets) was not included in
this characteristics category. This is because, such characteristic was already represented by
the average percentage of half flushes from total number of flushes described in this study in
the usage physical characteristics category (see section 4.1). Inclusion of both characteristics
(type of toilet and percentage of half flushes to total number of flushes) in both categories
(usage physical characteristics and appliance/fixtures physical characteristics) would be
redundant and might cause a multicollinearity issue in the statistical analysis. The reason
behind selecting this particular physical characteristic to represent the usage rather than the
fixture, is the existing probability of consumers to select the full flushing mode every time
even when a dual flush toilet is installed, as well as, the probability of double half or full
flushing for one toilet event; thereby consuming similar amount of water as single flush
toilets which was noted in previous studies (Jacobs & Haarhoff 2004b; Loh & Coghlan
2003). Another reason is to have a more accurate representation about the mode of flushing
that is more frequently used in case both types of toilets (i.e. single flush and dual flush
toilets) are installed in the same residential dwelling. Therefore, consumer’s choice of the
toilet water usage mode (i.e. flushing mode) caters for the type of the installed toilet fixture in

a residential dwelling, and was considered more accurate for describing this characteristic.

The capacity- or size-related characteristics include clothes washer loading capacity
(kg), dishwasher capacity (number of place settings) and bathtub size or capacity (L). The
number of fixture/appliance-related characteristics includes number of showerhead fixtures,
number of indoor tap fixtures (excluding bathtub tap), and number of toilets installed in
household. However, the number of clothes washers, dishwashers and bathtubs was not
included as a variable because multiple machines or bathtubs were not evident in the single-

family households sample utilised in this study.

Characteristics related to add-ons were included to test for their influence on indoor
tap end-use water consumption when installed in a residential dwelling. Such characteristics
include fitted tap regulators (e.g. aerators, flow controllers or restrictors) on any indoor taps,
installed insinkerator, installed separate tap for filtered/purified water and tap-plumbed ice
maker on fridge. Further, the influence of having a dishwasher on the tap end-use water
consumption was tested to account for differences in tap end-use consumption due to more or

less dishes being hand washed. However, the effect on tap end-use consumption of having a
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clothes washer was not tested as there were no cases of households not owning a washing

machine.

Associations have been reported in the literature between appliance/fixture physical
characteristics and the six end-use consumption categories. For example, use of efficient
showerhead fixtures results in significant reductions in shower end-use consumption (Beal et
al. 2012b; Beal & Stewart 2011; Gato-Trinidad et al. 2011; Jacobs & Haarhoff 2004a; Loh &
Coghlan 2003; Makki et al. 2013; Makki et al. 2011 Mayer & DeOreo 1999; Mayer et al.
2004; Roberts 2005; Turner et al. 2007; Willis et al. 2013). Moreover, the use of efficient tap
fixtures and low-flow tap add-ons such as flow controllers or restrictors reduces tap water
end-use consumption (Beal & Stewart 2011; Cooley et al. 2010; Fielding et al. 2012; Mayer
& DeOreo 1999; Roberts 2005; Turner et al. 2005). Therefore, other tap-related add-ons
described above were also included to study their influence on tap end-use consumption. It
has been noted in previous studies that having a dishwasher influences tap end-use
consumption (Gato 2006; Mayer & DeOreo 1999; Willis et al. 2009d). Hence, the influence

of dishwasher ownership status in households on tap end-use consumption was studied.

It has been also reported that the use of efficient and front-loading washing machines
can result in substantial water savings in clothes washer end-use consumption (Beal et al.
2012b; Beal & Stewart 2011; Davis 2008; Gato-Trinidad et al. 2011; Gato 2006; Lee et al.
2011; Water Corporation 2011; Willis et al. 2009¢, 2013). Similarly, dual flush and efficient
low-flow toilets consume less water than single flush and inefficient toilets (Beal & Stewart
2011; Jacobs & Haarhoff 2004a; Lee et al. 2011; Mayer & DeOreo 1999; Roberts 2005;
Walton & Holmes 2009). Further, the use of efficient dishwashers has been found to reduce
dishwasher end-use water consumption. However, such reduction is insubstantial relative to
the savings that can be achieved by utilising efficient appliances/fixtures for other end uses
(e.g. efficient showerheads, clothes washers and toilets) (Beal & Stewart 2011; Lee et al.
2011), as dishwasher end-use consumption usually represents a smaller proportion of total
indoor water consumption (Beal & Stewart 2011). In contrast to other end uses, efficient
bathtub fixtures have not been found to reduce bath end-use consumption, as bathing usually

requires a fixed amount of water (Mayer et al. 2004).

In relation to number- capacity- or size-related characteristics of appliances and fixtures,
Mayer and DeOreo (1999) used house size (i.e. square feet) as a proxy for its number of

toilets and taps, and found that both are positively correlated with end-use consumption.
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Thus, number of showerhead fixtures, number of indoor tap fixtures (excluding bathtub tap),
and number of toilets in household were included in this study as well. Moreover, Jacobs and
Haarhoft (2004b) suggested that utilising parameters such as bathtub size could refine the
description of the bath end-use event, therefore it was included in this study. Further, Loh and
Coghlan (2003) also suggested that washing machine capacity has an influence on water
consumption. Therefore, the influence of clothes washer and dishwasher capacity

characteristics on their related water end-use consumption categories were studied as well.

4.3. Demographic and household makeup characteristics

Demographic and household makeup-related characteristics included in the current
study to assess their influence on each of the six residential water indoor end-use
consumption categories are listed in Tables S1, S9, S16, S23, S30 and S36 in supplementary
material S—B. They include the number of people in the household belonging to particular
age and gender profiles: adults, children or dependents, teenagers, children aged between four
and 12 years, children aged three years or younger, and males and females. Such detailed
household demographic information allowed for the investigation of a wide range of
household size, age and gender combinations to explore the influence of different household

makeup compositions on each of the six end-use consumption categories.

Generally, household size is one of the most influential characteristics on residential
total indoor water consumption at the household scale. Therefore, it is an important
forecasting parameter to be included for the development of reliable water demand
forecasting models at that scale. Further, as discussed earlier, exploring the positive
relationship between household size (represented by age and gender profiles) and residential
water consumption at the household scale enables the capturing of variation in consumption
of different household makeup characteristics belonging to each household size category.
Such exploration, when conducted on an end-use level, identifies the principal demographic
and household makeup characteristics influencing each of the six indoor end-use

consumption categories.

Previous studies have reported that shower end-use consumption increases in larger
families, particularly those with younger children and teenagers (Beal & Stewart 2011; Gato
2006; Makki et al. 2013; Makki et al. 2011; Mayer & DeOreo 1999; Willis et al. 2013).
Gender has also been found to have an influence on shower end-use consumption (Makki et

al. 2013). Similarly, clothes washer end-use consumption is positively related to household
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size and number of teenagers and younger children in the household (Beal & Stewart 2011;
Gato 2006; Mayer & DeOreo 1999; Willis et al. 2009d). Tap and toilet end-use consumption
is also positively related to household size, but in contrast to the case of shower and clothes
washer consumption, it increases at a higher rate with the addition of higher age occupants
such as adults, than with the addition of younger children (Beal & Stewart 2011; Gato 2006;
Mayer & DeOreo 1999). Household size has also been found to positively influence
dishwasher end-use consumption, although the number of teenagers or younger children has
only a weak influence (Gato 2006; Mayer & DeOreo 1999). Mayer and DeOreo (1999),
indicated that household size is positively related to bath end-use consumption. However, in a
study conducted in Australia, Willis et al. (2009d) found that only younger couples and
families use bathtubs. Similarly, Beal and Stewart (2011) noted that bathing is commonly
associated with families with younger children. Likewise, in the data set used for the current
study, bath usage was reported only by households with couples and families that have

younger children; not by single-adult, three-or-more-adult, or all-male households.

4.4. Socio-demographic characteristics

The socio-demographic characteristics examined in the current study for their
influence on each of the six residential water indoor end-use consumption categories are
listed in Tables S1, S9, S16, S23, S30 and S36 in supplementary material S—B. They include
occupational status, predominant educational level and annual income level of household
members. Occupational status was included to account for differences in consumption
between households with any occupants staying at home during the day and those with
occupants for whom some of their end-use consumption (e.g. tap and toilet) are partially
displaced outside the house. The predominant educational and annual income level
characteristics of households were included to study the effect of these groups lifestyle on

each of the six end-use water consumption categories.

Total indoor water consumption in households with working residents is significantly
higher than that in households with retired residents, and this is mainly due to shower, clothes
washer and dishwasher end-use consumption categories (Beal et al. 2012b; Beal & Stewart
2011). Makki et al. (2013) suggested that shower end-use consumption often represent a large
proportion of residential indoor water consumption and it is positively correlated with
occupation status, education level and income level. Similarly, Mayer and DeOreo (1999)
reported positive correlations between the number of employed people in a household and

shower, bath and clothes washer end-use consumption; but negative associations of this
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factor with tap, toilet and dishwasher consumption. They also reported a relatively weak
positive relationship between income level and shower, bath, clothes washer and dishwasher
end-use consumption categories. It might be expected that there is a level of association
between socio-demographic characteristics (e.g. higher education working households are
most likely to be the higher income households) when combined in end-use model
development. Thus, such associations were accounted for in the model development process

for each end use in this study.

All four categories of characteristics described above, and their related factors
influencing each of the six indoor water end-use consumption categories covered in this study
are the focus of the investigation process described below. The applied research design and

method to achieve such objectives are discussed below.

5. Research approach

5.1. Research design

A mixed method research design was employed here to achieve the comprehensive
objectives of the study. Both quantitative and qualitative approaches are used to obtain and
analyse water end-use data. Such a complex design incorporates multiple methods to address
research objectives (Creswell & Clark 2007), and includes collection of both quantitative
(water end-use consumption, water stock inventory data and socio-demographic survey) and

qualitative (water consumption behavioural) data.

Water end-use consumption data were collected by fitting houses with high-resolution
smart meters (0.014 L/pulse). These smart meters were connected to wireless data loggers
that log (at 5-s record intervals) and store water flow data. Data loggers transfer water flow
data to a central computer server via e-mail. Water flow data were analysed and
disaggregated into a registry of detailed end-use events (shower, washing machine, tap etc.)
using Trace Wizard® software version 4.1 (Aquacraft 2010) on a personal or laptop

computer.

Qualitative water consumption behavioural data were collected utilising self-reported
water-use diaries for each household, which were developed for the study. The collected data
were in the form of behavioural records of water usage over two-week sampling periods for

each household in the sample.
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In addition to the water diaries, quantitative data on appliance stock inventory (flow
rate of fixtures, star ratings etc.) were obtained using individual household audits. Both
water-use diaries and appliance stock inventory audits assisted and ensured the validity of the
Trace Wizard analysis by developing a qualitative understanding of where and when

occupants are undertaking a certain water-consuming activity in their household.

Quantitative socio-demographic data were collected via developed questionnaire
surveys distributed to each smart-metered household. The collected data were entered into
SPSS for Windows, release version 21.0 (IBM_Corp. 2012) on a desktop computer, to enable
analysis of results, particularly the determination and clustering of household makeup and
socio-demographic groups, as well as household usage and appliance/fixture physical
characteristic clusters for each end-use category (Tables S1, S9, S16, S23, S30 and S36 in
supplementary material S—B). The detailed process for this mixed method water end-use

study is presented in Figure 3.

More detailed information about the instrumentation of data capture, data transfer and
storage, Trace Wizard analysis, household stock audits, water diaries and socio-demographic

surveys can be found in Beal and Stewart (2011).

Insert Figure 3

5.1.1. Sampling criteria
Data used for this study were restricted to residential, single detached dwellings with

mains-only water supply, which make up the majority of current residential stock in the SEQ
region. This was designed to capture only single household data. Properties identified as
having an internally plumbed rainwater tank or alternative supply source were not included in
the sample, because end uses that could be sourced from the tank (e.g. toilet and/or clothes
washer) could not be measured by the mains water meter. Another criterion in sample
selection was that houses were occupied by their owners rather than renters, for reasons
relating to consent, and to ensure that water bills are paid by the home owner. This is because
rental households are typically transient and may move every 6—12 months, providing a poor

sample for seasonal comparisons.
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5.1.2. Situational context and sample characteristics
The residential households from which data were collected in this study are from four

regions (Sunshine Coast Regional Council, Brisbane City Council, Ipswich City Council, and

Gold Coast City Council) in SEQ, Australia (Figure 4).

Insert Figure 4

As mentioned earlier, the data utilised in this study were collected over two years
(2010-11). The data were collected over four separate two-week sampling periods across
winter 2010, summer 2010, winter 2011 and summer 2011 from 210, 48, 49 and 53
households, respectively. In the current study, the winter 2010 baseline data collected from
the 210 households were used for model development and data collected in the other three
sampling periods were used to validate the models. SEQ is a subtropical region with
relatively mild winters (10-20° C, compared with 17-32° C the rest of the year)
(Commonwealth of Australia 2013a), which are expected to have little effect on indoor end-
use consumption. However, in order to verify the representativeness of the indoor end-use
data collected from the 210 metered households in winter 2010, they were compared with
data from other households from three other periods, using statistical tests of means
comparisons as discussed earlier in Section 3.3. The results are presented in Tables 2 and 3
and Figures 1 and 2, which show no significant differences between means of indoor end-use
consumption averages across four reads. Further, a comparative study was conducted of
average daily per capita water end-use consumption by 252 metered households in
SEQREUS in winter 2010, from which the 210 samples utilised in the current study were
drawn. These data were compared with those from a range of other studies recently
conducted across Australia and New Zealand. As shown in Figure 5, showers, clothes washer
and tap indoor water end-use consumption categories consistently place the greatest demand
on residential water supplies. Figure 5 also shows that all indoor water end-use consumption
categories, with the exception of tap, are relatively homogenous across regions, with the
lowest per capita variance occurring for appliances which are programmed to use fixed water
volumes (e.g. clothes washers, dishwashers and toilets). Finally, average daily per capita

indoor consumption figures measured in the SEQREUS were well within the range reported
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elsewhere in Australia and New Zealand (see Figure 5), ensuring the representativeness of the

data set utilised herein (i.e. 210 metered households in winter 2010) for predictive purposes.

Insert Figure 5

Water restrictions that could have directly influenced householders’ indoor
consumption were not in place at the time of data collection across the four monitoring
periods used in this study, nor indeed the greater SEQREUS. Although a Permanent Water
Conservation Measures (PWCM) daily target of 200 L per person per day (L/p/d) was set by
the State Government during the data-collection period, PWCM targets are not considered
restrictions. Instead, they are guidelines for the efficient use of potable water for irrigation
purposes (e.g. irrigating lawns after 4 pm when there is less heat), which is outside the scope
of this study, and provide only very broad guidance on efficient indoor consumption. Figure 6
shows that both reported Queensland Water Commission (QWC) residential total water use
averages and SEQREUS averages across winter 2010, summer 2010, winter 2011 and
summer 2011 (145.3, 125.3, 144.9 and 137.6 L/p/d) fell well below the government’s set
target of 200 L/p/d (Beal & Stewart 2011; QWC 2010).

Insert Figure 6

General characteristics of the sample utilised in the current study are presented in
Figures 7 and 8. Average household occupancy was relatively consistent across the four
regions, averaging 2.65 people per household for all regions (see Figure 7). Further, Figure 8
(a-f) provides a general overview of the proportions and mix of households’ socio-
demographic typologies and regional coverage that forms the structure of the sample utilised

in this study.

Insert Figure 7
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Insert Figure 8 (a-f)

5.2. Method overview

As outlined previously, utilising the combination of high-resolution smart-metering
technology and computer software, along with household surveys, self-reported water usage
diaries and water appliance/fixture audits facilitated the collection of detailed information for
conducting comprehensive end-use studies. Such studies provide immense opportunity to
advance significantly understanding of residential water demand, and develop improved
demand forecasting models. For the purposes of this study, this was done by examining
correlations between detailed subsets of household characteristics and each of the end-use
consumption categories to identify key determinants of consumption in each indoor water
end-use category. Relationships among demand predictors for each end use were examined to
determine the best grouping of predictors for the development of alternative forecasting
models for each end-use category. The dominant consumption determinants for each water
end-use consumption category were then used as demand predictors in development of
forecasting models. Ultimately, the summation of demand predictions generated from the
end-use forecasting models developed for each end-use category can provide a bottom-up

evidence-based forecast of domestic water demand.

To achieve such comprehensive research objectives, cluster analysis, dummy coding,
independent #-tests, independent one-way ANOVA, independent factorial ANOVA, multiple
regression, Pearson’s chi-square tests and bootstrapping statistical techniques were used. A
comprehensive discussion on the use of each of these methods is presented in Sections 1-5 in

supplementary material S—A.

6. Results and discussion

As shown in Figures 9 and 10, end-use event disaggregation of water flow data
collected in winter 2010 from N, =210 households fitted with smart meters utilising flow
trace analysis (Figure 3), resulted in an average water consumption breakdown of 99.5, 67.9,
56.2, 52.2, 49 and 4.2 L/hh/d respectively for the shower, clothes washer, tap, toilet,

dishwasher and bath end-use categories ranked from highest to lowest. This resulted in an
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average total indoor consumption of 284.9 L/hh/d. Thus, the shower, clothes washer, tap and
toilet end-use categories represent the largest proportions of indoor consumption (34.9, 23.8,
19.7 and 18.3%) when compared to the dishwasher and bath end-use categories, which use

1.7 and 1.5% (Figure 10).

Insert Figure 9

Insert Figure 10

As outlined in Section 3 in supplementary material S—A, only households with non-zero
logged values for a given end-use, were included for analysis and model development for that
end-use category. Figures 9 and 10 show that consumption averages of households using the
shower, clothes washer, tap and toilet end-use categories are the same as mentioned above for
the total households in the sample, as Nt = Nusing end use = 210 households. However, Figure
9 shows consumption averages of 32.6 and 8.4 L/hh/d for Nusing end use = 37 and 124

households using the bath and dishwasher end-use categories.

To achieve the first and second objectives of this study (described in Section 1.4), the
statistical methods described in Sections 1-5 in supplementary material S—A were applied to
each end-use category. Average daily per household water consumption volumes of each
end-use category representing the DV was studied against its associated set of [Vs that belong
to the four categories of characteristics described in Sections 4.1—4.4 and listed in Tables S1,
S9, S16, S23, S30 and S36 in supplementary material S—B for the shower, clothes washer,

tap, toilet, dishwasher and bath end-use categories, respectively.

Detailed data analysis and discussion on the resulting determinants of consumption,
the utilised predictors and correlations between them, the drivers of consumption and the
alternative forecasting models developed for each end-use category are provided in Sections
6-11 in supplementary material S—-B accompanied with this paper. In the herein paper, a
summary and discussion on key results of all end-use categories, along with the bottom-up

total indoor forecasting model alternatives are provided in the following sections.
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6.1. Summary and discussion on key results of six indoor water end-use categories
6.1.1. Determinants of end-use consumption

A summary of the identified principal significant determinants of each of the six
residential indoor water end-use consumption categories is presented in Table 4. The results
show that the usage physical characteristic frequency of events (FQ) is the most important
determinant of consumption for all categories and that average duration of events (D) is an
important determinant of consumption for the shower and tap discretionary end-use
categories only, which might be expected as other end-use categories are either automated to
use a programmed water volume (clothes washer, toilet and dishwasher) or depend on filling
to a limited water level (bath). Other usage physical determinants describing subjective and
manual practices of end-use water consumption are also significant determinants of
consumption of the tap, toilet, dishwasher and bath end-use categories. Such determinants
include rinsing dishes before using the dishwasher (RDBDW)), rinsing food under a running
tap (RF) and using a plug in the sink (PL) for the tap end use; use of half flush mode (HF) in
toilets; selection of economy cycle programme/mode (ECO) for dishwashers; and selected

water level (WL) for the bath end use (Table 4).

Results presented in Table 4 also show that the stock efficiency (S) of appliances and
fixtures in a residential dwelling is the most important appliances/fixtures physical
determinant of consumption for all end-use categories other than baths. Moreover, capacity
(CAP) of the appliance is a significant determinant of consumption for the clothes washer and
dishwasher automated end-use categories, as is the type of the appliance (TYP) for the
clothes washer end-use category. Number of indoor tap (NIT) and number of toilets (NT) are
significant determinants of consumption of the tap and toilet end-use categories, respectively.
Moreover, the use of dishwasher (DW) and insinkerator (ISE) were also found to be

significant determinants of consumption of the tap end use category.

Results presented in Table 4 also suggest that the demographic characteristic
household size generally is a significant determinant of consumption of all six end-use
categories. Different household size representations using age and gender profiles were used,
and revealed that all tested age and gender characteristics are significant demographic
determinants of consumption of the shower and clothes washer end-use categories.
Nevertheless, the identified significant age and gender demographic determinants of
consumption of the tap end-use category include only occupants aged 13 years or more.

Further, gender-related demographic characteristics were not significant determinants of
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consumption of the toilet end-use category, and its age-related determinants of consumption
were restricted to households with occupants four or more years of age. The significant age-
and gender-related determinants identified for consumption of the dishwasher end-use
category only include existence of children aged three years or less in the household,
household size in general and number of males in household. Household size, classifying
households into two categories (being couples, and families with children) was the only

significant demographic determinant of consumption of the bath end-use category.

Using the identified significant demographic determinants of each end-use category,
three forms to fully represent the demographic household makeup characteristics of
households were used whenever possible (household size in general, household makeup
composite including age profiles with two levels of details, and household makeup composite
including gender profiles). It was observed that the importance of such demographic and
household makeup representations as significant determinants of consumption differs from
one end-use category to another. Generally, gender-related household makeup composites are
less capable of explaining all end-use consumption categories than household size in its
general format and age makeup composites. As can be seen in Table 4, the most significant
household makeup determinants of consumption of the shower, toilet and dishwasher end-use
categories are based on age composites. Further, household size was the most significant
demographic determinant of consumption of the clothes washer, tap and bath end-use
categories. This indicates that shower, toilet and dishwasher use is more sensitive to age of
household occupants than are other end-use categories. Similarly, shower water use is more
sensitive to gender of occupants than all other end-use categories, whereas number of
occupants in household is more important to the clothes washer, tap and bath end-use

categories than their age or gender makeup, in order.

Results presented in Table 4 show that the household socio-demographic
characteristics are determinants of consumption of the shower, clothes washer, dishwasher
and bath end-use categories, but not the tap and toilet. Household annual income is a
significant determinant of consumption of shower, clothes washer, dishwasher and bath
water. This indicates that income might have two modes of influence on consumption in
these categories. The first might be related to life style and leisure additional consumption
purposes for the shower and bath end-use categories. The second might be related to
affordability of detergents associated with the clothes washer and dishwasher end-use

categories. Occupational status is a significant determinant of consumption of only shower

29



926
927
928
929

930

931

932

933
934

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957

and clothes washer water, indicating that consumption in these categories is influenced the
most by the predominant status of household occupants being at home or outside home
during the day. Finally, predominant education level is a significant determinant of

consumption only for the shower and dishwasher end-use categories.

Insert Table 4

6.1.2. Predictors of end-use consumption
A summary of the refined sets of significant predictors used for the development of

forecasting model alternatives for each of the six residential indoor water end-use categories
is presented in Table 5. This shows that the predictors of the first average daily household end-
use consumption forecasting model alternative for all six end-use categories (ADHEUC 1) are
a combination of both usage physical characteristics and appliance/fixtures physical
characteristics, whereas, the predictors of the second and third forecasting model alternatives
(ADHEUC 2 and ADHEUC 3) for each end-use category are combinations of
appliance/fixtures physical characteristics, and either demographic and household makeup
characteristics, socio-demographic characteristics, or both. In terms of the description of
these characteristic categories discussed in Section 4 as being represented by predictors, these
combinations indicate that the higher ability of explaining water end-use consumption (i.e.
higher R’ and lower SE) of ADHEUC 1 was achieved by using predictors describing how
water is consumed, in terms of both occupants’ usage and fixtures/appliances used by those
occupants. In contrast, the ADHEUC 2 and ADHEUC 2 forecasting model alternatives are
based on appliances/fixtures physical characteristics describing how water is consumed by
the appliance/fixtures, together with demographic and socio-demographic predictors
describing who is consuming water. These worked as surrogates to describe how water is
consumed in terms of occupants’ usage, as covered in the first alternative models. These sets
of predictors were created by studying relationships among significant determinants of end-
use consumption and were statistically refined using a method of entering predictors,
indicating that end-use consumption is influenced by both appliances/fixtures and the
occupants using them. Therefore, the appliances/fixtures characteristics should always be
included in water end-use forecasting models to explain their partial role in shaping

consumption, which is out of consumers’ control, along with occupants’ characteristics to
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explain their other partial role in shaping consumption, whether such characteristics are
represented by their usage characteristics, their demographic and household makeup
characteristics or socio-demographic characteristics, or both.

A discussion on how average daily per household water end-use consumption
predictions could be derived from the developed end-use forecasting models (Equations S3—
S16 in supplementary material S—B, also summarised in Table 6 in the herein paper), as well
as how such models could be used to generate predictions of total indoor water consumption

is provided in the following section.

Insert Table 5

Insert Table 6

6.2. Total indoor bottom-up forecasting model

Predictions of ADHEUC for each end-use category could be obtained using its related
developed forecasting model alternatives (Equations S3—S16 in supplementary material S-B,
Table 6) by identifying the required household characteristics as input parameters for each
model. This could be achieved simply by assigning the membership of the household under
which its end-use water consumption is to be predicted to its characteristics, using a value of
0 or 1. In this way, such values can be assigned to each variable in the equation, where a
value of 1 refers to that household belonging to a particular characteristic group, and a value
of 0 means no belonging. Given that the constant in the equations represents the average
ADHEUC of households belonging to a particular set of its characteristics acting as the
control group or the reference group, and that the coefficients in the equations represent
differences in water consumption from the consumption of that control group, substituting
values of 0 and 1 in the equation variables (i.e. household characteristics) to be multiplied by
their related coefficients will retain consumption differences related to the household based
on its assigned characteristics (i.e. coefficients multiplied by a value of 1) and will eliminate
consumption differences of other characteristics to which it does not belong (i.e. coefficients
multiplied by a value of 0). Based on the equation used, adding or subtracting the retained

differences in consumption (i.e. retained coefficients) to or from, respectively, the
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consumption of the control group (i.e. the constant in the equation) will result in ADHEUC
prediction of the household whose characteristics were determined. In this way, ADHEUC
predictions of each of the six end-use categories could be generated using any of the relevant

alternative forecasting models.

Towards a bottom-up evidence-based forecast of domestic water demand, the
summation of water demand predictions generated from end-use forecasting models
developed using one alternative model for each end-use category can provide predictions of
average daily per household total indoor water consumption. As presented in Sections 6.3,
8.3, 9.3 and 11.3 in supplementary material S—B, two forecasting model alternatives were
developed for each of the shower, tap, toilet and bath end use categories, and three
alternatives were developed for each of the clothes washer and dishwasher end-use categories
as presented in Section 7.3 and Section 10.3 in supplementary material S—B. Using one of the
forecasting model alternatives for each of the end-use categories selected based on the
availability of required input parameters, the summation of predictions generated using any
combination of models belonging to any of the alternatives (i.e. ADHEUC 1, ADHEUC 2
and ADHEUC 3) can provide predictions of average daily per household total indoor water
consumption. Although the first alternative forecasting model for each of the six end-use
categories is the most capable of explaining end-use consumption (i.e. showing higher R’s
and lower SEs) than the second and third alternative forecasting models (see Figure 11 and
Tables S8, S15, S22, S29, S35 and S41 in supplementary material S—B), the input parameters
required for ADHEUC 2 and ADHEUC 3 to generate end-use predictions are mainly based
on household demographic and/or socio-demographic characteristics that are more easily
collected by water businesses than the household physical usage input parameters (e.g.
average frequency and duration of events) required by the ADHEUC 1 models, which must
be estimated by household occupants themselves. However, having a smaller number of
characteristic groupings was accounted for during the cluster analysis phase discussed in
Section 1 in supplementary material S—A to ensure user friendliness of the models: fewer
details are required for household characteristics to be assigned as input parameters, which
was deemed suitable to increase the feasibility of the use of the forecasting model alternatives

by both consumers and water utilities.

From this perspective (i.e. availability and type of required input parameters), three
main total indoor bottom-up alternative model combinations could be used to generate

predictions of average daily per household total indoor water consumption. The first
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combination includes the summation of predictions generated from the ADHEUC 1 models
as presented in Equation (1), Table 6. The second includes the summation of predictions
generated from ADHEUC 2 models as presented in Equation (2), Table 6. The third includes
the summation of predictions generated from both ADHEUC 2 and ADHEUC 3 models (i.e.
ADHEUC 2&3) as presented in Equation (3), Table 6, because their required input

parameters are based on demographic and/or socio-demographic characteristics.

Validation of each end-use forecasting model for each end-use category (Equations
S3-S16 in supplementary material S—B, Table 6), and of bottom-up total indoor forecasting
models using the three combinations of forecasting model alternatives presented above

(Equations 1-3, Table 6) is outlined in the next section.

Insert Figure 11

7. Validation

Initially, in order to visualise and perform preliminary checks of the daily average per
household water consumption prediction coverage ranges of all forecasting models developed
in this study, minimum and maximum achievable possible predictions were calculated for
each of the forecasting model alternatives using Equations S3—S16 in supplementary material
S—-B and Equations 1-3, Table 6. Figure 11 presents these prediction ranges as well as SEs
associated with each of the ADHEUC forecasting models. This shows that the models are
capable of generating predictions that fall within these ranges, and are thus deemed
acceptable, particularly because the observed average water end-use consumption averages of
the data used for their development (presented in Figures 9 and 10) fall well within these

prediction ranges.

All of the forecasting models (Equations S3—S16 in supplementary material S—B,
Table 6) are a significant fit to the data used for their development, as determined by
significant F-statistics for each model (p < .001), as well as the ability of the used predictors
to predict and explain variation in end-use water consumption, assessed by having acceptable
levels of RZ, SE and CV e, of each model (Tables S8, S15, S22, S29, S35 and S41 in

supplementary material S—B). However, in order to go beyond having models that are a good
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fit to the data used, and to ensure the models and predictors used for their development can
generalise to the population, regression analysis assumptions of model generalisation (Berry,
1993) as discussed in Section 3 in supplementary material S—A were tested and met. Moreover,
given that the end-use forecasting models (Tables S8, S15, S22, S29, S35 and S41 in
supplementary material S—B) are based on modelling significant consumption mean
differences between different household characteristics, which are presented as the constants
and coefficients in Equations S3—S16 in supplementary material S—B (Table 6) as discussed
in Section 3 in supplementary material S—A, the significance level of these constants and
coefficients was calculated based on a stratified bootstrapped sample (B = 1,000 samples,
unless otherwise stated) in order to show their legitimate and genuine significance level if
they were modelled from the population from which the data used for their development were
drawn. This ensures that results can be generalised when used within their associated
forecasting models to generate predictions. It is worth mentioning that most constants and
coefficients were significant at p < .001 to the original sample (i.e. N=210 households), but
their adjusted significance levels based on the bootstrapped sample are lower (p < .01 and p
< .05) as shown in Tables S8, S15, S22, S29, S35 and S41 in supplementary material S-B,
which provide their estimated significance levels to the population from which the 210
households was drawn. Further, Adj. R’ was calculated for each of the forecasting models
(Tables S8, S15, S22, S29, S35 and S41 in supplementary material S-B) in order to estimate
how well the developed forecasting models can explain variations in average daily per
household end-use water consumption if they were derived from the population from which
the data used for their development were drawn, showing the shrinkage in their predictive
power. All developed models demonstrated strong Adj. R’ values, with low loss of predictive

power.

Having ensured the statistical robustness and generalisation capacity of the developed
forecasting models, they were also cross-validated using another data set that was not used
for their development. This was to test their usability and accuracy in generating average end-
use water consumption predictions in other seasons, and to check if the predictors used in
their development can accurately predict consumption at different points of time. In
particular, the sets of predictors used in each of the developed models (summarised in Table
5) resulted from backward stepwise regression, which retained these predictors based on their
significance to the utilised data. This will ensure that predictors were not retained in the

models only due to their significance to the utilised data; rather, it will validate if their
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inclusion is due to their importance in explaining end-use consumption in another data set.
Thus, as mentioned in Section 5.1.2, an independent data set collected over three separate
two-week sampling periods across summer 2010, winter 2011, and summer 2011 from a
randomly selected set of 51 different households was used for cross-validation of the
developed forecasting models. These data were collected using the same sampling method
and criteria (see Sections 5.1 and 5.1.1) employed to collect the data used for the forecasting
models to be validated. This independent data set was used to validate all developed
forecasting model alternatives by comparing observed ADHEUC to ADHEUC predicted
using Equations S3—S16 in supplementary material S—B and Equations 1-3, Table 6. These
comparisons were assessed using R’ and SE parameters in order to check how well the water
consumption predictions generated using the developed models explain variation in observed
consumption, where, R°= 1 and SE = 0 indicates perfect matching between observation and

prediction.

In the validation data set, 51 households were using the shower, tap, and toilet end-
use categories. However, only 49, 22 and six households of these 51 households were using
the clothes washer, dishwasher and bath end-use categories, respectively. Although
developed forecasting models can accommodate zero-logged households by giving them a
value of zero as a consumption prediction, the R’ and SE parameters were calculated twice for
the observed versus predicted comparisons. The first calculation is to validate the model
when the full sample size of 51 households is used, including zero observed and zero
predicted consumption, and the second is to validate the forecasting model by comparing
observed versus predicted consumption of only households using the clothes washer,
dishwasher and bath end-use categories. This is to genuinely validate the forecasting models
developed for these end-use categories without taking advantage of zero variation between
observations and predictions both having a value of zero L/hh/d water consumption that

happened by chance in the used data set.

As shown in Figures S1-S6 in supplementary material S—C, the comparison analysis
of observed (i.e. metered) versus predicted (calculated utilising Equations S3-S16 in
supplementary material S—-B, Table 6) average daily per household water end-use
consumption showed that all developed forecasting model alternatives fit the validation data
set well, generating higher R’ and lower SE values than the modelled values. Such R’ and SE
values range between R’= 982 and SE = +0.6 L/hh/d of the ADHEUC Dishwasher 1 fOT€Casting
model (Figure S5a in supplementary material S—C), and R°=.737 and SE = +16.9 L/hh/d of
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the ADHEUC (jothes washer 3 forecasting model (Figure S2c¢ in supplementary material S—C). In
general, the ADHEUC 1 models show more accuracy than do the ADHEUC 2 and ADHEUC
3, which is the case for the developed model and the original data set used for their
development (i.e. N=210, winter 2010). This indicates that the predictors used for each model
alternative have similar importance to the validation data set (N=51, summer 2010, winter
2011 and summer 2011). Further, Figure 12a, b and ¢ shows that the ADHEUC toa1 indoor 1,
ADHEUC 71041 indoor 2, and ADHEUC Tota indoor 2&3 forecasting models have higher R? values
(.952, .852 and .851) and lower SE values (19.0, 33.3 and 33.4 L/hh/d) respectively. This
result indicates that the developed forecasting models are capable of predicting total indoor

consumption with relatively low error.

Insert Figure 12

In addition, a comparison study between daily per household water consumption
prediction averages using all forecasting model alternatives, and metered water consumption
average of all households in the used validation data set was conducted. Figure 13 shows that
averages of water consumption predictions generated from the forecasting models developed
for each end-use category, as well as total indoor consumption, were retained in the same
proportion in the validation data set (i.e. predicted end-use breakdown is similar to actual
metered breakdown, and falls within the SE ranges of predictions). Therefore, all forecasting
model alternatives developed and presented in this study (Equations S3-S16 in

supplementary material S—-B and Equations 1-3, Table 6) were deemed valid.

Insert Figure 13

8. Conclusions
The study identified the most significant determinants belonging to the four categories
of household characteristics for each end-use consumption category. The usage physical

characteristics and the demographic and household makeup characteristics are the most
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significant determinants of all six end-use consumption categories. Further, the
appliances/fixtures physical characteristics are significant determinants of the shower, clothes
washer, toilet, tap and dishwasher end-use consumption categories, but not for the bath end-
use category. Generally, socio-demographic characteristics are significant determinants of
shower, clothes washer, dishwasher and bath water usage, but not for the tap and toilet end-

use categories.

Correlations among the identified significant determinants of consumption for each
end use category were examined, revealing that households with a higher frequency of
shower events are most likely to be those with higher income, predominantly working
occupants and larger families with higher numbers of adults, teenagers and children. Further,
households with longer shower event duration are most likely to be higher income
households with teenagers and children. Correlations among the determinants of clothes
washer end-use consumption revealed that occupants of households with higher clothes
washer event frequencies are most likely to have higher incomes, be predominantly working
and consist of larger families. Also, households with higher tap event frequencies are most
likely to be those with more occupants aged 13 years or over. Relationships among the
determinants of toilet end-use consumption suggested that households with higher toilet event
frequencies are most likely to be larger family households with higher numbers of occupants
aged four or more years. Further, households with higher dishwasher event frequencies are
most likely to be higher income households, higher education households and family
households having children aged three years or less. Households normally using the economy
cycle operating programme/mode on their dishwasher are most likely lower income
households. Correlations among the determinants of bath end-use consumption indicate that
households with higher bath event frequencies are most likely to be higher income and larger

family households with children.

The correlations identified between determinants of each end-use consumption
category have revealed the household demographic and socio-demographic drivers of higher
end-use water consumption, deemed to be important conservation targets. This analysis
process also identified predictors that work as proxies for each other, which enabled the
choice of predictor sets to be used for the development of forecasting model alternatives for
each end-use category. If water consumption is a function of appliances and occupants using
them, the predictor sets identified in this study show that appliances/fixtures physical

characteristics should always be included in end-use forecasting models as predictors, in
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order to explain the appliances/fixtures role in consumption along with other household
characteristics explaining the role of occupants in consumption. The analysis suggests that
occupants’ roles in water end-use consumption can be explained by usage physical
characteristics or demographic, household makeup and socio-demographic characteristics as
predictors, because they work as proxies for each other. Based on the resulting predictor sets,
forecasting model alternatives were developed for each end-use category using the most
significant predictors. The developed models are capable of generating average daily per
household end-use consumption predictions and have shown a significant level of fit to the

data used for their development.

Towards an evidence-based forecast of domestic water demand, three total indoor
bottom-up forecasting model alternatives were developed. These models are capable of
generating average daily per household total indoor consumption predictions through the
summation of predictions generated from three combinations of forecasting model
alternatives for each of the six end-use categories. Such forecasting model alternatives
provide flexibility of their utilisation in terms of required data input parameters by users, as
well as user friendliness to generate predictions; this is since the method of entering such
input parameters is based on assigning the household(s) being predicted with clustered

characteristic memberships using binary codes (zeros, ones or combinations of both).

All developed forecasting models have met the generalisation statistical criteria, and
have been cross-validated using an independent validation data set of 51 randomly selected
households in SEQ, Australia, collected over three separate two-week sampling periods
across summer 2010, winter 2011 and summer 2011. All forecasting model alternatives
developed using the identified sets of predictors performed well in explaining variation in
average daily per household end-use consumption, as well as total indoor water consumption.
The models showed respectable prediction accuracy, which indicated the validity of the
chosen predictors and their usability at different time points. As detailed in the next section,
the urgent need for more robust micro-component level models created from detailed
empirical water end-use event data registries (i.e. micro-level bottom-up model) is crucial for

better urban water planning.

9. Study implications
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This study advances current understanding on residential end-use water consumption,
which are the fundamental building blocks for assisting water businesses and government
policy officers in the design and implementation of better targeted and more effective water
conservation strategies. Specifically, the identified determinants of each water end-use
consumption category and significant correlations among them can assist planners in
targeting particular subsets of household typologies for best-value water conservation
initiatives due to their identified higher influence on that end use. This highly targeted water
demand management approach can optimise water conservation efforts to achieve substantial

water savings at least cost.

This study has also provided further empirical support to the growing body of
knowledge highlighting that the replacement of lower efficiency appliances and fixtures with
more efficient ones will result in considerable reductions in water consumption. Retrofit
programmes using efficient water appliances and fixtures are confirmed herein as a least-cost
potable water savings measure that can be easily implemented by water businesses and/or

government agencies.

Finally, the suite of formulated end-use forecasting models developed in this study
will be invaluable for urban water demand forecasting professionals when completing water
balance or infrastructure planning reports. However, as a note of caution, the presented
models should be considered in relation to the situational context of the research investigation
(in this case, SEQ, Australia) and needs to be adapted for use elsewhere. Nonetheless, it is
strongly believed that most of the determinants of consumption identified herein, the
predictors of all end-use consumption categories, and their relative level of predictive power,

will hold true in other regions, both elsewhere in Australia and in other developed nations.

10. Limitations and future research directions

Despite the higher accuracy of flow data collected in water end use studies utilising
high resolution smart-metering technology, they are costly and time consuming; thereby
prohibiting large and widespread sample sizes. Nonetheless, the cost of this technology will
reduce over time and enable larger samples to be examined over longer time periods. This is
to enhancing the statistical power of the forecasting model, as well as, increasing their ability

to explain variations in consumption through utilising more detailed predictors. Although the
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utilisation of the bootstrapping technique has increased the statistical power and robustness of
the developed models in the herein study, a larger sample size of the original data set will
allow utilising a larger number of dummy coded determinant categories (e.g. the household
size demographic determinant could be categorised into eight categories: one person
household to eight or more person households, instead of being clustered into three categories
due to lower sample size of households having six or more occupants), as well as, exploring
more detailed household characteristics (e.g. female teenagers, male teenagers, female adults,

male adults, etc.).

Despite that the developed forecasting models in the herein study are static and based
on a snapshot of collected end use data, they could be used to derive predictions at different
time points. This is to account for the change in end use water consumption over time.
Ideally, data is collected remotely and stored over longer time periods and automatically
disaggregated into water end use events as demonstrated to be possible by Nguyen et al.
(2014) and Nguyen et al. (2013a, b); aligned household data is also updated over time. Such a
dynamic micro-component model will be an ideal tool for just-in-time residential demand

forecasting in the urban water context.

Finally, determinants of consumption have been explored in the herein study at the
household scale. Determinants of consumption at other consumption scales including macro
factors (i.e. government policy of region, environmental context, etc.), and micro factors (e.g.
individual motivations, attitudes, etc.), and a range of other socio-demographic factors could
be also explored in future studies. Furthermore, interactions between the revealed
determinants within each of the consumption scales (e.g. interactions between environmental
context and government policy), as well as, the interaction between the revealed determinants
at different scales of consumption (e.g. interactions between government policy,
environmental context and individual motivations attitudes) could be also explored to reveal

their role in shaping urban water demand.

The next stage of this investigation is revealing determinants of consumption, as well
as, developing modules for outdoor (i.e. irrigation) and leakage end uses by applying a range
of complex prediction techniques, given their greater variability and uncertainty when
compared to indoor end uses. Such models could be added to the developed models in the
herein study. The summation of all end use predictions from such complex models (i.e.

indoor, outdoor, and leakage) can provide an evidence-based forecast of urban residential
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connection demand. Furthermore, averaged daily diurnal pattern profiles based on revealed
significant household characteristics will be linked to each of the developed end use models
enabling the models to show how their generated predictions will be distributed over the day
in hourly basis. Next to this, a web-based water end-use demand forecasting tool will be
developed that is capable of generating demand predictions of each end use category, total
indoor, outdoor, leakage, as well as, the diurnal pattern profiles associated with each of them.
Such model and associated software tool has a number of purposes, including water demand
forecasting, water infrastructure network planning, demand management scheme evaluation,

social behavioural marketing scenario analysis, to name a few.
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Figure Captions

Figure 1. Summer versus winter daily per household average water end use consumption of

four two-week monitoring periods across two years (2010 and 2011) of same 30 households.

Figure 2. Summer versus winter daily per household average water end use consumption of

four two-week monitoring periods across two years (2010 and 2011) of different households.

Figure 3. Schematic illustrating the utilised water end use analysis process in the herein

study (Makki et al., 2013).
Figure 4. Regions covered by SEQREUS (Beal and Stewart, 2011) and this study.

Figure 5. Average daily per capita water end-use consumption results of SEQREUS (winter
2010) versus results of other Australian and New Zealand studies (Beal and Stewart, 2011).

Note: Error bars represent standard deviation between averages of daily per person water end-use consumption

established by other studies cited in the chart.

Figure 6. Comparison between SEQREUS four reads total averages and government reported

daily per capita water use of SEQ region (Beal and Stewart, 2011).

Figure 7. Total and per region sample size and average household occupancy of the utilised

sample in the herein study.

Figure 8. General households charachtersitcs forming the structure of the utilised sample in

the herein study (N=210 households).

? Technical and Further Education (Australia).

(a) Sampled households breakdown by region;

(b) Sampled households breakdown by occupancy of dependents aged 19 years or less;
(c) Sampled households breakdown by annual income level (AUS);

(d) Sampled households breakdown by occupancy;

(e) Sampled households breakdown by predominant occupational status;

(f) Sampled households breakdown by predominant educational level.
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Figure 9. Comparison between daily per household water end use consumption averages of
total sampled households and averages of non-zero logged households (i.e. only households

using end use) (Winter 2010).
Figure 10. Average daily per household indoor water end-use consumption breakdown.

Figure 11. Prediction ranges and SEs of developed ADHEUC forecasting models.

Notes: Error bars represent the SE of each of the developed ADHEUC forecasting model alternatives.
Total indoor prediction ranges and SEs are obtained from the summation of lowest and highest achievable
predictions and SEs of associated combination of developed forecasting model alternatives.

Figure 12. Predicted versus metered average daily per household total indoor water

consumption (N o@=51).

(2) ADHEUC Total indoor 1 predictions versus metered total indoor water consumption;
(b) ADHEUC 10141 indoor 2 predictions versus metered total indoor water consumption;
(¢) ADHEUC o1 indoor 2&3 predictions versus metered total indoor water consumption.

Figure 13. Water end use consumption prediction averages versus metered water end use

consumption averages.

Note: Error bars represent SE of predictions versus metered average daily per household consumption.
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Fig. 3
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Fig. 4

Fig. 5

55



Fig. 6
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Fig. 8(a)

Fig. 8(b)
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Fig. 11

Fig. 12(a)

Fig. 12(b)
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Fig. 12 (c)

Fig. 13
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Supplementary file overview

This file includes supplementary material associated with the research paper entitled ‘Novel
bottom-up urban water demand forecasting model: revealing the determinants, drivers and
predictors of residential indoor end-use consumption’ submitted to the Resources,
Conservation and Recycling journal. The file consists of three parts (S—A, S—B and S-C).
The first part (S—A) provides supplementary material for Section 5.2 (Method overview) of
the research paper. This section presents statistical methods used in this study, and how they
were utilised to achieve the research objectives. The second part (S-B) provides
supplementary material for Section 6 (Results and discussion) of the research paper. For
shower, clothes washer, tap, toilet, dishwasher and bath end-use categories there is a
description of determinants, drivers, correlations, and predictors together with the
alternative forecasting models for each end-use category. The third part (S—C) provides
supplementary material for Section 7 (Validation) of the research paper. This section
presents validation data relating to the developed forecasting model alternatives for each of
the six end-use categories included in this file. As a note for the reader, this supplementary

file accompanies the original research paper and should not be viewed independently.
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S—A. Supplementary material for (Section 5.2. Method overview)

1. Cluster analysis

After building a database for each of the six end-use categories covered in this study,
cluster analysis was conducted by aligning the average values of daily household end-use
consumption (the dependent variables, DVs) against their related characteristics from the
four categories described in Sections 4.1-4.4 in the research paper (the independent
variables, IVs). All IVs were treated as categorical variables (see Tables S1, S9, S16, S23,
S30 and S36 in supplementary material S-B). Using SPSS for Windows, release version
21.0 (IBM_Corp. 2012c¢), cluster analysis was conducted for each of the IVs, accounting for
mutually exclusive and exhaustive categories to fully represent their related characteristics.
Sufficient category sample sizes (all groups consisted of >30 cases unless there were
insufficient cases to represent mutually exclusive categories) were ensured to enable testing
for homogeneity of variance between groups, and of normality assumptions of the used
statistical tests described in Section 3 in supplementary material S—A.

Clustering of equal sample size categories was targeted whenever possible,
depending on case availability, for a more balanced design. Clustering of IVs was also
conducted based on significant means differences between their categories, accounting for
the nature of each DV against which they were clustered. Having particular IV categories
analysed against different DVs resulted in different number of clusters and in a different
way of categories being grouped. This better reflects the different roles of the household
characteristics that such IVs represent in shaping each of the end-use consumption
categories. For instance, clothes washer and dishwasher end-use events usually have a
collective nature in terms of consumption, which reflects their event frequency and its
association with household size, as their events usually represent consumption by more than
one person in the household. This is in contrast to end uses whose events have an individual
nature, such as showers, toilets and taps. In this example, the clothes washer and dishwasher
consumption relationships with household size are expected to differ from other end-use
consumption categories with an individual nature, because clothes washer and dishwasher
average consumption in single-person households might be very similar to the average
consumption of couple households, due to similar event frequencies, especially when such
automated end uses consume fixed quantities of water. Therefore, the effect of a larger
increase in household size on such end uses is expected to be better captured than a smaller

one, and household size is clustered in a way that reflects this nature by having broader



groupings (e.g. one- and two-person households as one group, and three- or more-person
households as another group). This contrasts with the individual nature of other
discretionary end uses, for which a smaller increase in household size is expected to result in
an increase in frequency of their events, thereby an increase in their consumption that could
be better reflected with a narrower grouping (e.g. one-person households, two-person

households, and three- or more-person households).

Depending on the nature of each end-use category in terms of the age profile of its
consumers, household size was adjusted to represent only the number of persons in the
household that belong to a group of consumer age that makes a significant contribution to
the end-use consumption against which it was clustered. For instance, household size was
clustered against the toilet end-use category for only persons aged 4 years or more, as no
significant relationship was found with this particular end use for household occupants less
than 4 years old. Similarly, the nature of each end-use consumption category was reflected
in the way each of its IV groups presented in Tables S1, S9, S16, S23, S30 and S36 in

supplementary material S—-B were clustered.

2. Dummy coding

All IVs were categorical after the cluster analysis, and thus needed to be coded prior
to statistical power and significance testing (Field 2009; Hardy 1993; Pedhazur 1997).
Categorical variables are either dichotomous (e.g. household predominant occupational
status is either working or retired) or polytomous (e.g. household size: one person, two
persons, three persons or more). Categories of both types of variables are represented in a
binary format using dummy coding. Dummy coding, also called binary coding, is used to
represent groups of categorical variables in (0,1) format (Field 2009; Hardy 1993; Pedhazur
1997). This was used here to represent the membership status of households in categories
related to a particular categorical variable describing their characteristic. Therefore,
households that are members of a particular categorical variable group describing their
characteristic were assigned a code of (1), and those that are not in this particular group
received a code of (0). The coded groups generated for a particular categorical variable are
called dummy variables. In order to develop mutually exclusive and exhaustive dummy
variables that represent a particular categorical variable with K categories, a set of n=K—1
dummy variables are needed (Field 2009; Hardy 1993; Pedhazur 1997). This is because the

membership of households belonging to one of the K groups will be assigned a default code



of K—1 zeros while assigning memberships using (0, 1) codes to other groups of households
belonging to each of the other K—1 categories. This group will act as the control, or
reference group (Field 2009; Hardy 1993; Pedhazur 1997) against which other groups
belonging to the same categorical variable (i.e. IV representing a particular characteristic)
will be compared with respect to the DV (i.e. end-use consumption). Selection of the control
group is guided by the analyst by assigning a particular group of households of interest a
code of K—1 zeros prior to assigning membership codes to other households groups using
the (0,1) coding format belonging to the other K—1 categories. Although there is no rule for
choosing control groups, the common practice is to select the group with the largest sample
size, or to base the choice on a particular hypothesis of interest (Field 2009). Both practices
were considered when assigning control groups in the current study, giving priority to
groups with the largest sample size whenever possible, as they represent major subsets of

households within the utilised sample.

In this way, dummy coding was applied to all categorical variables (IVs) (Tables S1,
S9, S16, S23, S30 and S36 in supplementary material S—-B) describing the four categories of
characteristics discussed in Sections 4.1-4.4 in the research paper before being analysed

against each of the six indoor end uses (DVs) using statistical techniques as follows.

3. Statistical mean comparisons extended into regression models

To achieve the first objective of this study, identification of the determinants of each
water end-use consumption category was based on modelling statistically significant
consumption mean differences between groups of each categorical variable (IV)
representing a particular household characteristic. This enabled identification of the
correlation between subsets of household groups belonging to each of the characteristics and
their related end-use consumption category. The developed models using each IV enabled
statistical assessment of their ability to explain variation in the end-use consumption
category (DV) against which they were modelled, and thus the extraction of significant
consumption determinants of each water end-use category. In other words, the most
statistically significant set of IVs (i.e. household characteristics most capable of explaining
consumption variability) were considered the consumption determinants of their related end-
use category. This was applied to each of the IVs belonging to the four categories of
household characteristics (i.e. usage physical, appliances/fixtures physical, demographic and

household makeup, and socio-demographic characteristics) and their related end-use



consumption categories (DVs) listed in Tables S1, S9, S16, S23, S30 and S36 in

supplementary material S—B.

Independent #-tests and one-way independent ANOVAs were used to test the
significance of any differences in consumption between group means for each of the
categorical variables with two categories and more than two categories, respectively. As IVs
were categorical and were assigned a control group during the dummy coding process, the
significance level of differences between the mean of a tested group and that of the control
group was tested using the #-statistic at the p <.001, p <.01 and p < .05 levels. This analysis
identified significant differences between each of the categorical variable groups and their
associated control group, when related to end-use consumption (DV). In this study, all DVs
are continuous variables (average L/hh/d), whereas the IVs or predictors were classified as
categorical variables. For this type of design, the independent f-tests and one-way
independent ANOVA tests conducted for IVs and their associated groups against DVs could
be extended to a series of regression models (Cohen 1968; Field 2009; Hardy 1993;
Pedhazur 1997), following the general model presented in Equation (S1):

Y, = ﬂeo + ﬂelxeil + ot Benxein + & (S1)

where Y, is the outcome variable or the DV representing the average L/hh/d consumption of
a particular end-use category e, S, is the mean of the control group and f.; represents the
significant difference between the mean of the first group of the " categorical IV or
predictor (i.e. i=1 in the case of one-way independent ANOVA) and the mean of the control
group (i.e. f.; = mean of the 1st group — f.p) and so on, until the n' dummy variable of the
i™ IV. As such, all significant differences of the means between groups of a particular
categorical variable and its associated control group are included in the model. The residual
term ¢, represents the difference between observed and predicted values of a particular end-
use category e. The importance of IVs was assessed by the F-statistics significance level (p
<.001, p < .01 and p < .05) generated for each model, and by checking the goodness of fit
using parameters generated from each of the multiple regression models. Such parameters
are the coefficient of determination (R?), the adjusted coefficient of determination (Adj. R,

the standard error (SE), and the coefficient of variation in the regression model (CV geg).



To achieve the second objective of this study, forecasting models for each end-use
category were developed using its identified predominant determinants as predictors. A set
of predictors (i.e. a set of significant household characteristics and their associated
categories) was used to develop each of the models. The development of such models was
based on modelling statistically significant mean differences between composites of
predictor groups (subsets of IV categories) and their associated control group composite (i.e.
a composite of control groups belonging to each IV included in the model) using the #-
statistic at the p < .001, p < .01 and p < .05 levels. Therefore, all predictors and their
associated dummy variables used in each of the developed forecasting models are

statistically significant at least at p <.05.

Model development was achieved by conducting a series of i-way independent
factorial ANOVAs extended into multiple regression models following Equation (S1),
where i is the number of predictors included in each model (i.e. IVs) and ein is the number
of mutually exclusive dummy variables that exhaustively represents the i™ IV used to
predict consumption of a particular end-use category e. The used sets of predictors and their
associated developed forecasting models were assessed using the statistical parameters listed
above. The selection criteria for the set of predictors to be included in the development of
each forecasting model are discussed in Section 4 in supplementary material S—A. The
backward stepwise regression method was used to refine and enter the selected set of
predictors into each model. This method was chosen over the forward stepwise method due
to suppressor effects and its lower risk of Type II error—missing a predictor that is actually
a significant determinant of consumption and thus could predict the DV (Field 2009). The
analysis begins by placing all selected predictors in the model and then, based on a removal
criterion (in this case, predictors with z-statistic p > .05), non-significant predictors are
removed from the model due to their weak contribution to explaining the DV and improving

the model (Field 2009).

Normality of the distributions of all IVs within groups and homogeneity of variances
were tested for all models developed in this study to ensure the data met the assumptions of
ANOVA. Such assumptions were met by ensuring groups contained sufficient sample sizes
of each characteristic (IV) during the cluster analysis phase, as mentioned in Section 1 in
supplementary material S—A. Internal consistency of IV categories was achieved by
ensuring the non-existence of end-use consumption (DV) outliers that may act as influential

cases and bias the statistical analysis due to extremely high or low consumption (i.e. box



plot with outliers outside +£30). When testing the significance level of group mean
differences for each of the IVs using #-tests and one-way independent ANOVAs, outliers of
each of the groups belonging to a particular IV were not removed permanently from the
study. This is because those households that appeared as outliers when testing a particular
IV and its associated groups are not necessarily outliers for the other IVs because they also
represent actual observed consumption patterns that are predominantly influenced by other
factors with the ability to explain them. Thus, when testing each of the IV’s individual effect
on an end-use consumption category, the 210 households were considered each time and
outliers of each of the groups that represent a particular factor were studied individually
before their removal, using appropriate statistical parameters (e.g. average leverage,
Mahalanobis distance, DFBeta absolute values, and upper and lower limits of covariance
ratio) that measure their effect size on the developed models (Field 2009). However, the full
sample was used for end-use forecasting model development, as a set of predictors is
included for each end-use category that together are capable of explaining consumption by
households that previously appeared as outliers when tested against individual predictors.
This was deemed the most appropriate approach to identify the genuine average difference
in an end-use consumption category between the bulk of households that belongs to one
group and the bulk of other households that belong to another group under the same IV
describing a particular characteristic. Generally, outliers that appeared in the full sample of
210 households were often caused by one or two people in a household that had extremely

short or long events (e.g. less than 5 or greater than 150 L per shower).

Note that households that logged zero water consumption for a particular end-use
category were omitted from all statistical models developed for that particular end use. Only
households having an end use for each end-use category were included in the models to
ensure internal consistency of IV groups and to avoid generating statistically biased models.
Further, the criterion for dealing with missing data points when building all regression
models was to exclude any household that had at least one missing data point for one of the
IVs or its associated groups, to ensure reliability of the generated R’ values. The practice of
excluding zero-logged households and households with missing data points when modelling
residential water end use was also adopted by Mayer and DeOreo (1999). Therefore, the
sample size used for model development varies between end-use categories (210 households
for shower, clothes washer, tap and toilet; 124 for dishwasher and 37 for bath end-use

categories) (see Figure 9 in the research paper). Thus, to account for both scenarios (i.e.



households having or not having a particular end use) when generating predictions,

forecasting models developed for each of the end-use categories followed the general model

presented in (S2). Such models were used for the development of the bottom-up end-use

forecasting model, which generates predictions of total indoor consumption through the

summation of predictions generated from each end-use model.

Y

_ {ﬁeo + Be1Xei1 + -+ + PenXein + e, If using end — use category e (S2)

0, If not using end — use category e

To ensure that the formulated findings and models generated during the study can be

generalised beyond the sample of households used here, a number of regression analysis

assumptions of model generalisation (Berry 1993) were tested and met. According to Field

(2009), these assumptions are as follows:

The IVs included in the model are quantitative variables that are continuous or
categorical (as in this study) and the DV is continuous and unbounded (in this case,
Ave. L/hh/d);

Predictors have non-zero variance;

There is no perfect multicollinearity between IVs, as determined by examining
correlations between them (see Section 4 in supplementary material S—A) and ensuring
the average variance inflation factor (Ave. VIF) for the included ones is very close to the
value of 1.000, indicating lack of multicollinearity (Bowerman & O'Connell 1990;
Myers 1990);

There is no correlation between IVs and external variables not included in the model;
Homoscedasticity, that is, equal residuals variance at each level of predictors;
Independent errors (also known as lack of autocorrelation), which was ensured here by
ensuring the Durbin—Watson (DW) statistic value (range 0—4) was close to a value of
2.000, indicating independency of residuals (Durbin & Watson 1951);

Errors are normally distributed; and

DV values are independent (i.e. each average end-use consumption value in the utilised

data set comes from a separate household).



4. Chi-square tests

As discussed in Section 3.2 in the research paper, studying relationships among
predictors in water demand forecasting models is important, as it helps avoid statistical
multicollinearity between predictors used. As discussed by Field (2009), multicollinearity
between predictors could result in generation of models with higher SEs of coefficient
means (i.e. Bep, Pei, --- » Pen iIn Equations S1 and S2), affecting their trustworthiness and
limiting the ability to generalise from them; and limiting the size of R (i.e. multiple
correlation between the IVs and DV on which the calculation of R’ is based) by using
predictors with overlapping accountability to the same partial variance in the DV, leading to
difficulties in assessing their importance to the developed model. In the water demand
forecasting modelling context using regression methods, Billings and Jones (2008)
suggested that one solution to overcoming the multicollinearity issue when adding
predictors into the model is the principle of ‘parsimony’, which here involves including only
one of the correlated predictors in the model. This approach was used in the current study
for the development of each of the end-use forecasting models, not only because of its
benefits in overcoming multicollinearity, but also because of its statistical benefits in
increasing the chance of having smaller effect size on the models by limiting the number of
utilised predictors versus the utilised sample size, thereby increasing their statistical power
(Field 2009). However, in this study, instead of dropping a group of correlated predictors
from the models in relation to their significance to their related end-use consumption, such
predictors were used for the development of alternative models for each end-use category.
This was achieved by analysing relationships between predictors of each end-use category,
which identified sets of uncorrelated predictors that could be used for each alternative
model. This is due to identification of predictors that could act as proxies for each other, as
well as predictors that should always be included in each of the alternative end-use
forecasting models for a particular end-use category. Therefore, instead of trying multiple
combinations of predictors to select the combination that provides the best model, it
determined a more guided way of including predictors in the developed models. As
mentioned earlier, studying relationships between predictors of each end-use category not
only mitigates the multicollinearity issue, but also helps in determining the set of predictors
to be included in the models being developed. It also enables improved understanding about
residential end-use consumption drivers by identifying relationships between the socio-
demographic, household makeup characteristics, and the usage physical characteristics

represented by such predictors. For instance, it enabled exploration of whether higher



volume showers taken by teenagers are due to more frequent or longer shower events, or
both. Another example is exploring whether using the economy mode on dishwashers is

related to higher education or lower-income households.

As predictors were categorical variables, associations between them were assessed
using Pearson’s chi-square test (Fisher 1922; Pearson 1900). This is based on a cross-
tabulation technique that works by tabulating frequencies of combined groups associated
with a pair of categorical variables to generate a contingency table (Field 2009). For
instance, the simplest case is comparing two categorical variables, each with two categories,
generating a 2x2 contingency table containing household membership frequencies to four
combinations of categories. Such tables were used to study the relationships between each
pair of categorical variables (i.e. each pair of predictors in this case), which was assessed by
the y’-statistic at significance levels of p <.001, p < .01 and p < .05. The y’-statistic is based
on comparing frequencies observed in all combinations of categories to calculated values of
frequencies expected to be found in these combinations of categories (Field 2009).
According to Field (2009), use of the chi-square test involves two assumptions:
independence of data, which is the case here as each data point comes from a different
household; and a minimum expected value (or minimum expected count (MEC), in SPSS)
of 5 for each category combination in the contingency table. Other measures of strength of
association between categorical variables included the phi or @-statistic (ranging from —1,
indicating a perfect negative association, to 1, indicating a perfect positive association, with
0 indicating no association) for 2x2 contingency tables, Cramer’s V-statistic (ranging from
0, indicating no association, to 1, indicating perfect association) for larger contingency
tables (e.g. 2x3 and 3x3 in this study), and Kendall's tau-b or z,-statistic (value range as per
@-statistic), which is a non-parametric test used to better estimate correlations when MEC<5
(Field 2009; IBM Corp. 2012b). In some cases, correlations were tested between two
categorical variables that each have three groups (forming a 3%3 contingency table of nine
combinations), as each combination represents a small subgroup of households with specific
characteristics that are not equally apportioned across the utilised sample. This resulted in
small sample sizes for some group combinations, which might affect the significance of the
o -statistic (Field 2009). Thus, when MEC<S5, the significance of correlations between
predictors was calculated using Fisher’s exact test, which is an adjusted value of the y’-

statistic that provides more accurate results (Field 2009; Fisher 1922).



Following this method, correlations among all significant determinants of each end-
use category identified via independent ¢-tests and independent one-way ANOVAs (see
Section 3 in supplementary material S—A) were tested before their inclusion as predictors in
forecasting models. These correlations determined the criteria for selecting predictors to be
included for the development of each model: to use only predictors that have non-significant
correlations between them; when statistically significant relationships exist between
predictors, only one of them is used for each model alternative, because they act as proxies
for each other and could be used to generate alternative models; predictors that are not
significantly correlated with any other predictor should be included in every alternative
model. The resulting sets of uncorrelated predictors for each end-use category were included
for forecasting model development using independent factorial ANOVA extended into
multiple regression models (see Section 3 in supplementary material S—A). For each of the
identified sets of predictors, only those that were significant at p < .05 and that could
together predict their associated DV and could stand the predictive power of each other are
considered in the final set of predictors for that particular DV. The final set of refined
predictors was decided using backward stepwise regression (see Section 3 in supplementary

material S—A).

5. Bootstrapping

As mentioned in Section 3 in supplementary material S—A , zero-logged water end-
use consumption households were omitted from all statistical models developed for that
particular end-use category, to ensure internal consistency of IV groups and to avoid
generating biased models. As dishwashers and baths were not used in every monitored
household in the sample (Figure 9 in the research paper), and as also noted in previous end-
use studies (Gato 2006; Mayer & DeOreo 1999), their exclusion resulted in lower sample
sizes for both end-use categories: 124 and 37 households, respectively (Figure 9 in the
research paper). This in turn resulted in non-equal and lower group sample sizes of

categorical variable groups (IVs) and predictors used for their model development.

In general, extremely uneven group sample sizes for categorical variables might
violate the assumptions of normality, homogeneity of variance and homoscedasticity in
regression models developed using #-tests and ANOVAs (Field 2013; Wilcox 2012). Such
violations affect model robustness in terms of lower control for Type I error affecting the
veracity of statistical significance levels for generated fs (in Equations S1 and S2), thereby

limiting generalisation power of their associated model (Field 2013). A statistically robust
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method such as bootstrapping (Efron & Tibshirani 1993) could be used to generate more
robust significance testing for fs when assumptions of normality and homoscedasticity are
relaxed or in doubt (Field 2013). Such an extreme scenario was not the case for models
developed in this study, other than for the bath end use, as assumptions of homogeneity of
variance, normality and homoscedasticity were checked and met for other end-use
categories (see Section 3 in supplementary material S—A). Although normality was inferred
for the non-perfectly equal group sample sizes of categorical IVs in this study, the
bootstrapping method was deemed more appropriate to ensure that the generated statistical
significance levels of modelled mean differences will still hold true when assumptions of
normality are relaxed. This is because bootstrapping is based on the empirical distribution of
accurately sampled consumption data collected using water smart meters, rather than
assumptions of normality. This will increase the robustness and veracity of statistical testing
of modelled mean differences (i.e. fs in Equations S1 and S2) used for forecasting model
development, and will ensure the generated forecasting models can be generalised to the

population from which the data for their development was drawn.

Bootstrapping is a computer-intensive robust statistical method used to empirically
estimate and simulate sampling distribution properties of the sample data by treating them
as a population from which a large number of samples (i.e. bootstrap samples) are drawn, by
re-sampling individual data with replacement from the original sampled data set, and
replicating SE and confidence interval (CI) calculations of parameter estimates or statistics
(in this case, t-tests of significance of fs in Equations S1 and S2) of all bootstrap samples.
This allows for more robust statistical inferences, in this case of statistical significance level,
Cls and SEs of fs (Davison & Hinkley 1997; Field 2013; Fox 2002; Mooney & Duval
1993). A minimum number B=1,000 bootstrap samples is considered reasonable for
generating 95% bootstrap CI percentiles (Efron & Tibshirani 1986; Field 2013; Fox 2002;
IBM_Corp. 2012a; Mooney & Duval 1993). Therefore, using SPSS (IBM_Corp. 2012a), the
percentile bootstrap method was used to calculate 95% CI for parameter estimates from
1,000 bootstrap samples for each of the models developed in this study, unless otherwise
noted, depending on number of predictors and available computer memory. The sampling
design used in this study is complex and involves many household characteristics belonging
to each end use, which are treated as categorical IVs with non-equally proportioned groups.
This reflects the nature of the population from which the data were drawn, and that

bootstrapping relies on the ‘analogy’ between the sampled data and the population from
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which it was drawn, as described by (Fox 2002; Mooney & Duval 1993). Hence, a stratified
sampling method was used for re-sampling the 1,000 bootstrap samples to ensure that they
mimic the sampled data set structure under the assumption that this data set follows the
structure of the population from which it was drawn (Fox 2002). Therefore, for each of the
models developed in this study, the 1,000 bootstrap samples were re-sampled based on the
categorical IV or predictors groups included in the model. This restricts the re-sampling to
be performed within each group (i.e. each strata) (IBM_Corp. 2012a), thereby ensuring that
re-sampling of each group describes a particular characteristic in proportion to its size and

probability of occurrence in the sampled data set (Fox 2002).

Determinants of all six water indoor end-use consumption categories covered in this
study, the drivers of consumption, the utilised predictors and the generated forecasting
model alternatives for each end-use category developed utilising the above described
statistical research methods are presented in Sections 6—11 in supplementary material S—B.
Total indoor bottom-up forecasting model alternatives developed utilising the generated
end—use forecasting models presented in supplementary material S—B are presented in

Section 6.2 in the research paper.
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S—B. Supplementary material for (Section 6. Results and discussion)

6. Shower

6.1. Determinants of shower end-use water consumption
The four categories of household characteristics (IVs) which were tested against the
shower end-use water consumption volumes (DV) are listed in Table S1, and were analysed

as presented below.

6.1.1. Usage physical determinants of shower water consumption

The average frequency of shower events per day (FQ) and average duration per
shower event in minutes (D) as IVs were related to average daily shower consumption
volumes, the DV. Results of the independent one-way ANOVA for the FQ characteristic

and the independent #-test for the D characteristic are presented in Table S2.

For FQ, the average shower consumption of households with an average of two
shower events per day (FQ,, the control group) is 90.9 L/hh/d (p < .01). Results also show
that the average shower consumption of households with an average of one or less shower
events per day (FQ;') (i.e. an average of one shower event per day, per two days or more) is
43.5 L/hh/d, which is significantly less (by 47.4 L/hh/d, p < .01, Table S2) than the control
group, FQ,. The average shower consumption of households with an average of three or
more shower events per day (FQs;") is 160.0 L/hh/d, which is significantly more (by 69.1
L/hh/d p < .01, Table S2) than the average shower consumption of the control group FQ,.
Using the statistically significant mean differences between each of the dummy variables
(i.e. FQ; and FQ;") and the control group (i.e. FQ,), the generated regression model for FQ
is presented in Table S2, and shows a significant goodness of fit (¥ (2, 199) = 116.091, p <
.001) and an ability to explain 53.8% (i.e. R’ = .538) of variation in average shower L/hh/d
consumption with SE = +42.9 L/hh/d, when FQ is used alone as a predictor of this end-use

category regardless of other household characteristics.

For the D characteristic, the average shower consumption of households with an
average duration less than five minutes event (D<s, the control group) is 57.9 L/hh/d (p <
.01, Table S2). Results also show that the average shower consumption of households with

an average duration of five minutes or more (Dss) is 100.7 L/hh/d, which is

13
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significantly greater (by 42.8 L/hh/d, p < .01, Table S2) than that used by the control group
D.s. The generated regression model of D (see Table S2) shows a significant goodness of fit
(F (1, 196) = 27.734, p < .001) and an ability to explain 12.4% (i.e. R’ = .124) of variation in
average shower L/hh/d consumption, with SE = £54.1 L/hh/d, when D is used alone as a

predictor of this end-use category regardless of other household characteristics.

As expected, both FQ and D show positive relationships with average daily per
household shower end-use consumption, with FQ being more able to explain shower
consumption with lower SE than D, and with both considered as significant determinants of
this end-use category. This suggests that water savings could be achieved by having less
frequent, and shorter (i.e. < 5 minutes) shower events, considering that shower end use
represents the largest portion of total indoor water consumption (34.9%, Figure 10 in the

research paper).

6.1.2. Showerhead fixture physical determinants of shower water consumption

The showerhead efficiency star ratings (S) and the number of showerhead fixtures
installed in households (NSF) were examined. The average shower consumption of
households using showerheads rated two stars or lower (S;") based on WELS (i.e. average
flow rate >12 L/min.) (the control group) is 129.0 L/hh/d (p < .01, Table S3). The average
shower consumption of households using showerheads rated three to six stars (S;") based on
WELS (i.e. average flow rate < 12 L/min.) is 83.0 L/hh/d, which is significantly less (by 46.0
L/hh/d, p < .05, Table S3) than the control group S,". The generated regression model of S
(see Table S3) shows a significant goodness of fit (F (1, 193) = 11.382, p < .01) and an
ability to explain 5.6% (i.e. R> = .056) of variation in average shower L/hh/d consumption
(SE =456.4 L/hh/d) when S is used alone as a predictor of this end-use category regardless of

other household characteristics.

For the NSF characteristic, the average shower consumption of households having
only one or two showerhead fixtures installed (NSF; 2, the control group) is 84.8 L/hh/d (p
< .01, Table S3). The average shower consumption of households having three or more
showerhead fixtures installed (NSF;") is 107.7 L/hh/d, which shows a non-significant
difference of 22.9 L/hh/d (p > .05, Table S3) from the control group NSF; o ». Thus, the

generated regression model for NSF is non-significant.

Accordingly, S shows a negative relationship with average daily per household

shower end-use consumption and was considered as a significant determinant of this end-use
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category. Households using efficient showerhead fixtures rated between three and six stars
(i.e. average flow rate < 12 L/min.) were on average saving 46.0 L/hh/d compared to
households using less efficient fixtures. Nevertheless, despite the positive relationship
identified between NSF characteristic and average daily per household shower end-use
consumption, the NSF was not considered as a determinant of shower end-use category. This
could be attributed to the fact that not all installed showerhead fixtures in a residential
dwelling are usually used (e.g. showerheads installed in guest bathrooms), and hence number

of installed fixtures was not a determinant of household shower consumption.

6.1.3. Demographic and household makeup determinants of shower water consumption
Results of demographic and household makeup characteristics for the shower end use
are presented in Table S4 and Table S5. For number of males in the household (M), the
average shower consumption of single-male households (1M, the control group) is 71.8
L/hh/d (p < .01, Table S4) The average shower consumption of no-male households (0M) is
44.0 L/hh/d, which is significantly lower (by 27.8 L/hh/d, p < .01, Table S4) than the control
group 1M. Further, the average shower consumption of two-or-more-male households (2M")
is 129.6 L/hh/d, which has a statistically significant difference of 57.8 L/hh/d (p < .01, Table
S4), when compared to the control group 1M. The generated regression model of M (see
Table S4) shows a significant goodness of fit (/' (2, 187) = 32.599, p < .001) and explains
25.9% (i.e. R® = .259) of the variation in average shower L/hh/d consumption with SE =
+52.7 L/hh/d, when M is used alone as a predictor of this end-use category regardless of other

household characteristics.

For the demographic characteristic number of children or dependants in the household
aged 19 years or less (C), the average shower consumption of households having no children
or dependents at this age range (0C, the control group) is 64.0 L/hh/d (p < .01). The average
shower consumption of households having one or more children or dependents of this age
category (1C") is 124.2 L/hh/d, which is significantly greater (by 60.2 L/hh/d, p < .01, Table
S4) than the control group 0C. The generated regression model of C presented in Table S4,
indicates a significant goodness of fit (F (1, 199) = 59.726, p <.001) and an ability to explain
23.1% (i.e. R” = .231) of variation in average shower L/hh/d consumption with SE = +54.5
L/hh/d, when C is used alone as a predictor of this end-use category regardless of other

household characteristics.
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For number of teenagers aged between 13 and 19 years in the household (T), the
average shower consumption for the control group of households having no teenagers (0T) is
76.6 L/hh/d (p < .01). Results also show that the average shower consumption of households
having one or more teenagers (1T") is 151.4 L/hh/d, which has a statistically significant
difference of 74.8 L/hh/d (p < .01, Table S4), when compared to the control group OT. The
generated regression model of T (see Table S4) shows a statistically significant goodness of
fit (£ (1, 203) = 53.270, p < .001) and an ability to explain 20.8% (i.e. R’ = .208) of variation
in average shower L/hh/d consumption with SE = +61.2 L/hh/d, when T is used alone as a

predictor of this end-use category regardless of other household characteristics.

With respect to number of females in the household (F), the average shower
consumption of one-female households (1F) being the control group is 74.6 L/hh/d (p < .01).
Results also show that the average shower consumption of no-female households (OF) is 45.0
L/hh/d, which has a statistically significant difference of 29.6 L/hh/d (p < .01, Table S4),
when compared to the control group 1F. Further, the average shower consumption of two-or-
more-female households (2F") is 115.2 L/hh/d, which is significantly higher (by 40.6 L/hh/d,
p < .01, Table S4) than the control group 1F. The generated regression model of F presented
in Table S4 shows a significant goodness of fit (¥ (2, 184) = 16.440, p < .001) and an ability
to explain 15.2% (i.e. R’ = .152) of variation in average shower L/hh/d consumption with SE
= +53.2 L/hh/d, when F is used alone as a predictor of this end-use category regardless of

other household characteristics.

For the demographic characteristic number of adults in household (A), the average
shower consumption of two adult households (2A, the control group) is 91.9 L/hh/d (p < .01).
The average shower consumption of one-adult households (1A) is 62.1 L/hh/d, which has a
statistically significant difference of 29.8 L/hh/d (p < .01, Table S4), in comparison to the
control group 2A. Further, the average shower consumption of three-or-more-adult
households (3A") is 143.5 L/hh/d, which is significantly greater (by 51.6 L/hh/d, p < .01,
Table S4) than the control group 2A. The generated regression model of A presented in Table
S4, shows a statistically significant goodness of fit (/' (2, 194) = 12.356, p < .001) and an
ability to explain 11.3% (i.e. R” = .113) of variation in average shower L/hh/d consumption
with SE = +57.6 L/hh/d, when A is used alone as a predictor of this end-use category

regardless of other household characteristics.
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For the demographic characteristic number of children aged between four and 12
years in the household (Cs<age<i2y), the average shower consumption of households having no
children of this age category (0Cs<age<i2y, the control group) is 81.1 L/hh/d (p < .01). The
average shower consumption of households having one or more children of this age category
(1C+4§Age§12y) is 134.6 L/hh/d, which has a statistically significant difference of 53.5 L/hh/d (p
< .01, Table S4), when compared to the control group 0Cs<age<i2y. The generated regression
model of Cicpge<iy (see Table S4) shows a significant goodness of fit (' (1, 201) =23.293, p
<.001) and an ability to explain 10.4% (i.e. R?=.104) of variation in average shower L/hh/d
consumption with SE = £61.5 L/hh/d, when Cj<age<i2y 1s used alone as a predictor of this end-

use category regardless of other household characteristics.

For the demographic characteristic number of children aged less than three years in
the household (Cage<sy), the average shower consumption of households having no children of
this age category (0Cage<3y), being the control group, is 84.1 L/hh/d (p < .01). Results also
show that the average shower consumption of households having one or more children of this
age category (1C"agesy) is 119.8 L/hh/d, which has a statistically significant difference of
35.7 L/hb/d (p < .05, Table S4), when compared to the control group 0Cage<3y. The regression
model of Cage<sy presented in Table S4 shows a significant goodness of fit (' (1, 200) =
7.593, p < .01) and an ability to explain 3.7% (i.e. R’ = .037) of variation in average shower
L/hh/d consumption with SE = +£60.7 L/hh/d, when Cage<3y is used alone as a predictor of this

end-use category regardless of other household characteristics.

In summary, all measured demographic characteristics show positive relationships
with average daily per household shower end-use consumption and were considered as
significant determinants of this end-use category. Although it was not expected that Cage<sy
would be a determinant of shower end-use consumption (i.e. children of this age category are
most likely to bath but not to shower), this result might be attributed to a latent reason that
needs to be studied further. For instance, parents of babies and toddlers might be taking more
frequent and/or longer showers for sanitary and relaxation purposes. The results also show
that the highest shower end-use consumption averages were for households with one or more

teenagers, or three or more adults.

Household size (HHS) and multiple makeup compositions were studied for their
effect on shower end use. For HHS, the average shower consumption of two-person

households (2P, the control group) is 68.1 L/hh/d (p <.01). The average shower consumption
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of one-person households (1P) is 35.3 L/hh/d, which is significantly lower (by 32.8 L/hh/d, p
< .01, Table S5) than the control group 2P. The average shower consumption of three-or-
more-person households (3P+) is 119.3 L/hh/d, which has a statistically significant difference
of 51.2 L/hh/d (p < .01, Table S5), when compared to the control group 2P. The generated
regression model of HHS presented in Table S5 demonstrates a significant goodness of fit (F
(2, 193) = 42.517, p < .001) and an ability to explain 30.6% (i.e. R’ = .306) of variation in
average shower L/hh/d consumption with SE = +48.5 L/hh/d, when HHS is used alone as a

predictor of this end-use category regardless of other household characteristics.

For the household makeup characteristics, there are three possible household makeup
composites that can be formed to represent household size in a mutually exclusive and
exhaustive manner beyond HHS. Such household makeup composites are represented by age
and gender profiles using the above identified significant demographic determinants of this
end-use category. The first and second household makeup composites are represented by two
different age profile detail versions (i.e. A+T+Cacage<12yCage<sy and A+C), ignoring gender.
The third household makeup composite is represented by the gender profile (i.e. M+F),
ignoring age. It is worth mentioning that forming a fourth composite that includes both
gender and detailed age determinants diluted the clustered sample size too much for this
composite to be possible. Results of factorial ANOVA extended into multiple regression
models (see Table S5) show that the three household makeup composites
A+TH+Cacage<i2ytCagessy, M+F and A+C are capable of explaining 41.8, 35.3, and 29.9% of
variation in average shower L/hh/d consumption. Therefore, the household makeup
composite describing detailed age profiles (A+T+Cscpge<i2ytCage<sy) Was selected to be used
for shower end-use forecasting model development given its highest capability among all
demographic determinants in explaining variation in shower consumption (see Table S4 and

Table S5).

6.1.4. Socio-demographic determinants of shower water consumption

Results of the analysis of socio-demographic characteristics with respect to shower
end use are presented in Table S6. For the socio-demographic characteristic of household
annual income level (I), the average shower consumption of households with annual income
of <AUS$30,000 (I<s30,000, the control group) is 45.6 L/hh/d (p < .01). The average shower
consumption of households with annual income of AU$30,000-60,000 (s30.000<I<s60.000) 1S
75.3 L/hh/d, which is significantly higher (by 29.7 L/hh/d, p < .01) than the control group

I<s30.000. Further, the average shower consumption of households whose annual income is
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>AU$60,000 (Iss60,000) is 95.0 L/hh/d, which has a statistically significant difference of 49.4
L/hh/d (p < .01), when compared to the control group I<s30000. The generated regression
model of I (see Table S6) shows a significant goodness of fit (F' (2, 157) = 16.753, p <.001)
and an ability to explain 17.6% (i.e. R> = .176) of variation in average shower L/hh/d
consumption with SE = +43.2 L/hh/d, when I is used alone as a predictor of this end-use

category regardless of other household characteristics.

For the socio-demographic characteristic of predominant occupational status in the
household (O), the average shower consumption of households with occupants that are
mostly away from home during the day (i.e. working or at school, Ow), being the control
group, is 98.2 L/hh/d (p < .01). The average shower consumption of households with
occupants that are mostly at home during the day (e.g. retired, Og) is 62.9 L/hh/d, which has a
significant difference of 35.3 L/hh/d (p < .01), when compared to the control group Ow. The
regression model of O shows a significant goodness of fit (# (1, 192) = 17.709, p <.001) and
an ability to explain 8.4% (i.e. R’ = .084) of variation in average shower L/hh/d consumption
with SE = £55.5 L/hh/d, when O is used alone as a predictor of this end-use category

regardless of other household characteristics.

In relation to the socio-demographic characteristic of predominant educational level in
the household (E), the average shower consumption of households with a predominant
trade/TAFE or lower educational level (Er, the control group) is 79.5 L/hh/d (p < .01). The
average shower consumption of households with a predominant tertiary undergraduate or
higher educational level (Ey") is 96.4 L/hh/d, which has a significant difference of 16.9
L/hh/d (p < .05), when compared to the control group Er. The generated regression model of
E presented in Table S6 shows a significant goodness of fit (F (1, 189) = 4.225, p < .05) and
an ability to explain 2.2% (i.e. R’ = .022) of variation in average shower L/hh/d consumption
with SE = £55.4 L/hh/d, when E is used alone as a predictor of this end-use category

regardless of other household characteristics.

In summary, results show that the socio-demographic characteristics I and E have
positive relationships with average daily per household shower end-use consumption, and the
O characteristic shows that households with working occupants are on average consuming
more shower water than households with retired occupants. All I, E and O characteristics

were considered as determinants of this end-use category.
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These results provide empirical evidence that all of the examined characteristics
belonging to the four categories of household characteristics (i.e. usage physical
characteristics, fixtures physical characteristics, demographic and household makeup
characteristics, and socio-demographic characteristics, Table S1) determine the shower end-
use consumption, given their statistical ability to explain variation in average shower L/hh/d
consumption, with the exception of the NSF characteristic. As shown in Tables S2-S6, all
models developed using each of the determinants, along with formed household makeup
composites, show acceptable values for the DWW statistic (i.e. being close to a value of 2.000)
and Ave. VIF (i.e. being close to a value of 1.000), respectively indicating relatively good
levels of error independency and lack of multicollinearity between predictors. However, none
of these variables is capable of providing an accurate prediction on its own. Prediction
models applying such individual variables can only generate shower consumption predictions
with higher variability (i.e. higher percentage CV g ), as shown in Tables S2—-S6. Therefore,
in order to go beyond understanding individual determinants of shower consumption towards
accurate and statistically robust forecasting models, the above findings were applied in an
independent factorial ANOVA extended into multiple regression models utilising
combinations of determinants as predictors. However, prior to the development of such
models, correlations between the identified determinants were examined before they were
used as predictors of this end-use category, as discussed in Section 4 in supplementary

material S—A.

6.2. Relationships among shower end-use predictors

Following the statistical methods described in Section 4 in supplementary material S—
A, correlations among predictors of shower end-use consumption were examined. Only
statistically significant (p < .001, p < .01, and p < .05) relationships between predictors,
assessed by y°, are presented in Table S7. Results show significant positive relationships
between the FQ predictor (the DV) and each of the demographic and household makeup
predictors (the IVs: A, T, Cycage<izy and Cage<sy). Similarly, significant positive relationships
between the D predictor and each of the demographic and household makeup predictors were

found, with the exception of the A predictor.

With respect to clusters of the tested households characteristics for this end-use
category (see Table S1), the results in Table S7 generally imply that households with higher
average daily shower end-use events frequency (i.e. an average of two, three or more shower

events per day) are most likely to have more than two adults, one or more teenagers, one or
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more children aged between four and 12 years, and one or more children aged three years or
less. Similarly, households with longer shower events (i.e. average shower events duration of
five minutes or more) are most likely to be those with one or more teenagers, one or more
children aged between four and 12 years, and one or more children aged three years or less.
The resulting measures of strength of association between predictors (z5, V and &) in Table
S7 show that the highest levels of association between demographic and shower usage
physical predictors were between FQ and T, and between D and T. This provides evidence
that both more frequent and longer teenage shower events were the drivers of the highest
average shower consumption difference of 74.8 L/hh/d from average shower consumption of
households with no teenagers (Table S4). Similarly, levels of association between each of the
socio-demographic predictors I and O, and the shower usage physical predictors FQ and D
provide evidence that households with working or going-to-school occupants, and those with
higher annual income, were the drivers of higher shower end-use consumption through their
more frequent and longer shower events. Therefore, the more frequent and longer shower
events of teenagers and working occupants of higher income households are important
conservation targets for the shower end-use category, which represents 34.9% of total indoor

consumption (Figure 10 in the research paper).

Table S7 shows significant positive relationships between I and both FQ and D,
revealing that higher annual income households are most likely to be those with more
frequent and longer shower events. As expected, I is dependent on both O and E. Significant
relationships were found between these socio-demographic predictors, suggesting that
households with retired occupants are most likely to be lower annual income households.
Further, higher predominant educational level households are most likely to be higher annual

income households.

The identified significant relationships between predictors show that the demographic
and household makeup predictors A, T, Cacage<ioy and Cage<sy, and the socio-demographic
predictors I and O can work as proxies for shower-usage physical predictors (i.e. FQ and D)
for the purposes of shower end-use forecasting model development. Following the criteria
described in Section 4 in supplementary material S—A for selecting the set of predictors to be
used for the development of alternative forecasting models; this has resulted in three possible
sets of predictors for the development of shower end-use forecasting model alternatives.
Given that the shower end-use fixtures physical characteristic, S, is a significant determinant

of shower end-use consumption, and that no statistically significant relationships could be
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found between it and other predictors, S will be considered as a predictor that will be
included in the development of each shower end-use model alternative. Accordingly, the first
set of predictors includes FQ+D+S+E, the second set includes A+T+Cycage<ioyTCagessytS+I
and the third set includes A+T+Cs<pge<12yTCagesytSHOFE. The development of shower end-
use forecasting model alternatives using the resulted three sets of predictors is described

below.

6.3. Shower end-use forecasting models

As discussed in Section 3 in supplementary material S—A, independent factorial
ANOVA extended into multiple regression models was used to build shower end-use
forecasting models by including each of the resulting three sets of shower end-use predictors
presented above. The backward stepwise regression method was used to refine each of the
three sets of shower end-use predictors. This resulted in two shower end-use forecasting

model alternatives (see Table S8).

The first shower end-use forecasting model alternative was built utilising the first set
of predictors (i.e. FQ+D+S+E). The predictor E was removed from the model by backward
stepwise regression as it met the removal criterion (i.e. its f-statistic was not statistically
significant, p > .05) and it could not improve the generated model. Results of the three-way
independent factorial ANOVA extended into multiple regression model utilising FQ+D+S
show that the generated model is a significant fit to the data (¥ (4, 194) = 106.798, p < .001)
and that it is capable of explaining 68.8% (R’ = .688) of variation in average L/hh/d shower
end-use consumption with SE = +33.1 L/hh/d and a CV g., percentage of 38.0%, as well as
very acceptable levels of Ave. VIF = 1.154 and DW = 2.007 indicating lack of both
multicollinearity and autocorrelation. As presented in Table S8, the resulting model shows a
significant average shower consumption of 106.1 L/hh/d (p < .01) of households with an
average of two shower events per day, which are on average less than five minutes long
utilising showerhead fixtures with rated stock efficiency of zero to two stars (i.e. average
flow rate of 12 L/min. or more) being the control group (i.e. FQ,*+D<s+S;"). Further, all
modelled mean differences —49.4, 63.7, 41.2, and —46.9 L/hh/d of FQ,", FQs", Dss and S5,
respectively, from the mean of the control group (i.e. 106.1 L/hh/d) are all significant at (p <
.01, Table S8). Therefore, FQ+D+S was considered the final set of predictors and, following
Equation (S2), the forecasting model presented in Equation (S3) was considered the first
alternative forecasting model of average daily household end-use consumption of shower

(ADHEUC ghower 1)-
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106.1 — 49.4(FQ;-) + 63.7(FQ3+)
+41.2(Dy5) — 46.9(S3+) + 33.1, If using shower (S3)
0, If not using shower

ADHEUC Shower 1~

The second shower end-use forecasting model alternative presented in Table S8 was
built using A+T+Cscage<izytCage<sy ™S predictors only. This is because the predictor I from
the second set of predictors, as well as O+E from the third set of predictors were removed
from the model by backward stepwise regression as their related z-statistics were not
statistically significant (i.e. p > .05) and they could not improve the generated models.
Results of five-way independent factorial ANOVA extended into multiple regression model
utilising A+T+Cacage<i2ytCage<sytS show that the generated model is a significant fit to the
data (F (6, 191) = 28.140, p < .001) and that it is capable of explaining 46.9% (R’ = .469) of
the variation in average L/hh/d shower end-use consumption with SE = +48.5 L/hh/d and a
CV reg. percentage of 52.8%, as well as very acceptable levels of Ave. VIF' =1.057 and DWW =
1.793, indicating lack of both multicollinearity and autocorrelation. As presented in Table S8,
the resulting model shows a significant average shower consumption of 91.2 L/hh/d (p < .01)
of two adults households that have no teenagers or children at any age and that use
showerhead fixtures with rated stock efficiency of zero to two stars (i.e. average flow rate of
12 L/min. or more) being the control group (i.e. 2A+0T+0Cs<pge<12y0Cage<3yT S2'). Further,
all modelled mean differences —23.3, 51.0, 82.3, 52.0, 32.4 and —32.3 L/hh/d of 1A, 3A",
1T", 1C 4eage<izy, 1C age<3y and Sz, respectively, from the mean of the control group (i.e.
91.2 L/hh/d) are significant (p < .01, Table S8). Therefore, A+T+Cacage<i2yTCage<sytS Was
considered the final set of predictors and, following Equation (S2), the forecasting model
presented in Equation (S4) was considered the second alternative forecasting model of

ADHEUC of shower (ADHEUC ghower 2)-

91.2 — 23.3(1A) + 51.0(3A%) + 82.3(1T*)
_ ) +52.0(1Cicpgesizy) + 324(1CKgecsy)
Shower 2 —32.3(S3+) £ 48.5, If using shower
kO, If not using shower

ADHEUC (S4)

Similar to the shower end-use category, the resulting determinants of consumption,
the utilised predictors and correlations between them, the drivers of consumption and the
alternative forecasting models developed for the other end-use consumption categories (i.e.

clothes washer, tap, toilet, dishwasher and bath) are presented below.
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7. Clothes washer

7.1. Determinants of clothes washer end-use water consumption
The four categories of household characteristics (IVs) which were tested against the
clothes washer end-use water consumption volumes (DV) are listed in Table S9, and were

analysed as presented below.

7.1.1. Usage physical determinants of clothes washer water consumption

The clothes washer usage physical characteristics average frequency of clothes
washer events per week (FQ), the normally selected water volume level/mode (WL), as well
as the normally selected water temperature mode (TMP) as the IVs, were studied against
average daily clothes washer consumption volumes (the DV). Results of the independent one-
way ANOVA for the FQ and WL characteristics and the independent #-test for the TMP

characteristic are presented in Table S10.

For FQ, the average clothes washer consumption of households with an average of three
clothes washer events per week or less (FQj3) as the control group is 27.6 L/hh/d (p < .01).
The average clothes washer consumption of households with an average of four—seven
clothes washer events per week (FQs ¢, 7) is 62.4 L/hh/d, which has a statistically significant
difference of 34.8 L/hh/d (p < .01, Table S10), when compared to the control group FQ;". The
average clothes washer consumption of households with an average of eight or more clothes
washer events per week (FQg") is 127.5 L/hh/d, which has a statistically significant difference
of 99.9 L/hh/d (p < .01, Table S10), when compared to the average clothes washer
consumption of the control group FQj;". Using the significant mean differences between each
of the dummy variables (i.e. FQ4 7 and FQg") and the control group (i.e. FQ3'), the generated
regression model for FQ is presented in Table S10, and shows a significant goodness of fit (F
(2, 186) = 236.192, p < .001) and an ability to explain 71.7% (i.e. R*= 717) of variation in
average clothes washer L/hh/d consumption with SE = £25.5 L/hh/d, when FQ is used alone

as a predictor of this end-use category regardless of other household characteristics.

For the WL characteristic, despite mean differences of average daily per household
clothes washer water consumption between households normally selecting auto water level
mode (WL ay) being the control group and households normally selecting low, medium, and
full water level modes (WL ow, WL medium and WL 1), such differences were statistically
non-significant as presented in Table S10. The same was true for the TMP characteristic,

although average consumption of households normally selecting warm/hot water temperature
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mode is less than the consumption of households normally selecting cold water temperature
mode, which could be due to programmed lower water volume being used when warm/hot
mode is selected when compared to cold mode. The difference was not significant (Table

S10).

The above results show that the FQ characteristic has a significant positive
relationship with clothes washer end-use water consumption, and thus it was considered as

the only usage physical determinant of consumption for this end-use category.

7.1.2. Appliance physical determinants of clothes washer water consumption

The washing machine efficiency star ratings (S), type of clothes washer installed in
the household (TYP) and capacity of installed clothes washers (CAP) were examined. For the
S characteristic, results (see Table S11) revealed that the average clothes washer consumption
of households using washing machines rated three stars or lower (S;3) based on WELS (i.e.
average L/kg >12) (the control group) is 80.3 L/hh/d (p < .01). The average clothes washer
consumption of households using washing machines rated three and a half stars or more
(S35") based on WELS (i.e. average L/kg <12) is 48.3 L/hh/d, which is significantly lower
(by 32.0 L/hh/d, p < .01,Table S11) than the control group S;". The regression model of S
presented in Table S11 shows a statistically significant goodness of fit (F' (1, 188) =24.653, p
<.001) and an ability to explain 11.6% (i.e. R?= .116) of variation in average clothes washer
L/hh/d consumption with SE = +44.3 L/hh/d, when S is used alone as a predictor of this end-

use category regardless of other household characteristics.

For the TYP characteristic, the average clothes washer consumption of households
having front loading washing machines (TYP gont), being the control group, is 47.7 L/hh/d (p
< .01). Further, the average clothes washer consumption of households having top loading
washing machines (TYP 1op) is 76.8 L/hh/d, which is significantly higher (by 29.1 L/hh/d, p <
.01, Table S11), when compared to the control group TYP pone. The generated regression
model of S presented in Table S11 shows a statistically significant goodness of fit (F (1, 196)
= 18.834, p < .001) and an ability to explain 8.8% (i.e. R = .088) of variation in average
clothes washer L/hh/d consumption with SE = +46.5 L/hh/d, when TYP is used alone as a

predictor of this end-use category regardless of other household characteristics.

For the CAP characteristic, the average clothes washer consumption of households
having larger washing machines, with loading capacity of seven kilograms or more

(CAP>7y), as the control group, is 82.7 L/hh/d (p < .01). Results also show that the average
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clothes washer consumption of households having smaller washing machines (loading
capacity of less than seven kilograms, CAP7,) is 59.5 L/hh/d, which has a statistically
significant difference of 23.2 L/hh/d, p < .01, Table S11), when compared to the control
group CAP-7,. The generated regression model of CAP (see Table S11) shows a significant
goodness of fit (F (1, 176) = 8.601, p < .01) and an ability to explain 4.7% (i.e. R* = .047) of
variation in average clothes washer L/hh/d consumption with SE = +48.6 L/hh/d, when CAP
is used alone as a predictor of this end-use category regardless of other household

characteristics.

In summary, the above results show that the clothes washer appliance physical
characteristics S, TYP and CAP have statistically significant relationships with average daily
per household clothes washer end-use consumption. Such relationships suggest that
households using efficient, front loading or smaller capacity washing machines were on
average consuming lower water volumes. Therefore, all S, TYP and CAP characteristics were

considered as determinants of this end-use category.

7.1.3. Demographic and household makeup determinants of clothes washer water
consumption

Results of analysis of demographic and household makeup characteristics effects on clothes
washer end use are presented in Tables S12 and S13, respectively. For the demographic
characteristic number of children or dependants aged 19 years or less in the household (C),
the average clothes washer consumption of households having no children or dependents
(0C), being the control group is 50.6 L/hh/d (p < .01). Results also show that the average
clothes washer consumption of households having one or more children or dependents aged
19 years or less (1C") is 87.3 L/hh/d, which has a significant difference of 36.7 L/hh/d (p <
.01, Table S12), when compared to the control group 0C.

The generated regression model of C presented in Table S12 shows a significant
goodness of fit (F (1, 207) = 31.472, p < .001) and an ability to explain 13.2% (i.e. R°=.132)
of variation in average clothes washer L/hh/d consumption with SE = +46.7 L/hh/d, when C
is used alone as a predictor of this end-use category regardless of other household
characteristics.

For the demographic characteristic number of children aged less than three years in
the household (Cage<sy), the average clothes washer consumption of households having no

children of this age category (0Cage<3y), being the control group, is 60.7 L/hh/d (p < .01).
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Results also show that the average clothes washer consumption of households having one or
more children of this age category (1C+Age53y) i1s 109.8 L/hh/d, which is significantly higher
(by 49.1 L/hh/d, p < .01, Table S12) than the control group 0Cage<3y. The regression model
generated for Cage<sy (Table S12), shows a significant goodness of fit (7 (1, 208) = 22.866, p
< .001) and an ability to explain 9.9% (i.e. R’ = .099) of variation in average clothes washer
L/hh/d consumption with SE = £49.0 L/hh/d, when Cage<3y 1s used alone as a predictor of this

end-use category regardless of other household characteristics.

For the demographic characteristic number of males in household (M), results
presented in Table S12 show that the average clothes washer consumption of one or more
male households (IM"), being the control group, is 69.9 L/hh/d (p < .01). Results also show
that the average clothes washer consumption of no male households (OM) is 36.8 L/hh/d,
which has a statistically significant difference of 33.1 L/hh/d (p < .01, Table S12), when
compared to the control group 1M . The generated regression model of M, presented in Table
S12, shows a significant goodness of fit (F (1, 198) = 10.132, p < .01) and an ability to
explain 4.9% (i.e. R’ =.049) of variation in average clothes washer L/hh/d consumption with
SE =+48.5 L/hh/d, when M is used alone as a predictor of this end-use category regardless of

other household characteristics.

For the demographic characteristic number of teenagers aged between 13 to 19 years
in the household (T), results presented in Table S12 show that the average clothes washer
consumption of households having no teenagers (0T), being the control group, is 61.0 L/hh/d
(p < .01). Results also show that the average clothes washer consumption of households
having one or more teenagers (1T") is 85.6 L/hh/d, which has a statistically significant
difference of 24.6 L/hh/d (p < .01, Table S12) when compared to the control group OT. The
generated regression model of T (see Table S12), shows a significant goodness of fit (F (1,
208) = 8.974, p < .01) and an ability to explain 4.1% (i.e. R> = .041) of variation in average
clothes washer L/hh/d consumption with SE = £50.2 L/hh/d, when T is used alone as a

predictor of this end-use category regardless of other household characteristics.

For the demographic characteristic number of adults in household (A), results
presented in Table S12 show that the average clothes washer consumption of two-or-more-
adult households (2A™), the control group, is 71.7 L/hh/d (p < .01). Results also show that the
average clothes washer consumption of one adult households (1A) is 48.9 L/hh/d, which has
a significant difference of 22.8 L/hh/d (p < .01, Table S12), in comparison with the control

36



group 2A". The generated regression model of A, presented in Table S12, shows a
statistically significant goodness of fit (£ (1, 207) = 8.514, p < .01) and an ability to explain
4.0% (i.e. R’ = .040) of variation in average clothes washer L/hh/d consumption with SE =
+49.1 L/hh/d, when A is used alone as a predictor of this end-use category regardless of other

household characteristics.

For the demographic characteristic number of children aged between four and 12
years in the household (Cacage<iay), results (see Table S12) show that the average clothes
washer consumption of households having no children in this age category (0Cscage<ioy),
being the control group, is 62.4 L/hh/d (p < .01). Results also show that the average clothes
washer consumption of households having one or more children in this age category
(1C+4§Age§12y) is 88.7 L/hh/d, which has a significant difference of 26.3 L/hh/d (p < .05, Table
S12), when compared to the control group 0Ca<age<ioy. The generated regression model of
Ci<age<i2y presented in Table S12 shows a significant goodness of fit (7 (1, 208) = 7.951, p <
.01) and an ability to explain 3.7% (i.e. R* = .037) of variation in average clothes washer
L/hh/d consumption with SE = +£50.4 L/hh/d, when Cacage<i2y 1s used alone as a predictor of

this end-use category regardless of other household characteristics.

With respect to number of females in the household (F), the average clothes washer
consumption of one-or-more-female households (1F", the control group) is 68.3 L/hh/d (p <
.01). Further, the average clothes washer consumption of no-female households (OF) is 42.3
L/hh/d, which is significantly lower (by 26.0 L/hh/d, p < .05, Table S12) than the control
group 1F". The generated regression model of F, presented in Table S12, shows a significant
goodness of fit (F (1, 198) = 4.813, p < .05) and an ability to explain 2.4% (i.e. R’ = .024) of
variation in average clothes washer L/hh/d consumption with SE = +49.2 L/hh/d, when F is
used alone as a predictor of this end-use category regardless of other household

characteristics.

All demographic characteristics (i.e. C, Cagesy, M, T, A, Cicpge<izy and F) show
positive relationships with average daily per household clothes washer end-use consumption
and were considered as significant determinants of this end-use category. Further, the above
results show that highest clothes washer end-use consumption averages were found in
households with one or more children aged less than three years, households with one or
more children aged between four and 12 years, and in households with one or more children

or dependents aged 19 years or less.
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Household size (HHS) and multiple makeup compositions were analysed against the
clothes washer end use. The average clothes washer consumption of one-or-two-person
households (1,2P), being the control group, is 38.4 L/hh/d (p < .01). The average clothes
washer consumption of three-or-more-person households (3P") is 87.1 L/hh/d, which has a
significant difference of 48.7 L/hh/d (p < .01, Table S13), compared to the control group
1,2P. The generated regression model of HHS (see Table S13) shows a significant goodness
of fit (£ (1, 195) = 67.081, p < .001) and an ability to explain 25.6% (i.e. R’ = 256) of
variation in average clothes washer L/hh/d consumption with SE = +41.6 L/hh/d, when HHS
is used alone as a predictor of this end-use category regardless of other household

characteristics.

For the household makeup characteristics, the three household makeup composites
A+TH+Cacage<i2ytCagessy, A+C and M+F, which represent household size including age and
gender profiles, were tested. Results of factorial ANOVA extended into multiple regression
models (see Table S13) show that the three household makeup composites
A+T+Cycage<12ytCagessy, A+C and M+F are capable of explaining 19.4, 16.0 and 8.2% of
variation in average clothes washer L/hh/d consumption, respectively. However, as presented
above, the HHS determinant is showing the highest ability of explaining clothes washer
consumption among all demographic determinants of this end-use category (see Tables S12
and S13). Therefore, HHS was selected for clothes washer end-use forecasting model

development.

7.1.4. Socio-demographic determinants of clothes washer water consumption

Results of analysis of socio-demographic characteristics for the clothes washer end
use are presented in Table S14. For predominant occupational status in household (O), the
average clothes washer consumption of households with occupants that are mostly working
or at school (Ow, the control group) is 77.9 L/hh/d (p < .01). The average clothes washer
consumption of households with occupants that mostly stay at home (Og) is 40.8 L/hh/d,
which has a significant difference of 37.1 L/hh/d (p < .01, Table S14) in comparison with the
control group Ow. The generated regression model of O, presented in Table S14, shows a
statistically significant goodness of fit (/' (1, 203) = 29.874, p < .001) and an ability to

explain 12.8% (i.e. R’ =.128) of variation in average clothes washer L/hh/d consumption with
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SE = +46.2 L/hh/d, when O is used alone as a predictor of this end-use category regardless of
other household characteristics.

In relation to household annual income level (I), results presented in Table S14 show
that the average clothes washer consumption of households with annual income of
<AU$60,000 (I<s60,000) as the control group is 48.6 L/hh/d (p < .01). The average clothes
washer consumption of households whose annual income is >AU$60,000 (I>s60,000) is 82.7
L/hh/d, which has a significant difference of 34.1 L/hh/d (p < .01, Table S14), when
compared to the control group I<se0.000. The generated regression model of I presented in
Table S14 shows a statistically significant goodness of fit (' (1, 179) = 24.836, p < .001) and
explains 12.2% (i.e. R’ = .122) of variation in average clothes washer L/hh/d consumption
with SE = £46.0 L/hh/d, when I is used alone as a predictor of this end-use category

regardless of other household characteristics.

For the socio-demographic characteristic predominant educational level in household
(E), results presented in Table S14 show that households with a predominant tertiary
undergraduate or higher educational level (Ey’) are on average consuming less clothes
washer water volumes per day than households with a predominant trade/TAFE or lower
educational level (Er). However, such difference in clothes washer consumption is not
statistically significant (Table S14), so the E characteristic was not considered as a

determinant of clothes washer consumption.

The above results of the socio-demographic characteristic O show that households with
occupants that are mostly working or at school are on average consuming a greater volume of
water per day in clothes washing than households with occupants that are mostly staying at
home or retired. Further, there is a significant positive relationship between the socio-
demographic characteristic I and average daily per household clothes washer consumption,
indicating that higher income households are consuming more water for this end-use
category. Therefore, the O and I characteristics were considered as the socio-demographic
determinants of clothes washer consumption. This result might be attributed to latent reasons
that need to be studied further; for example, it may be that the higher clothes washer water
consumption of higher income households is due to the higher affordability of clothes washer
detergent, or their lifestyle and hygiene level (e.g. having more clothes to be washed due to

higher rate of changing clothes).
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These results provide empirical evidence that all of the examined characteristics
belonging to the four categories of household characteristics presented in Table S9 are
determinants of clothes washer end-use consumption, given their statistical ability to explain
variation in average clothes washer L/hh/d consumption, with the exception of the WL and

TMP usage physical characteristics, and the E socio-demographic characteristic.

The above findings were applied in an independent factorial ANOVA extended into
multiple regression models using combinations of the identified determinants as predictors of
clothes washer end-use consumption. However, prior to the development of such models,
associations between the revealed determinants were examined before being used as

predictors of this end-use category, as discussed below.

7.2. Relationships among clothes washer end-use predictors

Correlations among predictors of clothes washer end-use consumption were
examined. Only statistically significant (p < .05) relationships between predictors assessed by
the significance level of y’-statistic are presented in Table S7. There were significant
relationships between the clothes washer usage physical predictor FQ (the DV) and the
demographic predictor HHS, as well as both socio-demographic predictors I and O, being the
IVs. Further, as expected, a significant relationship between socio-demographic predictors |
(the DV) and O as the IV was found.

In terms of clusters of the tested households characteristics for this end-use category
(see Table S9), the results (Table S7) generally reveal that households with higher average
weekly clothes washer end-use events frequency (i.e. an average of four to seven, eight or
more clothes washer events per week) are most likely to be three-or-more-person households
(i.e. families with children or dependants as revealed in Table S7), higher annual income
households (i.e. annual income >AU$60,000) and households with occupants who work or
attend school. These results and their related measures of strength of association (7, and V,
Table S7) provide evidence that such households were the drivers of higher clothes washer
water consumption through their higher clothes washer events frequency. Therefore,
households with such characteristics are considered as an important conservation target for

the clothes washer end-use category.

The significant relationships identified between predictors show that the demographic
predictor HHS, and the socio-demographic predictors I and O represent proxies for the

clothes washer usage physical predictor FQ for the relevant forecasting model development.
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However, given the existing correlation between I and O predictors, they were used as
alternatives to each other for the development of such forecasting models. According to the
criteria described in Section 4 in supplementary material S—A for selecting the set of
predictors to be used in the development of alternative forecasting models, there are three
possible sets of predictors for the development of clothes washer end-use forecasting model
alternatives. Given that the clothes washer appliance physical characteristics S, TYP and
CAP are significant determinants of clothes washer end-use consumption, and that no
significant relationships were found between either of them and other predictors, they will be
considered as predictors to be included in the development of each clothes washer end-use

model alternative.

The first set of predictors includes FQ+S+TYP+CAP, the second includes
HHS+I+S+TYP+CAP and the third, HHS+O+S+TYP+CAP. The development of clothes
washer end-use forecasting model alternatives using these three sets of predictors is presented

below.

7.3. Clothes washer end-use forecasting models

Independent factorial ANOVA extended into multiple regression models was used to
build clothes washer end-use forecasting models by including each of the sets of clothes
washer end-use predictors presented above. None of the predictors met the removal criterion
of the backward stepwise regression method (i.e. ¢-statistic p > .05). Therefore, three clothes

washer end-use forecasting model alternatives are presented in Table S15.

The first model alternative was built using the first set of predictors
(FQ+S+TYP+CAP). Results of four-way independent factorial ANOVA extended into
multiple regression model show that the generated model is a significant fit to the data (¥
(5,152) = 147.446, p < .001) and that it is capable of explaining 82.9% (R® = .829) of
variation in average L/hh/d clothes washer end-use consumption with SE = £17.9 L/hh/d and
a CV geg percentage of 28.2%. It also has very acceptable levels of Ave. VIF = 1.382 and DW
= 1.824, respectively indicating lack of both multicollinearity and autocorrelation. As shown
in Table S15, the model shows a significant average clothes washer consumption of 38.5
L/hh/d (p < .01) for households with an average of three or less clothes washer events per
week using larger capacity (=7 kg) front loading clothes washing machines with rated stock
efficiency of zero to three stars (i.e. average L/kg >12), being the control group (i.e. FQs™+ S5
+ TYP pronit CAP>71,). Further, the modelled mean differences of 36.7, 91.4, —19.4 and 9.8
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L/hh/d for FQg¢o7, FQg+, S35 and TYP Top> Tespectively, from the mean of the control group
(i.e. 38.5 L/hh/d) are all statistically significant (p < .01, with the exception of the mean
difference of —7.8 L/hh/d for CAP-s, which has p < .05, Table S15). Therefore,
FQ+S+TYP+CAP was considered the final set of predictors and, following Equation (S2),
the forecasting model presented in Equation (S5) was considered the first alternative

forecasting model of ADHEUC for clothes washing (ADHEUC cjothes washer 1)-

(38.5 + 36.7(FQut07) + 91.4(FQgq+)
| —19.4(S35+) + 9.8(TYPr,p) —

ADHEUC =
Clothes washer 1 7.8(CAP.7x4) + 17.9, If using clothes washer

(S35)

0, If not using clothes washer

The second clothes washer end-use forecasting model alternative was built using the
second set of predictors (HHS+I+S+TYP+CAP). Results of five-way independent factorial
ANOVA extended into multiple regression model show that the generated model is a
significant fit to the data (£ (5,136) = 19.327, p < .001) and is capable of explaining 41.5%
(R’ = .415) of variation in average L/hh/d clothes washer end-use consumption, with SE =
+36.5 L/hh/d and a CV g percentage of 55.2%, along with very acceptable levels of Ave.
VIF = 1.411 and DW = 2.177, indicating lack of multicollinearity and autocorrelation,
respectively. As shown in Table S15, the resulting model shows a significant average clothes
washer consumption of 58.4 L/hh/d (p < .01) by one or two person households with an
annual income of <AUS$60,000 that are using larger capacity (>7kg) front loading clothes
washing machines with rated stock efficiency of zero to three stars (i.e. average L/kg >12),
being the control group (i.e. 1,2P" I<s60,000t S3+ TYP pronit CAP>71,). Further, the modelled
mean differences (24.0, 27.2 and —26.1 L/hh/d) for 3P+, L=g60.000 and Sis, respectively, from
the mean of the control group (58.4 L/hh/d) are all significant (p < .01), while the mean
differences of 17.5 and —16.4 L/hh/d for TYP 1., and CAP <, are significant at p < .05
(Table S15). Therefore, HHS+I+S+TYP+CAP was considered the final set of predictors and,
following Equation (S2), the forecasting model presented in Equation (S6) was considered
the second alternative forecasting model for ADHEUC in relation to clothes washing

(ADHEUC Clothes washer 2)-
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(58.4 + 24.0(3P*) + 27.2(I$60,000)
_ ) —26.1(S35+) + 17.5(TYPr,p)

Clothes washer 2 | —16.4(CAP<7kg) + 36.5, If using clothes washer
0, If not using clothes washer

ADHEUC (S6)

The third clothes washer end-use forecasting model alternative incorporated the third
set of predictors (HHS+O+S+TYP+CAP). Results of five-way independent factorial
ANOVA extended into multiple regression model show that the generated model is a
significant fit to the data (£ (5,157) = 22.084, p < .001) and is capable of explaining 41.3%
(R’ = .413) of variation in average L/hh/d clothes washer end-use consumption with SE =
+36.2 L/hh/d and a CV ge, percentage of 55.8%. It also has very acceptable values for Ave.
VIF = 1403 and DW =2.029, indicating lack of multicollinearity and autocorrelation,
respectively. As shown in Table S15, the resulting model reveals a significant average clothes
washer consumption of 73.6 L/hh/d (p < .01) for one-or-two-person households with
predominantly working or school-attending occupants that use larger capacity (i.e. >7kg)
front loading clothes washing machines with rated stock efficiency of zero to three stars (i.e.
average L/kg >12) (the control group) (1,2P+ Ow+ S3+ TYP pronct CAP >71,). Further, the
modelled mean difference values of 24.0, —31.2, —19.9 and 21.7 L/hh/d for 3P+, Og, S35 and
TYP 1op, respectively, from the mean of the control group (73.6 L/hh/d) are all significant (p
< .01, except for CAP <7, whose mean difference of —14.2 L/hh/d has p < .05 (Table S15).
Therefore, HHS+O+S+TYP+CAP was considered the final set of predictors and, following
Equation (S2), the forecasting model presented in Equation (S7) was considered the third
alternative forecasting model of ADHEUC for clothes washing (ADHEUC ciothes washer 3)-

(73.6 + 24.0(3P") — 31.2(0p)
—19.9(S + 21.7(TYP.
ADHEUC (0o o= J (S35+) (T¥Prop) (S7)
othes washer —14.2(CAP 7;,) + 36.2, If using clothes washer
l 0, If not using clothes washer
8. Tap

8.1. Determinants of tap end-use water consumption
The four categories of household characteristics (IVs) which were studied against the
tap end-use water consumption volumes (DV) are listed in Table S16, and were analysed as

presented below.
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8.1.1. Usage physical determinants of tap water consumption

The average frequency of tap events per day (FQ), average duration per tap event in minutes
(D), the status of households’ washing of dishes before using dishwasher (RDBDW)), rinsing
food under running water (RF) and using a plug in the sink when washing (PL) as the IVs,
were studied against average daily tap consumption volumes, being the DV. Results of the
independent one-way ANOVA for the FQ characteristic and a series of independent #-tests

for the D, RDBDW, RF and PL characteristics are presented in Table S17.

For the FQ characteristic, the average tap consumption of households with an average
of 18 or fewer tap events per day (FQs’, the control group) is 14.8 L/hh/d (p < .01). Results
also show that the average tap consumption of households with an average ranging from 19
to 34 tap events per day (FQ9 ¢ 34) 1s 37.4 L/hh/d, which is significantly different (by 22.6
L/hh/d, p < .01, Table S17) to the control group, FQ;s". The average tap consumption of
households with an average of 35 or more tap events per day (FQss') is 60.7 L/hh/d, which
has a significant difference of 45.9 L/hh/d (p < .01, Table S17), when compared to the
average tap consumption of the control group FQ,s". Using the significant mean differences
between each of the dummy variables (FQjg ¢, 34 and FQ35+) and the control group (FQ,g’), the
generated regression model for FQ is presented in Table S17. It shows a significant goodness
of fit (F (2, 192) = 77.906, p < .001) and explains 44.8% (i.e. R> = .448) of variation in
average tap L/hh/d consumption, with SE = +17.0 L/hh/d, when FQ is used alone as a

predictor of this end-use category regardless of other household characteristics.

For the D characteristic, the average tap consumption of households with an average duration
of less than 0.4 minutes per event (D<y4), being the control group, is 48.5 L/hh/d (p < .01,
Table S17). The average tap consumption of households with an average duration of 0.4
minutes or more (Dso4) 1s 64.1 L/hh/d, which has a significant difference of 15.6 L/hh/d (p <
.01, Table S17) from the control group D<y4. The generated regression model of D presented
in Table S17 shows a significant goodness of fit (F (1, 203) = 16.305, p < .001) and an ability
to explain 7.4% (i.e. R = .074) of variation in average tap L/hh/d consumption with SE =
+26.1 L/hh/d, when D is used alone as a predictor of this end-use category regardless of other

household characteristics.

For the RDBDW characteristic, the average tap consumption of households in which
dishes were never rinsed before using the dishwasher (RDBDW y,, the control group) is 49.0
L/hh/d (p < .01, Table S17). The average tap consumption of households normally rinsing
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dishes before using the dishwasher (RDBDW vy) is 59.4 L/hh/d, which is significantly
greater (by 10.4 L/hh/d, p < .05, Table S17) than control group RDBDW y,. usage. The
generated regression model of RDBDW presented in Table S17 shows a significant goodness
of fit (F (1, 86) = 4.133, p < .05) and explains 4.6% (i.e. R’ = .046) of the variation in average
tap L/hh/d consumption, with SE = +21.3 L/hh/d, when RDBDW is used alone as a predictor

of this end-use category regardless of other household characteristics.

For the RF characteristic, the average tap consumption of households never rinsing
food under running water (RF y,, control group) is 46.3 L/hh/d (p < .01, Table S17). Further,
the average tap consumption of households normally rinsing food under running water (RF
ves) 18 56.6 L/hh/d, which is significantly larger (by 10.3 L/hh/d, p < .01, Table S17) than the
control group RF yo. The regression model generated for RF (see Table S17) exhibits a
significant goodness of fit (F (1, 183) =7.754, p < .01) and an ability to explain 4.1% (i.e. R’
= .041) of variation in average tap L/hh/d consumption with SE = +24.4 L/hh/d, when RF is
used alone as a predictor of this end-use category regardless of other household

characteristics.

With respect to PL, the average tap consumption of households never using a plug in
the sink (PL r,) (the control group) is 68.4 L/hh/d (p < .01, Table S17), while the average tap
consumption of households normally using a plug in the sink (PL ys) is 59.9 L/hh/d, which is
significantly less (by 8.5 L/hh/d, p < .05, Table S17) than the control group PL no. The
generated regression model presented in Table S17 has a significant goodness of fit (¥ (1,
165) = 4.336, p < .05) and explains 2.6% (i.e. R* = .026) of variation in average tap L/hh/d
consumption, with SE = £25.0 L/hh/d, when PL is used alone as a predictor of this end-use

category regardless of other household characteristics.

As might be expected, both FQ and D have significant positive relationships with tap
end-use water consumption. Further, households rinsing dishes before putting them in the
dishwasher, and those rinsing food under a running tap were on average consuming more tap
water than households that did not have such practices. Also, households that normally used a
plug in the sink were on average consuming less tap water per day than those that did not.
Given the significant relationships identified between all tested usage physical characteristics
and tap water consumption, they were all considered as determinants of consumption for this

end-use category.
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8.1.2. Tap fixture physical determinants of tap water consumption

The tap end-use fixtures physical characteristics were all examined: tap fixture
efficiency star ratings (S), number of indoor tap fixtures installed in the household (NIT),
status of dishwasher ownership (DW), and the status of fitted add-ons such as tap flow
regulators (e.g. aerators, flow controllers or restrictors, TFR), insinkerator (ISE), separate

filter/purifier tap (FPT) and plumbed ice maker on fridge (IMF).

The average tap water consumption of households using tap fixtures that were rated
zero to five stars (Ss’) based on WELS (i.e. average flow rate > 4.5 L/min.), being the control
group, is 67.7 L/hh/d (p < .01). The average for households using tap fixtures rated six stars
(S¢) based on WELS (i.e. average flow rate < 4.5 L/min.) is 49.3 L/hh/d, which is
significantly less (by 18.4 L/hh/d, p < .01, Table S18) than the control group Ss". The
generated regression model of S presented in Table S18 shows a significant goodness of fit
(F (1, 202) = 18.306, p < .001) and is able to explain 8.3% (i.e. R’ = .083) of variation in
average tap L/hh/d consumption with SE = £25.4 L/hh/d, when S is used alone as a predictor

of this end-use category regardless of other household characteristics.

For the NIT characteristic, the average tap consumption of households having one to
five indoor tap fixtures installed (NIT; 4 5), being the control group, is 52.3 L/hh/d (p < .01,
Table S18). The average tap consumption of households having six or more indoor tap
fixtures installed (NIT") is 66.9 L/hh/d, which significantly exceeds (by 14.6 L/hh/d, p < .05,
Table S18) that used by the control group NIT; , 5. The generated regression model of NIT
(see Table S18) exhibits a significant goodness of fit (F (1, 193) = 7.351, p < .01) and is able
to explain 3.7% (i.e. R°=.037) of the variation in average tap L/hh/d consumption with SE =
+27.5 L/hh/d, when NIT is used alone as a predictor of this end-use category regardless of
other household characteristics. For the DW characteristic, the average tap consumption of
households not using a dishwasher (DW v, the control group) is 47.4 L/hh/d (p < .01, Table
S18). The average tap water consumption of households using a dishwasher (DW vy.s) is 56.0
L/hh/d, which has a significant difference of 8.6 L/hh/d, p < .05, Table S18) more than the
control group DW .

The regression model generated for DW (see Table S18) shows a significant goodness
of fit (F (1, 200) = 5.765, p < .05) and an ability to explain 2.8% (i.e. R’ = .028) of variation
in average tap L/hh/d consumption with SE = £25.0 L/hh/d, when DW is used alone as a

predictor of this end-use category regardless of other household characteristics.
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For the ISE characteristic, the average tap consumption of households not having a
fitted insinkerator (ISE no, the control group) is 51.9 L/hh/d (p < .01, Table S18). The
average tap consumption of households having a fitted insinkerator (ISE v¢) is 68.8 L
hh™'which is significantly greater (by 16.9 L/hh/d, p < 0.05, Table S18) than the control
group ISE no. The generated regression model for ISE (see Table S18), has a significant
goodness of fit (F (1, 178) = 4.690, p < .05) and an ability to explain 2.0% (i.e. R’ = .020) of
the variation in average tap L/hh/d consumption with SE = £25.1 L/hh/d, when ISE is used

alone as a predictor of this end-use category regardless of other household characteristics.

With respect to TFR, households having tap flow regulators fitted to any of their taps
(TFR y¢s) on average consumed 52.8 L/hh/d, which i1s 5.2 L/hh/d less (but not significantly
so, p > .05) than the average for those not using such tap add-ons (TFR o, 58.0 L/hh/d, Table
S18). Households with plumbed ice makers on their fridge (IMF v.s), and those with a
separate filter/purifier tap (FPT yes), on average consume 58.0 and 54.4 L/hh/d. These values
are 6.0 and 2.4 L/hh/d, respectively, more than the average tap consumption of 52.0 L/hh/d
for households not having such extras (IMF y, and FPT y,), although the differences are not
significant (p > .05, Table S18).

The tap end-use fixtures physical characteristic S shows a statistically significant
negative relationship with average daily per household tap end-use consumption,
demonstrating that households using efficient tap fixtures rated six stars (i.e. average flow
rate <4.5 L/min.) were on average saving 18.0 L/hh/d compared to households using less
efficient fixtures with ratings of zero to five stars. Therefore, the S characteristic was
considered as a significant determinant of this end-use category. However, despite savings
being achieved by using tap flow regulators, the TFR characteristic is statistically non-
significant; thereby it was not considered as a determinant of tap end-use consumption. This
might be because tap end use is associated with a wide range of consumption activities that
are largely influenced by behaviour and habit, which might work against the effectiveness of

such add-ons, resulting in unremarkable savings.

The NIT characteristic exhibits a significant positive relationship with average daily
per household tap end-use consumption, suggesting that households having more fitted
indoor tap fixtures were on average consuming more water. Therefore, NIT was considered
as a determinant of tap end-use consumption. Surprisingly, the DW characteristic shows a

significant relationship with average daily per household tap end-use consumption, indicating
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that households having a dishwasher were on average consuming 8.6 L/hh/d more water than
those that do not. This could be due to rinsing of dishes before using the dishwasher as
revealed previously (Table S17), or other consumption practices, behaviour or habits that
need to be studied further. Given the statistical significance of the DW characteristic, it was
considered as a determinant of this end-use category. Similarly, the ISE characteristic shows
a significant relationship with average daily per household tap end-use consumption, meaning
that households having a fitted insinkerator in the kitchen sink were on average consuming
16.9 L/hh/d more than those that do not. This might be attributed to consumption practices
associated with having an insinkerator (e.g. running the tap when the insinkerator is turned
on). Thus, the ISE characteristic was considered as a significant determinant of tap end-use
consumption. Despite this, households with a plumbed ice maker and installed separate
filter/purifier tap were consuming more water than those that do not, although not
significantly so. Therefore, the IMF and FPT characteristics were not considered as

determinants of this end-use category.

8.1.3. Demographic and household makeup determinants of tap water consumption

Results of analysis of demographic and household makeup characteristics for the tap
end use are presented in Table S19 and Table S20. For number of adults in the household
(A), results show that the average taps consumption of two-or-more-adult households (2A"),
the control group, is 56.4 L/hh/d (p < .01). The average tap consumption of one-adult
households (1A) is 38.4 L/hh/d, which is significantly less (by 18.0 L/hh/d, p < .01, Table
S19) than the control group 2A". The generated regression model of A presented in Table
S19 shows a significant goodness of fit (F (1, 199) = 21.135, p < .001) and an ability to
explain 9.6% (i.e. R’ =.096) of variation in average tap L/hh/d consumption with SE = +23.6
L/hh/d, when A is used alone as a predictor of this end-use category regardless of other

household characteristics.

Since average daily tap consumption mean differences between households with
children aged four to 12 years, or three years or less, and those with no children of these age
ranges are non-significant (p > .05, Table S19), number of males, number of females and
household size demographic characteristics will only represent occupants aged 13 years or
more (Mage>13y, Fages13y and HHS pge13y, respectively). For number of males in household
aged 13 years or more (Mage>13y), results presented in Table S19 show that the average tap
consumption of households with one or more males in this age group (1M+Agezl3y), being the

control group, is 54.4 L/hh/d (p < .01). Results also show that the average tap consumption of
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households with no males in this age range (0Mage>13y) 1s 35.6 L/hh/d, which is significantly
less (by 18.8 L/hh/d, p < .01, Table S19) than the control group 1M+Agezl3y. The generated
regression model of Mages13y presented in Table S19 shows a significant goodness of fit (£
(1, 190) = 14.947, p < .001) and an ability to explain 7.3% (i.e. R? = .073) of variation in
average tap L/hh/d consumption with SE = +23.4 L/hh/d, when Mage>13y 1s used alone as a

predictor of this end-use category regardless of other household characteristics.

With respect to the number of teenagers aged between 13 and 19 years in the
household (T), results presented in Table S19 show that the average tap consumption of
households in the control group with no teenagers (0T), is 50.3 L/hh/d (p < .01). The average
tap consumption of households having one or more teenagers (1T") is 62.1 L/hh/d, which is
significantly more (by 11.8 L/hh/d, p < .05, Table S19) than the control group OT. The
generated regression model of T (see Table S19) shows a significant goodness of fit (F (1,
201) = 7.397, p < .01) and an ability to explain 3.5% (i.e. R> = .035) of the variation in
average tap L/hh/d consumption with SE = £25.6 L/hh/d, when T is used alone as a predictor

of this end-use category regardless of other household characteristics.

For the demographic characteristic number of females in the household aged 13 or
more (Fage-13y), results presented in Table S19 show that the average tap consumption of
households with one or more females in this age group (1F" age=13y), the control group, is 53.3
L/hh/d (p < .01). The average tap consumption of households with no females of this age
(OF age>13y) 1s 40.2 L/hh/d, which has a significant difference of 13.1 L/hh/d (p < .05, Table
S19) from the control group 1F+Agezl3y. The generated regression model of Fage-13y presented
in Table S19 shows a significant goodness of fit (F (1, 191) = 4.634, p < .05) and explains
2.4% (i.e. R* = .024) of variation in average tap L/hh/d consumption with SE = +24.5 L/hh/d,
when Fages13y 1s used alone as a predictor of this end-use category regardless of other

household characteristics.

In summary, demographic characteristics A, Mage>13y, T and Fage>13y show statistically
significant positive relationships with average daily per household tap end-use consumption
and were considered as significant determinants of this end-use category. These results
indicated that households with occupants 13 years of age or older were the main contributors
of tap end-use consumption. However, there were non-significant mean differences in
average daily tap consumption between households with children aged four to 12 and three

years or less, and those with no children in these age ranges. Therefore, the Cy<age<ioy and
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Cages3y demographic characteristics were not considered as determinants of consumption for

the tap end-use category.

Household size (HHS pge>13y) and multiple makeup compositions of occupants aged 13
years or more were also studied against tap end use (Table S20). The average tap
consumption of households with one such person (1P age>13y, the control group) is 33.1 L/hh/d
(p < .01). The average tap consumption of households with two or three occupants aged 13
years or more (2,3Pge>13y) 1 56.1 L/hh/d, which has a significant difference of 23.0 L/hh/d (p
< .01, Table S20) from the control group 1Page13y,. The average tap consumption of
households with four or more people in this age range (4P+Agezl3y) is 76.2 L/hh/d, which is
significantly greater (by 43.1 L/hh/d, p < .01, Table S20) than the control group 1Pages13y.
The generated regression model for HHSsge>13y presented in Table S20 has a significant
goodness of fit (F (2, 202) = 21.019, p < .001) and explains 17.2% (i.e. R’ = .172) of variance
in average tap L/hh/d consumption with SE = £24.9 L/hh/d, when HHS pge>13y 1s used alone as

a predictor of this end-use category regardless of other household characteristics.

For the household makeup characteristics, the two composites A+T and Mage-13,+
F age>13y, Which represent household size including age and gender profiles, respectively, were
tested. Results of factorial ANOVA extended into multiple regression models presented in
Table S20 show that these two composites are capable of explaining 13.0 and 10.9% of
variation in average tap L/hh/d consumption, respectively. However, as mentioned above, the
HHSpge>13y determinant best explains variation in tap water consumption among all
demographic determinants of this end-use category (see Tables S19 and S20). Therefore,

HHS pge>13y Was selected for the tap end-use forecasting model development.

8.1.4. Socio-demographic determinants of tap water consumption

Results of analysis of socio-demographic characteristics for the tap end use are presented in
Table S21. For income level (I), results show that households with annual income of
>AU$30,000 (Iss30,000) Were on average consuming 52.6 L/hh/d, which is 6.9 L/hh/d more
(but not significantly so, p > .05) than the average for households with annual income of
<AUS$30,000 (I<s30,000), which is 45.7 L/hh/d (Table S21). Similarly, for predominant
occupational status (O) and predominant educational level (E) in the household, results
presented in Table S21 show unremarkable and statistically non-significant mean differences
between their associated groups. Therefore, no tested socio-demographic characteristic was

considered as a determinant of consumption for the tap end-use category.
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These results provide empirical support that all of the examined usage physical
characteristics (i.e. FQ, D, RDBDW, RF and PL) are determinants of tap end-use
consumption. This indicates that tap end-use consumption is largely influenced by underlying
water usage practices, behaviours and habits represented by such determinants. Moreover, the
identified physical characteristic determinants of tap end-use consumption were S, NIT, DW
and ISE, but not TFR, IMF and FPT. Of these, S is the strongest determinant explaining
variation in average tap daily consumption, indicating the importance of tap fixture stock
efficiency in shaping tap end-use consumption. From the tested demographic and household
makeup characteristics, the identified determinants of tap end-use consumption were
HHSpge>13y, A, Mage=13y, T and Fage=13. Results also show that HHSage-13y best explains
variation in average tap daily consumption compared with other tested demographic
characteristics, meaning that tap end-use consumption is mostly influenced by occupants

aged thirteen years or more in the household.

The above findings were applied in an independent factorial ANOVA extended into
multiple regression models utilising combinations of the identified determinants as predictors
of tap end-use consumption. However, prior to the development of such models, correlations
between the determinants were examined before being used as predictors of this end-use

category, as discussed below.

8.2. Relationships among tap end-use predictors

Relationships among predictors of tap end-use consumption were examined and
assessed by the significance level of the y’-statistic (Table S7). There was only one
significant relationship, that between the tap usage physical predictor FQ (as the DV) and the
demographic predictor HHSage>13y (as the IV). With reference to clustering of the tested
household characteristics for this end-use category presented in Table S16, this result (Table
S7) reveals that households with higher average daily tap end-use event frequencies (i.e. an
average of 19-34, and >35 tap events per day) are most likely to be those with two or more
occupants aged >13 years (i.e. households with more adults or teenagers, as revealed in
Tables S19 and S20). This result and its related measures of strength of association (z, and V,
Table S7) provides evidence that such households were the drivers of higher tap water
consumption through their higher tap event frequency, Thus, households with such
characteristics are considered as an important conservation target for the tap end-use

category.
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The significant relationship identified between predictors show that the demographic
predictor HHS pge>13y can function as a proxy for the tap usage physical predictor FQ in tap
end-use forecasting model development. Following the criteria presented in Section 4 in
supplementary material S—A for selecting the set of predictors to be used for the development
of alternative forecasting models; this has resulted in two possible sets of predictors. Given
that both tap usage (i.e. D, RDBDW, RF and PL) and tap fixture (i.e. S, NIT, DW and ISE)
physical characteristics are significant determinants of tap end-use consumption, and that no
significant relationships were found between either of them and other predictors, they will be
considered as predictors to be included in the development of each tap end-use model
alternative. Accordingly, the first set of predictors includes
FQ+D+S+RDBDW-+RF+NIT+DW+ISE+PL and the second set includes
HHS pAge>13yTD+S+RDBDW+RF+NIT+DW+ISE+PL. The development of tap end-use

forecasting model alternatives using these two sets of predictors is presented below.

8.3. Tap end-use forecasting models

Independent factorial ANOVA extended into multiple regression models was used to
build tap end-use forecasting models by including each of the resulted two sets of tap end-use
predictors presented above. Use of backward stepwise regression to refine each of the two
sets of tap end-use predictors resulted in two tap end-use forecasting model alternatives, as

presented in Table S22.

The first tap end-use forecasting model alternative was built using the first set of predictors
(FQ+D+S+RDBDW+RF+NIT+DW+ISE+PL). The predictors RDBDW, RF, NIT, DW, ISE,
and PL were removed from the model by backward stepwise regression, as their related #-
statistics were not significant (p > .05) and they could not improve the generated model.
Results of three-way independent factorial ANOVA extended into multiple regression model
using FQ+D+S show that the generated model is a significant fit to the data (F (4,193) =
82.683, p < .001) and is capable of explaining 63.1% (R’ = .631) of variation in average
L/hh/d tap end-use consumption with SE = +15.9 L/hh/d and a CV g, percentage of 29.7%,
and has acceptable levels of Ave. VIF = 1.996 and DW = 2.081 indicating lack of
multicollinearity and autocorrelation, respectively. As presented in Table S22, the resulting
model shows a significant average tap consumption of 20.2 L/hh/d (p < .01) for households
with an average of 18 or fewer tap events per day that are on average less than 0.4 minutes
long and utilise tap fixtures with rated stock efficiency of zero to five stars (i.e. average flow

rate > 4.5 L/min.) (the control group: FQ;g+D<y4+Ss). Further, all modelled mean
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differences, of 23.0, 55.3, 17.0 and —18.0 L/hh/d of FQi9 34, FQss', Dso4 and Se,
respectively, from the mean of the control group are all significant (p < .01, Table S22).
Therefore, FQ+D+S was considered the final set of predictors and, following Equation (S2),
the forecasting model presented in Equation (S8) was considered the first alternative

forecasting model of ADHEUC of tap (ADHEUC 14p 1).

202 + 230(FQ19 to 34) + 553(FQ35+)
+17.0(Dsg4) — 18.0(Se) * 15.9, If using tap (S8)
0, If not using tap

ADHEUC Tap 1™

The second tap end-use forecasting model alternative (see Table S22) was built
utilising HHSpge>13y7D+S predictors only. This is because, like in the first model, the
predictors RDBDW, RF, NIT, DW, ISE and PL were removed as their related z-statistics
were not significant (p > .05) and they could not improve the generated model. Therefore,
results of three-way independent factorial ANOVA extended into multiple regression models
using HHSpge>13,+D+S show that the generated model is a significant fit to the data (F
(4,204) = 23.577, p < .001) and that it is capable of explaining 31.6% (R’ = .316) of variation
in average L/hh/d tap end-use consumption with SE = £25.3 L/hh/d and a CV g, percentage
of 45.4%, as well as acceptable levels of Ave. VIF =1.227 and DW = 1.839 indicating lack of

both multicollinearity and autocorrelation.

As shown in Table S22, the resulting model suggests a significant average tap consumption
of 42.6 L/hh/d (p < .01) for households of one person aged 13 years or older, whose tap
events were on average less than 0.4 minutes long and used tap fixtures with rated stock
efficiency of zero to five stars (i.e. average flow rate > 4.5 L/min.), being the control group
(1Page=13ytD<0.41Ss"). Further, all modelled mean differences of 25.0, 44.1, 16.0 and —19.3
L/hh/d of 2,3Page13y, 4P+Age213y, D>p4 and Sg, respectively, from the mean of the control
group are all significant (p < .01, Table S22). Thus, HHSge>13,7D+S was considered the
final set of predictors and, following Equation (S2), the forecasting model presented in
Equation (S9) was considered the second alternative forecasting model of ADHEUC of tap
water consumption (ADHEUC 14 2).

42.6 + 25.0(2,3Psges13y) + 44.1(4P" pgesiay)

ADHEUC Tap2= ) 116-0(Dx0.4) — 19.3(Se) £ 25.3, Ifusingtap (S9)
0, If not using tap
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9. Toilet

9.1. Determinants of toilet end-use water consumption
The four categories of household characteristics (IVs) which were studied against the
toilet end-use water consumption volumes (DV) are listed in Table S23, and were analysed as

presented below.

9.1.1. Usage physical determinants of toilet water consumption

The toilet usage physical characteristics average frequency of toilet events per day
(FQ) and proportion of half flushes from total number of flushes per household per day (HF)
(the IVs), were studied against average daily toilet consumption volumes (the DV). Results of
the independent one-way ANOVA for the FQ characteristic and an independent #-test for the

HF characteristic are presented in Table S24.

For FQ, the average toilet consumption of households with an average of five flushes per day
or less (FQs), being the control group, is 22.6 L/hh/d (p < .01). Results also show that the
average toilet consumption of households with an average ranging from six to nine flushes
per day (FQg 10 9) is 41.1 L/hh/d, which is significantly higher (by 18.5 L/hh/d, p < .01, Table
S24) than the control group FQs". The average toilet consumption of households averaging
ten flushes or more per day (FQyo") is 68.3 L/hh/d, which is significantly higher (by 45.7
L/hh/d, p < .01, Table S24) than the average toilet consumption of the control group FQs'.
Using the significant mean differences between each of the dummy variables (i.e. FQg 9 and
FQio") and the control group (i.e. FQs"), the generated regression model for FQ is presented
in Table S24, and shows a significant goodness of fit (F (2, 194) = 187.461, p < .001) and
explains 65.9% (i.e. R’ = .659) of the variation in average toilet L/hh/d consumption, with SE
= +13.3 L/hh/d, when FQ is used alone as a predictor of this end-use category regardless of

other household characteristics.

For HF, the average toilet consumption of households in which half flushes represent
50% or less of the total number of flushes (HF<s¢q,), being the control group, is 55.8 L/hh/d (p
< .01, Table S24). The average toilet consumption of households in which the number of half
flushes represents >50% (HF-s0q,) 1s 46.6 L/hh/d, which is significantly less (9.2 L/hh/d, p <
.05, Table S24) than the control group HF-s0y. The generated regression model of HF
presented in Table S24 shows a significant goodness of fit (# (1, 191) = 7.268, p < .01) and

an ability to explain 3.7% (i.e. R° = .037) of variation in average toilet L/hh/d consumption
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with SE = +23.2 L/hh/d, when HF is used alone as a predictor of this end-use category

regardless of other household characteristics.

The above results show that as expected, FQ has a significant positive relationship
with toilet end-use water consumption. Also, the HF characteristic has a significant negative
relationship with toilet end-use water consumption, indicating that households utilising half
flushes more often than full flushes generally were consuming less toilet water volumes.
Given the identified significant relationships of each of FQ and HF with toilet water

consumption, they were considered as determinants of consumption for this end-use category.

9.1.2. Toilet suite physical determinants of toilet water consumption

The toilet suite physical characteristics efficiency star ratings (S) and the number of
toilets installed in the household (NT) (the IVs) were studied against average daily toilet
consumption volumes (the DV). Results of independent t-tests for both the S and NT

characteristics are presented in Table S25.

For the S characteristic, the average toilet water consumption of households using
toilet suites rated zero to two stars (S;") based on WELS (i.e. average L/flush > 4.0), being the
control group, is 53.3 L/hh/d (p < .01). The average toilet water consumption of households
using toilet suites rated three to six stars (S;) based on WELS (i.e. average L/flush < 4.0) is
35.7 L/hh/d, which has a significant difference of 17.6 L/hh/d (p < .01, Table S25), compared
with the control group S,". The generated regression model for S is presented in Table S25,
showing a significant goodness of fit (F (1, 204) = 12.603, p < .001) and an ability to explain
5.8% (i.e. R’ = .058) of variation in average toilet L/hh/d consumption with SE = +24.1
L/hh/d, when S is used alone as a predictor of this end-use category regardless of other

household characteristics.

With respect to NT, the average toilet water consumption of households having only
one or two toilets installed (NT o 2), the control group, is 48.0 L/hh/d (p < .01, Table S25).
Results also show that the average tap water consumption of households having three or more
toilets installed (NT3") is 61.9 L/hh/d, which is significantly greater (by 13.9 L/hh/d, p < .01,
Table S25) than the control group NT; . The generated regression model of NT presented
in Table S25 has a significant goodness of fit (7 (1, 193) = 10.302, p < .01) and explains
5.1% (i.e. R” = .051) of the variation in average toilet L/hh/d consumption with SE = +23.2
L/hh/d, when NT is used alone as a predictor of this end-use category regardless of other

household characteristics.
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These results show that the S characteristic has a significant negative relationship with
toilet end-use water consumption, and provide empirical support that the use of efficient toilet
suites results in lower toilet water consumption. Also, the NT characteristic has a significant
positive relationship with toilet end-use water consumption, indicating that households with
more toilets generally consume larger toilet water volumes. Given the significant
relationships identified for S and NT with toilet water consumption, they were both

considered as determinants of consumption for this end-use category.

9.1.3. Demographic and household makeup determinants of toilet water consumption
Results of demographic and household makeup characteristic analysis for the toilet
end use are presented in Table S26 and Table S27. For number of adults in household (A),
results presented in Table S26 show that the average toilet consumption of two-adult
households (2A), being the control group, is 52.1 L/hh/d (p < .01). The average toilet
consumption of one-adult households (1A) is 35.1 L/hh/d, which is significantly less (by 17.0
L/hh/d, p < .01, Table S26) than the control group 2A. Further, the average toilet
consumption of households with three or more adults (3A") is 72.9 L/hh/d, which has a
significant difference of 20.8 L/hh/d (p < .01, Table S26) from the average toilet
consumption of the control group 2A. The generated regression model of A presented in
Table S26 shows a significant goodness of fit (¥ (2, 198) =21.062, p < .001) and an ability to
explain 17.5% (i.e. R = .175) of variation in average toilet L/hh/d consumption with SE =
+21.5 L/hh/d, when A is used alone as a predictor of this end-use category regardless of other

household characteristics.

Since average daily toilet water consumption mean difference between households
with and without children aged three years or less is not significant (p > .05, Table S26), the
number of children or dependants, number of males, number of females and household size
demographic characteristics will only represent occupants aged four or more years old

(C4§Age§19ya M Age>dys F Age>dy and HHS Age>dys respectively).

With respect to number of children or dependants aged between four and 19 years in
the household (Cs<age<i9y), the average toilet consumption of households having no children
or dependants at this age range (0Ci<age<ioy), being the control group, is 45.5 L/hh/d (p <
.01). The average toilet consumption of households having one or more children or
dependants (1C+45Ag6519y) is 60.2 L/hh/d, which has a significant difference of 14.7 L/hh/d (p

< .01, Table S26) from the control group 0Cscage<ioy. The regression model generated for
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Cacage<ioy (see Table S26) has a significant goodness of fit (# (1, 205) = 17.995, p < .001)
and an ability to explain 8.1% (i.e. R® = .081) of variation in average toilet L/hh/d
consumption with SE = +24.0 L/hh/d, when Cy<age<i9y 1s used alone as a predictor of this end-

use category regardless of other household characteristics.

For the demographic characteristic number of teenagers aged between 13 and 19 years
in the household (T), the average toilet water consumption of households having no teenagers
(0T), being the control group, is 47.2 L/hh/d (p < .01). Results also show that the average
toilet water consumption of households with one or more teenagers (1T") is 63.0 L/hh/d,
which is significantly greater (by 15.8 L/hh/d, p < .01, Table S26) than the control group OT.
The generated regression model of T, presented in Table S26, shows a significant goodness
of fit (F (1, 205) = 15.560, p < .001) and an ability to explain 7.1% (i.e. R* = .071) of the
variation in average toilet L/hh/d consumption with SE = +24.1 L/hh/d, when T is used alone

as a predictor of this end-use category regardless of other household characteristics.

With respect to number of children in the household aged between four and 12 years
(Cacage<i2y), the average toilet water consumption of households having no children in this
age category (0Ca<age<izy), being the control group, is 47.9 L/hh/d (p < .01). The average
toilet water consumption of households having one or more children in this age category
(1C+4§Age§12y) is 58.0 L/hh/d, which has a significant difference of 10.1 L/hh/d (p < .05, Table
S26) from the control group 0Cs<age<izy. The regression model for Ci<age<izy presented in
Table S26 exhibits a significant goodness of fit (¥ (1, 200) = 5.823, p < .05) and explains
2.8% (i.e. R’ = .028) of the variation in average toilet L/hh/d consumption with SE = +23.1
L/hh/d, when Ci<age<izy 1s used alone as a predictor of this end-use category regardless of

other household characteristics.

As mentioned earlier, for the Cage<3y characteristic, there is no significant difference in
the average daily toilet water consumption mean difference for households with and without
children aged three or younger (p > .05, Table S26). Similarly, for the Mage=4y and Fagesay
characteristics, no significant mean differences of household average daily toilet water
consumption could be found between their dummy variables (Table S26). Therefore, the
demographic characteristics Cage<sy, Mage=4y and Fage=4y were not considered as determinants
of the toilet end-use consumption, indicating that gender has no significant relationship with
toilet end-use consumption. Given the significant positive relationships identified for the age

demographic characteristics A, Cacage<ioy, T and Ca<age<i2y With average daily per household
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toilet end-use consumption, they were considered as significant demographic determinants of
this end-use category, indicating that household occupants aged at least four years were the

only contributors to toilet end-use consumption regardless of their gender.

Multiple makeup compositions of occupants aged four years or more and household
size (HHSage>4y) were studied against toilet end use. For the household makeup
characteristics, the two composites A+T+Cycage<izy and A+Cacage<ioy that represent household
size including age profiles with different level of details were tested. The results of factorial
ANOVA extended into multiple regression models (see Table S27) show that these
composites explain 20.3 and 19.0% of variation in average toilet L/hh/d consumption,
respectively. For the HHS Aqe>4y characteristic, results presented in Table S27 show that the
average toilet consumption of households with two occupants aged four or more years
(2P age=4y), being the control group, is 47.7 L/hh/d (p < .01). The average toilet consumption
of households with one person aged four years or more (1Page>4y) is 34.7 L/hh/d, which has a
significant difference of 13.0 L/hh/d (p < .01, Table S27) from the control group 2P age>4y.
The average toilet consumption of households with three or more occupants in this age range
(3P+Agez4y) is 60.3 L/hh/d, which has a significant difference of 12.6 L/hh/d (p < .01, Table
S27) from the control group 2Page-4y. The generated regression model of HHSages4y (se€
Table S27) shows a significant goodness of fit (F (2, 204) = 16.088, p < .001) and an ability
to explain 13.6% (i.e. R = .136) of variation in average toilet L/hh/d consumption with SE =
+23.3 L/hh/d, when HHS pge4y 1s used alone as a predictor of this end-use category regardless
of other household characteristics. Therefore, the household size and makeup composites of
demographic characteristics HHS Age>4y, ATT+HCacpge<i2y and A+Cycpge<ioy Were all considered
as determinants of toilet end-use water consumption. However, given that the A+T+Cs<pge<ioy
makeup composite best explains variation in toilet consumption among all other demographic
determinants of this end-use category (see Table S26 and Table S27); it was selected for

toilet end-use forecasting model development.

9.1.4. Socio-demographic determinants of toilet water consumption

Results of analyses of socio-demographic characteristics for the toilet end use are presented
in Table S28. For predominant occupational status in household (O), results show that
households with occupants that mostly stay at home during the day (Og) consume more toilet
water (2.0 L/hh/d) than households with occupants that mostly work or attend school (49.3
L/hh/d), although the mean difference is not significant (p > .05, Table S28). Similarly, for

the annual income level (I) and the predominant educational level in the household (E)
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characteristics, there were no significant mean differences between their associated groups,
and these characteristics did not explain variation in toilet end-use consumption. Therefore,
no tested socio-demographic characteristic was considered a determinant of consumption for

the toilet end-use category.

These results show that the usage physical characteristics FQ and HF, the toilet suite
physical characteristics S and NT, and the demographic characteristics A, Cacage<ioy, T and
Cacage<izy, are all determinants of toilet end-use water consumption. Further, the
A+T+Cycage<12y makeup composite has the highest ability to explain variation in toilet end-

use water consumption among the demographic and household makeup determinants.

The results provide empirical evidence that toilet end-use consumption is highly
influenced by the frequency of flushes and that selection of half flush mode and use of
efficient toilet suites can reduce toilet end-use water consumption. Unsurprisingly, the results
show that toilet end-use consumption is not gender dependent, and that regardless of gender,
toilet use is restricted to occupants aged at least four years. Toilet end-use consumption was
not influenced by income level, education level or occupation status, despite the higher but
unremarkable average toilet water consumption of households with retired occupants than

households with working occupants.

The above findings were applied in an independent factorial ANOVA extended into
multiple regression models using combinations of the determinants identified as predictors of
toilet end-use consumption. Prior to the development of such models, relationships among the
determinants were examined before being used as predictors of this end-use category, as

follows.

9.2. Relationships among toilet end-use predictors

Relationships among predictors of toilet end-use consumption were examined using
-statistic, and only significant (p < .05) relationships between predictors are presented in
Table S7. This includes relationships between the toilet usage physical predictor FQ (the DV)
and each of the demographic predictors A, T and Ci<age<i2y (the IVs). Referring to clusters of
the tested household characteristics for this end-use category presented in Table S23, the
results (Table S7) generally indicate that households with higher average daily toilet end-use
event frequencies (i.e. an average of six to nine, or ten or more toilet flushes per day) are
most likely to be two-or-more-adult households, households with one teenager or more and

households with one child or more aged four to 12 years. These results and their related
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measures of strength of association (7, and V, Table S7) provide evidence that such
households were the drivers of higher toilet water consumption through their higher flush
frequency. Households with a higher number of occupants aged four to 12 years in general,
and those with a higher number of adult occupants specifically, are considered important

conservation targets for the toilet end-use category.

The identified significant relationships between predictors show that the demographic
predictors A, T and Ci<age<ioy can work as proxies for the toilet usage physical predictor FQ
in toilet end-use forecasting model development. Given that the physical characteristics toilet
usage HF and toilet suite S and NT are significant determinants of toilet end-use
consumption, and that no significant relationships were detected between either of them and
other predictors, they will be included as predictors in the development of each toilet end-use
model alternative. Using criteria outlined in Section 4 in supplementary material S—A for
selecting the set of predictors resulted in two possible sets of predictors for the development
of toilet end-use forecasting model alternatives. The first set includes FQ+HF+S+NT and the
second, A+T+Cycpge<i2ytHF+S+NT. The development of toilet end-use forecasting model

alternatives using these two sets of predictors is presented below.

9.3. Toilet end-use forecasting models

Independent factorial ANOVA extended into multiple regression models was used to
build toilet end-use forecasting models by including the two sets of toilet end-use predictors
identified above. Backward stepwise regression refined each of the two sets of toilet end-use
predictors, resulting in two toilet end-use forecasting model alternatives, as presented in

Table S29.

The first toilet end-use forecasting model alternative was built using the first set of predictors
(FQ+HF+S+NT). NT was removed from the model because its z-statistic was not significant
(p > .05) and it could not improve the generated model. Results of three-way independent
factorial ANOVA extended into multiple regression model using FQ+HF+S show that the
generated model is a significant fit to the data (F (4,182) = 145.438, p < .001) and that it is
capable of explaining 76.2% (R’ = .762) of variation in average L/hh/d toilet end-use
consumption, with SE = +10.8 L/hh/d and a CV g, percentage of 22.0%, along with
acceptable levels of Ave. VIF = 1.404 and DW = 1.834 , indicating lack of multicollinearity
and autocorrelation, respectively. As presented in Table S29, the resulting model shows a

significant average toilet consumption of 31.0 L/hh/d (p < .01) for households with an
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average of five or less toilet flushes per day, which are mostly full flushes (i.e. half flushes
represent 50% or less of total number of flushes per day) using toilet suites with rated stock
efficiency of zero to two stars (i.e. average L/flush > 4.0) (the control group) (FQs
+HF<500,1+S,"). Further, all modelled mean differences 15.3, 44.7, —7.2 and —17.1 L/hh/d of
FQs 1o 9, FQ10+, HF-50o, and S3+, respectively, from the mean of the control group are all
significant (p < .01, Table S29). Therefore, FQ+HF+S was considered the final set of
predictors and, following Equation (S2), the forecasting model presented in Equation (S10)
was considered the first alternative forecasting model of ADHEUC for toilet use (ADHEUC

Toilet 1)-

31.0 + 15.3(FQg t0 9) + 44.7(FQq0+)
—7.2(HFss509,) — 17.1(S3+) + 10.8, If using toilet (S10)
0, If not using toilet

ADHEUC Toilet 1~

The second toilet end-use forecasting model alternative (see Table S29) was built using
A+T+Cycpage<12ytHF+S predictors only. This is because, as for the first model, the predictor
NT was removed as it met the backward stepwise regression removal criterion and it could
not improve the generated model. The results of five-way independent factorial ANOVA
extended into multiple regression model using A+T+Cycage<ioytHF+S show that the
generated model is a significant fit to the data (F (6,186) = 14.075, p < .001) and is capable
of explaining 31.2% (R’ = .312) of the variation in average L/hh/d toilet end-use consumption
with SE = £20.7 L/hh/d and a CV g, percentage of 40.1%. It has acceptable levels of both
Ave. VIF = 1.043 and DW = 1.895, indicating lack of multicollinearity and autocorrelation,

respectively.

As shown in Table S29, the resulting model shows a significant average toilet water
consumption of 53.1 L/hh/d (p < .01) for two-adult households with no teenagers or children
aged four to 12 years, with flushes being mostly full flushes using toilet suites with rated
stock efficiency of zero to two stars (i.e. average L/flush > 4.0) (the control group) (i.e.
2A+0T+0Cs<age<12yTHF <5004+S7"). All modelled mean differences, —13.9, 20.9, 16.0, 9.7, =7.3
and —11.2 L/hh/d of 1A, 3A", 1T", 1C" 4cage<12y» HF>50, and S5, respectively, from the mean
of the control group are significant at p < .01, with the exception of the mean difference —7.3
for HF-s09, which is significant at p < .05 (Table S29). Therefore, A+T+Cscpge<izytHF+S

was considered the final set of predictors and, following Equation (S2), the forecasting model
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presented in Equation (S11) was considered the second alternative forecasting model of

ADHEUC for toilet consumption (ADHEUC et 2).

53.1 — 13.9(1A) + 20.9(3A%)
_ J+16.0(AT*) + 9.7(1CHages1zy)
Toilet 2™ | —7 3(HFsgq9,) — 11.2(S3) + 20.7, If using toilet
kO, If not using toilet

ADHEUC (S11)

10. Dishwasher

10.1. Determinants of dishwasher end-use water consumption
The four categories of household characteristics (IVs) which were studied against the
dishwasher end-use water consumption volumes (DV) are listed in Table S30, and were

analysed as presented below.

10.1.1. Usage physical determinants of dishwasher water consumption

The average frequency of dishwasher events per week (FQ) and economy cycle
programme/mode selection status (ECO) (the IVs) were studied against average daily
dishwasher consumption volumes (the DV). Results of the independent one-way ANOVA for
the FQ characteristic and an independent #-test for ECO are presented in Table S31.

For FQ, the average dishwasher water consumption of households with an average of
fewer than three dishwasher events per week (FQs’, the control group) is 3.9 L/hh/d (p < .01).
The average dishwasher water consumption of households with an average of four to six
dishwasher events per week (FQy ¢ ¢) is 10.7 L/hh/d, which is significantly more (by 6.8
L/hh/d, p < .01, Table S31) than the average dishwasher water consumption of the control
group FQj;". For households with an average of seven or more dishwasher events per week
(FQ;") the average dishwasher water consumption is 19.7 L/hh/d which is significantly
greater (by 15.8 L/hh/d, p < .01, Table S31) than the average dishwasher water consumption
of the control group FQ;". Using the significant mean differences between each of the dummy
variables (FQ4 1, ¢ and FQ-") and the control group (FQ5"), the regression model generated for
FQ is presented in Table S31, demonstrating a statistically significant goodness of fit (F (2,
114) = 130.303, p < .001) and an ability to explain 69.6% (i.e. R’ = .696) of variation in
average dishwasher L/hh/d consumption with SE = +3.4 L/hh/d, when FQ is used alone as a

predictor of this-end use category regardless of other household characteristics.
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For the ECO characteristic, the average dishwasher water consumption of households
not selecting the economy cycle when using the dishwasher (ECO o, the control group) is
11.6 L/hh/d (p < .01, Table S31). The average consumption for households normally
selecting the economy cycle (ECO vy) is 6.8 L/hh/d, which is significantly less (by 4.8
L/hh/d, p < .01, Table S31) than control group usage. The generated regression model for
ECO presented in Table S31 shows a significant goodness of fit (¥ (1, 101) = 16.083, p <
.001) and explains 13.7% (i.e. R = .137) of variation in average dishwasher L/hh/d
consumption with SE = £5.9 L/hh/d, when ECO is used alone as a predictor of this end-use

category regardless of other household characteristics.

As expected, the FQ characteristic has a significant positive relationship, and the ECO
characteristic a significant negative relationship, with dishwasher end-use water
consumption, indicating that households normally selecting the economy cycle operating
programme/mode when using the dishwasher were consuming smaller dishwasher water
volumes. Given the identified significant relationships between these tested usage physical
characteristics and dishwasher water consumption, FQ and ECO were both considered as

determinants of consumption for this end-use category.

10.1.2. Appliance physical determinants of dishwasher water consumption

The efficiency star ratings (S) and capacity of installed dishwashers (CAP) were examined
with respect to household water consumption. For the S characteristic (see Table S32), the
average dishwasher water consumption of households using dishwashers rated three stars or
lower (S3°) based on WELS (i.e. average L/place setting >1, the control group) is 11.1 L/hh/d
(p < .01). The average consumption of households using dishwashers rated three and a half
stars or more (S35 ) based on WELS (i.e. average L/place setting <I) is 4.4 L/hh/d, which is
significantly less (by 6.7 L/hh/d, p < .01, Table S32) than the control group S;. The
regression model for S (see Table S32) shows a significant goodness of fit (F (1, 119) =
66.620, p < .001) and an ability to explain 35.9% (i.e. R = .359) of variation in average
dishwasher L/hh/d consumption with SE = +4.5 L/hh/d, when S is used alone as a predictor of

this end-use category regardless of other household characteristics.

With respect to CAP, the average dishwasher water consumption of households
having dishwashers with a loading capacity of 12 or fewer place settings (CAP<;ps, the
control group) is 6.6 L/hh/d (p < .01). The average for households having larger dishwashers,
with a loading capacity of more than 12 place settings (CAP-,ps) is 11.1 L/hh/d, which has a
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significant difference of 4.5 L/hh/d (p < .01, Table S32) from the control group CAP<;2ps.
The regression model for CAP presented in Table S32, has a significant goodness of fit (£ (1,
116) = 20.317, p < .001) and an ability to explain 14.9% (i.e. R’ = .149) of variation in
average dishwasher L/hh/d consumption with SE =+4.9 L/hh/d, when CAP is used alone as a

predictor of this end-use category regardless of other household characteristics.

The dishwasher appliance physical characteristics S and CAP both have significant
relationships with average daily per household dishwasher end-use water consumption:
households using efficient or smaller capacity dishwasher appliances were on average
consuming smaller water volumes. Therefore, both S and CAP were considered as

determinants of this end-use category.

10.1.3. Demographic and household makeup determinants of dishwasher water
consumption

Results from analysis of the demographic characteristics for dishwasher end use are
presented in Table S33. With respect to number of children under three years old in the
household (Cage<3y), the average dishwasher water consumption of households with no such
children (0Cage<sy, the control group) is 7.1 L/hh/d (p < .01). The average dishwasher water
consumption of households having one or more children of this age category (1C+Age53y) is
12.5 L/hh/d, which has a significant difference of 5.4 L/hh/d (p < .01, Table S33) from the
control group 0Cage<3y. The generated regression model of Cage<sy (see Table S33) shows a
significant goodness of fit (F (1, 120) = 20.087, p < .001) and an ability to explain 14.3%
(i.e. R*=.143) of variation in average dishwasher L/hh/d consumption with SE = +5.2 L/hh/d,
when Cage<3y 1s used alone as a predictor of this end-use category regardless of other

household characteristics.

For household size (HHS), results presented in Table S33 show that the average
dishwasher water consumption of one-or-two-person households (1,2P, the control group is
5.8 L/hh/d (p < .01). The average dishwasher water consumption of three-or-more-person
households (3P") is 9.9 L/hh/d, which is significantly more (by 4.1 L/hh/d, p < .01, Table
S33) than is used by the control group. The regression model of HHS presented in Table S33,
shows a significant goodness of fit (F (1, 121) = 15.997, p < .001) and explains 11.7% (i.e.
R’ = .117) of variation in average dishwasher L/hh/d consumption with SE = +5.6 L/hh/d,
when HHS is used alone as a predictor of this end-use category regardless of other household

characteristics.
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With respect to number of males in the household (M, Table S33), the average
dishwasher water consumption of households with one or no males (0,1M, the control group)
is 7.2 L/hh/d (p < .01). The average dishwasher water consumption of two-or-more-male
households (2M") is 10.8 L/hh/d, which differs significantly (by 3.6 L/hh/d, p < .01, Table
S33) from the control group 0,1M. The generated regression model of M presented in Table
S33 shows a significant goodness of fit (F (1, 116) = 10.033, p < .01) and an ability to
explain 8.0% (i.e. R”=.080) of variation in average dishwasher L/hh/d consumption with SE
= +6.1 L/hh/d, when M is used alone as a predictor of this end-use category regardless of

other household characteristics.

For none of the demographic characteristics number of teenagers (T), number of
females (F), number of adults (A) and number of children aged four to 12 (Cacage<iay) Were
significant mean differences found between their associated groups (see Table S33).
Moreover, regression models developed using each of these characteristics could not explain
variation in dishwasher end-use consumption. Therefore, these demographic characteristics
were not considered as determinants of consumption for the dishwasher end-use category.

Consequently, no household makeup composites could be formed for this end-use category.

In summary, the demographic characteristics Cage<zy, HHS and M show significant
positive relationships with average daily per household dishwasher end-use water
consumption and were considered as significant determinants of this end-use category. These
results indicate that larger family households, households with small children, and those with
more male occupants are the main consumers of the dishwasher end use. Given that the
Cagessy determinant has the greatest ability of the three characteristics to explain dishwasher
consumption; it was selected for dishwasher end-use forecasting model development. This
result might be attributed to a latent reason that needs to be studied further. For instance, it
may be that the higher dishwasher water consumption of households with small children
(three years or younger) is due to hygienic concerns: greater trust in dishwashers would result
in extra consumption that households with no children in this age category do not have (e.g.
washing baby bottles in a separate dishwasher event from other dishwashing events). In
addition, dishwasher end-use consumption was not expected to be gender dependent, so M as
a determinant should be examined further, particularly since F was not a significant
determinant of this end-use category (see Table S33). Further research could investigate if

there is a relationship between number of males in the household and number of dishes to be
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washed, or if the probability of hand-washing dishes increases with more females in the

house.

10.1.4. Socio-demographic determinants of dishwasher water consumption

Results of analyses of socio-demographic characteristics for the dishwasher end use are
presented in Table S34. For predominant educational level in household (E), results presented
in Table S34 show that the average dishwasher water consumption of households with a
predominant tertiary undergraduate or lower educational level (Ey’, the control group) is 7.3
L/hh/d (p < .01). The average dishwasher water consumption of households with a
predominant tertiary postgraduate educational level (Ep) is 10.7 L/hh/d, which is significantly
more (by 3.4 L/hh/d, p < .05, Table S34) than the control group Ey". The regression model of
E (see Table S34) shows a statistically significant goodness of fit (F (1, 119) = 8.308, p <
.01) and an ability to explain 6.5% (i.e. R?=.065) of variation in average dishwasher L/hh/d
consumption with SE = £5.4 L/hh/d, when E is used alone as a predictor of this end-use

category regardless of other household characteristics.

For the socio-demographic characteristic household annual income level (I), results presented
in Table S34 show that the average dishwasher water consumption of households whose
annual income is <AUS$60,000 (I<ss0,000, the control group) is 7.0 L/hh/d (p < .01). The
average dishwasher water consumption of households with annual income >AUS$60,000
(I=s60,000) 1s 9.6 L/hh/d. This significantly exceeds (by 2.6 L/hh/d, p < .05, Table S34) control
group usage. The regression model of I presented in Table S34 shows a significant goodness
of fit (F (1, 108) = 4.726, p < .05) and an ability to explain 4.2% (i.e. R’ = .042) of variation
in average dishwasher L/hh/d consumption with SE = +6.3 L/hh/d, when I is used alone as a

predictor of this end-use category regardless of other household characteristics.

In terms of predominant occupational status in household (O), the average dishwasher
consumption of households with occupants that are mostly working or at school (O, the
control group) is 8.9 L/hh/d (p < .01). The average dishwasher consumption of households
with occupants that are mostly staying at home or retired (Or) is 7.3 L/hh/d, which differed
by a non-significant 1.6 L/hh/d (Table S34) from control group usage. Accordingly, the
generated regression model of O was not significant, and O was not considered as a

determinant of the dishwasher end-use consumption.
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In summary, these results show significant positive relationships between both E and
I, and average daily per household dishwasher consumption, indicating that households with
a predominant tertiary postgraduate educational level, and higher income households are
consuming more water for this end-use category. Therefore, the E and I characteristics were
considered as socio-demographic determinants of dishwasher consumption. These results
could be further examined to determine, for example, if the higher dishwasher water
consumption of higher education and higher income households is due to the higher
affordability of dishwasher detergents, or is due to lifestyle (i.e. such people might be more

dependent on their dishwasher than are lower education and lower income households).

The results presented here show that the usage physical characteristics FQ and ECO,
the dishwasher appliance physical characteristics S and CAP, the demographic characteristics
Cagessy, HHS and M, and the socio-demographic characteristics E and I, are all determinants
of dishwasher end-use water consumption. This provides empirical evidence that dishwasher
end-use consumption is highly influenced by the frequency of dishwasher events. Further,
there is evidence that the selection of the economy cycle operating programme/mode, and the
use of efficient and smaller dishwashers can result in lower dishwasher end-use water
consumption. Also, households with very young children, with more male occupants and
occupants with higher education and higher income are the main contributors to the

dishwasher end-use category.

The above findings were applied in an independent factorial ANOVA extended into
multiple regression models using combinations of the identified determinants as predictors of
dishwasher end-use consumption. However, correlations between these determinants were

examined before they were used as predictors of this end-use category, as follows.

10.2. Relationships among dishwasher end-use predictors
Relationships among predictors of dishwasher end-use consumption were examined.
Only relationships between predictors assessed as significant (p < .05) by the »’-statistic are

presented in Table S7.

Results presented in Table S7 indicate significant positive relationships between the
dishwasher usage physical predictor FQ (the DV) and the demographic predictor Cage<sy and
socio-demographic predictor E, being the IVs. A significant negative relationship was found

between the physical predictor ECO (the DV) and the socio-demographic predictor I (the IV).

84



As expected, there was a significant positive relationship between the socio-demographic

predictors I (the DV) and E (the IV).

Referring to clusters of the tested household characteristics for this end-use category
(see Table S30), the results (Table S7) reveal that higher average weekly dishwasher end-use
event frequency households (i.e. an average of four to six, or seven or more dishwasher
events per week) are most likely to be those with children aged three years or less, and
households with a predominantly postgraduate education level. These results and their related
measures of strength of association (7, and ¥V, Table S7) provide evidence that such
households were the drivers of higher dishwasher water consumption, through their higher
dishwasher events frequency. Such households are thus considered as an important
conservation target for the dishwasher end-use category. Further, households normally
selecting the economy cycle operating programme/mode when using the dishwasher are most
likely to be lower income households, which suggests that selecting the economy cycle
operating dishwasher programme/mode might be a financial consideration. Such benefits
could be related also to the energy side of dishwasher consumption (i.e. less energy required

to heat less water volumes in ECO mode).

The significant relationships identified between predictors show that the demographic
predictor Cage<3y and the socio-demographic predictor E can work as proxies for the physical
predictor FQ in dishwasher end-use forecasting model development. Also, the socio-
demographic predictor I can work as a proxy for the physical predictor ECO in the models.
However, given the existing correlation between E and I, they will be used as alternatives to
each other for the development of such forecasting models. Use of the criteria described in
Section 4 in supplementary material S—A for selecting predictors for alternative forecasting
models resulted in three possible sets of predictors for the development of dishwasher end-
use forecasting model alternatives. Given that the dishwasher appliance physical
characteristics S and CAP are significant determinants of dishwasher end-use consumption,
and that no significant relationships were found between either of them and other predictors
both will be considered as predictors in the development of each dishwasher end-use model

alternatives.

The first set of predictors includes FQ+ECO+S+CAP, the second includes Cage<sy+1+S+CAP
and the third includes Cage<3ytE+ECO+S+CAP. The development of dishwasher end-use

forecasting model alternatives using these three sets of predictors is presented next.

85



10.3. Dishwasher end-use forecasting models

Independent factorial ANOVA extended into multiple regression models was used to
build dishwasher end-use forecasting models by including each of the three sets of
dishwasher end-use predictors identified above. The process of backward stepwise regression
resulted in the three dishwasher end-use forecasting model alternatives presented in Table

S35.

The first alternative was built using the first set of predictors (FQ+ECO+S+CAP). None of
the predictors met the removal criterion of backward stepwise regression (i.e. z-statistic p >
.05). Results of four-way independent factorial ANOVA extended into multiple regression
model show that the generated model is a significant fit to the data (F (5, 88) = 106.179, p <
.001) and is capable of explaining 85.8% (R’ = .858) of variation in average L/hh/d
dishwasher end-use consumption with SE = +2.0 L/hh/d, a CV g., percentage of 23.8% and
acceptable levels of Ave. VIF = 1.191 and DW = 2.372, indicating lack of multicollinearity
and autocorrelation, respectively. As presented in Table S35, the resulting model shows a
significant average dishwasher water consumption of 5.6 L/hh/d (p < .01) for households
with an average of three or fewer dishwasher events per week, which are normally not
selecting the economy cycle when using dishwashers that are of smaller capacity (i.e.
capacity for 12 or fewer place settings) with rated stock efficiency of zero to three stars (i.e.
average L/place setting > 1, the control group FQ3;+ECO n, +S3+ CAP<j2ps). Further, the
modelled mean differences of 5.5, 12.3, —1.7, —2.4 and 2.4 L/hh/d for FQ4os, FQ7+, ECO ves,
Ss5  and CAP-2ps, respectively, from the mean of the control group are all significant (p <
.01, Table S35). Therefore, FQ+ECO+S+CAP was considered the final set of predictors and,
following Equation (S2), the forecasting model presented in Equation (S12) was considered

the first alternative forecasting model of ADHEUC for dishwasher use (ADHEUC pishwasher 1)-

J 5.6 + 5.5(FQy06) + 12.3(FQ,+)

—1.7(ECOy,g) — 2.4(S55+)

ADHEUC ... = .

Dishwasher 1" | +2.4(CAPs12p5) * 2.0, If using dishwasher
0, If not using dishwasher

(S12)

The second forecasting model alternative was built using the predictors

CagessytI+S+CAP. The predictor I was removed from the model as it met the removal
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criterion (i.e. z-statistic p > .05) and it could not improve the generated model. Therefore,

Cages3yTSTCAP were used for the second dishwasher forecasting model alternative.
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Results of three-way independent factorial ANOVA extended into multiple regression model
show that the generated model is a significant fit to the data (¥ (3,114) = 36.162, p < .001)
and that it is capable of explaining 48.8% (R’ = .488) of variation in average L/hh/d
dishwasher end-use consumption with SE = £3.9 L/hh/d and a CV p., percentage of 49.4%,
as well as very acceptable levels of Ave. VIF = 1.059 and DW = 2.094, indicating lack of both
multicollinearity and autocorrelation, respectively. As shown in Table S35, the resulting
model shows a significant average dishwasher water consumption of 9.0 L/hh/d (p < .01) for
households having no children aged three years or less, which are utilising smaller capacity
dishwashers (i.e. 12 or fewer place settings) with rated stock efficiency of zero to three stars
(1.e. average L/place setting > 1, the control group 0Cage<3y+S3+ CAP<izps). Further, the
modelled mean differences 3.1, —5.6 and 3.0 L/hh/d of 1C+Age§3y, S;s" and CAP-iaps,
respectively, from the mean of the control group are all significant (p < .01, Table S35).
Therefore, Cage<zytS+CAP was considered the final set of predictors and, following Equation
(S2), the forecasting model presented in Equation (S13) was considered the second

alternative forecasting model of ADHEUC for dishwashers (ADHEUC pishwasher 2)-

9.0 + 3.1(1Cgecsy) — 5.6(S35+)

ADHEUC .o cher 2= § +3.0(CAPs 12p5) £ 3.9, If using dishwasher ~ (S13)
0, If not using dishwasher

The third dishwasher end-use forecasting model alternative was built using the third
set of predictors (Cage<sytEXECO+S+CAP). None of the predictors met the removal
criterion. Results of five-way independent factorial ANOVA extended into multiple
regression model show that the generated model is a significant fit to the data (F (5,87) =
15.956, p < .001) and that it is capable of explaining 47.8% (R’ = 478) of variation in
average L/hh/d dishwasher end-use consumption with SE = £3.9 L/hb/d and a CV pge,
percentage of 45.3%, and very acceptable levels of Ave. VIF = 1.140 and DW = 2.072,
indicating lack of multicollinearity and autocorrelation, respectively. As presented in Table
S35, the model shows a significant average dishwasher water consumption of 9.1 L/hh/d (p <
.01) for households having no children aged three years or less, with predominantly tertiary
undergraduate or lower educational level, and normally not selecting the economy cycle
operating programme/mode when using dishwashers that are of smaller capacity (12 or fewer
place settings) with rated stock efficiency of zero to three stars (i.e. average L/place setting

>1, the control group, 0Cage<syt Eu'+ ECO not S3+ CAP<j2ps ). Further, the modelled mean

&9



differences 3.8, 1.9, —2.0, —4.0 and 2.0 L/hh/d for 1C" age<sy, Ep, ECO ves, S3.5° and CAP-1ps,
respectively, from the control group mean are all significant (p < .01, with the exception of
Ep and CAP-zps for which p < .05, Table S35). Therefore, Cage<sytETECO+S+CAP was
considered the final set of predictors and, following Equation (S2), the forecasting model

presented in Equation (S14) was considered the third alternative forecasting model of

ADHEUC for dishwasher use (ADHEUC pjshwasher 3)-

9.1+ 3.8(1Cge<sy) + 1.9(Ep)
_ ) —2.0(ECOy¢s) — 4.0(S55+)
Dishwasher 3™} 1.2 0(CAP.,,p5) + 3.9, If using dishwasher
kO, If not using dishwasher

ADHEUC (S14)

11. Bath

11.1. Determinants of bath end-use water consumption
The four categories of household characteristics (IVs) which were studied against the
bath end-use water consumption volumes (DV) are listed in Table S36, and were analysed as

presented below.

11.1.1. Usage physical determinants of bath water consumption

The bath usage physical characteristics average frequency of bath events per two weeks (FQ)
and average water level or volume used to fill the bathtub per bath event (WL, in L/event)
being the IVs, were studied against average daily bath end-use water consumption volume
(the DV). Results of independent #-tests for the FQ and WL characteristics are presented in
Table S37.

For FQ, the average bath water consumption of households with an average of seven
or fewer bath events per two weeks (FQ7', the control group) is 14.7 L/hh/d (p < .01). The
average bath water consumption of households with an average of eight or more bath events
per two weeks (FQg") is 44.5 L/hh/d, which is significantly more (by 29.8 L/hh/d, p < .01,
Table S37) than the average bath water consumption of the control group. The regression
model of FQ presented in Table S37 shows a significant goodness of fit (¥ (1, 35) =38.795, p
< .001) and an ability to explain 52.6% (i.e. R’ = .526) of variation in average bath L/hh/d
consumption with SE = £13.3 L/hh/d, when FQ is used alone as a predictor of this end-use

category regardless of other household characteristics.
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For WL, the average bath water consumption of households using an average of 70L
or less per event (WL<7) as their normally used water level to fill the bathtub (the control
group) is 18.8 L/hh/d (p < .01, Table S37). The average bath water consumption of
households using an average of more than 70L/event (WLs70) as their normally used water
level to fill the bathtub is 38.5 L/hh/d, which has a significant difference of 19.7 L/hh/d (p <
.05, Table S37) from the control group. The generated regression model for WL presented in
Table S37 shows a significant goodness of fit (¥ (1, 35) = 8.866, p < .01) and an ability to
explain 20.2% (i.e. R’ = .202) of variation in average bath L/hh/d consumption, with SE =
+17.3 L/hh/d, when WL is used alone as a predictor of this end-use category regardless of

other household characteristics.

As could be expected, both FQ and WL have significant positive relationships with
bath end-use water consumption. Therefore, both characteristics were considered as

determinants of consumption for this end-use category.

11.1.2. Bathtub physical determinants of bath water consumption

The characteristics bathtub tap efficiency star ratings (S) and bathtub size (BS) were
examined. For the S characteristic (Table S38) the average bath water consumption of
households using bathtub tap fixtures rated three stars or lower (S;°) based on WELS (i.e.
average flow rate > 7.5 L/min., the control group) is 26.2 L/hh/d (p < .01). Results also show
that the average bath water consumption of households using bathtub tap fixtures rated four
stars or more (S4") based on WELS (i.e. average flow rate < 7.5 L/min.) is 12.9 L/hh/d, which
has a significant difference of 13.3 L/hh/d (p < .05, Table S38), when compared to the
control group. However, the generated regression model of S presented in Table S38 is not

significant, so S was not considered as a determinant of the bath end-use category.

Similarly, for the BS characteristic, despite the positive relationship between bathtub size and
the average daily per household bath water consumption, mean differences between its
associated groups were non-significant. Further, the generated regression model of the BS
characteristic presented in Table S38 is non-significant, and therefore BS was not considered
as a determinant of the bath end-use category. Although households using smaller bathtubs
and those using efficient bathtub tap fixtures were consuming less water than those using less
efficient fixtures and larger bathtubs, such differences are not significant (see Table S38).
However, this could be expected, as bathtubs are filled until the required water level is

reached, regardless of flow rate and bathtub size, which showed a weak influence.

92



€6

10°>yx ‘S0>dy

(S0’ <d) yueoryruSis-uou A[[eonsnels ..

P/Yy/1 98eI0AR Q1B S)IUN S, S PUB ‘SUBIW ‘SIUIIJJI09 :9JON

snuearad 1) densiooq 9,66 pue sojdwes densjooq paynens 0 [=g U0 PISeq PIIB[NO[ed d1om (PIIel-0M]) S[OAJ] dourdlIuSIs [eonsnels :paddensiooq,

«u 76 1009> Sq >T100%
€S 100y >g g S100€
L'y <L ¥'69  6SLC su 18970 91 (4 981 o6l 89¢ L61'1 #xL"CC juesuoy) 1008 >g g >1081 ¢ sS4
«€€1- S
89 8¢ 18 €TCT sul1€C [43 ! y'6l ¢ 8'¢C 000°1 #%xC 9C Juelsuon) S [4 S
(%) 4 ) APV (%) A0  Md d Ur o A4S N UBsA dIA 24F 1UBI1014430D [BPON  dnoubjonuod Ay Al
uondwnsuod asn pud Yjeq JoJ S[PPOW UOISSAIZAI pue sjueUILLIAAP [eIIsAyd qmiyieq 'ges a|ge.L
100 >@sesse ‘10> ‘S0">dy
P/Uy/1 95eI0A® QIR S}IUN §, 7S PUB ‘SUBSW ‘SJUSIOIIFO0D :9JON
anuadIad 1) densjooq 9,66 pue sojdures densjooq paynens () [=g UO Paseq Paje[noed d1om (PI[Ie}-0m}) S[9AS] dourdYIUSIS [eonsne)s :paddensjooq,
L6l OLSTM )
0C 6'L1 eeL  peo'l #%998°8 33 I €L L€ 9°¢C 0001 #5881 juesuo) 0= TM ¢ IM
*%x8°6C +w0m
9°CS 45 y9S 8091 #%x50L'8¢€ 53 I €¢l  LE 9°¢C 0001 Al jueIsuo’y L0d T od
(%) 4 (%) A Iy (%) ¥ AD Md A gpr b AS N UBIN  JIA 24F  1U3I014480D [BpoN dnodbjosuod ANy Al

uondwnsuod asn pud yjeq J0J S[POUW UOISSAIZAI PUB SJUBUIILIAP [edIsAyd o8es) /€S a|geL



Hence, water level (WL) is a significant determinant of bath water consumption, as revealed

in Section 11.1.1.

11.1.3. Demographic and household makeup determinants of bath water consumption

Results of analysis of demographic characteristics in relation to bath end use are presented in
Table S39. As noted in Section 4.3 in the research paper and Table S36, records of bath
consumption came only from households with couples and families with younger children:
there were no cases in the utilised sample of bath usage for households with single adults,
three or more adults and all males (N=37 households). Therefore, the tested demographic
characteristics only include households in which bath water consumption was found. This
resulted in excluding one-person (1P), single-adult (1A), three-or-more-adult (3A") and no-
female household (OF) groups from their associated demographic characteristics HHS, A and
F. Given that 1A and 3A" were excluded, and that all households providing bath end-use data
were two-adult households (2A), the characteristic number of adults in the household (A) is
omitted from the analysis as it remained with a single group (i.e. 2A), not allowing for
consumption mean comparisons. However, the average bath consumption of two-adult
households, whether consisting of an adult couple or two adults with children, was
represented by the 2P and 3P" groups belonging to the HHS characteristic. This is because all
tested two-person households are two-adult households, and all tested three-or-more-person

households were families with two adults and children.

For household size (HHS), results presented in Table S39 show that the average bath
water consumption of two-person (i.e. couple) households (2P, the control group) is 12.3
L/hh/d (p < .01). The average bath water consumption of households with three or more
occupants (i.e. family of two adults and children, 3P") is 27.8 L/hh/d, which has a significant
difference of 15.5 L/hh/d (p < 0.01 level, Table S39) from the control group 2P. The
generated regression model of HHS presented in Table S39 shows a significant goodness of
fit (F (1, 35) = 5.426, p < .05) and an ability to explain 13.4% (i.e. R’ = .134) of variation in
average bath L/hh/d consumption with SE = £18.0 L/hh/d, when HHS is used alone as a

predictor of this end-use category regardless of other household characteristics.

Despite the positive relationship between the Cage<sy, M, T, Cicpge<iny and F
demographic characteristics and the average daily per household bath water consumption,

mean differences between their associated groups were not significant (Table S39). Further,
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the generated regression models of these characteristics are non-significant (Table S39).

Therefore, they were not considered as determinants of the bath end-use category.

The demographic characteristic HHS is the only characteristic showing a significant
positive relationship with average daily per household bath end-use water consumption.
Therefore, it was considered the only significant demographic determinant of this end-use
category, and was used on its own for bath end-use forecasting model development as no

household makeup composites could be formed.

In summary, the results indicate that bathing is a consumption activity mainly found
in couple households and family households with children. This suggests that bathing has two
different consumption purposes; leisure (i.e. relaxation) for adults, and hygiene for younger

children as an alternative to showering.

11.1.4. Socio-demographic determinants of bath water consumption

Results of analysis of socio-demographic characteristics for the bath end use are presented in
Table S40. With respect to household annual income level (I), results presented in Table S40
show that the average bath water consumption for households earning >AU$60,000 per year
(I=s60.000, the control group) is 28.0 L/hh/d (p < .01). Results also show that the average bath
water consumption of households whose annual income is <AU$60,000 (I<s60,000) i 9.8
L/hh/d, which has a significant difference of 18.2 L/hh/d (p < .01, Table S40) from the
control group. The generated regression model of I (see Table S40) shows a significant
goodness of fit (F (1, 35) = 7.313, p < .01) and an ability to explain 17.3% (i.e. R* = .173) of
variation in average bath L/hh/d consumption with SE = +17.6 L/hh/d, when I is used alone

as a predictor of this end-use category regardless of other household characteristics.

The mean differences of average daily per household bath water consumption
between groups associated with the O and E socio-demographic characteristics were not
significant, nor are their generated regression models (Table S40). Therefore, they were not

considered as determinants of the bath end-use category.

The socio-demographic characteristic I is the only characteristic showing a significant
relationship with average daily per household bath water consumption, suggesting that higher
bathing water consumption is found in higher income households. This characteristic was

considered as the only significant socio-demographic determinant of this end-use category.
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11.2. Relationships among bath end-use predictors

Correlations among predictors of the bath end use consumption were examined and
significant relationships between predictors, assessed by the significance level of the y’-
statistic, are presented in Table S7. There was a significant positive relationship between the
bath usage physical predictor FQ (the DV) and the demographic predictor HHS and the
socio-demographic predictor I (being the IVs).

With reference to clusters of the tested household characteristics for this end-use category
presented in Table S36, the results (Table S7) suggest that higher bath end-use event
frequency households (i.e. an average of eight or more bath events per two weeks) are most
likely to have three or more occupants (i.e. family of two adults and children) and higher
annual income (>AU$60,000). This, along with their related measures of strength of
association (75, V" and @, see Table S7) provides evidence that such households were the
drivers of higher bath water consumption through their higher bathing events frequency.
Households with such characteristics are thus considered as an important conservation target

for the bath end-use category.

The identified significant relationships among predictors indicate that the
demographic predictor HHS and the socio-demographic predictor I can act as proxies for the
physical predictor FQ in bath end-use forecasting model development. According to the
criteria in Section 4 in supplementary material S—A for selecting predictors, there are two
possible sets of predictors for the development of bath end-use forecasting model
alternatives. Given that the bath usage physical characteristic WL is a significant determinant
of bath water consumption, and that no significant relationships could be found between it
and other predictors, it will be included in the development of each model alternative.
Accordingly, the first set of predictors includes FQ+WL and the second set includes
HHS-+I+WL. The development of bath end-use forecasting model alternatives using these

sets of predictors is presented next.

11.3. Bath end-use forecasting models

Independent factorial ANOVA extended into multiple regression models was used to
build bath end-use forecasting models by including each of the two sets of bath end-use
predictors presented above. Applying backward stepwise regression to enter predictors
belonging to each of the two sets resulted in two bath end-use forecasting model alternatives

(see Table S41).
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The first model alternative was built using FQ+WL, neither of which met removal
criteria of the backward stepwise regression approach. Results of two-way independent
factorial ANOVA extended into multiple regression model show that the generated model is
a significant fit to the data (F (2, 34) = 39.681, p < .001) and explains 70.0% (R’ = .700) of
the variation in average L/hh/d bath end-use consumption with SE = £10.7 L/hh/d and a CV
reg. percentage of 45.3%, as well as acceptable levels of Ave. VIF = 1.002 and DW = 1.583,
which indicate lack of multicollinearity and autocorrelation, respectively. As presented in
Table S41, the resulting model shows a significant average bath water consumption of 10.5
L/hh/d (p < .01) for households with an average of seven or fewer bath events per two weeks,
which are utilising an average of 70L or less per event as their normally used water level to
fill the bathtub (the control group, FQ;+ WL <7). Further, the modelled mean differences of
29.0 and 18.3 L/hh/d of FQg" and WL -, respectively, from the mean of the control group
(i.e. 10.5 L/hh/d) are all significant at p < .01 (Table S41). Therefore, FQ+WL was
considered the final set of predictors and, following Equation (S2), the forecasting model
presented in Equation (S15) was considered the first alternative forecasting model of

ADHEUC for bathing (ADHEUC gy 1).

10.5 4 29.0(FQg+) + 18.3(WLs,,) + 10.7, If using bath

ADHEUC = {0, If not using bath

(S15)

The second bath end-use forecasting model alternative was built using the second set
of predictors (i.e. HHS+I+WL). The predictor HHS was removed from the model as it met
the removal criterion and it could not improve the generated model. Therefore, [+WL were
used for the second bath forecasting model alternative. Results of two-way independent
factorial ANOVA extended into multiple regression model show that the generated model is
a significant fit to the data (¥ (2, 34) = 12.590, p < .001) and it is capable of explaining
42.5% (R’ = .425) of variations in average L/hh/d bath end-use water consumption with SE =
+14.9 L/hh/d and a CV g, percentage of 63.1%, along with acceptable levels of Ave. VIF =
1.014 and DW = 1.892, indicating lack of multicollinearity and autocorrelation, respectively.
As presented in Table S41, the resulting model shows a statistically significant average bath
water consumption of 23.3 L/hh/d (p < .01) for households whose annual income is
>AU$60,000, that are utilising an average of 70L or fewer per event as their normally used
water level to fill the bathtub, being the control group (i.e. I >s60000+ WL <70). Further, the
modelled mean differences —20.9 and 22.2 L/hh/d of I<s60,000 and WL >7, respectively, from
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the control group mean are all significant (p < .01, Table S41). Therefore, [+WL was
considered the final set of predictors and, following Equation (S2), the forecasting model

presented in Equation (S16) was considered the second alternative forecasting model of

ADHEUC of bath (ADHEUC g 2).

23.3 — 20.9(I<s60,000) + 22.2(WLs7) £ 14.9, If using bath

ADHEUC =
Bath 2 {0, If not using bath

(S16)

A summary and discussion on the revealed determinants of consumption and the
utilised predictors for the development of forecasting model alternatives for the six end-use
categories covered in this study and presented in supplementary material S—B is provided in
Section 6.1 in the research paper. Furthermore, total indoor bottom-up forecasting model
alternatives developed utilising the generated end—use forecasting models presented in

supplementary material S—B are presented in Section 6.2 in the research paper.
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