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Abstract

This paper is concerned with distributed event-triggered H∞ filtering over sensor networks with com-
munication delays. Firstly, a new distributed event-triggered communication scheme is proposed to
determine whether or not each sensor’s current sampled-data should be broadcast and transmitted
for filter design. Each sensor node is capable to make its own decision to broadcast and to transmit
current sampled-data only when its local measurement output error exceeds a specified threshold.
Secondly, under the distributed event-triggered communication scheme, the resultant filtering error
system, which includes information of communication delays, is transformed into a system with mul-
tiple delays. Sufficient conditions on the existence of desired distributed event-triggered H∞ filters
are derived such that the resultant filtering error system is asymptotically stable with prescribed
weighting average H∞ performance. The trade-off analysis between communication resource uti-
lization and weighting average H∞ performance is carried out. Thirdly, a co-design algorithm for
simultaneously determining the filter parameters and the threshold parameters is developed. Finally,
a benchmark example is given to show the effectiveness of the obtained theoretical results.

Keywords: Distributed H∞ filtering, event-triggered communication scheme, sensor network,
communication delay, co-design algorithm.

1. Introduction

Recent advancements in hardware and wireless communication technologies have enabled the
development of low-cost, low-battery, and multi-functional sensor nodes. A sensor network is usually
composed of a large number of sensor nodes, which are dispersedly deployed in the sensor field and
collaborate among themselves. Each sensor node is equipped with a radio transceiver, allowing it
to communicate with certain amount of neighboring nodes and to send/receive data to/from not
only itself but also its neighboring nodes in accordance with a given sensing topology. With its
data processing and broadcasting ability, each node also locally carries out simple computation of
aggregated data and transmits the processed data to a remote task manager node, e.g., a filter
node, only when required via communication networks. Recently, distributed filtering over sensor
networks has been received increasing attention from signal processing and networking communities
[2, 12, 17, 21, 24, 28].
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In practice, sensor nodes in sensor networks are often battery operated and usually have limited
energy resources for broadcasting their sampled-data to remote task manager nodes through a com-
munication network. The network bandwidth is also a limited resource for data transmission from
nodes in the sensor field. On the one hand, it is clear that the implicit assumption made by tradi-
tional filtering schemes [12, 24] that the continuous-time measurement output signal of the plant is
equal to the input signal of the filter is no longer applicable in practical network environments due to
digital implementation of network components. On the other hand, when there is a little fluctuation
between two consecutive sampled-data or in the case that the system’s state is approaching to its
equilibrium and no external disturbance is acting on the system, it is obviously a waste of scarce
communication resources to broadcast and to transmit current sampled-data for filter design. In
this sense, it is unnecessary to update the signals by using traditional time-triggered communication
schemes [2, 9–11, 17, 21, 22, 28], in which data transmission is executed periodically after the elapse
of a fixed time interval. In fact, time-triggered communication schemes increase the frequency with
which sensors broadcast and transmit the sampled-data, thereby leading to increased consumption
of limited energy and/or network bandwidth resources. Therefore, one important issue in the im-
plementation of sensor networks is to identify an efficient communication scheme to determine when
or how frequently each sensor should broadcast and transmit current sampled-data to a remote task
manager node to reduce the occupancy of scarce communication resources.

To overcome the drawback of traditional time-triggered communication schemes, event-triggered
control schemes have been proposed in the published literature to mitigate the need for unneces-
sary data transmission while preserving system performance and have been implemented on several
different system models, see e.g., linear time-invariant systems [4, 5, 14, 18, 29], nonlinear systems
[1, 13, 20, 25], wireless sensor actuator networks [15], multi-agent systems [7], and distributed net-
worked control systems [25]. Under the paradigm of event-triggered control, the objective control
task is only executed after the occurrence of a specified event which is usually generated by an event
triggering condition. In this sense, network resources are occupied only when “needed” and the
number of transmitted control task executions is capable of significantly reducing. However, all the
works above-mentioned on event-triggered communication schemes have focused on control issues of
various system models. In contrast, few results in the context of distributed event-triggered filtering
have been reported in the existing literature. Note that most of the existing event-triggered commu-
nication schemes on control issues may be not suitable to be straightforwardly extended to address
the distributed event-triggered filtering problem over sensor networks due to the facts that: (i) nodes
in sensor networks collaborate with each other and each of them is capable of collecting measure-
ment from its neighboring nodes. These sensor nodes may not have access to all the measurement.
Furthermore, the measurement on different sensor nodes may have different physical characteristics,
e.g., motion, temperature, and electricity. Therefore, it is preferable to design a new distributed
event-triggered communication scheme which reflects measurement exchanged among neighboring
nodes and triggers data transmission from different sensor nodes in a distributed manner; (ii) some
existing distributed event-triggered control schemes [15, 25] need to be performed continuously since
the event triggering conditions depend on continuous-time states of the system, which implies that
an extra dedicated hardware is required to monitor the instantaneous states of the system so as
to trigger the next event. Hence, it is of significance and necessity to propose a new distributed
event-triggered communication scheme in which the event triggering conditions are only dependent
on the discrete measurement outputs; and (iii) the majority of the current event-triggered control
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schemes are based on a prior assumption that the event triggering functions are determined in ad-
vance and then suitable control strategies are designed in order to ensure the stability of the system.
In other words, the event triggering parameters need to be preset before implementing the control
laws. It is thus desirable to develop a novel distributed event-triggered filtering scheme to co-design
both the filter parameters and the event triggering parameters. Recently, the problem of distributed
event-triggered estimation over wireless sensor networks was studied in [26]. A global event-triggered
communication policy for state estimation was established to minimize the weighted function of the
network energy consumption and the number of transmissions. Nevertheless, the algorithm design
was limited to a central estimator, i.e., all the sensed measurement was sent to a fusion center in
which a dedicated estimation approach was applied. It is noteworthy that this centralized estimation
scheme may cause high cost for the fusion center collecting measurement from every sensor node and
lead to increase of computational burden for the fusion center computing the estimation in a cen-
tralized manner [6]. Consequently, a fully distributed event-triggered filtering algorithm, which uses
local measurement information available from each communication link, is preferred in the setting
of sensor networks. In [16], although an event-triggered communication scheme was developed to
determine when each sensor should transmit its sampled measurement to a remote filter through
a wireless sensor network, information exchange, which plays an important role in the process of
distributed filtering, among sensors was not considered. To the best of the authors’ knowledge, there
is no systematic result that addresses the distributed event-triggered H∞ filtering problem over sensor
networks in a fully distributed fashion while simultaneously preserving desired system performance
and reducing communication resource utilization. This is the first motivation of the current study.

For network-based control and filtering, network-induced communication delays inevitably occur
during data transmission due to the limited network bandwidth and/or congested network traffic.
There are some recent results available about network-induced delays [3, 19, 23, 31, 32]. However, the
effects of communication delays are not considered in the majority of results on distributed filtering
over sensor networks in the existing literature [2, 12, 21, 24, 26, 28]. It is well acknowledged that
network-induced delays are regarded as one of the main sources of system performance degradation
and divergence of distributed filtering algorithms implemented. Moreover, when the design issue of
the event-triggering communication scheme is pursued, the effects of communication delays should
be taken into account since the design procedure is performed by using the sampled-data after it
is transmitted through unreliable communication networks. In this sense, communication delays
may affect not only system performance but also network resource utilization. Therefore, the second
motivation of this study is to further investigate the effects of communication delays on distributed
event-triggered H∞ filtering over sensor networks in a unified framework.

Based on the observations above, this paper aims to address the distributed event-triggered
H∞ filtering problem over sensor networks in the presence of communication delays. The main
contributions are summarized as follows:

(i) A new distributed event-triggered communication scheme is proposed. The sensor nodes are
dispersedly deployed in the sensor field and the filter nodes are physically distributed via a
communication network. Each of these sensor nodes has capability to collect measurement
outputs from its all underlying neighboring nodes, to process aggregated data in accordance
with a prescribed sensing topology, to sample these processed data at a constant sampling
period, and to further broadcast the sampled-data to a remote filter node through the network.
Whether or not current sampled-data on each sensor node should be broadcast and transmitted
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is determined by an event monitor. Each node can locally make its own decision to broadcast
and to transmit its sampled-data only when the local output error value between the current
sampled output and the latest transmitted output exceeds a specified threshold;

(ii) Criteria for designing distributed event-triggered H∞ filters are established. Under the dis-
tributed event-triggered communication scheme, the resultant filtering error system, which in-
cludes information of communication delays, is transformed into a system with multiple delays.
New sufficient conditions on the existence of desired distributed event-triggered H∞ filters are
derived such that the resultant filtering error system is asymptotically stable with prescribed
weighting average H∞ disturbance attenuation performance. Applying the obtained theoret-
ical results, the trade-off analysis between communication resource occupancy and weighting
average H∞ performance is carried out; and

(iii) A new co-design algorithm is developed to determine desired filter parameters and threshold
parameters while simultaneously preserving an expected level of weighting average H∞ per-
formance and maintaining an expected level of communication resources occupancy for data
transmission.

The effectiveness of the proposed filter design method is illustrated by a benchmark example.
Notation: diagN{U} (or diagN{Ui}) denotes the N -block-diagonal matrix diag{U , · · · , U} (or

diag{U1, · · · , UN}). diagi
N{U} (or diagi

N{Ui}) denotes the N -bolck-diagonal matrix with its i-th
block U (or Ui) and the others zero. Similarly, vecN{U} (or vecN{Ui}) and veci

N{U} (or veci
N{Ui})

denote row vectors with suitable blocks; colN{U} (or colN{Ui}) and coliN{U} (or coliN{Ui}) denote
column vectors with suitable blocks. ⊗ stands for the Kronecker product for matrices. sym(UV )
refers to the symmetrized expression UV + V T UT . Other notations used in this paper are quite
standard.

2. Problem statement and a distributed event-triggered communication scheme

2.1. The system description

Consider the following continuous-time linear time-invariant system described by
{

ẋ(t) = Ax(t) + Bw(t), x(0) = x0

z(t) = Ex(t)
(1)

over a sensor network with the measurement outputs on N distributed sensor nodes given by

yi(t) = Cix(t) + Div(t), i ∈ V = {1, 2, · · · , N} (2)

where x(t) ∈ Rnx is the state; w(t) ∈ Rnw and v(t) ∈ Rnv , which belong to L2[0,∞), are the system
external disturbance noise signal and the output measurement noise signal, respectively; z(t) ∈ Rnz

is the objective output signal to be estimated; x0 is the initial state; yi(t) ∈ Rny is the measurement
output received by the sensor i from the plant; A,B, E,Ci, and Di, i ∈ V , are known matrices with
appropriate dimensions.
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Figure 1: A schematic diagram of distributed event-triggered H∞ filtering over a sensor network

2.2. The sensing topology

Let V be an index set of N sensor nodes, E ⊆ V × V be the edge set of paired sensor nodes, and
W = [wij] ∈ RN×N be the weighted adjacency matrix. The directed graph G = (V , E ,W) represents
the sensing topology of the sensor network. An edge of G is denoted by (i, j). The adjacency elements
wij associated with the edges of the graph are positive, i.e., wij > 0 ⇔ (i, j) ∈ E . Moreover, we
assume that self-loops are allowed in the graph, i.e., wii = 1, i ∈ V , and therefore, (i, i) can be
regarded as an additional edge. The set of neighbors of node i plus the node itself is denoted by
Ni = {j ∈ V : (i, j) ∈ E}.

2.3. Distributed H∞ filters

The structure of data collection surrounding the sensor node i is shown in Figure 1, where the
data available on the sensor node i comes from both itself and its all underlying neighboring nodes
i1, · · · , is ∈ Ni, dispersedly deployed in the sensor field. Then, the aggregated data is processed and
given by

ỹi(t) =
∑
j∈Ni

wijyj(t) (3)

in accordance with the prescribed sensing topology G. After simple computation, the processed data
is sampled and broadcast to a remote filter node through a communication network. Whether or
not the current sampled-data on each sensor node should be broadcast through the network medium
is determined by a distributed event-triggered communication scheme, i.e., the data transmission
through the communication network only takes place when a specified event occurs. Based on the
facts above, the following distributed H∞ filters are proposed

{
˙̂xi(t) = Gix̂i(t) + Kiŷi(t)
ẑi(t) = Hix̂i(t) + Liŷi(t)

(4)
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where x̂i(t) ∈ Rnx is the state esimation of the filter i; ŷi(t) is the input of the filter i collected from
the sensor node i itself and its all possible neighboring nodes Ni through the network; ẑi(t) ∈ Rnz is
the output of the filter i representing an estimation of z(t); Gi, Ki, Hi, and Li, i ∈ V , are the filter
parameter matrices to be determined.

2.4. A distributed event-triggered communication scheme

For convenience of development, we introduce the following notations:

(i) {kh| k ∈ N = {0, 1, 2, · · · }} : the sampling time sequence. The samplers are assumed to be
clock-driven and synchronized. The processed data ỹi(t) on the sensor node i is sampled at
discrete instants kh, where k ∈ N and h > 0 represents a constant sampling period. At each
sampling instant kh, the sampled-data ỹi(kh) and its time-stamp k are encapsulated into a
data packet (k, ỹi(kh));

(ii) {tikh| tik ∈ N} : the broadcasting and transmitting time sequence. The tikh denotes the time
instant when the sensor node i broadcasts its sampled-data to the network and this broadcast
data is assumed to be successfully received by a logic zero-order-holder (ZOH). All transmitted
packets are time-stamped;

(iii) {si
kh| si

k = tik +mi,mi = 0, 1, · · · ,Mi,Mi = tik+1−tik−1} : the real-time sampling time sequence
between two consecutive broadcasting instants ;

(iv) τ i
tik

: the communication delay. Denote by τ i
tik

the communication delay among the data trans-

mission from the sensor node i to the filter node i at time instant tikh introduced by the
network. For simplicity but without loss of generality, τ i

tik
is assumed to be upper-bounded,

i.e., 0 < τ i
tik
≤ τ̄i. Let τ̄ = maxi∈V{τ̄i}.

An event monitor (EM) is introduced to determine when current sampled-data packet (si
k, ỹi(s

i
kh))

should be broadcast to the logic ZOH i for filter design, as shown in Figure 1. Each EM consists
of an event generator and a storer. The event generator is adopted to produce a series of events.
The sequence of broadcasting time instants is determined recursively according to the following
communication scheme

tik+1h = tikh + minmi≥0

{
(mi + 1)h | ||Ψ

1
2
i ei

ỹ(t)||2 ≥ δi||Ψ
1
2
i ỹi(t

i
kh)||2

}
(5)

where ei
ỹ(t) is a local output error between the latest broadcasting time instant and the real-time

sampling time instant on node i, i.e., ei
ỹ(t) = ỹi(t

i
kh) − ỹi(s

i
kh); Ψi is a symmetric positive definite

weighting matrix; and δi ∈ (0, 1) is a scalar threshold parameter on node i. The storer is used to
reserve the latest broadcast sampled-data.

Remark 1. Similar to [30], the ZOH i in Figure 1 is assumed to be event-driven and has the logical
capability of checking the time stamps of the newly arrived data packets and choosing the newest
one to actuate the filter. Even though transmitted data packets may arrive at the ZOH i with a
different temporal order due to the communication delay, the ZOH i is configured to keep the arrived
packet only when its time stamp is greater than that of currently stored packet. In other words, the
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logic ZOH i is to store the latest filter input packet and to keep the filter input unchanged until the
output of the logic ZOH i being updated by a new data packet. Therefore, the out-of-order packet
in the transmission is discarded actively by the logic ZOH i and the phenomenon of packet disorder
is avoidable. Furthermore, the relationship of tik+1h + τ i

tik+1
> tikh + τ i

tik
is ensured by the logic ZOH

i. Without loss of generality, we assume that data transmission over the network is performed in a
single packet manner and data packet dropouts do not happen during data transmission.

Under the proposed communication scheme (5), once the real-time sampled-data ỹi(s
i
kh) satisfies

||Ψ
1
2
i ei

ỹ(t)||2 ≥ δi||Ψ
1
2
i ỹi(t

i
kh)||2, the EM i immediately broadcasts the real-time sampled-data through

the communication network. Otherwise, this sampled-data is discarded right away. It is worth
stressing that the logic ZOH i keeps the latest data packet and filter i will hold its input unchanged
until the output of the logic ZOH i being updated by a new data packet. When the latest transmitted
data packet (tik, ỹi(t

i
kh)) is released from the logic ZOH i, it immediately actuates the filter i with

ỹi(t
i
kh). In this sense, ∀ t ∈ [tikh + τ i

tik
, tik+1h + τ i

tik+1
), the filter input on node i is given by

ŷi(t) = ỹi(t
i
kh) =

∑
j∈Ni

wijyj(t
i
kh). (6)

Figure 2 depicts the timing diagram of signal sampling, transmitting and arriving. It is clearly
seen that the set of transmitting instants {tikh|tik ∈ N} is a subset of the sampling time sequence
{kh|k ∈ N}. Furthermore, the holding interval of the logic ZOH i can be reconstructed as

Υk , [tikh + τ i
tik

, tik+1h + τ i
tik+1

) =

Mi⋃
mi=0

Υmi
k (7)

where Υmi
k = [si

kh + τ i
si
k
, si

kh + h + τ i
si
k+1

). Note that the communication delays τ i
si
k
, (mi 6= 0,Mi) can

be properly chosen while keeping the right order of the start point and the end point of the subsets
Υmi

k , which is illustrated in Figure 2 on the transmitting interval [3h + τ i
3, 7h + τ i

7).
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i
4τ

i
5τ

i
6τ

Figure 2: The timing diagram of signal sampling and transmission

2.5. The filtering error system

To proceed with, we define an artificial time-varying delay as di
k(t) = t − si

kh, t ∈ Υmi
k ; i ∈ V

for each communication link. Then from the definition of di
k(t), one can see that di

k(t) is a function
satisfying

0 < τ i
si
k
≤ di

k(t) < h + τ̄ , τM , t ∈ Υmi
k ; ḋi

k(t) = 1, t ∈ Υmi
k and t 6= si

kh + τ i
si
k
. (8)
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To facilitate subsequent discussion, we further denote an estimation error vector ei(t) = z(t) −
ẑi(t), i ∈ V , and Ā = diagN{A}, B̄ = colN{B}, Ĉ = vec1

N{colN{Ci}}, C̄ = diagN{Ci}, D̄ =
colN{Di}, Ē = diagN{E}, ξ(t) = colN{x̂i(t)}, x̄(t) = colN{x(t)}, e(t) = colN{ei(t)}, Ḡ = diagN{Gi},
K̄i = diagi

N{Ki}, H̄ = diagN{Hi}, L̄i = diagi
N{Li}, and ēi

ỹ(t) = coliN{ei
ỹ(t)}.

Setting χ(t) = col2{x̄(t), ξ(t)} and combining the system (1)-(2), and (4), we obtain the following
augmented filtering error system

{
χ̇(t) = Ãχ(t) +

∑N
i=1 Ǎiχ(t− di

k(t)) + B̃w(t) +
∑N

i=1 Čiē
i
ỹ(t) +

∑N
i=1 Ďiv(t− di

k(t))

e(t) = Ẽχ(t) +
∑N

i=1 Ěiχ(t− di
k(t))−

∑N
i=1 L̄iē

i
ỹ(t) +

∑N
i=1 F̌iv(t− di

k(t))
(9)

for all t ∈ Υmi
k , where

Ã =

[
Ā 0
0 Ḡ

]
, Ǎi =

[
0 0

K̄i(W ⊗ I)Ĉ 0

]
, B̃ =

[
B̄
0

]
, Či =

[
0
K̄i

]
, Ďi =

[
0

K̄i(W ⊗ I)D̄

]

Ẽ = [Ē −H̄], Ěi = [−L̄i(W ⊗ I)Ĉ 0], F̌i = −L̄i(W ⊗ I)D̄.

From the distributed event-triggered communication scheme (5), for all t ∈ Υmi
k , it is clear that

||Ψ
1
2
i ēi

ỹ(t)||2 < δi||Ψ
1
2
i (ēi

ỹ(t) + Cix̄(t− di
k(t)) +Div(t− di

k(t)))||2 (10)

where Ci = Ii((W ⊗ I)Ĉ), Di = Ii((W ⊗ I)D̄) with Ii = diagi
N{I}, i ∈ V . The initial condition of

the augmented filtering error system is supplemented as χ(θ) = η(θ), ∀ θ ∈ [−τM , 0], where η(θ) is
a continuous function with η(0) = col2{colN{x0}, colN{0}}.

The distributed event-triggered H∞ filtering problem to be addressed is then formulated
as follows: For given scalars h > 0, τ̄ > 0, and β ∈ (0, 1), co-design the distributed H∞ filters in the
form of (4) and the threshold parameters δi > 0 in (5) such that

(i) The resultant filtering error system (9) subject to (10) with w(t) = 0 and v(t− di
k(t)) = 0, i ∈ V

is asymptotically stable;

(ii) Under zero initial conditions, the estimation error signal ei(t) satisfies the following weighting
average H∞ performance

1

N

N∑
i=1

‖ei(t)‖2
2 < βγ2‖w(t)‖2

2 +
N∑

i=1

(1− β)γ2‖v(t− di
k(t))‖2

2 (11)

for all nonzero w(t) ∈ L2[0,∞), v(t− di
k(t)) ∈ l2[0,∞), i ∈ V, where γ > 0 is a desired level of

H∞ performance.

Remark 2. Inspired by [21], average H∞ performance is adopted to guarantee that each filter well
estimates the system’s output z(t). Note that the positive scalar β in (ii) refers to a prescribed
weighting factor. It explicitly explains how external disturbance and measurement noise individually
affect system performance at a different weighting rate. How to choose the weighting factor β is a
trade-off between the effects of the external disturbance and the measurement noise, and depends
on practical situations. In an illustrative example in Section 6, we plot the relationship between
the minimal value γmin of the weighting average H∞ performance and the weighting factor β. From
the figure, one can properly select the weighting factor β to obtain desirable weighting average H∞
performance.

8



Remark 3. When the threshold parameter δi → 0+, the next broadcasting time instant tik+1h
can be approximately determined by tikh + h from (5), which means that each node broadcasts its
sampled-data in a time-triggered or periodical fashion. As a consequence, the dynamics of the system
(9) with an event-triggered communication scheme approaches to the one with a time-triggered
communication scheme. Note from the formulation (9) that the resultant filtering error system is
transformed into a system with multiple artificial delays di

k(t), t ∈ Υmi
k ; i ∈ V , and “perturbations”

ēi
ỹ(t) which depend on the errors between the latest transmitted data and the current sampled-data

described by (10).

Remark 4. The proposed distributed event-triggered communication scheme has the following fea-
tures: (i) there is no need to establish some extra hardware to detect and monitor the successive
outputs since the event triggering condition is only dependent on the latest transmitted sampled-data
and the local output error at the discrete sampling instants; (ii) the lower bound of the inter-event
time (the minimum time interval between two consecutive events, i.e., tik+1h − tikh) is an integer
multiple of the sampling period h > 0. Therefore, the “Zeno” behavior [4] is avoided; (iii) the next
broadcasting time instants tik+1h on the sensor node i are closely related to both its own and its
neighbors’ sampled-data, which means that the proposed communication scheme enables collected
data from the sensor node i itself and its all underlying neighboring nodes Ni to be broadcast and
transmitted through the network; and (iv) the threshold parameters δi, i ∈ V , can be co-designed
with the filter parameters, which will make clear later in Section 5.

3. Distributed event-triggered H∞ filtering performance analysis

In this section, by employing the Lyapunov-Krasovskii functional approach, an H∞ filtering per-
formance analysis criterion for the augmented filtering error system (9) subject to (10) is established.

Theorem 1. For given filter parameters Gi, Ki, Hi, and Li, threshold parameters δi ∈ (0, 1), scalars
β ∈ (0, 1), γ > 0, h > 0, and τ̄ > 0, the resultant filtering error system (9) subject to (10), where

δi = δ̃
1/2
i , is asymptotically stable with the prescribed weighting average H∞ performance defined in

(11) if there exist real matrices P > 0, Q > 0, Ψi > 0, Ri > 0, X and Si, i ∈ V of appropriate
dimensions such that

Γ =

[
Φ ΞT

∗ −NI

]
< 0,

[
Ri Si

∗ Ri

]
≥ 0 (12)

where

Ξ = vec7{Ẽ, 0, 0, vecN{Ěi}, vecN{−L̄i}, 0, vecN{F̌i}} and Φ = [Φmn]7×7

with

Φ11 = Q−
N∑

i=1

Ri + sym(XÃ), Φ12 = P −X + ÃT XT , Φ13 = −
N∑

i=1

Si

Φ14 = vecN{Ri + Si + XǍi}, Φ15 = Φ25 = vecN{XČi}
Φ16 = Φ26 = XB̃, Φ17 = Φ27 = vecN{XĎi}
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Φ23 = Φ35 = Φ36 = Φ37 = Φ46 = Φ56 = Φ67 = 0

Φ22 = τ 2
M

N∑
i=1

Ri − sym(X), Φ24 = vecN{XǍi}, Φ34 = vecN{Ri + ST
i }

Φ33 = −Q−
N∑

i=1

Ri, Φ44 = diagN{−2Ri − sym(Si) + Θi
1}

Φ45 = diagN{Θi
2}, Φ47 = diagN{Θi

4}, Φ55 = diagN{Θi
3}, Φ57 = diagN{Θi

5}
Φ66 = −βγ2I, Φ77 = diagN{−(1− β)γ2I + Θi

6}
Θi

1 = [Ξ̌i 0], Ξ̌i = [δ̃iCT
i ΨiCi 0]T , Θi

2 = [δ̃iΨiCi 0]T , Θi
3 = (δ̃i − 1)Ψi

Θi
4 = [δ̃iDT

i ΨiCi 0]T , Θi
5 = δ̃iΨiDi, Θ

i
6 = δ̃iDT

i ΨiDi.

Proof. See Appendix A. ¤

4. Distributed event-triggered H∞ filters design

In this section, for given threshold parameters δi, i ∈ V , we use the weighting average H∞
disturbance attenuation performance index γ as a metric. The problem we proposed to address is
to design the filter parameters Gi, Ki, Hi, and Li to minimize γ. The following theorem provides a
sufficient condition on the existence of desired distributed H∞ filters.

Theorem 2. For given threshold parameters δi ∈ (0, 1) and given scalars β ∈ (0, 1), γ > 0, h > 0,
and τ̄ > 0, if there exist real matrices P > 0, Q > 0, Ψi > 0, Ri > 0, X1, X3, Si, and diagonal
matrices X2, Ǧ, Ǩi, H̄, and L̄i, i ∈ V of appropriate dimensions such that

Γ̌ =

[
Φ̌ ΞT

∗ −NI

]
< 0,

[
Ri Si

∗ Ri

]
≥ 0 (13)

where Φ̌ is derived from Φ by replacing Φ11, Φ12, Φ14, Φ15, Φ16, Φ17, Φ24, Φ25, Φ26, Φ27 by Φ̌11, Φ̌12, Φ̌14,
Φ̌15, Φ̌16, Φ̌17, Φ̌24, Φ̌25, Φ̌26, Φ̌27 with

Φ̌11 = Q−
N∑

i=1

Ri + sym(Ω), Φ̌12 = P −X + ΩT , Φ̌14 = vecN{Ri + Si + Υi}

Φ̌15 = Φ̌25 = vecN{Υ̃i}, Φ̌24 = vecN{Υi}, Φ̌16 = Φ̌26 = Ω̃, Φ̌17 = Φ̌27 = vecN{Υ̂i}

Ω =

[
X1Ā Ǧ
X3Ā Ǧ

]
, X =

[
X1 X2

X3 X2

]
, Υi =

[
Ǩi(W ⊗ I)Ĉ 0

Ǩi(W ⊗ I)Ĉ 0

]

Υ̃i =

[
Ǩi 0
Ǩi 0

]
, Ω̃ =

[
X1B̄
X3B̄

]
, Υ̂i =

[
Ǩi(W ⊗ I)D̄
Ǩi(W ⊗ I)D̄

]
,

then there exist desired distributed H∞ filters in the form of (4) such that the resultant filtering error

system (9) subject to (10), where δi = δ̃
1/2
i , is asymptotically stable with the prescribed weighting

average H∞ performance defined in (11). Furthermore, the filter parameters in (4) are given by

Ḡ = X−1
2 Ǧ, K̄i = X−1

2 Ǩi, H̄, and L̄i, ∀ i ∈ V . (14)
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Proof. Obviously, Γ < 0 in (12) implies that Φ22 = τ 2
M

∑N
i=1 Ri − sym(X) < 0. Therefore, we

have X > 0 since Ri > 0, which means that X2 is a nonsingular matrix. By introducing two new
variables Ǧ = X2Ḡ and Ǩi = X2K̄i, inequality (12) straightforwardly implies (13). This completes
the proof. ¤

With Theorem 2, the problem to be solved in this section can be transformed into the following
minimization problem (refers to as MinProb 1 ):

min $
s.t. P > 0, Q > 0, Ψi > 0, Ri > 0, and (13)

where $ = γ2. Accordingly, the minimal weighting average H∞ performance index γ =
√

$ and the
filter parameters can be obtained by solving MinProb 1.

Remark 5. In many real-world applications, e.g., target tracking and attack, system guidance and
navigation, the system performance rather than communication resources may be a major concern for
system analysis and design. In this section, we use the weighting average H∞ disturbance attenuation
level γ as a performance index. By solving MinProb 1, desired filter parameters and weighting
matrix parameters can be determined such that the weighting average H∞ performance index γ
can be minimized at the cost of consuming a certain amount of communication resources since the
threshold parameters δi, i ∈ V are given.

Remark 6. From Theorem 2, one can see that, for given threshold parameters and a fixed sampling
period, the communication delays affect only the system performance. On the other hand, for a given
weighting average H∞ performance index, one may apply Theorem 2 to determine the maximum
value of τM , where τM = h+ τ̄ . In particular, if one sets τ̄ = 0, i.e., no communication delay exists or
the effects of communication delays can be ignored, the obtained τM denotes the maximum sampling
period.

5. The co-design issue

According to the proposed distributed event-triggered communication scheme (5), the number
of transmitted data packets through each communication link is closely related to each threshold
parameter δi, i ∈ V . In the sequel, we define the following data packet transmission ratio (DPTR)
as a network performance index through the communication link i, i ∈ V :

Ji =
Ntdp

Ntsdp

(15)

where Ntdp denotes the number of transmitted data packets and Ntsdp denotes the number of total
sampled-data packets.

Generally, as δi increases, less communication resources are occupied for data transmission since a
large value of δi has the effects of increasing the average inter-event time through the communication
link i. As a result, a large value of δi usually leads to a small value of DPTR Ji. On the other
hand, when the utilization of communication resources is reduced, less data packets are transmitted
through the network to implement filters. Therefore, deteriorative system performance may be
achieved. In other words, a large value of δi normally results in a large value of the weighting average
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H∞ disturbance attenuation performance index γ. In practical situations, however, the performance
index γ should be made as small as possible so as to minimize the effects from exogenous disturbance
and noise on system output, while the performance index Ji ∈ (0, 1), i ∈ V , should also be made
as small as possible so as to reduce the communication resource occupancy. Intuitively, it is a
difficult task to directly obtain both a minimal γ and a minimal Ji through the communication
link i by solving Theorem 2. In this sense, applying Theorem 2, one may perform the trade-off
analysis between the communication resource occupancy and the weighting average H∞ disturbance
attenuation performance.

In order to guarantee a desired weighting average H∞ performance index, we set an expected
performance level γ∗. To ensure satisfactory communication resource utilization, we set an expected
performance level J∗i through the communication link i. Hence, the distributed event-triggered
H∞ filtering problem to be addressed in this paper turns to co-designing the filter parameters
Gi, Ki, Hi, Li, and the threshold parameters δi while simultaneously minimizing |γ − γ∗|, the error
absolute value between the actual value and the expected value of the H∞ performance index, and
|Ji − J∗i |, ∀ i ∈ V, the error absolute value between the actual value and the expected value of the
DPTR through the communication link i. To achieve this goal, we define the following objective
function

f(Ji, γ) = ρ0|γ − γ∗|+
N∑

i=1

ρi|Ji − J∗i | (16)

where ρj > 0, j = 0, 1, · · · , N , is the prescribed weighting coefficient satisfying
∑N

j=0 ρj = 1. The
following co-design algorithm is proposed to tackle the problem formulated above.

Co-Design Algorithm 1: For given β, h, τ̄ , and preset J∗i and γ∗, determine Gi, Ki, Hi, Li, Ψi, δi,
desired Ji and γ such that f(Ji, γ) is minimized.

Step 1. Choose expected J∗i and γ∗, and suitable weighting coefficients ρj > 0, j = 0, 1, · · · , N .

Step 2. Set m := 0. Choose a sufficiently large initial f (0), a sufficiently small initial δ
(0)
i > 0 and

choose a suitable εi as the step increment of δ
(0)
i , i ∈ V .

Step 3. For given positive scalars β, h, and τ̄ . Solve the LMIs defined in Theorem 2 with γ = γ∗,
if it is feasible, determine Ψi, Ǧ, Ǩi, X2, H̄, and L̄i, and go to Step 4; else reset γ∗, β, h, and
τ̄ , repeat Step 3 again. end

Step 4. In a given simulation time, apply (5) to determine δ∗i with the obtained Ψi and the preset
J∗i . For δi = δ∗i , if there exists a feasible solution satisfying LMIs defined in Theorem 2 with
the obtained δi, Ψi, Ǧ, Ǩi, X2, H̄, and L̄i, go to Step 5; else reset J∗i , β, h, and τ̄ and repeat
Step 3 again. end

Step 5.

While δ1 < 1

12



. . .

While δN < 1

i) Solve the LMIs defined in Theorem 2 with γ = γ∗ to determine Ψi, Ǧ, Ǩi, X2, H̄,
and L̄i.

ii) In a given simulation time, apply (5) to determine δ∗i with the obtained Ψi and
the preset J∗i .

iii) Solve MinProp 1 with the obtained δ∗i , Ψi, Ǧ, Ǩi, X2, H̄, and L̄i to determine γ.

iv) In a given simulation time, apply (5) to calculate the performance index Ji in
(15).

v) Compute Ḡ, K̄i, H̄, and L̄i according to (14), and calculate f = ρ0|γ − γ∗| +∑N
i=1 ρi|Ji − J∗i |. If f (m) > f , set m = m + 1, update δ

(m)
i := δi, f (m) :=

f , γ(m) := γ, Ḡ(m) := Ḡ, K̄
(m)
i := K̄i, H̄(m) := H̄, L̄

(m)
i := L̄i, Ψ

(m)
i := Ψi,

and J
(m)
i := Ji; Else keep δ

(m)
i , f (m), γ(m), Ḡ(m), K̄

(m)
i , H̄(m), L̄

(m)
i , Ψ

(m)
i , and J

(m)
i .

End

vii) Update δN = δN + εN .

End
. . .

Update δ1 = δ1 + ε1.

End

Step 6. Output δ
(m)
i , f (m), γ(m), J

(m)
i , Ḡ(m), K̄

(m)
i , H̄(m), L̄

(m)
i , and Ψ

(m)
i , i ∈ V , and exit.

Remark 7. The co-design Algorithm 1 is developed to design desired distributed H∞ filters and
distributed event-triggered communication scheme such that the filtering error system is asymptoti-
cally stable simultaneously with a desired H∞ performance level and an admissible communication
resources occupancy level. In this case, the communication delays may affect both the system per-
formance index and the network performance index since the filter parameters and the threshold
parameters are designed after considering the effects of communication delays.

Remark 8. Note that the computational complexity of the proposed co-design Algorithm 1 relies on
solving Theorem 2 and MinProp 1, which both can be formulated as linear matrix inequality (LMI)
feasibility problems, for each iteration. Existing efficient interior-point algorithms are available to
deal with such problems. Denote the total number of scalar decision variables of Theorem 2 and
MinProp 1 as D1 and D2, respectively, and the total row size of the LMIs defined in Theorem 2
and MinProp 1 as S1 and S2, respectively. As a consequence, the computational complexity of the
proposed co-design Algorithm 1 is proportional to O(S1D3

1 + S2D3
2). It should be mentioned that

the total number of scalar decision variables and the total row size of the LMIs are dependent on
the system dimensions (nx, ny, nz, where x(t) ∈ Rnx , yi(t) ∈ Rny , z(t) ∈ Rnz) and the scale of the
sensor network (the number of sensor nodes, i.e., N). In this sense, as the growth of the scale of the
sensor network and/or the system dimensions, the overall computational complexity of the proposed
co-design Algorithm 1 polynomially increases.
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Figure 3: The quarter-car suspension system over a sensor network

6. An illustrative example

A quarter-car suspension model, depicted in Figure 3, is provided to show the effectiveness of the
proposed filter design method. The sprung mass is ms, which denotes the car chassis; the unsprung
mass is mu, which represents the wheel assembly; the spring ks and the damper cs represent the
stiffness and damping of the uncontrolled suspension that are placed between the car body and the
wheel assembly, while the spring kt serves to the model of the compressibility of the pneumatic
tire; the variables xs, xu, and xr are the displacements of the car body, the wheel, and the road
disturbance input, respectively. The ideal dynamic equations for the sprung and unsprung masses
of the quarter-car model are given by

{
msẍs(t) + cs(ẋs − ẋu(t)) + ks(xs(t)− xu(t)) = 0
muẍu(t) + cs(ẋu − ẋs(t)) + ks(xu(t)− xs(t)) + kt(xu(t)− xr(t)) = 0.

Let x1(t) = xs(t)− xu(t), x2(t) = xu(t)− xr(t), x3(t) = ẋs(t), and x4(t) = ẋu(t), where x1(t) denotes
the suspension deflection, x2(t) denotes the tire deflection, x3(t) denotes the sprung mass speed, and
x4(t) denotes the unsprung mass speed. Then the quarter-car suspension model can be represented
as ẋ(t) = Ax(t) + Bw(t) with

A=




0 0 1 −1
0 0 0 1

− ks

ms
0 − cs

ms

cs

ms
ks

mu
− ku

mu

cs

mu
− cs

mu


 , B=




0
−2πq0

√
G0v0

0
0


 .

The parameters in the quarter-car model matrices are chosen as [27]: ms = 973kg, ks = 42720N/m,
cs = 3000Ns/m, ku = 101115N/m, mu = 114kg, G0 = 512 × 10−6m3, q0 = 0.1m−1, and v0 =
12.5m/s. We consider a sensor network consisting of two nodes deployed in the sensor field. The
sensing topology of the considered sensor network is characterized by a directed graph G = (V , E ,W)
with the nodes V = {1, 2}, the set of edges E = {(1, 1), (2, 1), (2, 2)}, and the adjacency elements
wij = 1, (i, j) ∈ E . Assume that the unsprung mass speed is measured by the sensor node 1 with
noise v(t) and the tire deflection is measured by the sensor node 2 with noise v(t). The measurement
output matrices are given by C1 = [0 0 0 1], C2 = [0 1 0 0], D1 = 0.1, and D2 = 0.3. Choose
E = [0 0 1 0]. The objective is then to design desired distributed H∞ filters in the form of (4)

14



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

β

γ m
in

Figure 4: The relationship between β and γmin

over the sensor network to estimate the sprung mass speed x3(t) by using the measurement of the
unsprung mass speed x4(t) or the tire deflection x2(t) on different sensor nodes.

Firstly, choosing h = 0.01s and τ̄ = 0.06s, and applying Theorem 2, we obtain the relationship
between the minimal value γmin of the weighting average H∞ performance and the weighting factor
β, as illustrated in Figure 4, which enables us to properly select the weighting factor β to obtain the
desirable weighting average H∞ performance. Hence, the introduction of β increases the flexibility
in the solution space for the formulated H∞ optimization problem [33]. In the following simulation,
we choose the weighting factor as β = 0.9.

Secondly, for different threshold parameters δ1 and δ2, we solve MinProb 1 to obtain the trade-off
curves in Figure 5, which illustrates the relationship between the DPTR Ji and the weighting average
H∞ noise attenuation performance index γ for each communication link. It can be seen clearly from
Figure 5 that the DPTR Ji is generally inversely proportional to the H∞ performance index γ, which
means that, in order to preserve desired H∞ performance, one has to occupy more communication
resources to transmit sampled-data for implementing filters; otherwise, the communication resources
may be saved at the cost of a tolerable H∞ performance index. In this sense, the trade-off curves
in Figure 5 provide quantitative information that when the network designer selects appropriate
communication parameters to allow a certain communication resource occupancy while guaranteeing
the stability of the system with a desirable level of system performance. More specifically, for given
threshold parameters δ1 = 0.4 and δ2 = 0.5, solving MinProb 1, we find that there exist desired
distributed H∞ filters in the form of (4) such that the resultant filtering error system (9) subject to
(10) is asymptotically stable with the minimal weighting average H∞ noise attenuation performance
level γmin = 0.2166. Moreover, the filter parameters and the weighting matrix parameters in (5) are
given by

G1 =




−4.1655 11.6945 0.5166 0.2187
−2.0748 10.2264 −0.3625 1.7327
−32.6690 −28.2439 −2.5106 −1.3183
241.2645 −671.8086 23.5413 −44.1784


 , K1 =




0.0388
0.0287

−0.2804
−0.8566




G2 =




−7.3505 18.1277 0.2516 0.2078
−3.3732 13.2055 −0.5185 1.7298
−4.7009 −97.6669 −0.4157 −2.4063
295.4573 −804.2688 28.8141 −43.6425


 , K2 =




0.0018
0.0015

−0.0157
−0.0494




H1 = [0.0437 − 1.8803 − 0.5890 − 0.2722], L1 = 0.0045, Ψ1 = 0.2822
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H2 = [−0.4554 − 0.7446 − 0.5363 − 0.2717], L2 = 0.0002, Ψ2 = 0.0108.
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Figure 5: Trade-off between the DPTR Ji and the H∞ performance index γ with different threshold
parameters δi for communication link i, i ∈ V

Thirdly, we consider the co-design issue. Choose an expected weighting average H∞ noise atten-
uation performance index as γ∗ = 0.2500, expected DPTRs as J∗1 = 0.150 and J∗2 = 0.180. Select
the initial δi as 0.0025, the step increment εi of δi as 0.0025, ∀ i ∈ V , the weighting coefficients
as ρ0 = 0.5, ρ1 = 0.25, and ρ2 = 0.25, respectively. Applying Co-Design Algorithm 1, it is found
that the proposed co-design problem is solvable with the value of the objective function f = 0.0029,
the threshold parameters δ1 = 0.78, δ2 = 0.75, and the actual value of the weighting average H∞
noise attenuation performance index γ = 0.2523, the actual values of the DPTR J1 = 0.150 and
J2 = 0.173, respectively. Moreover, the filter parameters and the weighting matrix parameters in (5)
are given by

G1 =




−3.2554 4.2514 0.6223 −0.0637
3.9573 −7.7284 0.4212 0.0892

−27.2709 −35.9003 −2.0594 0.1229
16.9029 −55.6897 3.2698 −8.7709


 , K1 =




0.0249
−0.0194
−0.1297
−0.2127




G2 =




−3.5070 4.7214 0.5930 −0.0986
4.1875 −8.3987 0.4499 0.1241

−25.8198 −39.4273 −1.9061 0.2423
19.5489 −60.5177 3.6879 −8.9257


 , K2 =




−0.0004
0.0019

−0.0118
−0.0136




H1 = [−0.7757 0.5148 − 0.7072 0.0160, L1 = 0.0039, Ψ1 = 0.0605

H2 = [−0.8168 0.6115 − 0.7031 0.0158], L2 = 0.0018, Ψ2 = 0.0143.

Furthermore, take an initial condition as x0 = col4{0, 0, 0, 0}. Consider the case of an isolated
bump in an otherwise smooth road surface, the corresponding disturbance input signal is taken as:
w(t) = k0πv0/l0sin(2πv0t/l0), if 1 ≤ t < 1+ l0/v0; w(t) = 0, otherwise, where k0 = 0.2m is the height
of the bump and l0 = 5m is the length of the bump. The measurement noise v(t) is assumed to be
uniformly distributed within [0, 0.1] on the time interval [0, 6]s. Perform the simulation for 10s. The
comparison of the number of transmitted data packets through each communication link between
the conventional time-triggered communication scheme (TTCS) and the proposed distributed event-
triggered communication scheme (DETCS) is illustrated in Table 1. Note that on the time interval
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Table 1: Number of transmitted data packets through each communication link under different schemes

Communication Link 1 Communication Link 2
Total Sampled-Data Packets 1000 1000

Under TTCS 1000 1000
Under DETCS 181 186

[0, 10]s, the number of totally sampled-data packets is 1000. From Table 1, one can see that, by
applying the DETCS, the number of transmitted data packets through each communication link
is significantly reduced for each communication link compared with the conventional TTCS. The
release instants and the time intervals between two adjoint transmitted instants on the sensor node
i, i ∈ V , are shown in Figure 6. One can see that the maximum release time interval between
any two consecutive release instants is 0.35s on the sensor node 1 and 0.38s on the sensor node 2,
respectively. Connecting the obtained filters with the system under consideration and applying the
determined distributed event-triggered communication scheme, Figure 7 depicts the curves of the
estimation error signals ei(t), i ∈ V , on each sensor node. It can be seen from Figure 7 that the
designed filters perform well.
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Figure 6: The transmitted instants and time intervals on node i, i ∈ V

Finally, for a fixed sampling period h = 0.01s and a given weighting average H∞ performance
index γ = 0.2100, we apply Theorem 2 to obtain the relationship between the DPTR Ji and the
delay bound τ̄ with different threshold parameters δi for each communication link, as illustrated in
Figure 8. It can be seen that as δi increases, less communication resources are occupied for data
transmission through each communication link. On the other hand, communication delays may also
affect the communication resource utilization and a decreased delay bound normally leads to less
communication resource utilization.
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Figure 7: The estimation error signals ei(t) on node i, i ∈ V
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7. Conclusion

The problem of distributed event-triggered H∞ filtering over sensor networks in the presence
of communication delays has been addressed. A new distributed event-triggered communication
scheme has been developed to decide when the current sampled-data of each sensor node should be
broadcast and transmitted to a remote filter node through a communication network. Each sensor
node is capable of making its own decision to broadcast and to transmit its current sampled-data
only when its local measurement output error exceeds a specified threshold. Sufficient existence
conditions for designing desired distributed H∞ filters and threshold parameters have been derived.
Applying the obtained results, the trade-off analysis between communication resource utilization and
H∞ performance has been performed. Furthermore, a new algorithm has been developed to co-design
the filter parameters and the threshold parameters while simultaneously preserving a desired H∞
performance index and maintaining satisfactory communication resource utilization. The application
of the proposed results to a benchmark example has shown the effectiveness of the proposed filter
design method.

Appendix A

To begin with, the following integral inequality, which is helpful for deriving our main results, is
presented.

Lemma 1. For two given nonnegative scalars τ , τ satisfying τ ≥ τ , a scalar time-varying function
d(t) ∈ [τ , τ ], a vector-valued function χ̇ : [−τ ,−τ ] → Rn, constant matrices R = RT ∈ Rn×n,

S ∈ Rn×n, and

[
R S
∗ R

]
≥ 0 such that the following integration is well defined, then

−(τ − τ)

∫ t−τ

t−τ

χ̇T (s)Rχ̇(s)ds ≤ −φT
1 Rφ1 − φT

2 Rφ2 + φT
1 Sφ2 + φT

2 ST φ1 (17)

where φ1 = χ(t− d(t))− χ(t− τ) and φ2 = χ(t− τ)− χ(t− d(t)).

Proof. When d(t) = τ (respectively, d(t) = τ), we have φ1 = 0 (respectively, φ2 = 0). Then,
the inequality (17) reduces to the Jensen integral inequality [8]. Therefore, (17) still holds. In the

sequel, we discuss about the case τ < d(t) < τ . Define φ3 = d(t)−τ
τ−τ

, and φ4 = τ−d(t)
τ−τ

. Applying Jensen
integral inequality, we obtain

−(τ − τ)

∫ t−τ

t−τ

χ̇T (s)Rχ̇(s)ds =−(τ−τ)

∫ t−τ

t−d(t)

χ̇T (s)Rχ̇(s)ds−(τ−τ)

∫ t−d(t)

t−τ

χ̇T (s)Rχ̇(s)ds

≤ −(1 +
φ4

φ3

)φT
1 Rφ1 − (1 +

φ3

φ4

)φT
2 Rφ2. (18)

Recalling that

[
R S
∗ R

]
≥ 0, then we have




√
φ4

φ3
φ1√

φ3

φ4
φ2




T [
R S
∗ R

] 


√
φ4

φ3
φ1√

φ3

φ4
φ2


 ≥ 0 (19)
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which can be equivalently rewritten as

−φ4

φ3

φT
1 Rφ1 − φ3

φ4

φT
2 Rφ2 ≤ φT

1 Sφ2 + φT
2 ST φ1. (20)

Consequently, combining (18) and (20) yields (17). This completes the proof. ¤
Now we are ready to prove Theorem 1.
Proof of Theorem 1. Choose the Lyapunov-Krasovskii functional candidate as

V (t) = χT (t)Pχ(t) +

∫ t

t−τM

χT (s)Qχ(s)ds +

∫ 0

−τM

∫ t

t+s

τM χ̇T (θ)Rχ̇(θ)dθds (21)

where R =
∑N

i=1 Ri. Then the proof is twofold. Firstly, we will prove the asymptotic stability of
the resultant filtering error system (9) subject to (10). Then the weighting average H∞ performance
index will be considered.

Firstly, we assume that w(t) = 0 and v(t− di
k(t)) = 0, i ∈ V . Taking the time derivative of V (t)

with regard to t along the trajectory of the filtering error system (9) yields

V̇ (t) = 2χT (t)Pχ̇(t) + χT (t)Qχ(t)− χT (t− τM)Qχ(t− τM)

+τ 2
M χ̇T (t)Rχ̇(t)− τM

∫ t

t−τM

χ̇T (s)Rχ̇(s)ds (22)

for all t ∈ Υmi
k .

Notice that for all di
k(t) ∈ [0, τM), t ∈ Υmi

k , applying Lemma 1, we have the following bounding
inequality

−τM

∫ t

t−τM

χ̇T (s)Riχ̇(s)ds ≤ −ϕT
i Riϕi − ψT

i Riψi + ϕT
i Siψi + ψT

i ST
i ϕi (23)

where ϕi = χ(t− di
k(t))− χ(t), ψi = χ(t− τM)− χ(t− di

k(t)), and

[
Ri Si

∗ Ri

]
≥ 0.

On the other hand, it can be seen from (9) that

Λ , 2(χT (t)X + χ̇T (t)X)

(
Ãχ(t)+

N∑
i=1

Ǎiχ(t−di
k(t)) +

N∑
i=1

Čiē
i
ỹ(t)− χ̇(t)

)
= 0 (24)

holds for any constant matrix X.
From (10) with v(t − di

k(t)) = 0, i ∈ V , we have ||ēi
ỹ(t)||2 < δi||ēi

ỹ(t) + Cix̄(t − di
k(t))||2, which is

equivalent to

[
χ(t− di

k(t))
ēi

ỹ(t)

]T [
Θi

1 Θi
2

∗ Θi
3

] [
χ(t− di

k(t))
ēi

ỹ(t)

]
> 0. (25)

Adding the zero term Λ to (22), and combining (22), (23), and (25) yield V̇ (t) ≤ ζ̃T (t)Φ̃ζ̃(t), where
ζ̃(t) = col2N+3{χ(t), χ̇(t), χ(t−τM), colN{χ(t−di

k(t))}, colN{ēi
ỹ(t)}}, and Φ̃ is derived from Φ defined

in (12) by removing its last two rows and columns. Obviously, (12) implies Φ̃ < 0. Then one has
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that V̇ (t) ≤ −κχT (t)χ(t) < 0 for χ(t) 6= 0, where κ = λmin(−Φ̃). Therefore, it can be concluded
that the resultant filtering error system (9) subject to (10) is asymptotically stable.

Next, for all nonzero w(t) ∈ L2[0,∞) and v(t−di
k(t)) ∈ l2[0,∞), denote ζ(t) = col3N+4{ζ̃(t), w(t),

colN{v(t− di
k(t))}}. Notice that (10) is now equivalent to




χ(t−di
k(t))

ēi
ỹ(t)

v(t−di
k(t))




T


Θi
1 Θi

2 Θi
4

∗ Θi
3 Θi

5

∗ ∗ Θi
6






χ(t−di
k(t))

ēi
ỹ(t)

v(t−di
k(t))


> 0. (26)

Applying (22) to system (9) with nonzero w(t), v(t− di
k(t)), i ∈ V , and using Schur complement, we

have

V̇ (t) ≤ ζT (t)Φ̂ζ(t) (27)

for all t ∈ Υmi
k , where Φ̂ is derived from Φ defined in (12) by replacing its entries Φ66 and Φ77 with

Φ̂66 = 0 and Φ̂77 = diagN{Θ6}, respectively.
Consider the following H∞ performance J ,

∫∞
0
Jw(t)dt with Jw(t) = 1

N
eT (t)e(t)−βγ2wT (t)w(t)−∑N

i=1(1− β)γ2vT (t− di
k(t))v(t− di

k(t)). From (27), we have that V̇ (t) + Jw(t) ≤ ζT (t)Γζ(t) for all
t ∈ Υmi

k . Clearly, if (12) holds, one obtains

V̇ (t) + Jw(t) < 0 (28)

for all t ∈ Υmi
k . Under zero initial conditions, letting ti0 = 0, integrating (28) on t from tikh + τ i

tik
to

tik+1h + τ i
tik+1

, and summing the integration on k from 0 to ∞ yield

∞∑

k=0

∫ tik+1h+τ i
ti
k+1

tikh+τ i
ti
k

Jw(t)dt < −V (t)|t=∞. (29)

This implies that J ,
∫∞
0

Jw(t)dt < 0, i.e., 1
N

eT (t)e(t) < βγ2wT (t)w(t) +
∑N

i=1(1 − β)γ2vT (t −
di

k(t))v(t− di
k(t)), which can be rewritten as 1

N

∑N
i=1 ‖ei(t)‖2

2 < βγ2‖w(t)‖2
2 +

∑N
i=1(1− β)γ2‖v(t−

di
k(t))‖2

2. Therefore, the prescribed H∞ performance (11) is satisfied provided that (12) holds. This
completes the proof. ¤
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