
Polygonal Approximation Using Integer Particle Swarm Optimization

Bin Wanga,b∗, Xiaozheng Zhangb, Douglas Brownb, Hanxi Lib,Yongsheng Gaob

aKey Laboratory of Electronic Business, Nanjing University of Finance and Economics,

Nanjing 210046, China

bSchool of Engineering, Griffith University, Nathan QLD 4111, Australia

Abstract−− Polygonal approximation is an effective yet challenging digital curve rep-

resentation for image analysis, pattern recognition and computer vision. This paper

proposes a novel approach, integer particle swarm optimization (iPSO), for polygonal

approximation. When compared to the traditional binary version of particle swarm opti-

mization (bPSO), the new iPSO directly uses an integer vector to represent the candidate

solution and provides a more efficient and convenient means for solution processing. The

velocity and position updating mechanisms in iPSO not only have clear physical meaning,

but also guarantee the optimality of the solutions. The method is suitable for polygonal

approximation which could otherwise be an intractable optimization problem. The pro-

posed method has been tested on commonly used synthesized shapes and lake contours

extracted from the maps of four famous lakes in the world. The experimental results show

that the proposed iPSO has better solution quality and computational efficiency than the

bPSO-based methods and better solution quality than the other state-of-the-art methods.

Keywords−− Polygonal approximation; Particle swarm optimization; Genetic algo-

rithms; Binary version of PSO; Integer coding

1 Introduction

Digital curve representation is an important topic in image analysis, pattern recognition

and computer vision. After a contour is extracted from an object in the scene, a sequence

of coordinate points can be obtained by traversing along the contour. This sequence of

points can be viewed as a digital curve. It contains a large amount of shape information

of the object [1], especially around the corners. Effective representation of a digital curve

facilitates the subsequent image analysis tasks, such as shape matching, object recognition

and image retrieval.

∗Corresponding author. Tel: +61-7-37353753.
E-mail address: bin.wang@griffith.edu.au

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Griffith Research Online

https://core.ac.uk/display/143896707?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Polygonal approximation is an effective digital curve representation method, provid-

ing a piecewise-linear representation of a curve by dividing the curve into a number of

connected straight line segments. It removes a large number of redundant points from the

digital curve while preserving major characteristics. As an example, take a square-shaped

digital curve with 1000 points. Its optimal polygonal approximation consists of just the

four corner points, which represents the same 1000-point curve without loss of shape in-

formation. Seeking the optimal approximation of a general digital curve is a challenging

and unsolved problem however, because it is a combinatorial optimization problem with-

out an analytical solution. In terms of different objectives, polygonal approximation is

usually categorized into the following two types of optimizations [9, 14].

• min−ε: For a given fixed value M, select the optimal set of M vertices from the digital

curve to construct a polygon with minimum approximation error.

• min−#: For a given error tolerance ε, select a minimum number of vertices from the

curve to construct a polygon whose approximation error does not exceed ε.

These two types of polygonal approximation problems operate towards different goals

under different constraints: min−ε aims to minimize the error while maintaining a com-

pact polygonal approximation, whereas min−# aims to minimize the number of vertices

while maintaining the specified approximation accuracy. Both optimizations have large

search spaces and high computational costs to obtain the exact optimal solutions. The

min−ε problem has
(
N
M

)
different ways of choosing M vertices out of N curve points

in its search space [4]. In the min−# problem, the number of vertices is variable and

the size of the search space may be larger than that of min−ε problem. In real image

analysis applications, the extracted digital curves usually have a large number of points

and result in a huge search space, making finding the global optimal solution imprac-

tical. Classical optimization methods, such as dynamic programming (DP) [8, 13] can

only handle small scale problems (curves around 100 points) [28], and are not suitable for

the larger-scale problems encountered in real applications. For this reason, many local

heuristic search based methods such as dominant point deletion (DPD) [10], break point

suppression (BPS) [15] and the betweenness method [2] have been proposed for solving

polygonal approximation problems.

2



In recent years, researchers have attempted to apply nature-inspired algorithms to

solving polygonal approximation problems. These methods include genetic algorithms

(GA), particle swarm optimization (PSO) and its digital binary version (bPSO), ant

colony search (ACS) and others, detailed in the following section. We propose extending

the bPSO method into the integer space, to reduce the dimensionality of the polygon

description vectors, improve the processing efficiency and increase the accuracy of the

algorithm.

The remainder of this paper is organized as follows. Section 2 details works related

to the problem of polygonal approximation. Section 3 formulates the min−# polygonal

approximation problem. Section 4 provides a review of the original version of PSO and

the binary version of PSO in the context of polygonal approximation. Section 5 describes

the details of the proposed iPSO. In Section 6, we present the experimental results and

performance comparisons. Finally, we draw our conclusions in Section 7.

2 Related Work

Yin [25] proposed a method based on genetic algorithms (GA) for solving the min−ε

problem, which was empirically shown to have a higher peformance than many existing

local heuristic methods [16, 17]. Huang and Sun [5] added a preprocessing step to a GA-

based method, removing the collinear points and reducing the computation time. Ho and

Chen [4] developed a GA-based method with a novel orthogonal array crossover for the

min−ε problem. Their experimental results showed that it outperformed the methods in

[5,25]. Sarkar et al. [20] incorporated chromosome differentiation into GA-based methods

for solving min-ε problems, thus improving the search performance. Sun and Huang [21]

developed a crossover operator with constraints to maintain feasibility of the candidate

solutions, for their proposed GA-based method for solving min−# problems. To overcome

the drawbacks of existing GA-based methods handling the constraints, Wang et al. [24]

proposed a genetic algorithm with chromosome-repairing for both types of polygonal

approximation problems, empirically showing that their method outperformed the existing

GA-based methods and the local search based method proposed by Masood and Haq

[11]. Apart from the genetic algorithms, ant colony search (ACS) and particle swarm

optimization (PSO) have also been applied to polygonal approximation. Yin proposed

3



an ACS-based method simulating ant foraging behavior [26] and later went on to develop

a PSO-based method simulating the behavior of bird flocking [27], for solving min-#

problems. Wang et al. [23] proposed a novel method incorporating a mutation operator

into PSO for min-# problems.

Compared to GA, PSO has a simpler concept, fewer parameters and easier imple-

mentation, although the number of works applying PSO to polygonal approximation is

limited. Originally, PSO was designed for real-valued problems [6], but because polygonal

approximation is a discrete optimization problem, Kennedy and Eberhart [7] proposed a

binary version of PSO (bPSO), which became the basis of other methods [23,27].

The existing PSO-based methods for polygonal approximation have the following lim-

itations: (1) a digital curve usually has many points and the subsequent binary position

vector is very long, significantly affecting the efficiency of the solution representation, and

more importantly, (2) bPSO cannot guarantee the optimality of the solution. According

to the position updates of bPSO as in [23, 27], if the value of the velocity is greater than

0, at least half of the curve points will be selected. In practical applications, however, the

solution vertex count is much smaller than the number of curve points; therefore the bias

of bPSO towards equal probability of being vertex and non-vertex is not appropriate.

In order to effectively apply PSO to the min-# problem, this paper proposes a novel

integer PSO (iPSO) to represent the particles directly and greatly reduce the size of the

position vector. Moreover, the velocity and position update in integer space guarantee the

optimality of the obtained solutions. iPSO is therefore more suitable for solving polygonal

approximation problems than bPSO.

3 Problem Formulation

A closed digital curve C with N points can be represented by a clockwise ordered sequence

of pixel points C = {zi(xi, yi)|i = 1, 2, . . . , N}, where zi is the ith point having coordinate

(xi, yi) and zN+i = zi. Let Aij = {zi, zi+1, . . . , zj} denotes an arc from zi to zj. Let Lij

denote the straight line segment connecting zi and zj, i.e., the chord of Aij. The error in

approximating Aij using its chord Lij is calculated by

e(Lij, Aij) =
∑

zk∈Aij

d2(zk, Lij), (1)

4



where d(zk, Lij) is the perpendicular distance from the chord Lij to the point zk. A polygon

V which approximates C can be represented by an ordered set of line segments (or chords)

V = {Lt1t2 , Lt2t3 , . . . , LtM−1tM , LtM tM+1
}, subject to t1 < t2 < . . . < tM , tM+1 = t1 and

{zt1 , zt2 , . . . , ztM} ⊆ C, where M is the number of vertices in V . The min-# polygonal

approximation problem is: given an allowable error ε, find a polygon V with the minimum

number of vertices among all the polygons approximating C whose integral square error

(ISE) is less than ε. The integral square error (ISE) between curve C and polygon V is

calculated by

ISE(V,C) =
M∑
i=1

e(Ltiti+1
, Atiti+1

). (2)

4 Particle swarm optimization (PSO)

The particle swarm optimization (PSO) algorithm is a population-based evolutionary com-

putation technique originally proposed by Kennedy and Eberhart [6]. PSO was developed

based on observations of animal social behaviors, such as bird flocking, fish schooling, etc.

In this section, we present a brief review of PSO and its binary version, bPSO.

Assume a swarm consisting of N particles in a D-dimensional search space, S ⊂ RD.

The position of the ith particle is aD-dimensional vector denoted byXi = [xi1, xi2, . . . , xiD] ∈

S, and its velocity by Vi = [vi1, vi2, . . . , viD] ∈ S. Let Pi = [pi1, pi2, . . . , piD] denote the

best previous position encountered by the ith particle in the search space and g denote

the index of the particle that found the best previous position among the entire swarm.

The velocity and the position of the ith particle in the next time step are then updated

using the following formulas.

vij(t+ 1) = vij(t) + c1 ∗ r1 ∗ (pij(t)− xij(t)) + c2 ∗ r2 ∗ (pgj(t)− xij(t)), (3)

and

xij(t+ 1) = xij(t) + vij(t+ 1), (4)

where t = 1, 2, . . . , indicates the iterations, i = 1, 2, . . . , N is the particle’s index, and

j = 1, 2, . . . , D is the index of the vector dimension. c1 and c2 are positive constants,

referred to as cognitive and social parameters, respectively, and r1 and r2 are random

numbers uniformly distributed in [0, 1]. To avoid rapid movements of particles in the

search space, the velocity updates are usually clamped to within the range [−vmax, vmax].

5



PSO was originally developed for problems with continuous-valued variables, e.g. xij ∈

R. To adapt the PSO to problems with binary-valued variables, Kennedy and Eberhart [7]

proposed a binary version, bPSO. In bPSO, the velocity is treated as a probability vector,

where each element is the probability that an element of the position vector takes the

value of 1. For bPSO, the velocity update remains unchanged and the position update

becomes

xij(t+ 1) =

{
1 if r < S(vij(t+ 1)),

0 otherwise
(5)

where

S(vij(t+ 1)) =
1

1 + e−vij(t+1)
(6)

and r is a random number uniformly distributed in [0, 1]. From Eq. 5, we can see that

a limiting transformation function (Eq. 6) should be designed to map the real valued

numbers of velocity to the range [0, 1]. In [27], Eq. 6 was replaced by the following

function for solving the min-# problem.

S(vij(t+ 1)) =
vij(t+ 1)

2vmax

+ 0.5, (7)

where vmax is the maximum velocity. From Eq. 5 and Eq. 6, we will have S(vij(t+1)) ≥

0.5, if vij(t + 1) ≥ 0. It is also easy to conclude that if the convergence of bPSO holds,

about 50% of the elements in the position vector Xi(t) generated by Eq. 5 will take the

value 1.

5 The proposed integer PSO (iPSO)

In this section, a novel integer PSO (iPSO), which operates in integer space, is proposed

for solving the polygonal approximation problem.

5.1 Particle representation and fitness evaluation

Given a digital curve C = {zi(xi, yi)|i = 1, 2, . . . , N} with N points, let V = {Lt1t2 , Lt2t3 ,

. . . , LtM−1tM , LtM t1} be an approximating polygon of C with M vertices, where t1 < t2 <

. . . < tM and ti ∈ [1, N ] is the serial number of the ith vertex of V . The existing bPSO-

based methods adopt binary coding to represent the particle [23, 27]. In these schemes,

6



the candidate polygon V is represented by a binary vector [b1, b2, . . . , bN ], in which bi

corresponds to curve point zi. bi takes 1 if zi is selected as the polygon’s vertex, and

0 otherwise. Since a digital curve usually has a large number of points, the length of

the corresponding binary vector will be equally long. This coding scheme also requires

a decoding operation, i.e. the serial number of each vertex must be computed from

the binary vector. These two issues greatly affect the efficiency of bPSO in polygonal

approximation.

To address these issues in bPSO, this paper proposes a novel PSO integer coding

scheme. This new scheme directly uses the serial number of the vertex of the approximat-

ing polygon to code the particle. Particle Xi is represented by an integer vector which

can be expressed as

Xi = [xi1, xi2, . . . , xiM ] subject to xi1 < xi2 < . . . < xiM and xij ∈ {1, 2, . . . , N}, (8)

where M is the dimension of Xi and also denotes the numbe of vertices in V. The particle

denotes a candidate solution V = {Lxi1xi2
, Lxi2xi3

, . . . , LxM−1xM
, LxiMxi1

} to approximate

C. In most polygonal approximation cases, the number of selected polygon vertices is

much smaller than the number of curve points (i.e. M << N). Compared to bPSO’s

coding on N curve points, the new representation on M polygon candidate points in iPSO

is more efficient. The vertex indices of V can be directly retrieved from Xi, so that it

does not require a decoding step as in bPSO.

Figure 1 shows a circular curve, digitized to 16 points, approximated to a triangle and

square, and the comparison of the binary coding of bPSO and the integer coding of the

proposed iPSO. The length of the binary code is fixed, whereas the length of the integer

code is variable and much shorter than that of a binary code. In the min-# problem,

the objective is to minimize the number of vertices of the approximating polygon. In the

proposed integer coding, the length of the position vector can be used to directly represent

the fitness value of the particle; the shorter the vector, the better the fitness value.

5.2 Velocity update and position update

The original velocity update formula (Eq. 3) and position update formula (Eq. 4) can not

produce integer values. To allow PSO to perform in integer space, these two equations are

modified as shown in Eq. 9 and Eq. 11, respectively. The new velocity update formula is

7



expressed as

vij(t+ 1) =

{
⌊ṽij(t+ 1)⌋ mod N (ṽij(t+ 1) ≥ 0)

−(⌊−ṽij(t+ 1)⌋ mod N) (ṽij(t+ 1) < 0),
(9)

where

ṽij(t+ 1) = vij(t) + c1 ∗ r1 ∗ (pij(t)− xij(t)) + c2 ∗ r2 ∗ (pgj(t)− xij(t)). (10)

The new position update formula is expressed as

xij(t+ 1) =


x̃ij(t+ 1)−N (x̃ij(t+ 1) > N)

x̃ij(t+ 1) (0 < x̃ij(t+ 1) ≤ N),

x̃ij(t+ 1) +N (x̃ij(t+ 1) ≤ 0)

(11)

where

x̃ij(t+ 1) = xij(t) + vij(t+ 1). (12)

In Eq. 9, ‘mod ’ denotes the modulo operation and ⌊·⌋ denotes the floor function, used

to convert a real expression ṽij(t + 1) to an integer expression vij(t + 1), restricted to

within [−(N − 1), N − 1]. The value of the updated position x̃ij(t + 1) is restricted to

[1, N ]. The velocity vij denotes the displacement of the polygon’s vertex along the curve,

where vij > 0 indicates a clockwise displacement, and vij < 0 denotes a displacement

in a counter-clockwise direction. Figure 2 illustrates the process and mechanism of the

proposed position update using Eq. 11.

Unlike the fixed position vector length in bPSO, the proposed iPSO has position

vectors with variable lengths meaning that the position vector Xi may have a different

length to the position vectors Pi and Pg. Accordingly, the term “pij(t)− xij(t)” and the

term “pgj(t)− xij(t)” in Eq. 10 are modified to

pij(t)− xij(t) =

{
pij(t)− xij(t) if j ≤ L,

piL(t)− xij(t) otherwise,
(13)

1

5

3 7

9

11

13

15

[ , , , , , , , , , , , , , , , ]0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0

[ , , , ]3 7 11 15

[0,0,0,0,1,0,0,0,0,0,0,1,0,1,0,0]

[5,12,14]

Figure 1: A comparison between binary coding and the proposed integer coding of a square and a
triangle approximating a 16-point digital curve.

8



and

pgj(t)− xij(t) =

{
pgj(t)− xij(t) if j ≤ H,

pgH(t)− xij(t) otherwise,
(14)

where L and H are the lengths of Pi and Pg, respectively. Figure 3 illustrates the appli-

cation of Eq. 13.

Ideally, the position vector Xi = [xi1, xi2, . . . , xiM ] satisfies the sequence rule xi1 <

xi2 <, . . . , < xiM . In reality, however, the position update result may cause violation of

this condition. For example, if Xi(t) = [1, 4, 7, 9] and Vi(t + 1) = [4, 0, 2, 0], the update

result following Eq. 12 becomes Xi(t + 1) = Xi(t) + Vi(t + 1) = [5, 4, 9, 9] which violates

the sequence rule. This violation is rectified through two steps: (1) sorting the elements

of Xi(t+ 1) in ascending order, and (2) removing all the repetitive elements in Xi(t+ 1).

In the above example Xi(t+ 1) = [5, 4, 9, 9] becomes Xi(t+ 1) = [4, 5, 9].

5.3 Position adjustment

Polygonal approximation is a constraint optimization problem, but PSO may generate

solutions which violate the constraint conditions. In these situations, the particles fly

out of the feasible solution space and therefore a proper constraint-handling method is

required. Yin [27] adopted a penalty method to enforce the constraints, whereby particles

leaving the feasible solution space are penalised by assigning a negative value reflecting the

violation degree. This penalty aims to drive the particles back into the feasible solution

region, however it is generally difficult to determine the penalty function, as a weak

penalty may leave many particles continuously searching outside the feasible solution

space. To overcome the disadvantage of the penalty method, Wang [24] proposed a

x(t+1)

x(t)

v(t+1)=-4

x(t+1)

x(t)

v(t+1)=4

(a) (b)

Figure 2: Position updating of the proposed method; (a) when v(t + 1) > 0, the position x(t) moves
clockwise to x(t+ 1), and (b) when v(t+ 1) < 0, the position moves counterclockwise.

9



chromosome-repairing scheme which utilized the traditional split and merge techniques

to mend the ‘invalid’ chromosomes. This scheme not only aims to preserve the feasibility

of the solution, but also attempts to maintain its optimality. Following on from the idea of

the constraint handling method proposed by Wang [24], we use the chromosome-repairing

scheme to cope with the problem of the particles leaving the feasible solution space.

When a particle leaves the feasible solution space, the approximation error of its

corresponding solution exceeds the given error tolerance ε. The following steps can be

taken to move it back into the feasible region: (1) travel along the polygon in a clockwise

direction, examine and adjust each vertex to a new curve point on the arc between its

two adjacent vertices to reduce the approximation error as much as possible; and (2) if

the resulting approximation error still exceeds the prescribed tolerance, the solution is

repaired using the scheme proposed by Wang [24].

Similarly to GA, PSO has a strong global, but poor local search ability. To improve the

local search ability of PSO, many researchers have suggested embedding a local optimizer

such as hill-climbing into PSO. For example, Yin [27] embedded an adjusting-and-merging

optimizer. This optimizer performs the following two steps: (1) each vertex of the polygon

is adjusted, if possible, to a new curve point on the arc between its two adjacent vertices

such that the approximation error is reduced as much as possible; and (2) a merging

process is repeated until no adjacent segments can be merged further. The merging

process is defined as merging two adjacent segments if the resulting polygon still satisfies

the error constraint. Although the local optimizer can further improve the quality of the

solutions, it is time-consuming. To balance the computation time and solution quality,

this paper only uses this optimizer on the best solution found by all the particles so far

at each iteration. This is different from Yin’s method in which the local optimization is

-1 -3 -4

Figure 3: An example illustrating the calculation process of Eq. 13.

10



performed against every particle.

5.4 Algorithm flow

This section elaborates on the algorithm flow of the proposed iPSO. Given a digital

curve C with N points, let K be the size of the particle swarm, and T be the pre-

specified maximum number of iterations. The pseudocode of the proposed iPSO is shown

in Algorithm 1.

Algorithm 1: Integer PSO (iPSO) for polygon approximation

Input:
· Digital curve C
· Error tolerance ε
· PSO parameters T , c1, c2, r1 and r2.

Output: Optimal polygon approximation P
begin

Initialize
· Position: Random {X1(0), X2(0), . . . , XK(0)} (Eq. 8)
· Velocity: Random Vi(0) = {vi1(0), . . . , viM(0)} where
vij(0) ∈ {1−N, . . . , N − 1}, i ∈ [1, N ];
· Best positions P1(0) = P2(0) = ... = PK(0) = Pg(0) = +∞;
for t← 1 to T do

for i← 1 to K do
· If particle Xi(t) falls in the infeasible solution space,

Xi(t) =Chromosome-Repair(Xi(t)) (Section 5.3);
· Evaluate the fitness value Fi(t) for Xi(t);
· Update best previous position Pi(t):

If Fi(t) < F (Pi(t− 1)), Pi(t) = Xi(t), otherwise Pi(t) = Pi(t− 1)
· Update best position Pg(t):

If F (Pi(t)) < F (Pg(t)), Pg(t) = Pi(t)

· Local optimize Pg(t):
Pg(t) =Adjust-and-Merge(Pg(t)) (Section 5.3);

for i← 1 to K do
· Update velocity Vi(t+ 1) (Eq. 9) and position Xi(t+ 1) (Eq. 11)

· Return P = Pg(T );

5.5 Comparison between bPSO and iPSO

Compared to bPSO, the proposed iPSO has the following advantages.

• With regards to particle representation, iPSO provides a direct solution representa-

tion which benefits the processing of the solution (e.g. calculation of approximation

error, fitness evaluation and solution local optimization). In bPSO, the binary code

11



requires decoding and transformation into an integer code before processing the so-

lution. In addition, the solution representation of iPSO is much more compact and

efficient than bPSO.

• With respect to the position update, iPSO has a clearer physical meaning and a

more sound mechanism than bPSO. In the design of iPSO, both position and velocity

have clear physical meanings. Its particle position is the polygon vertex position

on the curve, and its velocity is the distance and direction that a particle needs

to travel in the position update. These intuitive designations naturally follow their

equivalent kinetic meanings. Conversely, the update mechanism of bPSO is based

on probability. The velocity is transformed to a probability that a point is chosen

as a polygon vertex where zero velocity denotes an equal chance of being selected or

not being selected. This is contrary to the sense of kinetics in which a zero velocity

particle would remain in the same position.

• With regards to the solution quality, iPSO generates higher quality solutions than

bPSO due to being unbiased and having an increased efficiency. As detailed in

Sections 2 and 4, bPSO is biased towards the state that half of the curve points

are selected as the polygon vertices. The solutions consequently lack optimality. In

iPSO, the length of the position vector is the number of vertices in the approximating

polygon and the position update does not increase. Moreover, the position update

tends to reduce the length of the position vector. We find that iPSO has a higher

probability of generating more-optimal solutions than bPSO.

6 Experimental results

For our experiments, two groups of shapes were used to evaluate the performance of the

proposed iPSO. Figure 4 shows the first group of two synthesized shapes designed by Teh

and Chin [22]. Figure 4(a) is a shape with 102 points, and Figure 4(b) is a leaf shape with

120 points. This collection of shapes has been widely used as a testing benchmark for

existing polygonal approximation methods as in [4, 11, 20–27]. The second shape group

consists of four lakes as shown in Figure 5, which were extracted from the maps of four

famous lakes of America, Italy, Nicaragua and Canada, respectively, by Wang et al [24].

Figure 5 shows Lake Arlington with 133 points (a), Lake Como with 124 points (b), Lake

12



00007   00777   77766   76666   66665   76766
56454   43436   66656   55454   44434   33232
22254   54434   23221   21322   22222   21221
11111    00100   00

33332   30700   00003   32307   00003   32322
26777   22212   76661   11116    66566   55000
10056   65655   00110   66565   65555   56667
66666   66664   22222   22222   23224   43433

(a) Semicircle (b) Leaf

Figure 4: Two synthesized shapes and their chain codes generated from [22]

Figure 5: Four lake shapes extracted from the maps of four famous lakes, namely Arlington (in US),
Como (in Italy), Managua (in Nicaragua) and Simcoe (in Canada), with their chain codes generated
from [24]

Managua with 120 points (c), and Lake Simcoe with 134 points (d). Since a shape is

usually represented by a chain code, the chain codes of these test instances are included

in these figures. An algorithm for translating a chain code into a sequence of points in

Cartesian coordinates is provided in Algorithm 2, in the Appendix.

In the experiments, the proposed method was compared to three baseline algorithms:

bPSO [27], mPSO [23] and GA [24]. Among them, bPSO [27] is the first work to apply

the binary version of PSO to polygonal approximation problems. mPSO [23] also adopted

the binary version of PSO and incorporated a mutation operator. GA [24] is a recent-

ly published GA-based method which has the best performance over the other nature

inspired algorithms.

Due to the probabilistic nature of the searches, each method was run ten times with the

13



best results and average results reported. All the methods were implemented in Borland

Delphi 7.0 and were tested on a PC with Pentium Dual-core 2.80 GHz CPU and 2 GB

RAM. For the proposed iPSO, parameters were set to c1 = 2 and c2 = 2. The population

size was set at 30 and the number of iterations was 100 for all four methods. The other

parameters for bPSO [27], mPSO [23] and GA [24] were set as detailed in their respective

papers.

To evaluate the quality of an approximating polygon, the Integral Square Error (ISE)

and the number of the vertices, M , can be used to indicate the precision and compactness,

respectively. These two measurements are interrelated and two polygons with different

ISEs and vertex numbers cannot be directly compared. To overcome this problem, Rosin

[18] proposed a unified performance measure for assessing the relative merits of the various

methods. Rosin’s method is based on measuring the difference between the obtained

solution and the global optimal solution. An optimal algorithm, such as the dynamic

programming method [13], is used to obtain the ground truth. Let Eappr and Mappr denote

the ISE and the vertex count of the approximating polygon produced by the algorithm to

be tested, respectively. Let Eopt denote the ISE of the approximating polygon with Mappr

vertices generated by the optimal algorithm, and Mopt denote the vertex count that the

optimal algorithm would require to produce the same ISE as the tested algorithm. The

measurements proposed by Rosin [18] are calculated as

Fidelity =
Eopt

Eappr

× 100%, (15)

Efficiency =
Mopt

Mappr

× 100%, (16)

Merit =
√

Fidelity × Efficiency. (17)

Fidelity measures how well the test polygon fits the curve relative to the optimal polygon

in terms of the approximation error. Efficiency measures how compact the testing polygon

is, relative to the optimal polygon with the same error bound. Merit provides a combined

measure of the precision and compactness. The advantage of Rosin’s measure over the

other measures [19] is that it can provide a relative measure and can also be used to

compare approximations having different numbers of vertices. For these reasons, we use

Rosin’s method to measure and compare the results of the proposed method and the other

benchmark methods, in this paper.

14



Figure 6 shows the average numbers of polygon vertices (M) of ten independent runs of

the four methods on all the test instances. The ε−M graphs show the average performance

versus M of bPSO [27], mPSO [23], GA [24], and the proposed iPSO, respectively, for

min−ε optimization. The best performances of the four methods on the two synthesized

shapes are listed in Table 3. Table 2 lists performances for the four lake shapes.

For an error tolerance of ε = 10, Figure 7 shows a visual comparison of polygonal ap-

proximations using the four methods on the two synthesized shapes, while Figure 8 shows

a visual comparison when applied to the lake shapes. The small circles denote the curve

points, and the dot denotes the selected polygon vertices. Each pair of adjacent vertices

is connected by a line segment to form the approximating polygon. The calculation time

for all cases shown in Figure 7 are as follows: bPSO requires 0.134 s, mPSO requires 0.156

s, GA requires 0.031 s and iPSO requires 0.076 s. Likewise, the calculation times for all

cases shown in Figure 8 are as follows: bPSO requires 0.293 s, mPSO requires 0.317 s,

GA requires 0.063 s and iPSO requires 0.169 s.

On the two groups of testing shapes, the proposed iPSO can be seen to outperform

the benchmark methods (i.e. bPSO [27], mPSO [23] and GA [24]), in terms of the best

and average solutions. With a fixed error tolerance ε, iPSO approximated polygons with

the smallest numbers of vertices. Where the number of vertices from all four methods are

equal (e.g. ε = 60 for semicircle in Table 1 and Table 2), the proposed iPSO still generates

the best approximation in terms of error. When using Rosin’s method to measure the

performances, the proposed iPSO systematically outperformed the benchmark methods

in terms of Fidelity, Efficiency and Merit for all instances, as shown in Table 1 and Table

2. In some cases (e.g. ε = 30 for Semicircle, ε = 10 for Leaf, ε = 120 for Arlington, ε = 60

for Como, ε = 90 for Managua and ε = 30 for Simcoe), iPSO achieved Fidelity, Efficiency

and Merit values of 100, indicating that iPSO found the global optimal solutions in the

search space. With regards to computational speed, iPSO is faster than the other two

PSO-based methods due to the efficient coding and updating mechanism, and while being

slower than GA, iPSO offers better accuracy.

At this point, the proposed iPSO has been compared with three benchmark methods,

bPSO [27], mPSO [23], and GA [24] and the experimental results indicates its higher

performance over the other approaches. To further demonstrate the superiority of the

15



bPSO[32]
mPSO[33]
GA[29]
iPSO

(a) Semicircle

bPSO[32]
mPSO[33]
GA[29]
iPSO

(b) Leaf

bPSO[32]
mPSO[33]
GA[29]
iPSO

(c) Arlington

bPSO[32]
mPSO[33]
GA[29]
iPSO

(d) Como

bPSO[32]
mPSO[33]
GA[29]
iPSO

(g) Managua

bPSO[32]
mPSO[33]
GA[29]
iPSO

(h) Simcoe

Figure 6: The average results of bPSO [27], mPSO [23], GA [24], and the proposed iPSO on all testing
instances.

16



Table 1: The best results of GA [24], bPSO [27], mPSO [23] and the proposed iPSO on the synthesized
shapes

Curves Method ε M ISE Fidelity(%) Efficiency(%) Merit(%)

Semicircle bPSO [27] 10 21 9.11 87.6 94.8 91.1

mPSO [23] 20 9.57 94.1 97.3 95.7

GA [24] 20 9.68 93.1 96.7 94.9

iPSO 20 9.20 97.9 99.1 98.5

bPSO [27] 30 13 27.12 76.4 77.2 83.4

mPSO [23] 12 28.78 90.3 96.3 93.3

GA [24] 12 27.87 93.3 97.5 95.4

iPSO 12 26.00 100 100 100

bPSO [27] 60 10 50.45 77.1 95.1 85.7

mPSO [23] 10 47.51 81.9 96.4 88.9

GA [24] 10 45.39 87.8 97.3 91.3

iPSO 10 38.92 100 100 100

bPSO [27] 90 8 88.47 89.4 93.6 91.5

mPSO [23] 8 81.30 92.9 95.9 94.4

GA [24] 8 80.44 93.9 96.5 95.2

iPSO 8 76.84 98.3 99.1 99.7

bPSO [27] 120 7 116.22 80.1 93.0 86.3

mPSO [23] 7 103.92 89.50 96.7 93.1

GA [24] 7 102.24 90.0 97.2 94.1

iPSO 7 93.05 100 100 100

bPSO [27] 150 7 112.25 82.9 94.2 88.4

mPSO [23] 7 104.23 89.3 96.6 92.9

GA [24] 6 145.52 96.5 99.4 97.9

iPSO 6 141.29 99.4 99.9 99.7

Leaf bPSO [27] 10 24 9.62 89.8 95.3 92.5

mPSO [23] 24 9.56 90.3 95.5 92.9

GA [24] 24 9.48 91.2 95.8 93.5

iPSO 23 9.46 100 100 100

bPSO [27] 30 16 27.60 96.5 98.7 97.6

mPSO [23] 16 27.56 95.5 98.3 96.9

GA [24] 16 27.56 96.5 98.7 97.6

iPSO 16 26.60 100 100 100

bPSO [27] 60 13 57.65 83.4 93.8 88.4

mPSO [23] 13 59.70 80.5 92.5 86.3

GA [24] 13 54.80 87.8 95.7 91.6

iPSO 12 59.94 100 100 100

bPSO [27] 90 13 59.39 80.9 92.7 86.6

mPSO [23] 12 76.90 77.9 95.1 86.1

GA [24] 12 69.58 86.1 97.2 91.5

iPSO 11 88.81 100 100 100

bPSO [27] 120 12 79.27 75.6 94.4 84.5

mPSO [23] 11 118.53 74.9 86.5 80.5

GA [24] 10 119.04 87.8 95.0 91.3

iPSO 10 104.57 100 100 100

bPSO [27] 150 10 142.08 73.6 85.2 79.2

mPSO [23] 10 147.22 71.0 82.3 76.5

GA [24] 9 149.09 89.5 90.3 89.9

iPSO 9 135.47 98.5 98.7 98.6

17



Table 2: The best results of GA [24], bPSO [27], mPSO [23] and the proposed iPSO on the lake shapes

Curves Method ε M ISE Fidelity(%) Efficiency(%) Merit(%)

Arlington bPSO [27] 10 36 9.83 82.6 90.5 86.5

mPSO [23] 35 9.92 87.0 92.6 89.8

GA [24] 35 9.91 87.0 92.7 89.8

iPSO 33 9.88 97.4 98.5 92.8

bPSO [27] 30 18 28.36 86.7 95.9 92.8

mPSO [23] 17 29.75 98.8 99.5 99.1

GA [24] 17 29.56 99.5 99.8 99.6

iPSO 17 29.45 99.8 99.9 99.9

bPSO [27] 60 15 53.44 79.3 92.3 85.6

mPSO [23] 15 45.89 92.4 97.5 94.9

GA [24] 14 54.62 94.9 98.1 96.4

iPSO 14 51.81 100 100 100

bPSO [27] 90 12 86.62 82.2 89.0 85.5

mPSO [23] 12 82.59 86.2 91.9 89.0

GA [24] 11 86.74 95.5 97.0 96.3

iPSO 11 84.44 98.2 98.8 98.5

bPSO [27] 120 10 111.51 84.7 89.4 87.0

mPSO [23] 10 117.13 80.6 87.5 84.0

GA [24] 9 117.63 93.3 97.1 95.2

iPSO 9 109.73 100 100 100

bPSO [27] 150 9 135.74 80.8 90.3 85.5

mPSO [23] 9 128.58 85.3 93.0 89.1

GA [24] 8 148.50 94.0 96.9 95.5

iPSO 8 145.70 95.9 97.9 96.9

Como bPSO [27] 10 25 9.38 94.8 97.7 96.2

mPSO [23] 24 9.96 97.7 98.8 98.2

GA [24] 24 9.80 99.2 99.6 99.4

iPSO 24 9.78 99.4 99.7 99.6

bPSO [27] 30 17 29.52 72.2 88.1 79.7

mPSO [23] 16 28.34 88.2 95.2 91.6

GA [24] 15 29.53 99.5 99.8 99.7

iPSO 15 29.40 100 100 100

bPSO [27] 60 13 55.22 70.9 84.5 77.4

mPSO [23] 12 53.85 83.3 92.7 87.9

GA [24] 11 57.62 95.7 97.8 96.7

iPSO 11 55.11 100 100 100

bPSO [27] 90 10 86.20 76.9 84.0 79.9

mPSO [23] 9 88.74 88.0 91.2 89.6

GA [24] 9 86.67 90.1 92.9 91.5

iPSO 9 80.68 96.7 97.8 97.3

bPSO [27] 120 8 119.63 76.5 76.4 76.5

mPSO [23] 8 100.39 91.2 93.1 92.2

GA [24] 7 112.16 96.0 95.2 95.6

iPSO 7 108.11 99.6 99.5 99.5

bPSO [27] 150 7 136.43 78.9 82.6 80.7

mPSO [23] 6 140.32 86.3 95.4 90.8

GA [24] 6 131.20 92.3 97.6 94.9

iPSO 6 121.13 100 100 100

18



Table 2: The best results of GA [24], bPSO [27], mPSO [23] and the proposed iPSO on the lake shapes
(continues)

Curves Method ε M ISE Fidelity(%) Efficiency(%) Merit(%)

Managua bPSO [27] 10 26 9.80 85.0 93.5 89.1

mPSO [23] 26 9.80 85.0 93.5 89.2

GA [24] 25 9.73 94.2 97.5 95.9

iPSO 25 9.23 99.3 99.7 99.5

bPSO [27] 30 16 28.35 77.8 88.5 83.0

mPSO [23] 16 26.09 84.6 92.0 89.2

GA [24] 14 29.43 98.4 99.5 99.0

iPSO 14 29.00 100 100 100

bPSO [27] 60 12 57.00 81.6 94.0 87.6

mPSO [23] 12 55.38 84.0 94.9 89.3

GA [24] 12 50.62 91.7 97.6 94.7

iPSO 12 47.58 97.8 99.4 98.6

bPSO [27] 90 11 83.56 73.0 90.6 81.3

mPSO [23] 11 81.32 75.0 91.4 82.8

GA [24] 10 84.82 97.1 99.2 98.2

iPSO 10 82.36 100 100 100

bPSO [27] 120 10 109.56 75.2 91.7 83.0

mPSO [23] 10 108.53 75.9 92.0 83.5

GA [24] 9 117.81 97.6 99.1 98.3

iPSO 9 115.59 99.4 99.8 99.6

bPSO [27] 150 9 149.33 77.0 88.8 82.7

mPSO [23] 9 142.12 80.9 91.0 85.8

GA [24] 8 149.31 99.6 99.9 99.8

iPSO 8 148.65 100 100 100

Simcoe bPSO [27] 10 34 9.41 82.0 92.3 87.0

mPSO [23] 33 9.86 84.4 93.1 88.6

GA [24] 32 9.76 91.8 96.5 94.1

iPSO 31 9.72 99.7 99.9 99.8

bPSO [27] 30 17 28.61 89.9 93.6 91.7

mPSO [23] 17 27.89 92.2 94.9 93.6

GA [24] 16 28.90 97.7 99.0 98.4

iPSO 16 28.24 100 100 100

bPSO [27] 60 13 55.35 78.9 93.8 86.0

mPSO [23] 13 52.76 82.8 95.1 88.7

GA [24] 12 59.63 97.4 98.9 98.1

iPSO 12 58.07 100 100 100

bPSO [27] 90 11 87.93 79.3 88.8 83.9

mPSO [23] 11 86.68 80.4 89.2 84.7

GA [24] 10 87.53 93.1 97.8 95.4

iPSO 10 81.73 99.8 99.9 99.8

bPSO [27] 120 10 111.89 72.9 89.5 80.8

mPSO [23] 10 109.51 74.5 89.9 81.8

GA [24] 9 114.08 95.1 99.2 97.1

iPSO 9 108.46 100 100 100

bPSO [27] 150 9 144.58 75.0 94.5 84.2

mPSO [23] 9 139.36 77.8 95.3 86.1

GA [24] 9 130.29 83.2 96.7 89.7

iPSO 9 119.77 90.6 98.3 94.3

19



Table 3: Comparison of the proposed iPSO and the other methods including ACS [26], DPD [10] and
Betweenness [2] on the synthesized shapes

Curves Method ε M ISE Fidelity(%) Efficiency(%) Merit(%)

Semicicle Betweenness [2] 15 15.0 14.3 100 100 100.0

ACS [26] 18.0 14.1 79.4 85.1 82.2

DPD [10] 15.0 14.4 100 100 100

iPSO 15.0 14.3 100 100 100

Betweenness [2] 20 14.0 19.8 87.8 94.8 91.3

ACS [26] 16.4 19.9 65.1 80.8 72.5

DPD [10] 14.0 18.0 96.6 98.7 97.6

iPSO 14.0 17.9 97.1 98.9 98.0

Betweenness [2] 25 13.0 24.8 83.6 94.1 88.7

ACS [26] 13.4 23.6 82.2 93.0 87.4

DPD [10] 13.0 21.4 96.8 99.0 97.9

iPSO 13.0 21.8 95.1 98.4 96.7

Betweenness [2] 30 12.0 28.9 89.9 96.2 93.0

ACS [26] 12.6 27.9 81.9 92.9 87.2

DPD [10] 12.0 27.3 95.3 98.3 96.8

iPSO 12.0 26.9 96.7 98.8 97.7

Betweenness [2] 60 10.0 38.9 100 100 100

ACS [26] 10.0 58.6 66.4 91.7 78.0

DPD [10] 10.0 38.9 100 100 100.0

iPSO 10.0 39.8 97.8 99.6 98.7

Leaf Betweenness [2] 15 20.0 14.1 94.9 97.9 96.4

ACS [26] 22.2 15.0 69.5 85.7 77.2

DPD [10] 20.0 14.1 94.9 97.9 96.4

iPSO 20.0 13.9 96.3 98.5 97.4

Betweenness [2] 30 16.0 27.5 96.7 98.8 97.8

ACS [26] 17.2 21.3 95.6 98.9 97.2

DPD [10] 16.0 27.0 98.5 99.5 99.0

iPSO 16.0 26.8 99.3 99.7 99.5

Betweenness [2] 90 12.0 70.5 85.0 97.0 90.8

ACS [26] 13.2 81.8 57.6 85.2 70.1

DPD [10] 12.0 85.9 69.8 92.5 80.3

Betweenness [2] 100 11.0 99.7 89.1 93.7 91.4

ACS [26] 13.0 88.6 54.3 84.7 67.8

DPD [10] 12.0 85.9 69.8 92.5 80.3

iPSO 11.0 90.9 97.7 98.8 98.3

Betweenness [2] 150 9.0 136.2 98.0 98.3 98.1

ACS [26] 11.2 149.5 55.5 72.3 63.4

DPD [10] 10.0 127.2 82.2 92.2 87.0

iPSO 9.0 136.6 97.7 98.0 97.8

20



(a) M=21, ISE=9.11
(Merit=91.1%)

(c) M=20, ISE=9.57
(Merit=95.7%)

(e) M=20, ISE=9.68
(Merit=94.9%)

(g) M=20, ISE=9.20
(Merit=98.5%)

(b) M=24, ISE=9.62
(Merit=92.5%)

(d) M=24, ISE=9.56
(Merit=92.9%)

(f) M=24, ISE=9.48
(Merit=93.5%)

(h) M=23, ISE=9.46
(Merit=100%)

Figure 7: A visual comparison of the best solutions generated by the various methods on two synthesized
shapes: (a)-(b) for bPSO, (c)-(d) for mPSO, (e)-(f) for GA, and (g)-(h) for the proposed iPSO.

proposed method, other recent algorithms developed for solving the polygonal approxi-

mation problem are included for comparison. They are the Ant Colony Search (ACS) [26],

Dominant Point Deletion (DPD) [10] and Betweenness [2] methods. Table 3 shows the

average results over 10 independent runs on the synthesized shapes for all the compet-

ing methods, where the values of M and ISE of polygonal approximations generated by

ACS [26], DPD [10] and Betweenness [2] are from the reported results [2] and the corre-

sponding values of Fidelity, Efficiency and Merit are calculated by Eq. 15, Eq. 16 and

Eq. 17 respectively.

It can be seen in Table 3 that in the seven test cases, from the absolute measure values

and relative measure values, the proposed iPSO outperforms the ACS [26], DPD [10] and

Betweenness [2] methods. Only in three cases (ε = 25 and ε = 60 for Semicircle shape and

ε = 150 for leaf shape), is iPSO not the best among the four competing methods, however,

our method still achieves results comparable with the best method. In these cases, our

method creates polygonal approximations having the same number of vertices as the ones

generated by the best method, and the ISE approximation error of the best method is

only marginally better than our method (less than one pixel difference of ISE between

our method and the best method). It is worth noting that among the four competing

21



(a) M=36, ISE=9.83
(Merit=86.5%)

(e) M=35, ISE=9.92
(Merit=89.8%)

(i) M=35, ISE=9.91
(Merit=89.8%)

(m) M=33, ISE=9.88
(Merit=92.8%)

(b) M=25, ISE=9.38
(Merit=96.2%)

(f) M=24, ISE=9.96
(Merit=98.2%)

(j) M=24, ISE=9.80
(Merit=99.4%)

(n) M=24, ISE=9.78
(Merit=99.6%)

(c) M=26, ISE=9.80
(Merit=89.1%)

(g) M=26, ISE=9.80
(Merit=89.2%)

(k) M=25, ISE=9.73
(Merit=95.9%)

(0) M=25, ISE=9.23
(Merit=99.5%)

(d) M=34, ISE=9.41
(Merit=87.0%)

(h) M=33, ISE=9.86
(Merit=88.6%)

(l) M=32, ISE=9.76
(Merit=94.1%)

(p) M=31, ISE=9.72
(Merit=99.8%)

Figure 8: A visual comparison of the best solutions generated by the various methods on four lake
shapes, where (a)-(d) for bPSO, (e)-(h) for mPSO, (i)-(l) for GA, and (m)-(p) for the proposed iPSO.

22



methods, the proposed iPSO and Ant Colony Search (ACS) [26] are both nature inspired

algorithms, though our method is far better than ACS [26] in terms of absolute and

relative measures.

7 Conclusion

In this paper, a novel integer PSO algorithm, iPSO, has been proposed for solving the

polygonal approximation problem. The proposed iPSO algorithm utilizes integer coding to

provide a direct solution representation. Compared to the binary version of PSO (bPSO),

iPSO’s coding is significantly shorter and its updating mechanism has clearer physical

meaning. These characteristics offer iPSO a better performance in terms of solution

quality and computational speed. In the experiments, the proposed iPSO has been tested

on two commonly used synthesized shapes and four real lake shapes. The results show

that the proposed iPSO has higher performance on all test shapes than the bPSO-based

methods [23,27], in terms of the quality of the solutions and the computational efficiency.

As a nature inspired algorithm, the proposed iPSO was also compared with two other

types of nature inspired algorithms, that is, the GA-based method [24] and the Ant

Colony Search method (ACS) [26]. The comparative results indicate its superiority to

them. Two other recent methods, namely DPD [10] and Betweenness [2], are also included

in our comparison. Our method achieves better or comparable performances than them

in terms of solution merit.

It is worth noting that although the proposed iPSO was developed for solving min-#

polygonal approximation problems in this paper, the framework of the proposed method

can also be applied to solving min−ε polygonal approximation problems. When applying

iPSO for min-ε problems, only the fitness evaluation and position adjustment need be

updated. For min-ε problems, the fitness evaluation is associated with the approximation

error instead of the number of vertices, i.e. the polygons with smaller approximation error

have better fitness values. For the position adjustment, since the constraint condition is

changed and the infeasible solutions are those whose number of vertices is not equal to the

pre-specified number of vertices, we can mend the infeasible solutions via vertex insertion

and removal techniques. That is to say only a small change is required to be made against

the proposed iPSO on applying it to min-ε problems.

23



Polygonal approximation is a combinatorial optimization problem and this paper

demonstrates that the proposed iPSO provides a better solution than bPSO can offer.

Future research may be conducted to extend the idea of iPSO to other combinatorial op-

timization problems such as, e.g. the traveling salesman [3] and job shop scheduling [12]

problems.

Acknowledgements

This work was partially supported by National Natural Science Foundation of China

(Grant No. 61372158) and Key project of the Gaoxiao Research Program of Jiangsu

Province (Grant No. 11KJA520004).

24



Appendix

The pseudo code for translating the chain code into a sequence of Cartesian coordinate

points is described as follows:

Algorithm 2: Translating the chain code into a sequence of points in cartesian
coordinates
Input: a chain code Z = {z(1), z(2), . . . , z(N)},where N is the length of Z.
Output: a sequence of points C = {(x(i), y(i)) | i = 1, 2, . . . , N}, where (x(i), y(i))

is the coordinate of the ith point.
begin
· Initialize tx = (1, 1, 0,−1,−1,−1, 0, 1), ty = (0, 1, 1, 1, 0,−1,−1,−1);
· x(1) = tx(z(1) + 1);
· y(1) = ty(z(1) + 1);
for i← 1 to N − 1 do
· x(i+ 1) = x(i) + tx(z(i) + 1);
· y(i+ 1) = y(i) + ty(z(i) + 1);

· Return {(x(i), y(i)) | i = 1, 2, . . . , N};

25



References

[1] F. Attneave, “Some informational aspects of visual perception,” Psychological Re-

view, 1954, 61(3): 183-193.

[2] A.R Backes, O.M. Bruno, “Polygonal approximation of digital planar curves through

vertex betweenness ,” Information Sciences, 222(2013) 795-804.

[3] S.M. Chen, C.Y. Chien, “Solving the traveling salesman problem based on the genetic

simulated annealing ant colony system with particle swarm optimization techniques

,” Expert Systems with Applications, 38(2011) 14439-14450.

[4] S.Y. Ho, Y.C. Chen, “An efficient evolutionary algorithm for accurate polygonal

approximation,” Pattern Recognition, 2001, 34(12), 2305-2317.

[5] S.C. Huang, Y.N. Sun, “Polygonal approximation using genetic algorithms,” Pattern

Recognition, 1999, 32(8): 1409-1420.

[6] J. Kennedy, R.C. Eberhart, “Particle swarm optimization,” Proc. IEEE Int. Conf.

Neural Networks-ICNN’95, NJ: Piscataway, 1995, Vol. IV, pp. 1942-1948.

[7] J. Kennedy, R.C. Eberhart, “A discrete binary version of the particle swarm opti-

mization,” Proc. Int. Conf. systems man cybernetics’97, NJ: Piscataway, 1997, pp.

4104-4108.

[8] A. Kolesnikov, P. Fränti, “Min-# polygonal approximation of closed curves,” Proc.

Int. Conf. Image Processing-ICIP’05, Genova, Italy, Sep, 2005, Vols 1-5, pp. 1553-

1556.

[9] A. Kolesnikov, P. Fränti, “Polygonal approximation of closed discrete curves,” Pat-

tern Recognition, 2007, 40(4): 1282-1293.

[10] A. Masood, “Optimized Polygonal approximation by dominant point deletion, ,”

Pattern Recognition, 41(2008) 227-239.

[11] A. Masood, S. A. Haq, “A novel approach to polygonal approximation of digital

curves,” Journal of visual communication and image representation, 18(2007) 264-

274.

26



[12] J.C.H. Pan, H.C. Huang, “A hybird genetic algorithm for no-wait job shop scheduling

problems ,” Expert Systems with Applications, 36(2009) 5800-5806.

[13] J.C. Perez, E. Vidal, “Optimum polygonal approximation of digitized curves,” Pat-

tern Recognition Letter, 1994, 15(8): 743-750.

[14] A. Pikaz, I. Dinstein, “An algorithm for polygonal approximation based on iterative

point elimination,” Pattern Recognition Letter, 1995, 16(6): 557-563.

[15] A.C. Poyato, F.J.M. Cuevas, R.M. Carnicer, R.M. Salinas, “Polygonal approximation

of digital planar curves through break point suppression ,” Pattern Recognition,

43(2010) 14-25.

[16] B.K. Ray, K.S. Ray, “An algorithm for detection of dominant points and polygonal

approximation of digitized curves,” Pattern Recognition Letters, 1992, 13(12):849-

846.

[17] B.K. Ray, K.S. Ray, “Determination of optimal polygon from digital curve using L1

norm,” Pattern Recognition, 1993, 26(4):505-509.

[18] P.L. Rosin, “Techniques for assessing polygonal approximations of curves,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, 19(1997) 659-666.

[19] D. Sarkar, “A simple algorithm for detection of significant vertices for polygonal

approximation of chain-coded curves,” Pattern Recognition Letters, 14(1993) 959-

964.

[20] B. Sarkar, L.K. Singh, D. Sarkar, “A genetic algorithm-based approach for detection

of significant vertices for polygonal approximation of digital curves,” International

Journal of Image and Graphics, 2004, 4(2): 223-239.

[21] Y.N. Sun, S.C. Huang, “Genetic algorithms for error-bounded polygonal approxima-

tion,” Int.J. Pattern Recognition and Artificial Intelligence, 2000, 14(3): 297-314.

[22] H.C. Teh, R.T. Chin, “On detection of dominant points on digital curves,” IEEE

Trans Pattern Anal Mach Intell, 11(8)(1989) 859-872.

27



[23] B. Wang, H.Z. Shu, B.S. Li, Z.M. Niu, “A Mutation-Particle Swarm Algorithm

for Error-Bounded Polygonal Approximation of Digital Curves,” Lecture Notes in

Computer Science, 2008, 5226: 1149-1155.

[24] B. Wang, H.Z. Shu, L.M. Luo, “A genetic algorithm with chromosome-repairing

for min-# and min-ε polygonal approximation of digital curves,” Journal of Visual

Communication & Image Representation, 2009, 20(1)45-56.

[25] P.Y. Yin, “A new method for polygonal approximation using genetic algorithms,”

Pattern Recognition letter, 1998, 19(11): 1017-1026.

[26] P.Y. Yin, “Ant colony search algorithms for optimal polygonal approximation of

plane curves,” Pattern Recognition, 2003, 36(8): 1783-1997.

[27] P.Y. Yin, “A discrete particle swarm algorithm for optimal approximation of digital

curves,” Journal of Visual Communication & Image Representation, 2004, 15(2):

241-260.

[28] H. Zhang, J. Guo, “Optimal polygonal approximation of digital planar curves using

meta heuristics,” Pattern Recognition Letter, 2001, 34(7): 1429-1436.

28


