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ABSTRACT 

 

Hydrological model sensitivity to climate change can be defined as the response of a particular hydrological 

model to a known quantum of climate change. This paper estimates the hydrological sensitivity, measured as the 

percentage change in mean annual runoff, of two lumped parameter rainfall-runoff models, SIMHYD and 

AWBM and an empirical model, Zhang01, to changes in rainfall and potential evaporation. These changes are 

estimated for 22 Australian catchments covering a range of climates, from cool temperate to tropical and moist 

to arid. The results show that the models display different sensitivities to both rainfall and potential evaporation 

changes. The SIMHYD, AWBM and Zhang01models show mean sensitivities of 2.4%, 2.5% and 2.1% change 

in mean annual flow for every 1% change in mean annual rainfall, respectively. All rainfall sensitivities have a 

lower limit of 1.8% and show upper limits of 4.1%, 3.4% and 2.5%, respectively. The results for potential 

evaporation change are -0.5%, -0.8% and -1.0% for every 1% increase in mean annual potential evaporation, 

respectively, with changes rainfall being approximately 3 to 5 times more sensitive than changes in potential 

evaporation for each 1% change in climate. Despite these differences, the results show similar correlations for 

several catchment characteristics. The most significant relationship is between percent change in annual rainfall 

and potential evaporation to the catchment runoff co-efficient. The sensitivity of both A and B factors decreases 

with an increasing runoff coefficient, as does the uncertainty in this relationship. The results suggest that a first-

order relationship can be used to give a rough estimate of changes in runoff using estimates of change in rainfall 

and potential evaporation representing small to modest changes in climate. Further work will develop these 

methods further, by investigating other regions and changes on the subannual scale. 

 

KEY WORDS: Climate change, rainfall, runoff, sensitivity analysis, Australia, watersheds 

 

INTRODUCTION  

 

During this century, climate change is expected to have widespread impacts on the terrestrial hydrological cycle, 

affecting water supply and demand in many parts of the world [1]. One way of assessing the likely impacts of 

climate change on water resources is to apply climate change scenarios to rainfall-runoff models to estimate 

runoff and streamflow [e.g. 2]. Further modelling is then undertaken to simulate water storage, quality, 

allocation and use.  
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Most catchment-scale hydrological models have been developed to simulate water resources under current 

climate. Such models are adapted to simulate altered supply under climate change either by perturbing an 

historical time series by climate change factors, downscaling data from a global climate model (GCM) using 

statistical, dynamic or hybrid approaches, or by utilising weather-generated data. It is widely accepted by 

hydrological modellers assessing climate change that the climate uncertainties feeding into rainfall-runoff 

models are far larger than the hydrological uncertainties within the models themselves: the greatest uncertainties 

in the effect of climate on streamflow arise from uncertainties in climate change scenarios, as long as a 

conceptually sound hydrological model is used [1]. Despite this, if a wide range of potential climate change 

scenarios are used, differences between models remain, and some will be more correct than others.  

 

In 1999, Hulme and Carter [3] wrote that full and systematic treatment of uncertainties in both climate change 

scenarios and impact response are required in for use in policy-making. However, limited progress in this area 

has been made since then. The bottleneck lays not so much in the link between hydrology and water resources, 

but in the characterisations and application of climate change, requiring the pragmatic application of risk-

analytic techniques [4]. This in turn will influence hydrological model development and use. 

 

The decision about the type and number of climate scenarios to apply to a hydrological model typically involves 

a trade-off between representing a broad range of plausible climate change uncertainties and the realistic 

representation of climate variability within each scenario.  Using a larger number of scenarios requires simpler, 

less resource-intensive methods, while the application of only one or two scenarios allows the use of more 

realistic methods of downscaling. Thus, the first alternative allows climate uncertainty to be better explored by 

sacrificing the accuracy of each result, while the latter path provides a better representation of spatial and 

temporal variability. The first method lends itself to simpler models, while the second is most appropriate for 

models that are resource hungry, such as complex physically-based models with large data requirements, those 

that have highly detailed spatial or physical processes and those that require intensive downscaling of input data. 

This tension is described as one between physical-based modelling and pragmatism [4]. See Katz [5] for a 

comprehensive discussion on uncertainty analysis that deals with issues of model complexity. 
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Both types of model have a useful but somewhat different role in impact assessment. For example, simple 

models that explore a wide range of uncertainty can be used to rapidly assess the impacts of very different 

scenarios and test a range of policy options, while physically-based models can potentially assess the joint 

impacts of land-use change, climate change and atmospheric CO2 impacts on vegetation. In an ideal world, it 

would be possible to relate the results from simple with those from complex models through a better 

understanding of hydrological sensitivity to a range of changes including climate. 

 

Several investigations have explored the sensitivity of simple empirical and water balance models. Wigley and 

Jones [6] developed sensitivity relationships for changes in rainfall, evaporation and CO2 to estimate changes 

subject to a catchment’s runoff co-efficient. Arnell [7] compared a simple monthly water balance model to four 

different empirical models under climate change, finding large differences between models. These, and similar 

methods are now largely considered to be inferior to more detailed hydrological approaches [8, 9]. This has 

increased the use of daily models such as conceptual lumped parameter and complex spatially distributed models. 

 

The validation of hydrological models under climate change is also problematic because there are no observed 

results against which they can be compared [8]. Spatially distributed physically-based models are thought to be 

superior to empiric and conceptual methods, but still require some form of parameterisation [9]. While it is often 

stated that more physically realistic hydrologic models should be preferred to conceptual models, this hypothesis 

has not been rigorously tested.  

 

Most catchment-based studies utilising daily data have applied only a few scenarios to each catchment, limiting 

the opportunity to understand how that catchment may respond to climate change. Examples where a large 

number of climate scenarios have been applied to a single catchment include guided sensitivity analyses that 

apply artificial scenarios to a hydrological model to test its sensitivity to climate over a plausible range of 

climate change [10, 11, 12, 13], proof of concept examples [3, 14] and several more recent risk assessments of 

water resources that use a Bayesian approach to explore uncertainty [15, 16, 17, 18, 19]. Amongst large scale 

studies, Arnell [20] has produced a daily global water balance model with a 0.5°×0.5° spatial resolution and run 

it under a range of emission scenarios run through six GCMs with changes for 2020, 2050 and 2080, which 

stands as the most comprehensive exploration of different climate scenarios at the global scale to date. 
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Few studies have methodically assessed  intermodel uncertainty across more than one catchment. Boorman and 

Sefton [21] applied both artificial and climate change scenarios to two rainfall-runoff models for three 

catchments in the UK finding that they produced widely varying results. Much of this uncertainty was due to 

model structure, a similar result to that also found by Panagoulia and Dimou [22] based on assessments of two 

models in two catchments in Greece. Boorman and Sefton [21] recommended that the most appropriate 

hydrological models be used (simple models that preserve water balance), along with sensitivity analysis, close 

examination of parameters, data requirements and model initialisation. These and other studies conclude that 

runoff changes are amplified in proportional terms when contrasted to changes in rainfall (up to a 4.5 multiplier 

in percentage terms) and that this amplification increased with aridity [e.g. 10, 11, 21]. 

 

One way to explore hydrological model sensitivity to climate change is to apply a large number of scenarios in 

different models over a variety of catchments. In this case, the emphasis is not on the precision of each single 

scenario, but is instead on exploring a wide range of climatic and hydrological uncertainty. We use this approach 

for 22 catchments across Australia, undertaking sensitivity analyses using three hydrological models: two 

lumped simple conceptual daily rainfall-runoff models SIMHYD [23], AWBM [24, 25] and one simple top-

down 2 parameter model Zhang01 [26]. We describe how this information may be used to develop simple rule of 

thumb models that can be applied to make rapid estimates of potential changes in runoff under climate change. 

The development of such methods offers the promise of a simple empirical approach based on more complex 

underpinning science, which can be used to explore uncertainty, provide rapid analysis for testing water 

management policy and provide provisional estimates for change in catchments lacking more data rich models. 

 

APPROACH 

 

We define hydrological model sensitivity as the response of a particular hydrological model to a known quantum 

of climate change. Here we look at the sensitivity of mean annual change expressed in terms of changes to 

precipitation (P), potential evapotranspiration (Ep) and runoff (Q). Most simplified rainfall-runoff models utilise 

inputs of P and Ep so can be expressed in those terms. We have found that, for a number of assessments, the 

change in inputs can be related to the Q using a bilinear relationship. For example, Jones [27] coupled a climate 

change scenario generator to a catchment-scale hydrological model for the Macquarie River in eastern Australia, 
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applying over 50 climate scenarios. For changes to mean annual runoff of <50%, the results could be expressed 

as: 

 

δQ = A δP + B δEp       1 

 

where δQ is change in mean annual runoff, δP is change in mean annual precipitation, δEp is change in mean 

annual potential evapotranspiration, all measured as percentages, and A and B are constants. This relationship 

performed well over most of the range in potential change for the assessment years of 2030 and 2070 except for 

exceptionally large decreases in rainfall where the relationship became non-linear [17]. Percent change to mean 

annual flow was estimated with a standard error of ±2% mean annual runoff (i.e. an error of 10% for an 

estimated change of 20%). Sensitivity-based approaches using simple models have also been applied for current 

climate by Milly and Dunne [20] and climate change by Wigley and Jones [6] and Dooge et al. [21]. 

 

This simple relationship is used throughout the study to measure model sensitivity to climate inputs. Factor A is 

a measure of the sensitivity of the model to P changes and factor B to Ep changes. The use of potential 

evaporation rather than temperature is preferred because it is a more direct measure of moisture loss from 

regions that are water-limited rather than energy limited. Although changes in temperature and Ep are highly 

correlated in higher latitudes, Walsh et al. [30] show that changes to temperature and Ep are largely independent 

in Australia, and by inference, across much of the low and mid latitudes. Changes in P and Ep in Australia are 

also co-dependent, whereas changes between temperature and precipitation are independent [as they are for 

higher latitudes; see 31]. Because most previous studies investigating hydrological model sensitivity are 

dominated by northern hemisphere assessments that express their results in terms of temperature change rather 

than δEp, it is difficult to review their results in a form consistent with Equation 1.  

 

The three models used in the sensitivity analysis have all been used widely in Australia. The sensitivity analysis 

was carried out for 22 catchments over Australia that produce some of the best model calibration results [Nash-

Sutcliffe efficiency; 32] of 331 catchments across Australia [33]. They were selected for an efficiency rating for 

monthly runoff of greater than 0.8 with the SIMHYD model (with one exception), a calibration against at least 

15 years of streamflow data and to provide a good representation of different climates across Australia. Cross 
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correlation of parameters have not been addressed, as the emphasis has been to produce the best reproduction of 

streamflow possible. 

 

The sensitivity analysis involved changes in annual P and Ep in increments of 5% of up to 15% applied to inputs 

of daily data and the results are expressed as change in mean annual runoff. Rainfall increments of -15%, -10%, 

0 and +10% were used and Ep increments of 0, +5% and +10% for a total of 12 samples for each model run in 

each catchment. The constant factors, A and B, are determined by method of least squares, by minimising the 

sum of squares of the difference between δQ determined from the AWBM and SIMHYD modelling results and 

δQ estimated by equation (1).  In most cases, the R2 value ranged between 0.97–0.999 and standard error was 

<2% of mean annual flow. 

 

DATA 

 

Daily rainfall, mean monthly areal potential evapotranspiration (APET) and monthly streamflow data from 22 

catchments across Australia are used for this study (see Table 1 for catchment locations and characteristics).  

They are part of the data set of 331 unimpaired catchments used in an Australian Land and Water Resources 

Audit study [see 33].  “Unimpaired” is defined as data from unregulated rivers or where regulation changes the 

natural monthly streamflow volumes by less than five percent.  The determination of whether the streamflow 

data is unimpaired is based on local knowledge of the respective water agencies and/or whether there is a 

significant dam upstream of the gauging station. The monthly streamflow time series data, all exceeding 15 years 

in length, were obtained from state water agencies. 

 

<<Insert Table 1 about here>> 

 

Continuous daily rainfall and APET data are required as inputs into daily rainfall-runoff models.  The source of 

the daily rainfall data is the Queensland Department of Natural Resources, Mines and Energy 0.05° x 0.05° 

(about 5 km x 5 km) interpolated gridded rainfall data based on over 6,000 rainfall stations in Australia (see 

www.nrme.qld.gov.au/silo).  The interpolation uses Ordinary Krigging of monthly rainfall data, and a variogram 

with zero nugget and a variable range.  The monthly rainfall for each 5 km x 5 km point is then disaggregated to 

http://www.dnrme.qld.gov.au/silo�
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daily rainfall using the daily rainfall distribution from the station closest to the point.  The lumped catchment-

averaged daily rainfall used here is estimated from the daily rainfall in 5 km x 5 km points within the catchment. 

 

Compared to rainfall, evapotranspiration has little influence on the water balance at a daily time scale.  The inter-

annual variability of APET is also relatively small (typically less than 0.05).  For these reasons, the use of mean 

monthly APET is sufficient for most rainfall-runoff modelling applications.  The 12 mean monthly APET values 

used here are obtained from the evapotranspiration maps in the Climatic Atlas of Australia [34].  The APET for 

the maps are derived using Morton’s [35] wet environment evapotranspiration algorithms.  

 

HYDROLOGICAL MODELS 

 

SIMHYD 

 

The structure of the simple lumped conceptual daily rainfall-runoff model, SIMHYD, is shown in Figure 1, with 

its seven parameters highlighted in bold italics. 

 

In SIMHYD, daily rainfall first fills the interception store, which is emptied each day by evaporation.  The 

excess rainfall is then subjected to an infiltration function that determines the infiltration capacity.  The excess 

rainfall that exceeds the infiltration capacity becomes infiltration excess runoff.  Moisture that infiltrates is 

subjected to a soil moisture function that diverts the water to the stream (interflow), groundwater store (recharge) 

and soil moisture store.  Interflow is first estimated as a linear function of the soil wetness (soil moisture level 

divided by soil moisture capacity).  The equation used to simulate interflow therefore attempts to mimic both the 

interflow and saturation excess processes (with the soil wetness used to reflect parts of the catchment that are 

saturated from which saturation excess runoff can occur).  Groundwater recharge is then estimated, also as a 

linear function of the soil wetness.  The remaining moisture flows into the soil moisture store. 

 

Evapotranspiration from the soil moisture store is estimated as a linear function of the soil wetness, but cannot 

exceed the atmospherically controlled rate of areal potential evapotranspiration.  The soil moisture store has a 

finite capacity and overflows into the groundwater store.  Baseflow from the groundwater store is simulated as a 

linear recession from the store. 
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The successful calibration (and verification) of SIMHYD on these 22 and many other Australian catchments are 

described in [23] and [33]. These 22 catchments produce Coefficient of Efficiency measurements of between 

0.75 and 0.97, averaging 0.91 

 

<<Insert Figure 1 about here>> 

 

AWBM 

 

The structure of AWBM is shown in Figure 2.  AWBM considers the catchment as having three partial areas (A1, 

A2, A3), each with its own storage capacities (C1, C2, C3).  Each partial area is treated separately.  The number 

of partial areas chosen is a pragmatic choice to reflect sufficient skill to simulate runoff without adding too may 

parameters and facing the risk of over-optimisation [25]. Daily rainfall fills the stores, with the spills becoming 

rainfall excess.  A portion of the rainfall excess (baseflow index times rainfall excess) flows to the groundwater 

store, and the remainder becomes surface runoff.  Baseflow from the groundwater store is simulated as a linear 

recession from the store.  Evapotranspiration from all three stores occurs as a linear recession limited by the 

difference between field capacity and zero storage as a proportion of the potential rate.  The total runoff is the 

sum of surface runoff and baseflow. 

 

A simplified and robust version of AWBM [UGAWBM3 – see 25) is used here.  It has three parameters: average 

surface store capacity (Cave); baseflow index (BFI) and baseflow recession constant (Kb).  The three partial areas 

are set to default values and the storage capacities are determined from the average surface store capacity (see 

Figure 2). 

 

In UGAWBM3, the parameter Cave is determined from a set of daily rainfall and runoff data, such that the total 

modelled runoff is the same as the total recorded runoff.  The remaining two parameters, BFI and Kb, are then 

optimised to provide the best match between the modelled and recorded daily runoffs. The 22 catchments 

produce Coefficient of Efficiency measurements of between 0.65 and 0.95, averaging 0.86. 

 

<<Insert Figure 1 about here>> 
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Zhang01 

 

The Zhang01 water balance model was devised to assess the response of catchments to vegetation change [26]. It 

is an equilibrium response model consistent with earlier equilibrium models such as Budyko[36] which assumes 

that groundwater recharge and discharge processes are negligible such that:  

 

Et/P = f (Ep/P)          1 

 

where Et is evapotranspiration and the ratio of Et/P is a function of vegetation acting on net radiation through 

surface albedo. However, the size of Et/P is also a function of the access of vegetation to soil moisture, where in 

most cases it is more a function of rooting depth, rather than the size of the soil moisture itself. Zhang et al. [26] 

proposed the following rational function: 
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Where w is the plant-available water coefficient which ranges between 0.5 and 2.0 for grassland and forest 

respectively. This function is most reliable where Ep/P ≈ 1 (ranging from about 0.5 to 2; i.e. in most catchments 

where water harvesting is carried out). This model was tested on 250 catchments worldwide where slopes were 

gentle, rainfall was the dominant form of precipitation and soil thickness was above 2 m [26]. The root mean 

square error between observations of Et/P for these catchments and the model was 6%. 

 

Estimates of Ep used in Ep/P were calculated by Morton’s [35] wet environment evapotranspiration algorithms 

as previously described. These estimates are slightly different to those calculated using the Priestly-Taylor 

method [37] used by Zhang et al. [26] but will produce similar results. Accordingly, the model was tested for 

each of the 22 catchments in Table 1. For each of the catchments, w was adjusted so that simulated runoff 

equalled observed runoff. This maintained w in the range of 0.5 to 2.0 for 14 of the 22 catchments, 3 were <0.5 

and 5 were >2.0. Although a w >2 is not physically realistic, there are perhaps other reasons for these 
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relationships. For example, much of the Mt Emu Creek catchment is not linked to the stream network (w = 5) 

and much of the Todd River catchment is bare soil (w = 0.15). By manipulating w to reproduce current 

streamflow, we are assuming that the sensitivity under climate change is not unduly altered from what it 

otherwise would be. 

 

RESULTS 

 

Sensitivity analyses 

 

Table 2 lists the A and B factors for each of the models over the 22 catchments, while Figure 3 shows them in 

graphical form. 

 

All three models show that runoff is more sensitive to changes in rainfall (Average A factor of 2.1 to 2.5) than to 

changes in APET (Average B factor of -0.5 to -1.0). Sensitivity is measured as percent change in mean annual 

runoff for a 1% change in mean annual P or Ep. The sensitivity of runoff to rainfall is similar in the SIMHYD 

and AWBM models (Average A factor of 2.5 and 2.4 respectively) and smaller in the Zhang01 model (Average 

A factor of 2.1). 

 

The models show less agreement in runoff sensitivity to changes in APET.  The runoff sensitivity to APET is 

greatest in the Zhang01 model (Average B factor of -1.0), followed by AWBM (Average B = -0.8) and 

SIMHYD (Average B = -0.5). 

 

The variability in the A and B factors across catchments (measured as the standard deviation of values for the 22 

catchments) for the SIMHYD and AWBM models are similar, and more variable that the Zhang01 model. This 

result is expected because Zhang01 produces results based on global average response, whilst SIMHYD and 

AWBM are calibrated to individual catchments and model runoff on a daily time step 

 

<<Insert Table 2 about here>> 

 

<<Insert Table 3 about here>> 
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The results in Table 2 are highly correlated, showing the hydrological models largely agree on which catchments 

are more sensitive to change and those that are less sensitive (Table 3). The correlations between the A factors 

are 0.82 and 0.83 for the three models. For the B factors, the correlation between SIMHYD and AWBM is 0.66 

and both SIMHYD and AWBM have a 0.46 correlation with the Zhang01 model.  

 

The A and B factors also correlate with a wide range of both hydroclimatic and physical catchment 

characteristics. Correlations between A factor and rainfall are negative (-0.42 to -0.53), increasingly negative for 

runoff (-0.72 to -0.78) and highest for runoff as a percentage of rainfall (-0.83 to -0.92). Correlations are also 

negative for leaf area index, proportion of woody vegetation and plant water-holding capacity (not shown). 

These negative correlations imply that hydrological sensitivity decreases with higher amounts of land cover and 

soil moisture. Further tests described in the next section suggest that this outcome is dominated by the increasing 

coefficient of runoff occurring under wetter conditions, and is not due to vegetation and soil-water relationships. 

 

The B factor is less sensitive to catchment characteristics, and is most highly correlated with annual mean 

rainfall, percent runoff and vegetation characteristics. δEp sensitivity is also model dependent, being least 

sensitive to SIMHYD, AWBM and Zhang01 in that order, due to the way that the models utilise Ep. SIMHYD 

evaporates at a reduced level at low soil moisture, AWBM evaporates at the areal potential rate between field 

capacity and wilting point and Zhang01 is tuned to the Ep/P ratio, so is the most sensitive to change. Sensitivities 

for both A and B factors as a function of percentage runoff are shown in Figure 4. The negative correlations 

between the A value and runoff and the positive correlations between the B value show that as rainfall, runoff 

and the percentage of runoff increases, the relative sensitivity of the model to proportional change reduces. 

 

<<Insert Table 4 about here>> 

 

Further tests 

 

Two further sensitivity tests were run with the A and B sensitivity factors for each of the 22 catchments for each 

of the three hydrological models. The first was a drier scenario exploring a decrease in P of -15% and increase in 

Ep of +15%. The second test increased both P and Ep by 10%. These tests allow further comparison of the 
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sensitivity of each model (Table 5). The factors contributing to those relative sensitivities are also briefly 

explored. 

 

Table 5 shows how the models perform for both the drier and wetter scenarios. Under strong drying, SIMHYD is 

the least sensitive model and AWBM is the most sensitive. SIMHYD is the most sensitive model to the wetter 

scenario and the Zhang01 model is the least sensitive. SIMHYD shows the most sensitivity to δP, although 

AWBM is close and Zhang01 is the least sensitive. The Zhang01 is the most sensitive to δEp, while AWBM is 

next and SIMHYD is the least sensitive. 

 

<<Insert Table 5 about here>> 

 

The standard deviation of the results for each catchment is related to the sensitivity of the catchment to change, 

where catchments with larger A and B factors produce larger differences between hydrological models. 

Although the results for an individual catchment sometimes have high standard deviations, they are highly 

correlated between catchments (0.76 to 0.78). The average difference between the drier and wetter scenarios for 

all 22 catchments shows the relative sensitivity of each model to change: 56% for Zhang01, 63% for SIMHYD 

and 66% for AWBM. The sensitivity for both the AWBM and SIMHYD models are similar over the 22 

catchments, while the Zhang01 model, which only two parameters, is the least responsive to different catchment 

characteristics, mostly due to a reduced sensitivity to δP. 

 

The sensitivity of the Zhang01 model is linked to the Ep/P ratio. When Ep/P remains constant (e.g with a 10% 

increase in both P and Ep), then A and B will equal 2 and -1 respectively in all cases (i.e. δQ increases by 10%). 

This will constrain the model to a lower range of response for different catchments than the other two models, an 

expected result with a 2 parameter model.  

 

Figure 5 shows the relationship between A and B factors for this model plotted against Ep/P. It shows that for a 

given Ep/P ratio, forested catchments are more sensitive to climate change than grassland catchments, in addition 

to sensitivity increasing with Ep/P. This is in contrast to the negative/positive correlations for the A/B factors 

(denoting decreasing sensitivity) obtained from the 22 catchments. This difference is due to the autocorrelation 

between increasing rainfall with LAI and woodiness. In two catchments with the same Ep/P, the more heavily 
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vegetated catchment shows greater sensitivity to climate change (in terms of changes to proportion rather than 

changes in volume). Therefore, runoff from forested catchments is more sensitive to climate change than from 

grassland catchments, all other things being equal. This also applies for catchments with large soil moisture 

stores, compared to those with small soil moisture storage. 

 

<<Insert Figure 5 about here>> 

 

DISCUSSION 

 

A better knowledge of hydrological model sensitivity to climate change, undertaken through structured 

uncertainty analysis, will allow better linkage between simple and complex models. Thus, results from simple 

and easy to run models, such as lumped parameter and empirical models, can be compared with those from more 

physically realistic but complex spatially distributed models. This, in turn, may permit the capacity to rapidly 

estimate changes in some important hydrological variables, such as mean annual runoff, using simple climate 

change factors such as percentage change in mean annual rainfall and potential evaporation. Although such 

estimates have low precision with regard to the input scenario, any estimates with a known level of accuracy (e.g. 

±10%, ±20%) would serve as valuable information when scoping water resource impacts prior to, or in the 

absence of, a more detailed modelling study. We note that many decisions affecting water resources over the 

long term are currently being made in regions where detailed assessments have yet to be made. The coverage of 

complex spatially distributed models is also limited, mainly to developed countries and, in many areas, current 

water resources remain poorly known [38]. 

 

In this initial assessment of hydrological model sensitivity to climate, we have shown that the three models 

investigated by climate sensitivity analysis all have different hydrological sensitivity. In terms of a broad pattern 

of results, the SIMHYD model produces a slightly wetter range of outcomes than does AWBM although the 

range of results is similar. The Zhang01 model produces a reduced range of results due to its only having two 

parameters. It behaves similarly to AWBM and SIMHYD under conditions of lower P and increased Ep, but 

produces the driest outcomes under conditions of increasing P and Ep. This is because the sensitivity is 

constrained to A=2 and B=1 where the ratio Ep/P remains constant. The differences between these models are 

smaller than those produced by Boorman and Sefton [21]. 
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All of the models used in this study are currently being used to carry out hydrological assessments in Australia 

as are several other types of hydrological model. Results from SIMHYD and AWBM are being used as input 

into resource allocation models, while the Zhang01 model is being used to look at joint changes in land cover 

change and climate change. Results from these studies are being used by catchment management bodies, state 

agencies and water supply corporations to plan and allocate water supply. Knowledge of the relative sensitivities 

of these models will allow some intercomparisons to be made between the different catchments, and also to infer 

changes for catchments where assessments have not been undertaken. 

 

The Zhang01 water balance model is part of the Biophysical Capacity to Change (BC2C) model being used to 

estimate the joint impacts of climate change, reforestation and salinity in the Murray-Darling Basin of eastern 

Australia. One aim is to link the hydrological impacts of vegetation change with climate change across models 

with different levels of complexity so that physically explicit methods can be linked to a capacity to carry out 

rapid analysis with a range of different scenarios, including those testing policy options. The estimation of the 

joint impact of climate change and land-use change on hydrology and salinity is necessary for estimating 

changes in stream water quality and rates of land salinisation in much of inland Australia, as is the exploration of 

policy options to manage risks associated with these changes.  

 

Although integrated models of the land, atmosphere and hydrological processes could be expected to do this, 

they are process intensive, data hungry and can usually only be run for a limited number of scenarios. 

Furthermore, Australia currently lacks this modelling capacity, as do many other regions. In developing such 

models, it would be valuable to link these to much simpler models to maximise the different strengths of 

separate modelling approaches. Complex physically-based models can estimate the impacts of spatially explicit 

climate and land-use scenarios but are constrained in the number of simulations that can be run, and in the 

exploration of uncertainty and different policy options. Simple relationships can be used to explore uncertainty 

and different policy options with lower precision but greater flexibility. If empirical relationships can be 

established between simple and more complex models, this will allow the simpler models to be run for a large 

number of scenarios, exploring a larger range of uncertainty and a broader range of policy options, where the 

physical response is tuned to that derived from more realistic relationships and models. This is analogous to the 
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relationship between complex GCMs and simple climate models as applied by the Intergovernmental Panel on 

Climate Change.  

 

If we could better understand hydrological sensitivity to climate change and joint climate – land-use change 

sensitivities, then it would be possible to build simple relationships between input climate parameters and 

hydrological change that are robust and accurate, if imprecise. This would serve three purposes: 

1. To better understand the relationship between hydrological responses that are model specific and those 

that have a physical basis. Milly and Dunne [28] suggest that A and B factors will have an analytic 

solution for any catchment, a hypothesis that we are keen to explore. 

2. To scope possible hydrological change in the absence of more detailed assessments, and  

3. To provide simple but robust relationships for integrated assessment models linking policy responses 

with ongoing land-use and climate change. 

 

CONCLUSIONS 

 

Comparisons of the sensitivity of three hydrological models across a range of Australian catchments to changing 

climate inputs have shown that sensitivity is influenced by model structure, potential errors in climate inputs 

and/or parameterisation and physical properties, such as vegetation cover, soil moisture storage and runoff as a 

proportion of total rainfall. 

 

The SIMHYD, AWBM and Zhang01models show mean sensitivities of 2.4%, 2.5% and 2.1% change in mean 

annual flow for every 1% change in mean annual rainfall, respectively. All rainfall sensitivities have a lower 

limit of 1.8% and show upper limits of 4.1%, 3.4% and 2.5%, respectively. The results for potential evaporation 

change are -0.5%, -0.8% and -1.0% for every 1% increase in mean annual potential evaporation, respectively, 

with rainfall being approximately 3 to 5 times more sensitive than potential evaporation for each 1% change in 

climate. 

 

Hydrological sensitivity has shown to have the following relationships: 

• Sensitivity decreases with increasing runoff coefficient, runoff and rainfall. 
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• Sensitivity decreases with a higher proportion of woody cover (influencing root depth) and Leaf Area 

Index. 

• Sensitivity increases with increasing Ep/P ratio (catchment dryness) 

• Sensitivity increases with soil moisture storage available for evapotranspiration 

 

Further work will be undertaken to explore some of the relationships illustrated in this paper to try and 

distinguish model-based from physically derived hydrological sensitivity. A further aim is to develop a simple 

model for estimating mean change in runoff from simple climate parameters to be used in scoping potential 

hydrological change in the pre-modelling stage of an assessment, in catchments where streamflow data is 

unavailable or where more physically realistic models have not been constructed. On the basis of this study, the 

minimum data for such a model would appear to be mean rainfall, mean potential evaporation (areal potential, 

Priestly-Taylor, Penman-Monteith or similar) and mean runoff. 
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Table 1. Locations and characteristics of the twenty-two catchments used in the study. 
 

STATE Station Name Latitude Longitude Area Annual  Annual  Annual  Annual Annual 

        (km2) rainfall runoff runoff APET  APET/P 

          (mm) (mm) (%) (mm) (ratio) 

QLD Broken R at Old Racecourse 21.20 148.45 78 1729 605 35 1713 1.0 

QLD Kolan R at Springfield 24.75 151.58 545 946 126 13 1575 1.7 

QLD Caboolture R at Upper Caboolture 27.10 152.88 98 1483 418 28 1563 1.1 

NSW Gordon Brook at Fine Flower 29.41 152.65 315 1154 267 23 1381 1.2 

NSW Dingo Creek at Munyaree Flat 31.84 152.29 492 1408 541 38 1319 0.9 

NSW Shoalhaven River at Kadoona 35.79 149.64 280 965 337 35 1086 1.1 

NSW Genoa River at Bondi 37.17 149.32 235 958 219 23 1059 1.1 

VIC Narracan Ck at Thorpdale 38.28 146.18 66 1042 356 34 1027 1.0 

VIC Bass R at Loch 38.38 145.56 52 1140 347 30 1067 0.9 

VIC Mount Emu Ck at Skipton 37.69 143.36 1251 693 47 7 1050 1.5 

TAS Swan R at The Grange 42.05 148.07 448 763 281 37 910 1.2 

TAS Pipers R D/S Yarrow Ck. 41.07 147.11 298 956 317 33 923 1.0 

VIC Yackandandah Ck at Osborne’s Flat 36.31 146.90 255 1066 237 22 1126 1.1 

VIC Jim Crow Ck at Yandoit 37.21 144.10 166 854 169 20 1009 1.2 

NSW Adelong Creek at Batlow Road 35.33 148.07 155 1138 256 22 1138 1.0 

NSW Horton River at Horton Dam Site 30.21 150.43 220 946 199 21 1344 1.4 

NSW Bell River at Molong 33.02 148.95 365 826 94 11 1160 1.4 

SA Myponga River at U/S Road Bridge 35.38 138.48 76.5 820 115 14 1095 1.3 

NT Todd R at Wigley Gorge 23.63 133.88 360 297 32 11 1392 4.7 

WA Margaret R at Willmot’s Farm 33.94 115.05 442 1000 216 22 1175 1.2 

WA Harvey R at Dingo Rd 33.09 116.04 148 1052 240 23 1234 1.2 

NT South Alligator R at El Sharana 13.53 132.53 1300 1305 364 28 2070 1.6 
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Table 2. Summary of results showing the different values of A and B, along with optimised values of w for the 
Zhang01 model. 
 

Catchment Simhyd AWBM Zhang01 

  A B A B A B w 
Broken R at Old Racecourse 1.83 -0.39 1.90 -0.53 1.85 -0.81 0.85 
Kolan R at Springfield 2.60 -0.37 2.33 -0.57 2.27 -1.17 1.75 
Caboolture R at Upper Caboolture 2.05 -0.36 2.15 -0.68 2.00 -0.95 1.35 
Gordon Brook at Fine Flower 2.57 -0.50 2.33 -0.74 2.09 -1.03 1.50 
Dingo Creek at Munyaree Flat 1.98 -0.38 2.16 -0.73 1.79 -0.75 0.75 
Shoalhaven River at Kadoona 1.92 -0.20 1.83 -0.44 1.82 -0.79 0.60 
Genoa River at Bondi 2.37 -0.59 2.50 -0.78 2.13 -1.06 2.00 
Narracan Ck at Thorpdale 1.96 -0.61 2.06 -0.82 1.87 -0.83 0.95 
Bass R at Loch 2.32 -0.81 2.32 -0.85 1.98 -0.93 1.55 
Mount Emu Ck at Skipton 4.06 -0.88 3.44 -1.10 2.43 -1.30 5.00 
Swan R at The Grange 1.87 -0.27 1.85 -0.54 1.76 -0.73 0.40 
Pipers R D/S Yarrow Ck. 2.02 -0.46 1.99 -0.62 1.90 -0.86 1.10 
Yackandandah Ck at Osborne’s Flat 2.44 -0.57 2.89 -0.96 2.27 -1.18 3.80 
Jim Crow Ck at Yandoit 2.93 -0.79 2.92 -0.98 2.16 -1.09 2.00 
Adelong Creek at Batlow Road 2.31 -0.55 2.66 -0.98 2.15 -1.07 2.50 
Horton River at Horton Dam Site 2.74 -0.36 2.43 -0.64 2.10 -1.03 1.15 
Bell River at Molong 2.85 -0.81 2.96 -0.93 2.34 -1.23 3.20 
Myponga River at U/S Road Bridge 2.76 -0.55 3.13 -0.81 2.29 -1.19 2.70 
Todd R at Wigley Gorge 2.49 0.07 3.13 -0.81 2.07 -1.00 0.15 
Margaret R at Willmot’s Farm 2.48 -0.37 2.70 -0.67 2.13 -1.06 1.80 
Harvey R at Dingo Rd 2.24 -0.37 2.53 -0.63 2.10 -1.03 1.60 

South Alligator R at El Sharana 2.44 -0.59 2.68 -1.15 1.89 -0.84 0.40 

Mean 2.42 -0.49 2.50 -0.77 2.06 -1.00  

Standard deviation 0.49 0.22 0.45 0.19 0.19 0.16  
 



 24 

Table 3. Correlations between A and B factors for the results in Table 2. All are statistically significant. 
 SIMHYD AWBM Zhang01  

SIMHYD  0.83 0.82 A factor 
AWBM 0.66  0.82  
Zhang01 0.46 0.46   

 B factor    
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Table 4. Correlation between major catchment characteristics and A and B factors for each of three models, 
including the w (vegetation) factor for the Zhang01 model. 
 Latitude Longitude Area Annual  Annual  Runoff  Annual Annual Baseflow 
     (km2) rainfall runoff coefficient APET Ep/P Index 
       (mm) (mm) (%) (mm) (ratio) BFI 
SIMHYD (A Factor) 0.05 -0.10 0.50 -0.47 -0.72 -0.83 -0.10 0.20 -0.10 
SIMHYD (B Factor) -0.31 -0.15 -0.17 -0.10 0.13 0.22 0.24 0.50 -0.34 
AWBM (A Factor) -0.05 -0.36 0.35 -0.53 -0.75 -0.87 -0.05 0.43 0.03 
AWBM (B Factor) 0.08 0.09 -0.45 0.15 0.33 0.45 -0.07 -0.11 -0.18 
Zhang01 (A Factor) 0.08 -0.12 0.14 -0.42 -0.78 -0.92 -0.14 0.15 0.04 
Zhang01 (B Factor) -0.09 0.12 -0.12 0.41 0.77 0.91 0.15 -0.14 -0.05 
Zhang01 (w Factor) 0.34 0.02 0.19 -0.19 -0.50 -0.63 -0.33 -0.21 0.29 
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Table 5. Estimated changes in flow for a large decrease in P (-15%) and increase in Ep (+15%), and modest 
increases in P (+10%) and Ep (+10%). The largest change (highest sensitivity) is highlighted in orange and the 
lowest change (lowest sensitivity) in green. 
 
Catchment Large Decrease Modest Increase 
  -15% P -15% P -15% P Mean Std +10P +10P +10P Mean Std 

  +15% Ep +15% Ep +15% Ep  
dev

. +10%Ep 
+10%E

p +10%Ep  dev. 

Model SIMHYD AWBM Zhang01   
SIMHY

D AWBM Zhang01   

Broken R at Old Racecourse -33.4 -36.5 -39.9 -36.6 3.3 14.4 13.7 10.4 12.8 2.1 

Kolan R at Springfield -44.5 -43.5 -51.6 -46.5 4.4 22.3 17.6 11.0 17.0 5.7 

Caboolture R at Upper Caboolture -36.0 -42.5 -44.3 -40.9 4.3 16.9 14.7 10.5 14.0 3.3 

Gordon Brook at Fine Flower -46.0 -46.1 -46.8 -46.3 0.5 20.7 15.9 10.6 15.7 5.1 

Dingo Creek at Munyaree Flat -35.3 -43.4 -38.1 -38.9 4.1 16.0 14.3 10.4 13.6 2.9 

Shoalhaven River at Kadoona -31.9 -34.1 -39.2 -35.0 3.7 17.2 13.9 10.3 13.8 3.5 

Genoa River at Bondi -44.5 -49.2 -47.9 -47.2 2.4 17.8 17.2 10.7 15.2 3.9 

Narracan Ck at Thorpdale -38.5 -43.2 -40.5 -40.7 2.3 13.5 12.4 10.4 12.1 1.6 

Bass R at Loch -47.0 -47.6 -43.7 -46.1 2.1 15.1 14.7 10.5 13.4 2.5 

Mount Emu Ck at Skipton -74.2 -68.1 -56.0 -66.1 9.3 31.8 23.4 11.3 22.2 10.3 

Swan R at The Grange -32.1 -35.9 -37.4 -35.1 2.7 16.0 13.1 10.3 13.1 2.9 

Pipers R D/S Yarrow Ck. -37.1 -39.2 -41.4 -39.2 2.2 15.6 13.7 10.4 13.2 2.6 

Yackandandah Ck at Osborne’s Flat -45.2 -57.8 -51.8 -51.6 6.3 18.7 19.3 10.9 16.3 4.7 

Jim Crow Ck at Yandoit -55.8 -58.5 -48.8 -54.4 5.0 21.4 19.4 10.7 17.2 5.7 

Adelong Creek at Batlow Road -42.9 -54.6 -48.3 -48.6 5.9 17.6 16.8 10.8 15.1 3.7 

Horton River at Horton Dam Site -46.5 -46.1 -47.0 -46.5 0.5 23.9 17.9 10.7 17.5 6.6 

Bell River at Molong -54.9 -58.4 -53.6 -55.6 2.5 20.5 20.3 11.1 17.3 5.4 

Myponga River at U/S Road Bridge -49.5 -59.1 -52.2 -53.6 4.9 22.1 23.2 11.0 18.8 6.7 

Todd R at Wigley Gorge -36.4 -59.1 -46.1 -47.2 11.4 25.6 23.2 10.7 19.8 8.0 

Margaret R at Willmot’s Farm -42.8 -50.6 -47.9 -47.1 3.9 21.2 20.3 10.7 17.4 5.8 

Harvey R at Dingo Rd -39.1 -47.4 -47.0 -44.5 4.7 18.7 19.0 10.7 16.1 4.7 

South Alligator R at El Sharana -45.5 -57.5 -41.0 -48.0 8.5 18.6 15.3 10.5 14.8 4.1 

Mean change -43.6 -49.0 -45.9 -46.2 4.3 19.4 17.2 10.7 15.8 4.6 

Mean standard deviation 9.6 9.1 5.3   4.2 3.4 0.3   
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Figure 1:   Model structure of SIMHYD 
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Figure 2: Structure of the AWBM model. 
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Figure 3. Relationship between A and B factors for the SIMHYD, AWBM and Zhang01 models across the 22 
catchments. 
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Figure 4. Sensitivity of A and B factors for the SIMHYD, AWBM and Zhang01 models plotted against runoff as 
a percentage of mean annual rainfall over 22 catchments. 
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