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ABSTRACT

Object detection in hyperspectral images is an important task
for many applications. While most traditional methods are
pixel-based, many recent efforts have been put on extracting
spatial-spectral features. In this paper, we introduce Itti’s vi-
sual saliency model into the spectral domain for object detec-
tion. This enables the extraction of salient spectral features,
which is related to the material property and spatial layout
of objects, in the scale space. To our knowledge, this is the
first attempt to combine hyperspectral data with salient object
detection. Three methods have been implemented and com-
pared to show how color component in the traditional saliency
model can be replaced by spectral information. We have per-
formed experiments on selected images from three online hy-
perspectral datasets, and show the effectiveness of the pro-
posed methods.

Index Terms— Saliency detection, object detection, hy-
perspectral imaging

1. INTRODUCTION

A hyperspectral image consists of tens or hundreds of con-
tiguous narrow spectral bands. Each pixel in a hyperspectral
image is a vector of spectral responses across the electromag-
netic spectrum (normally in the visible to the near-infrared
range). Such spectral responses are related to the material of
objects in a scene that has been imaged, which provides valu-
able information for automatic object detection.

Due to its high dimensionality, traditional pattern recog-
nition and computer vision technology can not be directly ap-
plied to hyperspectral imagery. Most object detection meth-
ods are still pixel-based, i.e., performing pixel-wise detection
and classification based on spectral signatures followed by
post-processing to group pixels or to segment regions from
an image [1, 2]. In this manner, feature extraction is only
performed in the spectral domain, but the spatial distribution
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of objects have not been fully explored. More recently, re-
searchers have tried to use spectral-spatial structure modelling
for hyperspectral image classification. Such efforts include
Markov random field and conditional random field [3, 4],
which introduce spatial information into classification steps
using probabilistic discriminative function with contextual
correlation. Furthermore, multi-scale time-frequency signal
analysis methods based on 3D discrete wavelet transform
have also been introduced for object detection and classifica-
tion in remote sensing imagery [5].

Visual saliency is another type of approach to extract
multi-scale image features. The concept of saliency is from
human attention model, which detects objects or regions in a
scene that stands out with respect to their neighborhood [6].
As a consequence, saliency detection models are normally
established on the trichromatic or greyscale images, which
are visible to human eyes. When used for object detec-
tion in computer vision and robotics applications, saliency
map is often constructed in a bottom-up manner. For exam-
ple, Itti et al computed multi-scale differences of intensity,
color, and orientation features, and linearly combined them
to form the final saliency map [7]. Liu et al formulated the
saliency detection problem as a region of interest segmen-
tation task [8]. Salient features were extracted at the local,
regional and global levels, and were combined via learning
with conditional random field. Similarly, many saliency de-
tection methods try to detect image regions that are different
from its neighborhood in the scale space, as reviewed in [6].

When applied to hyperspectral imagery, saliency model
has been used for image visualization. Wilson et al employed
contrast sensitivity saliency to fuse different bands of hyper-
spectral remote sensing images so that it can be used for vi-
sual analysis [9]. Itti’s model [7] has been combined with di-
mensionality reduction method to covert a hyperspectral im-
age to a trichromatic image that can be displayed on com-
puter screen [10, 11]. Saliency has also been used to help
edge detection and to predict eye fixation on hyperpectral im-
ages [12, 13].

Despite its success in object detection on RGB images,
as far as we know, saliency model has not been used for ob-
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ject detection in hyperspectral imagery. Therefore, the contri-
bution of this paper is to explore how salient regions can be
extracted from hyperspectral images, and then be used for ob-
ject detection. Compared with the traditional pixel-level op-
erations, this paper introduce a novel region-based approach
for hyperspectral object detection. We propose three meth-
ods based on Itti’s saliency detection model. The first method
converts a hyperspectral image into an RGB image and apply
Itti’s model directly. The second method replaces the color
double-opponent component with grouped band component.
The last method directly use the raw spectral signature to re-
place the color component. We show in the experiments that
all three methods have performed well.

2. ITTI’S SALIENCY MODEL

The saliency detection method proposed by Itti et al. mim-
ics the behavior and structure of the early primate visual sys-
tem [7]. It extracts three types of multiscale features, includ-
ing intensity, color, and orientation, and then computes their
center-surround differences. These differences are linearly
combined to form the final saliency map.

This method is processed as follows. An input image is
firstly smoothed using low-pass filters so as to generate nine
spatial scales. Three types of visual cues are then extracted
from the intensity, color, and orientation features. The inten-
sity feature is obtained by averaging the RGB channel-values
at each pixel. By computing the differences between each pair
of fine and coarse scales, 6 intensity channels are generated.
The second set of features are computed from a set of color
opponency between red, green and blue values against yellow
value at each pixel. Center-surround differences for each pair
of color opponent are then computed over three scales, which
leads to 12 channels. The orientation features are computed
using a set of even-symmetric Gabor filters. The dominant
orientation at each pixel is recovered, whose center-surround
differences are computed at six scales and four orientations.
This leads to 24 orientation channels. Channels of each type
are then linear combined to form three conspicuity maps. Fi-
nally, the mean of the conspicuity maps becomes the saliency
map.

3. SALIENCY EXTRACTION ON HYPERSPECTRAL
IMAGES

3.1. Hyperspectral to trichromatic conversion

What has hindered the adoption of saliency extraction by hy-
perspectral object detection is the large amount of bands in
the spectral data. This makes the color component not be able
to computed directly. Furthermore, effective computation of
the intensity and texture saliency requires a grayscale image
to be used. A direct solution to this problem is conversion
of a hyperspectral image into a trichromatic image, which al-

lows traditional saliency model to be applicable. As pointed
out in [11], this can be achieved by dimensionality reduction,
band selection, or color matching functions.

In this research, we have followed the method of Fos-
ter [14]. This method first converts the hyperspectral image
to a CIE XYZ image. Given a hyperspectral image I(λi) for
each of the bands λi, such conversion can be implemented by
the following color matching function:

It =

N∑
i=1

I(λi)Wt(λi) (1)

where N is the total number of bands, t = {X,Y, Z} are the
tristimulus component of the color space, andWt comes from
the spectral sensitivity curves of three linear light detectors
that yield the CIE XYZ tristimulus values X , Y , and Z. This
conversion is then followed by a further transform step to the
sRGB color space [15], then Itti’s method can be applied.

Fig. 1: Spectral band group.

3.2. Spectral band opponent

Although the above method is straightforward, it does not
take advantage of the extra information provided by the hy-
perspectral image. Notice that the second conspicuity map in
Itti’s method is formed from RGB color channels, we shall
be able to replace the color opponents with groups spectral
bands that are approximately correspondence to these color
channels. To do so, we divide the bands into four groups with
each group occupying approximately the same width of visi-
ble spectrum, as shown in Figure 1. Then the original single
value color component is replaced a vector, and the double
opponency can be computed as follows

Opp1(c, s) = |(G1(c)−G3(c))	 (G3(s)−G1(s))|1 (2)

Opp2(c, s) = |(G2(c)−G4(c))	 (G4(s)−G2(s))|1 (3)

where G1 to G4 are vectors whose entries are extracted from
the corresponding group of spectral bands, c and s are differ-
ent scales for the across scale difference computation, and |.|1
is the 1-norm of a vector. 	 is the cross-scale center-surround
difference operator as defined in [7]. Then Opp1 and Opp2
can replace the red/green and blue/yellow opponency in [7].
In this method, the intensity and orientation maps can be ex-
tracted from the grayscale image converted from the trichro-
matic image generated using the color matching function as
described in section 3.1.



3.3. Spectral Saliency with Euclidean Distance

Further extending the method in section 3.2 allows the us-
ing of whole spectral responses for saliency detection. When
replacing the color saliency with spectral saliency, the rich
information embedded in the spectral data can be fully ex-
plored. Following the general multi-scale operation, differ-
ences between the spectral responses and its neighborhood
can be calculated. Both spectral angle distance (SAD) and
Euclidean distance can be used to measure the similarity be-
tween two spectral vectorsAk andAj , where the SAD is com-
puted via

SADkj = arccos

(
AT

kAj

‖Ak‖‖Aj‖

)
(4)

This step leads to a set of center-surround spectral differ-
ences in the scale space. They can be combined into a spectral
conspicuity map, which is used with the intensity and orienta-
tion conspicuity maps to form the final saliency map. The in-
corporation of spectral data suggests that not only visual clue
has been extracted, i.e., from the color and orientation con-
trast, but also the intrinsic material property of objects. This
has provided visual saliency model with additional informa-
tion beyond the capability of human and traditional camera
vision. Furthermore, the SAD and Euclidean measures pro-
vides two different spectral distance information that is useful
for object detection.

4. OBJECT DETECTION

In the previous step, saliency map can be generated to high-
light image regions that are different from their surround-
ing areas. To detect a region with a salient object, we bi-
narize the saliency map using the optimal threshold recov-
ery method [16]. This allows the pixels with low saliency
values be removed. Then a set of morphological operations
are used to fill the small holes in the connected components.
Those small components that comes from noisy clutters are
removed.

The object detection follows a winner-take-all strategy,
i.e., assuming that there is only one salient object per image.
The remaining image regions that contains the highest value
in the saliency map is selected as the one that contains the
target object. It should be noted that this method can be eas-
ily extended to detect more than one objects by sequentially
selecting regions in order of their highest saliency values.

5. EXPERIMENTS

To compare the three salient object detection methods in-
troduced in Section 3, we have performed experiments on
ground-based hyperspectral images in three online datasets.
The first two datasets were collected by Foster et al [17, 14].
They contain in total 55 hyperspectral images of natural

Fig. 2: Precision recall curve

scenes, with 16 images available online for free access. The
second dataset consists of 50 hyperspectral images collected
at Harvard University [18], which includes images captured
in both indoor and outdoor setting.

It should be noted that these three datasets were not
collected specifically for saliency object detection purpose.
Therefore, in most of them, it is hard to find salient objects,
or the scenes are cluttered with many objects. We have care-
fully selected image regions that contain salient objects in
their surroundings from 13 images in these datasets for our
experiments. To provide the ground truth, we have manually
labeled the location of salient objects by bounding boxes.
Because spectral saliency is not directly observable to human
eyes, we have combined visual saliency on synthesized RGB
images and domain knowledge on the object materials for
judgement.

We have implemented each of the three method as pro-
posed in section 3. The first method based on converted RGB
images is named as RGB. The second method based on
grouped spectral band opponent is named GS. We have im-
plemented two versions of the third method, i.e., using only
Euclidean distance of spectral response (SS), or use com-
bined SAD and Euclidean distance (SSO). These methods
are compared against the method from Moan et al [11]. This
method firstly combined spectral channels into red, green, and
blue groups, then computes the spectral differences on each
of the color groups to get the spectral saliency. The orien-
tation saliency is extracted on the first principle component
generated by principle component analysis to reduce the di-
mensionality of the hyperspectral image, while the intensity
saliency is not used.

To provide quantitative analysis to the saliency object de-
tection methods, we have calculated the precision and recall



Fig. 3: Saliency map computed from different methods. From left to right: input image, hyperspectral to trichromatic conversion
(RGB), spectral band opponent (GS), spectral saliency via Euclidean distance (SS), spectral saliency via combined SAD and
Euclidean distances (SSO), and the method in [11].

Fig. 4: Object detection results. From left to right: input image, hyperspectral to trichromatic conversion, spectral band
opponent, spectral saliency via Euclidean distance, spectral saliency via combined SAD and Euclidean distances, and the
method in [11].

curve when different binarization thresholds are used. The
results are shown in Figure 2. The precision is computed as
the percentage of true object pixels out of all detected pixels.
The recall calculates the percentage of true object pixels that
have been detected. It can be seen that the spectral saliency
methods are clearly better than the method based on RGB
images. The performance of the spectral-based solutions are
very close to each other, with the SSO option slightly out-
performing the other options. This shows the advantage of
combining different spectral distance measures for saliency
detection.

Figure 3 shows the saliency map on two sample images
generated by each method under comparison. The object de-
tection results are shown in Figure 4. It can be observed that
each method can generate very good saliency feature. When
it comes to object detection, the spectral-based methods can
detect the truth object more accurately. The method based
on RGB image, however, has included large amount of back-
ground regions into the results.

6. CONCLUSION

We have extended Itti’s visual attention model to generate
saliency map from hyperspectral imagery for object detection.
Such extension is mainly based on replacing the color com-

ponent with spectral saliency, which can be implemented by
dividing visual spectrum into groups, or use the whole spec-
tral responses. These methods allow extra information from
spectral data to contribute to the traditional visual attention
model. Experiments have shown the effectiveness of the pro-
posed methods in salient object detection. In the future, we
will apply the method to more hyperspectral data, for exam-
ple, on remote sensing images. We will also incorporate other
saliency models into the hyperspectral object detection tasks.
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