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Abstract— Traditional 2D face recognition has been studied
for many years and has achieved huge success. Nonetheless,
there is high demand to explore unrevealed information other
than structure and texture in spatial domain in the faces.
Hyperspectral imaging meets such requirements by providing
additional spectrum information on objects, in completion to the
traditional spatial features extracted in 2D images. In this paper,
we propose a novel 3D high-order texture pattern descriptor
for hyperspectral face recognition, which effectively exploit
both spatial and spectral features in hyperspectral images.
Based on the local derivative pattern, our method encodes
the hyperspectral faces with multi-directional derivatives and
binarization function in spatial-spectral space. Then a spatial-
spectral feature descriptor is generated by applying a 3D
histogram on the derivative pattern, which can be used to
convert hyperspectral face images into vectorized represen-
tations. Compared to traditional face recognition methods,
our method is able to describe the distinctive micro-patterns
which integrate the potential spatial and spectral information
in faces. Experiments on the real hyperspectral face databases
prove that our method has outperformed several state-of-the-
art hyperspectral face recognition approaches.

[. INTRODUCTION

Although a large number of techniques have been de-
veloped for face recognition by introducing new feature
extraction and pattern recognition methods [16], [18], [14],
existing methods still cannot satisfy the requirements of
many real-world applications. This is partly due to the
deficiency of only using 2D information in the face recogni-
tion practice. To address this problem, one solution is to
introduce sensors that can capture additional information
other than radiance in the visible spectrum range in 2D space.
Examples include range cameras such as Kinects and 3D
scanners to capture three dimensional spatial faces, introduc-
ing geometrical information to improve the discrimination
of individual faces under different orientation [2], [1], [7].
Another promising approach is to exploit spectrum devices to
bring in the spectral responses of faces which are supposed
to be invariant to external environment. Such studies includes
infrared imaging, hyperspectral imaging, etc. [6], [8], [17].

Compared with traditional grayscale and RGB images,
hyperspectral images introduce a new dimension of informa-
tion in terms of spectral responses of objects. Such spectral
information is related to the intrinsic material properties of
objects, and is measured in continuous narrow bands across
wide range of light spectrum. The resulting images usually
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Fig. 1: Hyperspectral face example. On the top right, the
spectral responses on the forehead and cheeks are drawn
with respect to the wavelength.

consist of tens or hundreds of continuous light wavelength
indexed spectral bands, which provide abundant information
in both visible and infrared wavelength. An example of
hyperspectral face image is shown in Fig. 1 with some
band images displayed. This example also shows that the
spectral responses on the forehead and cheeks are different
for a single subject and the spectral signature is more
discriminative than the intensity in single band.

Studies have proved that human skin retains its own
spectral properties due to the portion of melanin and
hemoglobin [5]. For example, the differences in portion
of melanin between African, Asian, and Caucasian lead to
obvious distinction in the darkness of skin. Regarding to
individuals, this property could be effected by the molecular
composition related to tissue, blood and structure. Conse-
quently, spectral responses of the skin has the potential of
being an additional discriminative feature for face recogni-
tion.

Methods employing both spectral and spatial information
for face recognition have been reported in recent years [9],
[4], [11], [12]. The challenges for integrating spatial-spectral
features are in two aspects. The first one is the low qual-
ity of existing hyperspectral face databases [4], [3]. Some
spectral bands, which are important for face recognition,
are corrupted by heavy noises and have very low signal to
noise ratio. Most hyperspectral faces also suffer from the
cross-band misalignment resulting from the offset of different
wavelength of light, movement of faces and blinking of eyes
during the image capturing process which normally takes
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at least several seconds [4], [3]. These factors contaminate
the spectral signature that can be extracted from faces. The
second and a more serious problem is the totally different
intrinsic attributes of spatial and spectral information. Direct
fusion of spatial and spectral features can not improve the
recognition performance.

Faced with these challenges, researchers have proposed
different solutions. Pan et al. pioneered the hyperspectral
face recognition by extracting a spectral features picked up
from typical areas of faces, such as forehead, cheeks, hair
and lips. Experiments proved that their method is robust to
the orientation and expression variations [9]. However, this
method did not make use of any spatial information. In order
to tackle this defect, an extended work integrated the spatial
information by introducing a spectral eigenface method [10].
Beside these work, Di et al. performed (2D)?PCA on
hyperspectral faces and transformed high dimension faces
into subspace. A hyperspectral face dataset was collected to
analyse this method in whole bands, single band, and band
subset with fusion [4]. In the work of Shen and Zheng, a
3D Gabor Wavelet was employed to extract multi-scale and
multi-orientation features from the hyperspectral faces [11].
This approach achieved a significant higher accuracy than all
fore-mentioned methods on the benchmark dataset in [4]. De-
spite of its high accuracy, it suffered from huge computation
and memory costs. In more recent, Unzir et al. developed
a spatial-spectral feature extraction method based on 3D
discrete cosine transform (DCT) to calculate low frequency
coefficients of hyperspectral face images. By using a partial
least square regression model to perform face classification,
this method achieved more than 90% recognition rate on
three databases [12]. Regarding to spatial-spectral feature
extraction, all these work did not completely solve the two
challenges mentioned above. They either only use spectral
signature or treat the hyperspectral data as an isotropic
volume.

In this paper, we propose a 3D high-order texture pattern
descriptor based on local derivative pattern (LDP) for hy-
perspectral face recognition. LDP is a high-order derivative
descriptor which provides a general framework for encoding
directional features on 2D images [13]. It can be represented
as a high-order and multi-direction derivative plus a special
binarization function which acts as a denoising function.
By combining these two functions, LDP is very efficient
to encode the detailed information and suppresses the noise
at the same time. In this paper, we introduce the 3D local
derivative pattern (3D LDP) to extract the spatial-spectral
information from hyperspectral face images. A 3D histogram
is constructed on the derivative pattern and then used as
the feature descriptor for face recognition. It should be
noted that our method is superior to the 3D extension of
local binary pattern (3D LBP) which is originally developed
for dynamic texture analysis [15]. It is validated on two
benchmark hyperspectral face datasets. The results show that
it outperforms several state-of-the-art methods and is robust
to time variations.

The rest of the paper is organized as follows. Section II
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Fig. 2: Coordinate systems in 3D space

describes the proposed 3D LDP method and how the ex-
tracted texture feature is converted to a descriptor for each
hyperspectral image. The implementation details are de-
scribed in section III, followed by experiments and analysis
in section IV. Finally, the conclusions are drawn in section V.

II. 3D LoCAL DERIVATIVE PATTERN

The proposed 3D LDP is a three dimensional high-order
texture descriptor. It analyses the micro-patterns in three
dimensional data and encode them into binary numbers.
The method consists of two parts, a 3D directional deriva-
tive pattern and a special binarization function. The 3D
directional derivative pattern describes the changes in multi-
directions, and curvature in high orders. The binarization
function provides a general description on the consistency
of two derivatives, which is suitable to extract detailed
features in multi-dimensional data. Though hyperspectral
images provide additional spectral information, there is huge
redundancy along the wavelength dimension. It is because
that spectral responses of objects change smoothly across
most wavelengths and the discriminative spectral information
may only exist in several specific wavelengths. Therefore,
3D LDP has the potential to extract the spatial-spectral
features in hyperspectral faces. After the 3D LDP features
are calculated, they are converted into histogram to generate
vectorized image representation.

A. Construction of Local Derivative Pattern

Given a hyperspectral image represented as a cube, a carte-
sian coordinate system and a spherical coordinate system can
be defined. A 3 x 3 x 3 example is shown in Fig. 2. In
the 3D coordinate system, a point P is represented by its
index of (x,y,A) while angle/direciton is expressed by the
combination of inclination # and azimuth ¢. Given the 3D
neighborhood of a central point, the first-order 3D directional
derivative I 607 o (@, 9, A) is defined as follows

Il o) (@9, A) = Iz + Az, y + Ay, A+ AX) — I(z,y, )

B VAZ2 4 NAy? B Ay
0= arctan(T), v = arctan(ﬂ)
ey

where P = (z + Az,y + Ay, A + A)N) is the nearest
neighbor of the central point P = (x,y,\) in direction
of (0,¢). It should be noticed that in the discrete 3D
image space, 6 and ¢ are also discrete which means 6 <



{kr/4|k = 0,1,2,3} and ¢ € {br/4|b=0,1,...,7}. Given
the directional derivative calculated in a specific angle, higher
order derivative can be calculated in the same angle.

In order to encode the derivative, our method employs a
function to binarize the derivative between the central point
and its neighbours. This function describes the consistency
of two neighboring derivatives. It is defined as follows

0 if I'(P)* I'(P) > 0
I'(P), I'(P)) = 2
SR, T (P) {1 Pt 2y @
where I’(P;) is the derivative calculated at the i*" neighbour

of the central point P,. When the derivatives are consistent,
i.e., both are positive or negative, the result is 0, otherwise,
the result is 1.

The directional derivative and binarization function play
different roles and are independent to each other. The former
extracts various distinctive spatial and spectral changes,
while the latter quantizes the consistency between derivatives
of the central point and its neighbours. From this point of
view, the binarization function can be considered as another
level of derivative on top of the directional derivative of the
hyperspectral image, i.e., a special second order derivative
of the raw image. Therefore, given point P., we denote such
second order derivative as D(Qe’w)(Pc) , such that

D(QG,Ap)(PC) = f(L{p,p)(Pe)s L{g o) (Pi)) (3)

After obtaining the binary derivative, these values are fed
into an encoding system to generate a unique integer which
encodes the local derivative pattern as follows

2 _ 2 i—1
8DLDPj , =Y D, x2 (4)

i=1

where i indexes the i*"
of the central point.

When all directions are combined, the final second-order
3D LDP becomes

neighbour in the m neighbourhood

3DLDP? =

ZQEALpEBZz 1 f( (94,)( )’I(Hw)(P)) x 20— 1)Xm+(15)1

where A = {kw/4]k =0, 1,2, 3} is the set of angles for 6
and B = {br/4|b = 0,1, .., 8} is the set of angles for ¢ in the
discrete 3D space in Fig. 4. Different combinations of # and
¢ determine different directions for derivative calculation,
and 7 is the index for these combination.

B nth

The 3D LDP can be extended to higher-order derivatives.
This can be implemented by applying equation (1) iteratively
and then perform binarization function. Consequently, the

th_order derivative of 3D LDP is constructed by calculating
the directional derivative for n — 1 times before applying the

-order Local Derivative Pattern

3DLDP patternin X  3DLDP patterninY  3DLDP patternin A

concatenate l

O 90 O O
)L T

T T
concatenate l concatenate l

X Histogram Y Histogram A Histogram

\ J
1

concatenate l

Final descriptor

Fig. 3: 3D LDP descriptor construction.
binarization function in Equation (2). Therefore, the nth-
order derivative is defined as

Dy o) (P2) = f(I{5 ) (Pe), iy (Py) 6)

After the encoding step, the n'"-order 3D LDP code in
the direction of (6, ¢) within the m neighborhood of P, is
calculated as

3DLDP}, , = 7
Sy Fy L (Pe) Il L () x 20— Dxmetizt (7)

The 3D LDP code extracted in different directions can be
combined into a final 3D LDP code as follows

3DLDP™ =

Sacoen S SR P < 27

where the parameters have the same meaning as in Equa-
tion (5).

C. Construction of 3D LDP Descriptor

Through the above procedure, each pixel is assigned
with an integer at given direction (6, ¢). Such mixed-order
derivative code contains discriminative texture feature of a
local neighborhood in a hyperspectral image. To convert such
texture feature into a vectorized descriptor for face recogni-
tion, statistical distribution of the 3D LDP feature in local
regions is calculated and summarized using a histogram. The
length of each histogram is 2™ for each direction. In practice,
the length of histogram can be shortened by merging the
neighboring entries to generate smaller number of bins.

The hyperspectral image is divided into small cubes. On
each cube, a local histogram is generated in each direction.
For each direction, the local histograms are concatenated,
such that the resulting directional histogram embeds both
spatial and spectral information at the region level. Then
the directional histograms are merged into a final histogram
which is the final descriptor of the hyperspectral face image.
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Fig. 4: Left panel: directions of 3D LDP. Right panel: 8
neighbours chosen to code the pattern.

An example of 3D LDP descriptor extracted from hyperspec-
tral face image is displayed in Fig. 3.

D. Hyperspectral Face Recognition

A distance measurement between hyperspectral face im-
ages is required for the final recognition step. In our method,
histogram intersection is adopted to measure the similarity
between two histograms

K
My = Z min(Hi (i), Ha(i)) 9)

where Mo is the histogram intersection between his-
togram H; and H,. K is the length of the histogram. This
measurement calculates the common area of two histograms.
The higher the value is, the more similar two histograms are.

III. IMPLEMENT DETAILS

In our method, we first filter the hyperspectral faces with a
3D Gabor filter. It is necessary because hyperspectral images
often suffer from serious noises coming from both hardware
and the imaging process. Directly applying 3D LDP will
result in encoding a lot of noises in the spectral domain.
The 3D Gabor reduces the influence of sensor noise and
cross-band misalignment. It also enhances the discriminative
patterns in the spatial and spectral domain. Different from the
3D Gabor Wavelet method in [11], filters with fixed scale are
used.

In a 3D space, a pixel can have up to 26 direct neighboring
pixels. In our implement, we make use of 3 directions and 8
neighbours in the cube as shown in Fig.4. These three direc-
tions are (0,0), (7/2,0) and (7/2,7/2), which correspond
to positive x, positive y, and positive A, respectively. The
8 neighbours are the eight corners of the cube which span
both spatial and spectral dimensions. It should be mentioned
that this is the most basic form and more directions and
neighbours can be used to extract more detailed information.
In the implementation, we calculate the second order 3D
LDP. A summary of the second-order 3D LDP is given in
Algorithm 1. Its extension to higher order is straightforward.

IV. EXPERIMENTS AND RESULTS

The experiments consist of two parts. In the first part,
we compare the proposed methods with the state-of-the-
art hyperspectral face recognition algorithms on two well-
established hyperspectral face datasets. For the completeness

Algorithm 1 Second-order 3D LDP

Require: Hyperspectral data cube S
for each pixel in S do
Calculate the derivative in z, y, and A positive direction,
obtaining Dz, Dy and DA
end for
for each direction do
for each pixel p. in S do
for each neighbour p; around p. do
Apply equation (2) on D(p;) and D(p.)
end for
Calculate the LDP code using equation (4)
end for
for each local region in S do
Build the histogram
end for
Concatenate the histogram in different local regions
end for
Concatenate the histogram in different directions

of experiments, we also implement the 3D LBP in our test.
The results show that our method outperforms all other ap-
proaches. Then in the second part, we validate the usefulness
of spectral information by comparing the proposed method
with a state-of-the-art 2D face recognition method.

Hyperspectral face recognition is much less mature than
work in 2D faces. There are very few datasets available.
Furthermore, some hyperspectral face datasets are not pub-
licly available due to privacy or other reasons such as those
collected and used in [9] and [12]. To our knowledge, there
are only two publicly available datasets of hyperspectral face,
i.e., Hong Kong Polytechnic University Hyperspectral Face
Database (HK-PolyU) [4] and Carnegie Mellon University
Hyperspectral Face Dataset (CMU dataset) [3]. As a conse-
quence, our experiment were conducted only on these two
datasets.

A. Results on HK-PolyU Hyperspectral Face Dataset

The first dataset is the Hong Kong Polytechnic University
Hyperspectral Face Database (HK-PolyU) [4], which consists
of 300 hyperspectral faces from 25 subjects. For each subject,
there were four sessions collected at two time with an
average span of five months. Each session consists of frontal,
right and left views with the neutral expression. Each image
covers the visible wavelength from 400nm to 720nm with
an interval of 10nm. The images are quite noisy at the both
ends of the spectral range. So the first six and last 3 bands
are removed in the experiment. Fig. 5 shows examples of
two subjects taken in four sessions. It can be seen that
the appearance of the same person varies a lot in different
sessions. The bands of this database are not well registered
and the pixel based spectral signature are contaminated. This
explains why it cannot be used directly for 3D LDP.

In order to evaluate the performance of 3D LDP, we com-
pare it with several hyperspectral feature extraction methods.



Fig. 5: Examples from the HK-PolyU Hyperspectral Face
Database. Images are extracted from different sessions.

These methods are Spectral Feature [9], Spectral Eigen-
face [10], 2D PCA [4], 3D LBP [15], 3D Gabor Wavelet [11]
and a newly developed method of 3D DCT [12]. We followed
the experiment setting in [11]. The hyperspectral faces were
cropped into 64 x 64 in spatial dimension and the position
of eyes were manually aligned. Four sessions of 25 subjects
were used to as the test set. The gallery set was constructed
by randomly sampling two sessions from test set and the rest
faces were used as the probe set. For our method, 13 3D
Gabor transforms (frequency = 0.25, orientationl = 0, 7 /4,
/2, 3w /4, orientation2 = 0, 7/4, 7/2, 3w /4) were used to
preprocess the hyperspectral faces. We fixed the subregion
size to 8 x 8 x 8 pixels to build the 3D histogram and set the
derivative order to two. The 3D LBP uses the same setting
with 3D LBP except that it takes 14 neighbours as introduced
in [15]. In 3D Gabor Wavelet, the size of Gabor was
39x39x 39 and 52 filters were used as recommended in [11].
The 3D DCT method reported in [12] consists of a 3D DCT
based feature extraction method and a partial least squares
regression based classification method. We only implemented
the feature extraction part using the code published by the
authors of [12] because our paper focuses more on the
spatial-spectral feature extraction. The face recognition in
alternative methods was implemented by using the nearest
neighbor classifier based on the Euclidean distance between
probe and gallery images, while our method used the nearest
neighbor classifier based on histogram intersection. We used
the mean and standard deviation of rank-1 recognition rate
of six possible combinations of the gallery and probe sets to
evaluate the performance of each method.

TABLE I: Recognition rate of different methods on the HK-
PolyU Hyperspectral Face Database.

Methods
Spectral Feature[9]
Spectral Eigenface[10]

Recognition Rate
4535 £ 3.87%
70.33 £ 3.61%

2D PCA[4] 71.00 £+ 3.16%
3D DCT[12] 84.00 + 3.35%
3D LBP[15] 88.80 + 1.79%
3D Gabor Wavelet[11] 90.00 + 2.83%
3D LDP 95.33 + 1.63%

The experimental results are shown in Table I. 3D LDP
has achieved the highest recognition with 95.334+1.63% on

the HK-PolyU database, exceeding the second best 3D Gabor
Wavelet by 5.33% in average. The 3D Gabor Wavelet feature
extraction method has achieved similar results as reported
in [11] and [12]. Just as LDP performs better than LBP in
2D face recognition, the 3D version also shows the same
trend in which 3D LDP is 6.53% higher than 3D LBP. The
accuracy of 3D DCT is 84.00%, which is much lower than
the results reported in [12]. This is partly due to the fact
that the partial least square regression has not been used
as the classifier. Compared with 3D LDP and 3D Gabor
methods, 3D DCT only extracts low-frequency coefficients
of DCT, which is a general representation of signal energy. In
contrast, 3D LDP and 3D Gabor Wavelet extract multi-scale
and multi-direction local textures, which capture more local
information than 3D DCT. The results also show that pure
spectral feature performs the worst because it has ignored
the spatial information.

B. Results on CMU Hyperspectral Face Dataset

The second hyperspectral face dataset is the Carnegie
Mellon University Hyperspectral Face Dataset (CMU
dataset) [3]. Examples of this dataset are shown in Fig. 6.
Compared with the HK-PolyU dataset, the CMU dataset
covers a wider range of spectrum from 450nm to 1090nm
with an interval of 10nm. It includes data of 54 subjects taken
in multiple sessions. Each session consists of four different
illumination conditions which include all lights on, center
light on, left light on and right light on. Each subject has 1
to 5 sessions taken at different times. Due to the low spectral
sensitivity of hyperspectral camera, bands at the two ends of
spectrum range have very low signal to noise ratio. In this
experiment, faces under the condition of all lights on taken
at different time were used as the test set. The gallery set
was constructed by randomly sampling one face per subject
from the test set and the rest faces were used as the probe set.
This procedure repeated 10 times and the mean and standard
deviation were used to evaluate the performance of different
methods.

Fig. 6: Example images on two subjects in the CMU Hy-
perspectral face dataset. For each subject, the images are
captured in four sessions with 700nm band displayed.

The gallery included 47 faces while the probe had 98
faces. Each face was cropped into 64 x 64 in spatial dimen-
sion and the position of eyes were manually aligned. The first



7 and last 2 noisy bands were removed. In this experiment,
we adopted the same setting as on the HK-PolyU dataset for
3D LBP, 3D Gabor Wavelet, 3D DCT and 3D LDP.

TABLE II: Recognition rates of different methods on the
CMU Hyperspectral Face Dataset.

Methods Recognition Rate
Spectral Feature[9] 38.18 + 1.89%
2D PCA[4] 72.10 + 5.41%
Spectral Eigenface[10] 84.54 + 3.78%
3D DCT[12] 88.65 £ 2.34%
3D LBP[15] 92.16 £ 3.52%
3D Gabor Wavelet[11] 92.20 + 2.46%
3D LDP 94.83 + 2.62%

The experimental results are shown in Table II. These
results are consistent with those on the HK-PolyU dataset.
The 3D LDP leads the performance among all the methods
with an average recognition rate of 94.83%. The second and
third methods are 3D Gabor Wavelet and 3D LBP. Regarding
the efficiency, 3D DCT is the fastest because it only produces
one cube per face, while the 3D Gabor Wavelet is the worst
which produces 52 cubes. The 3D LBP and 3D LDP are
in the middle by creating 13 cubes per face. Overall, the
3D LDP efficiently extracts the spatial-spectral features and
performs the best in recognition rate among all methods.

C. Further Analysis of 3D LDP

In order to show that the spectral information provided
by the hyperspectral images increases the accuracy of face
recognition, we also conducted an experiment in which 3D
LDP was compared with a 2D face recognition method. We
chose 2D LDP for comparison because it uses the same
rationale in feature extraction in 2D space. Because 2D LDP
cannot be directly applied to hyperspectral images, we ran
it on each individual band. Then average recognition rate
and standard deviation from all bands are calculated. In 2D
LDP, the subregion size was set to 8 x 8 pixels and the
derivative order was set to two. The comparison is conducted
on both datasets following the same setting as experiment
A and B. The results in Table III show that 3D LDP
performs significantly better than 2D LDP on both datasets.
This proves the value of introducing spectral information for
face recognition. Effective characterizing the spatial-spectral
information has led to remarkable benefit in improving the
accuracy of face recognition.

TABLE III: Recognition rate of 3D LDP and 2D LDP on
two datasets.

Methods HKPolyU database | CMU database
2D LDP [13] 86.25 £ 9.62% 90.27 £+ 3.51%
3D LDP 95.33 £+ 1.63% 94.83 £ 2.62%

V. CONCLUSION

In this paper, we have introduced a 3D texture descriptor
for hyperspectral face recognition. It provides a framework

for constructing a multi-direction and multi-neighbourhood
local derivative patterns. This pattern efficiently integrates
the information from both spatial and spectral domain and
reduces the negative influence of noise in the hyperspectral
images. By building a 3D histogram on this feature, a spatial-
spectral descriptor can be generated for hyperspectral face
recognition. The proposed method has been tested on two
public hyperspectral face datasets and has been compared
with several existing methods. The results prove that our
method has outperformed the state-of-the-art methods in
terms of both accuracy and efficiency. It is expected that
the proposed method can also be used in other hyperspectral
classification applications.
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