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Abstract

This paper is the first to employ a multivariate extension of the LHAR-CJ model for

realized volatility of Corsi and Renó (2012) considering continuous and jump volatility

components and leverage effects. The model is applied to financial (S&P 500), commodity

(WTI crude oil) and forex (US$/EUR) intraday futures data and allows new insights in

the transmission mechanisms among these markets. Besides significant leverage effects,

we find that the jump components of all considered assets do not contain incremental

information for the one-step ahead realized volatility. The volatility of S&P 500 and

US$/EUR exchange rate futures exhibits significant spillovers to the realized volatility of

WTI. Moreover, decreasing equity prices appear to increase volatility in other markets,

while strengthening of the US$ seems to calm down the crude oil market.
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1. Introduction

The increasing integration of major financial markets has generated strong interest in

understanding the nature of volatility spillover effects from one market to another. The

amount of research in this field has skyrocketed with the development of the General-

ized Autoregressive Conditional Heteroscedasticity (GARCH) model framework and its

multivariate extensions. However, the various MGARCH specifications employed in the

literature utilize mostly returns sampled at daily or lower frequencies, which are known

to provide noisy volatility estimates. This is the first study employing a multivariate

extension of the LHAR-CJ model of Corsi and Renó (2012) which decomposes realized

volatility (an intraday data based metric) into continuous and jump components and

takes leverage effects into account. These extenstions have not been addressed by the

few other studies utilizing a multivariate version of this model (Bauer and Vorkink, 2011;

Bubák et al., 2011; Soucek and Todorova, 2013) even though they have proven very useful

Preprint submitted to Elsevier February 5, 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Griffith Research Online

https://core.ac.uk/display/143890982?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


for enhancing the forecasting power in its univariate form (Andersen et al., 2007; Corsi

and Renó, 2012). The introduced framework is applied to uncover volatility transmission

between S&P 500, Western Texas Intermediate crude oil (WTI) and US$/EUR exchange

rate futures.

Furthermore, to our knowledge, this study is the first employing the univariate version

of the LHAR-CJ model to crude oil data. It also shows that the jump components are

insignificant for explaining future daily realized volatility for all considered assets. The

univariate estimation results also uncover different autocorrelation patterns in the time

series of realized volatility of the analyzed assets showing that equity futures tend to

react strongly to short-term shocks while the driving force of daily oil and exchange rate

volatility seems to emerge from their weekly and monthly realized volatility components.

While the provided evidence that the jump volatility components are insignificant for

equity and forex data is conform with current literature, the multivariate model reveals

new insights into the transmission patterns of leverage effects across various markets.

First, negative returns in the equity futures market have positive impact on the volatility

in both other markets and negative crude oil returns affect positively the volatility in the

forex futures market. Second, the model uncovers the interesting fact that a strengthening

of the dollar (i.e. a decreasing US$/EUR exchange rate) tends to calm down the WTI

futures volatility. This result is possibly related to the fact that WTI is the most important

crude oil benchmark for the US economy. Positive news related to the US economy are

usually followed by an appreciation of the dollar. Via this link, a strong US economy

implying a strong dollar might have a soothing effect on the crude oil volatility.

2. Data and methodology

Our analysis is based on 5-minute returns (in US$) of the one-month futures contracts

on Light Sweet Crude Oil (WTI), the S&P 500 (e-mini futures, in the following referred

to as S&P 500) and the US$/EUR exchange rate. The data are obtained from the

Thomson Reuters Tick History database of the Securities Industries Research Centre

of Asia Pacific (SIRCA) and cover the period from January 2004 to September 2012. The

futures contracts are traded at the CME 24 hours a day during the whole sample period.

2.1. The econometrics of jumps

To define the considered realized volatility components, we build on the commonly

used continuous time jump diffusion process,

dpt = µtdt+ σtdWt + κtdqt 0 ≤ t ≤ T, (1)

where µt is a continuous and locally bounded variation process, σt is a strictly positive

stochastic volatility process, and Wt is a standard Brownian motion. The counting process

qt is normalized such that dqt = 1 corresponds to a jump at time t and dqt = 0 otherwise.

κt is the random jump size at time t if dqt = 1. The quadratic variation for the cumulative
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return process is then

[r, r]t =

∫ t

0

σ2
sds+

∑
0<s≤t

κ2
s, (2)

where the second component of the right-hand side of (2) consists of the sum of squared

jumps observed between 0 and t. After establishing realized volatility of day t as the sum

of compounded intra-day returns,

RVt =
M∑
j=1

r2
t,j, t = 1, . . . T, (3)

the non-parametric approach of Barndorff-Nielsen and Shephard (2004, 2006) is used to

separate the continuous path and jump components in equation (2), considering bipower

and tripower variation measures. The bipower-variation is defined as

BVt = µ−2
1

M

M − 1

M∑
j=2

|rt,j||rt,j−1|, t = 1, . . . T, (4)

where µ1 =
√

2/π and the realized tripower quadricity is

TQt = µ−3
4/3

M2

M − 2

M∑
j=3

|rt,j|4/3|rt,j−1|4/3|rt,j−2|4/3, t = 1, . . . T, (5)

where µ4/3 = 22/3Γ(7/6)/Γ(1/2). M denotes the number of intraday returns.

Using equation (3) and the definition of quadratic variation, Barndorff-Nielsen and

Shephard (2004) show that BVt is a consistent estimator of integrated volatility,

BVt →p

∫ t

t−1

σ2(s)dS for M →∞. (6)

Therefore, the difference (RVt − BVt) converges to the sum of squared jumps that have

occurred during the period. Since the jumps may be non-zero in finite samples due to

sampling variation, even if there are no real jumps (Busch et al., 2011), a definition of

a significant jump component is needed. We apply the test statistic proposed by Huang

and Tauchen (2005),

Zt =
√
M

(RVt −BVt)RV −1
t

((µ−4
1 + 2µ−2

1 − 5) max{1, TQt, BV
−2
t })1/2

. (7)

If there are no jumps, the test statistic Zt converges to standard normal distribution, as

M approaches infinity, while large positive values indicate jumps occurring within the

period. The significant jump component of realized volatility is

Jt = IZt>Φ1−α(RVt −BVt), t = 1, . . . T, (8)

where IR is the indicator of event R and Φ1−α is the 100(1− α) % point in the standard
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normal distribution at the significance level α. For IZt>Φ1−α = 1, Jt is considered as excess

realized volatility above the bipower variation, and thus attributable to jumps in the price

process. The continuous component of quadratic variation is estimated by the remainder

of RVt

Ct = RVt − Jt, t = 1, . . . T. (9)

If there is no significant jump, Ct equals RVt. The consistency of the estimators of both

components of quadratic variation, i.e.,

Ct →p

∫ t

t−1

σ2(s)dS and Jt →p

q(t)∑
j=q(t−1)+1

κ2(tj), (10)

may be achieved by letting α→ 0 and M →∞ simultaneously. As a result, this approach

allows a nonparametric consistent estimation of both components of quadratic variation.

In our analysis we employ conform with the literature (e.g. Andersen et al., 2007) a

confidence level of 99.9%.

2.2. Multivariate LHAR-CJ model

As already mentioned, the various MGARCH specifications employed by most of the

studies utilize returns sampled at a daily or lower frequency, but using these returns

results in much noisier volatility estimates than realized volatility. A simple autoregress-

ive-type model for realized volatility which considers volatilities observed over different

time periods is proposed by Corsi (2009). The heterogeneous autoregressive model (HAR)

is based upon the idea that traders with different time horizons can cause different types

of volatility and it is motivated by the heterogeneous market hypothesis presented by

Müller et al. (1997). It is empirically supported by the observation that volatility over

longer time intervals has a stronger influence on volatility over shorter time intervals than

vice versa. The most common HAR model specification considers volatility as a linear

function of the average daily (d), weekly (w), and monthly (m) realized volatilities (Corsi,

2009).

We formulate the multivariate model following Andersen et al. (2007), who, among

others, consider the continuous and jump decomposition of realized volatility separately

within a univariate version of the HAR-CJ model. We extend the model by leverage

effects as, proposed by Corsi and Renó (2012),

rt−h,t =
1

h

h∑
j=1

min(0, rt−j), (11)

so that the obtained univariate model LHAR-CJ model can be written as follows:

RVt,t+h = β0 + βCdCt + βCwCt−4,t + βCmCt−21,t

+ βJdJt + βJwJt−4,t + βJmJt−21,t + βRrt−h,t + εt+h. (12)
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In this study, we introduce and estimate the multivariate extension of the above model.

Generally, an empirical application of the multivariate extension for N assets requires

7N2 +N coefficient estimates. In order to decrease the number of estimated coefficients,

we run a preliminary analysis showing that the weekly and monthly jump components do

no increase the explanatory power of the model as well as its forecasting ability, and hence

are omitted.1 Furthermore, we focus on the one-step ahead realized volatility (h = 1), so

that, the applied multivariate LHAR-CJ model takes the form,

RVt+1 = β0 +AdCt +AwCt−4,t +AmCt−21,t +BJt +Rrt + εt+1, (13)

where Ad, Aw, Am,B and R are coefficient matrices. The vectors Ct−k,t, k = 4, 21

represent the vectors of the standardized volatility sums over the last 5 and 22 days,

respectively, and the vectors Jt and rt contain the significant jump components and the

leverage effect proxy for day t. Conform with extant literature, we use logarithmic realized

variance. Since the jumps Jt are often equal to zero, following with Andersen et al. (2007),

the transformation ln(1 + Jt) is employed.

3. Empirical results

3.1. Univaraite HAR models

We run different specifications of the HAR models for realized volatility showing that

weekly and monthly jump components are generally not significant in the regression equa-

tion for daily realized volatility and do not increase the explanatory power of the model

(Table 1). The forecasting error measured by minimum absolute forecasting error (MAFE)

and root mean squared error (RMSE) is also the lowest for the specification without

monthly and weekly jump components. For all three assets, we find adjusted R2 over

50 %. The decomposition of realized volatility into continuous and jump components as

well as the consideration of leverage effects increase the R2 and lower the forecasting error

measures.

Based on these results, in order to decrease the number of estimated coefficients in the

multivariate model, we discard the weekly and monthly jumps. The empirical evidence

presented in the following is based on the transmission model (13).

3.2. Causality tests

Estimating the multivariate model in (13), we first test for causality using the log

likelihood ratio test (LR-test). Results are presented in table 2. According to the null

hypothesis of the test, incorporation of the asset’s (continuous, jump and leverage) com-

ponents in the row does not increase the explanatory power of the equation for the realized

volatility of the asset the column. We reject the null for the S&P 500 and forex relation-

ship and find them to exhibit bivariate causality, and WTI volatility to be a follower of

1These results are presented in the next section.
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the equity index and forex volatility. Furthermore, the significance of the impact of eq-

uity futures volatility on WTI appears to be stronger than that emerging from the forex

market.

Our finding that the dynamics of crude oil realized volatility is following the volatility

changes in the equity and forex markets is at odds with existent studies suggesting the ex-

istence of spillovers mainly from oil to equity markets or of bidirectional interrelationships

between the two markets (e.g. Malik and Hammoudeh, 2007; Aloui et al., 2008; Malik

and Ewing, 2009). In contrast, Thuraisamy et al. (2013) and Soucek and Todorova (2013)

present similar evidence for the leading role of equity markets in the equity-oil market

relationship indicating that the major part of the significance of this relationship might be

related to the turbulent market downturn starting 2007/2008. In this period, the overall

market uncertainty and the following recession was rather sourced in the financial market

and spilled over to the crude oil markets via its link to the economy. Our results support

this evidence.

Table 2: Multivariate causality tests

S&P 500 WTI Forex

S&P 500 - 35.81 33.38

(0.00) (0.00)

WTI 4.99 6.79

(0.42) - (0.23)

Forex 24.44 9.81 -

(0.00) (0.08)

The table shows the results for LR-test based on the FIML estimated model in (13). It tests whether the variables in the
first column cause the variables in the rows. The p-values in brackets are based on the χ2 distribution.

3.3. Regression results

The estimation results for the transmission model (13) are reported in table 3. We

observe different autocorrelation structures of the realized volatility for the three assets

measured by the magnitude of the estimated coefficients of the lagged realized volatility

components. In the case of S&P 500, the impact of the own short-term volatility on the

one-step ahead volatility is stronger, while for WTI and forex, the weekly and monthly

volatility seem to contain most of the relevant information for future daily realized volatil-

ity.

Focusing on the source of the spillover effects, it becomes obvious that the short-

term volatility of the equity futures does have a positive impact on the volatility in the

other two markets. Furthermore, we observe a significant spillover effect emerging from

the weekly continuous volatility component of WTI to S&P 500, and from the daily and

weekly volatility components of forex futures to the equity market. Additionally, the forex

futures seem to react to the dynamics of the short- and long-term volatility components

of the WTI futures. Last, consistent with the literature considering HAR-CJ models (e.g.
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Andersen et al., 2007, Bauer and Vorkink, 2011), none of the jump components in the

model is significant at the 10 % level.

Due to its sophisticated specification which discerns spillover effects emerging from

volatilities realized over different time horizons, the multivariate LHAR-CJ model is ca-

pable of uncovering unique results related to the leverage effects and their spillover to

other markets. First, we document a significant leverage effect for all considered markets.

Second, there is significant transmission of leverage effects of the equity to the crude oil

and forex market; i.e., decreasing equity prices are followed by rising volatility in other

markets. Surprisingly, an increase in the US$/EUR exchange rate is followed by a de-

crease in the realized volatility of the crude oil futures. A decrease in the forex rate signals

strengthening of the US$, which may calm down the WTI market.
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Table 3: Estimation results from the multivariate LHAR-CJ transmission model

S&P 500 WTI Forex

Int. -0.3276∗∗∗ -0.3334∗∗∗ -0.4154∗∗∗

(0.099) (0.104) (0.075)

βSPCd 0.4246∗∗∗ 0.1026∗∗∗ 0.04601∗∗

(0.021) (0.029) (0.020)

βSPCw 0.3189∗∗∗ – –

(0.035)

βSPCm 0.1278∗∗∗ – –

(0.034)

βSPJd – – –

βSPR -17.0633∗∗∗ -4.6635∗∗∗ -5.4022∗∗∗

(1.515) (1.741) (1.256)

βWTI
Cd 0.1350∗∗∗ 0.0447∗∗∗

(0.20) (0.015)

βWTI
Cw – 0.3891∗∗∗ –

(0.044)

βWTI
Cm 0.0862∗ 0.3211∗∗∗ –

(0.051) (0.048)

βWTI
Jd – – –

βWTI
R -6.8011∗∗∗ –

(0.888)

βFCd -0.1588∗∗∗ – 0.1175∗∗∗

(0.031) (0.022)

βFCw 0.1374∗∗ – 0.4603∗∗∗

(0.067) (0.046)

βFCm – – 0.3446∗∗∗

(0.046)

βFJd – – –

βFR 6.2496∗∗ -6.7419∗∗∗

(2.971) (2.268)

D -1.6975∗∗∗ -0.5631∗∗∗ -1.4274∗∗∗

(0.177) (0.108) (0.126)

R2 0.777 0.598 0.700

MAFE 0.3759 0.3379 0.2772

RMSE 0.4981 0.5250 0.3660

The table summarizes the FIML estimation results for the model (13) for different volatility components on the left-hand
side. The table displays only estimates significant at 10 % level. ∗∗∗ (∗∗, ∗) marks coefficients significant at the 1 % (5 %,
10 %) level, MAFE and RMSE stand for mean absolute forecasting error and root mean squared error, respectively. D is
dummy variable taking into account days when there was a trading day in other markets, but the analyzed market was
closed.
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Considering the explanatory power and the forecasting ability of the multivariate

model, the estimates reveal further interesting results. First, we observe a substantial

increase in the adjusted R2, which is almost 5% in the case of WTI; including volatil-

ity information from other markets obviously contributes to the explanation of volatility

changes in the observed market (Table 1 and 3). Furthermore, for all three assets the mul-

tivariate specification leads to lower mean absolute forecasting error (MAFE) and mean

root squared error (MRSE) for one-step ahead realized volatility forecasts than the corre-

sponding univariate models. This is a noteworthy result especially against the backdrop

of the increased number of coefficients used to create the forecasts. Both results under-

state the hypothesis of cross market volatility transmission effects having a significant

contribution to explaining the realized volatility of the analyzed assets.

4. Conclusion

This is the first study of a multivariate version of the HAR model accounting for con-

tinuous and jump realized volatility components as well as leverage effects. Applying the

model to equity, forex and crude oil market intraday data, we document several interest-

ing insights in the prevailing volatility spillover mechanisms. First, the jump components

of the realized volatility of S&P 500, WTI and US$/EUR futures are found neither to

possess explanatory power for the own one-step ahead realized volatility nor to exhibit

spillover effects to other markets. In the case of equity futures, the highest parameter

estimate is assigned to the own short-term volatility component, while in the case of crude

oil and forex weekly and monthly components seem to contain the majority of the infor-

mation. Causality analysis indicates that the equity market and forex volatility lead the

volatility of crude oil, which can be attributed to the financial uncertainty emerging from

the financial markets over the last decade. We also document a significant transmission

of leverage effects from the equity to the crude oil and forex market with a decrease in eq-

uity futures prices positively affecting the volatility in other markets under consideration.

Furthermore, an appreciation of the dollar appears to induce lower volatility in the WTI

crude oil market. Overall, the multivariate LHAR-CJ model allows for new insights in the

nature of the volatility spillovers and should be considered when aiming at an in-depth

analysis of transmission mechanisms.
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