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ABSTRACT 
The use of biometric technologies for human identity 

verification is growing rapidly in civilized society and showing 

its advancement towards the usability of biometrics for 

security. Off-line signature verification is considered as a 

behavioral characteristic based biometric trait in the field of 

security and the prevention of fraud. So, offline signatures are 

extensively used as a means of personal verification and 

identification. Manual signature-based authentication of a large 

number of documents is a very difficult and time consuming 

task. Consequently for many years, in the field of protected 

communication and financial applications, we have observed 

an explosive growth in biometric personal authentication 

systems that are closely connected with measurable physical 

unique characteristics (hand geometry, iris scan, finger prints 

or DNA).. Human signatures also provide secure means for 

confirmation and authorization in legal documents. So 

nowadays, automatic signature verification becomes an 

essential component.  In order to convey the state-of-the-art in 

the field to researchers, in this paper we present a survey of 

off-line signature verification systems. 

 

General Terms: Systems, Forgeries, Methods, Skilled, 

Performance. 

Keywords: Off-line Signature verification, on-line 

signature verification, biometrics, authentication systems. 

1. INTRODUCTION 
 In conjunction with the recent and extraordinary growth of the 

Internet, automatic signature verification is being considered 

with renewed  interest. Signature verification is not only a 

popular research area in the field of image processing and 

pattern recognition, but also plays an important role in many 

applications such as security, access control, contractual 

matters etc. The recognition of signatures is significantly 

concerned with the improvement of the interface between 

human-beings and computers [1, 2]. Research into signature 

verification has been vigorously pursued for a numbers of 

years and it is being explored specially in the off-line mode [3, 

4]. A signature verification system and the associated 

techniques used to solve the inherent problems of 

authentication can be divided into two classes [5, 6]: (a) on-

line method [7, 8] to measure the sequential data such as order 

of stroke, writing speed, writing time, pen pressure by utilizing 

intelligent machine algorithms [9, 10] and (b) off-line method 

[11, 12] that uses an optical scanner to obtain handwriting data 

written on paper. Off-line Signature verification deals with the 

verification of signatures, which are in a static format [13]. On-

line signature verification has been shown to achieve much 

higher verification rates than off-line verification [11] as a lot 

of dynamic information is lost in the off-line mode. Hence, on-

line signature verification is generally more successful. 

Signatures represent a particular writing style and are not 

considered as a collection of letters and words [14]. A person‘s 

signature often changes depending on some elements such as 

mood, fatigue, time etc. Great inconsistency can even be 

observed in signatures according to country, habits, 

psychological or mental state, physical and practical conditions 

[15]. 

    This paper is organised as follows: Section 2 discusses the 

signature verification concept, Section 3 introduces different 

types of forgeries, Section 4 introduces different methods of 

signature verification systems, Section 5 deals with non-

English signature verification, Section 6 introduces a 

comparison of different approaches, Section 7 introduces our 

realization and future aspects. Finally, Section 8 concludes the 

paper. 

 

2. SIGNATURE VERIFICATION CONCE- 

PT  
Signature verification (SV) systems seek to authenticate the 

identity of an individual, based on an analysis of his/her 

signature, through a process that discriminates a genuine 

signature from a forgery [16].  Signature verification is 

different to handwritten character recognition, because 

signatures are often unreadable, and they can simply appear as 

images with some particular curves that represent the writing 

style and pattern of an individual. Signatures are a special type 

of handwriting and very often are a combination of symbols 

and strokes. 

     In general to deal with the problem of off-line signature 

verification, researchers have investigated a commonly used 

approach which is based on two different patterns of classes, 

class1 and class2:  Class1 represents the genuine signature set, 

and Class 2 represents the forged signatures set. For 

performance calculation usually two types of errors are 

considered. The False Rejection, which is called a Type-1 error 

and the False Acceptance which is called a Type-2 error. So 

there are two types of error rates: False Rejection Rate (FRR) 

which is the percentage of genuine signatures treated as 

forgeries, and False Acceptance Rate (FAR) which is the 
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percentage of forged signatures treated as genuine. When we 

deal with the experiments of a signature verification system, 

we consider FRR and FAR. 

   Feature extraction is also an essential component for 

contributing to the success of a signature verification system. 

An ideal feature extraction technique extracts a minimal 

feature set that maximizes interpersonal distance between 

signature examples of different persons, while minimizing 

intrapersonal distance for those belonging to the same person.   

 

3. TYPES OF FORGERIES 
There are usually three different types of forgeries to take into 

account. These three basic types of forged signatures are 

indicated below: 

a. Random forgery. The forger has no access to the genuine 

signature (not even the author‘s name) and reproduces a 

random one. A random forgery may also include the forger‘s 

own signature. 

b. Simple forgery. The forger knows the author‘s name, but has 

no access to a sample of the signature. Thus, the forger 

reproduces the signature in his/her own style. 

c.Skilled forgery. The forger has access to one or more samples 

of the genuine signature and is able to reproduce it. Skilled 

forgeries can even be subdivided according to the level of the 

forger‘s skill. 

   But based on the various skilled levels of forgeries, it can 

also be divided into six different subsets. The paper [22] shows 

various skill levels of forgeries and these are shown below. 

1. A forged signature can be another person‘s genuine 

signature. Justino et al. [17] categorized this type of forgery as 

a Random Forgery.  

2. A forged signature is produced with the knowledge about 

the genuine writer‘s name only. Hanmandlu et al. [19] 

categorized this type as a Random Forgery whereas Justino et 

al. [17] categorized this type as a Simple Forgery. Weiping et 

al. categorized this type as a Casual Forgery [18]. 

3. A forged signature imitating a genuine signature‘s model 

reasonably well is categorized as a Simulated Forgery by 

Justino et al. [17]. 

4. Signatures produced by inexperienced forgers without the 

knowledge of their spelling after having observed the genuine 

specimens closely for some time are categorized as Unskilled 

Forgeries by Hanmandlu et al. [19]. 

5. Signatures produced by forgers after unrestricted practice by 

non-professional forgers are categorized as Simple 

Forgery/Simulated Simple Forgery by Ferrer et al. [20], and a 

Targeted Forgery by Huang and Yan [21]. 

6. Forgeries which are produced by a professional imposter or 

person who has experience in copying Signatures are 

categorized as Skilled Forgeries by Hanmandlu et al. [19]. 
 

4. DIFFERENT METHODS FOR OFF-

LINE SIGNATURE VERIFICATION 

SYSTEMS 
Many techniques have been developed in the field of off-line 

signature verification. Some convenient approaches and 

optimised schemes are discussed below: 
    Ismail et al. [23] developed an off-line signature 

identification method. A data base of 2400 signature images is 

considered. Chain code feature extraction is used to represent a 

boundary by a connected sequence of straight-line segments of 

specified length and direction. Seven different types of 

distance measure were used based on feature vectors derived 

from eigen-signatures. The highest accuracy of 96.2% is 

obtained with the Manhattan distance measure. 

    Justino et al. [24] proposed an off-line signature verification 

system based on Hidden Markov Models (HMMs) to detect 

random, casual, and skilled forgeries. Three features: a pixel 

density feature, a pixel distribution feature and an axial slant 

feature are extracted from a grid segmentation scheme. A 

database of 1600 genuine signatures is used to determine the 

optimal codebook size for detecting random forgeries. 

Signatures of 60 writers with 40 training signatures, 10 

genuine test signatures, 10 casual forgeries, and 10 skilled 

forgeries per writer is used in another data set for 

experimentation. A False Acceptance rate of 2.83% is obtained 

and a False Rejection rate of 1.44%, 2.50%, and 22.67% are 

obtained for random, casual, and skilled forgeries, respectively. 

Some techniques involving off-line signature verification based 

on HMM are described in [25-32]. 

    Armand et al. [33] presented a system based on the Modified 

Direction Feature. The feature extraction technique employs a 

hybrid of two other feature extraction techniques: Direction 

Feature (DF) and Transition Feature (TF). DF extracts the 

direction transitions based on the replacement of foreground 

pixels by their direction values. TF records the locations of the 

transitions between 1s and 0s in a binary image. A centroid 

feature and a trisurface feature are also used for enhancing the 

accuracy of the result. Two Neural Network classifiers are used 

to classify the signatures.  A database totalling 2106 signatures 

is used and the highest accuracy obtained was 91.12%. Senol 

and Yildirim [34] presented an off-line signature verification 

system based on Neural Network. C. Oz [35] introduced an 

off-line signature verification system based on Artificial 

Neural Network. Techniques regarding off-line signature 

verification based on Neural Network are described in [36- 38]. 

    Oliveira et al. [39] developed an off-line signature 

verification system based on the Writer-Independent approach. 

Receiver Operating Characteristic (ROC) curves is used to 

improve the performance of the system. ROC graphs are two 

dimensional graphs in which true positive rate (TPR) and false 

positive rate (FPR) are plotted on the Y and X axis 

respectively. They used a two-fold technique.  At first, 

different fusion strategies are analysed based on the ROC.  

Next, the result of the first stage is further improved by 

combining the classifiers without the need of joint training.  

They used two sets of data (160 genuine signatures, 40 forgery 

signatures and 1200 genuine, 300 forgery signatures). Support 

Vector Machine is used as a classifier and they obtained 

91.80% as the highest recognition rate.  

    Ozgunduz et al. [40] used Support Vector Machines in order 

to detect random and skilled forgeries. To represent the 

signatures, they extracted global geometric features, direction 

features and grid features. In the experiments, a comparison 

between SVM and ANN is performed. Using a SVM with RBF 

kernel, an FRR of 0.02% and an FAR of 0.11% are obtained. 

Whereas the ANN, trained with the Back propagation 

algorithm, provided an FRR of 0.22% and an FAR of %0.16. 

In both experiments, skilled forgeries are used to train the 

classifier. 

    Nguyen et al. [41] presented an off-line signature 

verification system based on global features. In their paper, the 



  

combination of the Modified Direction Feature (MDF) with 

three global features: Feature from Energy Information, 

Maxima Feature, and Ratio Feature is reported. MDF feature 

extraction technique employs the location of transitions from 

background to foreground pixels and the direction at transitions 

in the vertical and horizontal directions of the boundary 

representation of an object. At each transition, the Location of 

the Transition (LT) and the Direction Transition (DT) values 

are recorded. A database of 12 genuine specimens and 400 

random forgeries are taken from a publicly available database.  

The Support Vector Machine (SVM) classifier obtained an 

average error rate (AER) of 17.25%. Martinez et al. [42] and 

Mottl et al. [43] presented off-line signature verification 

systems based on Support Vector Machines. 

    Rigoll et al. [44] developed a system that systematically 

compares between off-line and on-line signature verification 

based on Hidden Markov Models. A database of 340 

signatures is used. An angle between the strokes of two 

consecutive sample points is used for on-line verification.  An 

additional feature i.e. a ―Sliding bitmap‖ is also used for the 

on-line process. But for the off-line system, the difference 

between maximum and minimum coordinates of the signature 

is computed as a maximum height of the signature and the 

distance is subdivided into a certain number of squares, 

typically 6-10. Each square consists of approximately 10x10 

pixels, and the grey value for each square is computed. The 

highest accuracies are 99.0% and 98.10 % for the on-line and 

off-line verification systems respectively.  

   Prashanth et al. [45] proposed an off-line signature 

verification system based on standard scores correlation. Two 

types of features: Feature points based on vertical splitting, and 

feature points based on horizontal splitting are extracted here. 

The signature image is split with a vertical line passing through 

the geometric centre of the image to get its left and right parts. 

This geometric centre is obtained by locating a point where the 

number of black pixels is half of the total number of black 

pixels in the signature. The signature image is split with a 

horizontal line passing through the geometric centre to get the 

top and bottom parts of the image. The thirty feature points are 

extracted by following a similar procedure used for vertical 

splitting. 

     Schafer and Viriri [46] presented an off-line signature 

verification system based on the combination of feature sets. 

Some features are extracted such as: Aspect ratio, centroid 

feature, four surface features, six surface features, number of 

edge points, transition features etc. The verification of the 

signatures is accomplished by using the Euclidean distance. 

Depending on the threshold of the system, the signature will 

either be correctly identified as genuine or identified as a 

forgery. A data base of total 2106 signatures is used in 39 

different sets. A success rate of 84.10% is achieved. 

    Larkins and Mayo [47] proposed a technique based on 

Adaptive Feature Thresholding (AFT) which is a novel method 

of person-dependent off-line signature verification. AFT 

enhances how a simple image feature of a signature is 

converted to a binary feature vector by significantly improving 

its representation in relation to the training signatures. The 

similarity between signatures is then easily computed from 

their corresponding binary feature vectors. Some important 

techniques involving off-line signature verification system are 

described in [48-56]. 

    Kisku et al. [57] presented a system based on fusion of 

multiple matchers using SVMs for offline signature 

identification. In order to improve the performance of the 

system, a few preprocessing operations were carried out on 

offline signatures. To recognize a person correctly and identify 

imposters through offline signatures, image enhancement 

operations were performed on raw signature images. The 

proposed system uses three different statistical similarity 

measurement techniques applied to the extracted feature set 

consisting of geometric, global and local features separately. 

Matching scores are obtained from individual matchers and 

these different matchers or classifiers are fused using SVMs. 

Global signature features are extracted from the whole 

signature image. On the other hand, local geometric features 

are extracted from signature grids. Moreover, each grid can be 

used to extract the same range of global features. Combination 

of these two types of global and local features is further used to 

determine the identity of authentic and forged signatures 

successfully from the database. This set of geometric features 

is used as inputs to the identification system. The signatures 

are verified with the help of Gaussian empirical rules, 

Euclidean and Mahalanobis distance-based classifiers. 

Recognition of query signatures is performed by comparing 

these with all signatures in the database. The proposed system 

was tested on a signature database containing 5400 offline 

signatures of 600 individuals and the results were found to be 

promising. Similar types of works are described in [58-64]. 

    Solar et al. [65] introduced a new approach for offline 

signature verification, based on a general-purpose wide 

baseline matching methodology. Wide baseline matching 

approaches based on local interest points are becoming 

increasingly popular and were experienced an impressive 

development in past years. In this approach, local interest 

points are extracted independently from both a test and a 

reference image, then characterized by invariant descriptors, 

and finally the descriptors are matched until a given geometric 

transformation between the two images is obtained. A Bayes 

classifier is employed to achieve a FRR of 16.4% and a FAR 

of 14.2%. The papers described in [66-73] indicate more or 

less same approaches. 

    Bertolini et al. [74] presented a system where two important 

issues of off-line signature verification are considered. The 

first one is in regards to feature extraction and on this basis a 

new graphometric feature set that considers the curvature of 

the most important segments of the signature is introduced. 

The second important aspect is the use of an ensemble of 

classifiers based on graphometric features to improve the 

reliability of the classification. The grid-based feature sets are 

used, i.e., the image of size 400 × 1000 is segmented using a 

grid and then the features are computed for each cell of the 

grid. In the system, four characteristics are introduced to train 

the classifiers, namely density, slant, distribution, and 

curvature. The first three are applied to signature verification 

with relative success [18], while the latter is a new feature set 

introduced as part of their research. The signature database 

used in this work was composed of 100 writers and it was 

divided into 40, 20, and 40 for training, validation, and testing, 

respectively. The error rates reported for simulated, random, 

and simple forgeries are 8.16%, 5.32%, and 4.48%, 

respectively. Some similar works are described in [75-78]. 

    Biswas et al. [79] presented an off-line signature verification 

system using clustering techniques. In this system some 



  

filtering techniques are used for removal of noises, and 

thinning of the signature images is undertaken in the pre-

processing step. The region of interest detection and scaling is 

also performed here. In this interest detection and scaling step, 

the signature area within the image is identified i.e. the region 

of interest (ROI) is identified. The ROI is identified from both 

the sample signature and corresponding test signature. The 

scaling is performed on both the sample and test signature. So 

stretching is performed on the input signature in case it is 

smaller than the standard size or squeezing is undertaken when 

it is bigger. Normally all the signatures in the database are 

made to fit inside a rectangle of the same height and width.To 

obtain the highest accuracy, the features such as: signature 

height-width ratio, signature occupancy ratio, distance ratio 

calculation at the boundary, the length and ratio of adjacency 

columns and number of spatial symbols within the signature 

image etc are extracted. Some similar techniques involving off-

line signature verification are described in [80-86]. 

 

5. NON-ENGLISH OFF-LINE SIGNATU- 

RE VERIFICATION SYSTEMS 
In the field of Signature verification, much of the research 

undertaken focuses on signatures of English script. Only a few 

non-English signature verification systems are reported and 

they are described below.                

    Lv et al. [87] developed a Chinese off-line signature 

verification system. A data base of 1100 signatures is 

considered. Support Vector Machines are used as a classifier. 

Four different types of features such as Moment feature, 

Direction feature, Gray distribution and Stroke width 

distribution feature are used here. Based on every feature, the 

accuracies are calculated separately and an average accuracy is 

also calculated based on all combined feature sets. An average 

error rate 5.10% is found using the combined feature sets. Ji et 

al. [88] proposed an off-line Chinese signature verification 

system using weighting factor on similarity computation. Some 

off-line Chinese signature verification techniques are 

developed by Ji and Chen [89], Tian and Qiao [90], Ye and 

Hou [91] and Ji et al. [92]. 

    Ueda et al. [93] presented an off-line Japanese signature 

verification system using a pattern matching technique. A new 

pattern matching process is proposed for Japanese signature 

verification. In their modified pattern matching method, the 

strokes of the signatures are first thinned at a width of one 

pixel, and then the thinned signatures are blurred by a fixed 

point-spread function. A database totalling 2000 signatures is 

considered and an average error rate 9.1% is obtained. 

   Ghandali and Moghaddam [94] proposed an off-line Persian 

signature identification and verification system based on DWT 

(Discrete Wavelet Transform) and image fusion. In their paper, 

a new scheme to identify and verify off-line Persian signatures 

is proposed. In this method, DWT is employed to access high-

frequency bands of signature shape. Then, different samples of 

a person‘s signature are fused together based on high 

frequency bands to generate the signature patterns. This pattern 

is saved in the learning phase. A database consisting of 720 

signatures is used. The error rate 8.9% and 10% are obtained in 

FRR and FAR respectively from an SVM classifier. Chen &  

Srihari [95] matched two signature contours using DWT before 

segmenting and extracting Zernike moments from the 

segments. Zoghi and Abolghasemi[96]  presented an off-line 

Persian Signature Verification Using Improved Dynamic Time 

Warping-based Segmentation and Multivariate Autoregressive 

Modelling. Some techniques involving off-line signature 

verification based on DWT are discussed in [97-99]. 

    Ismail et al. [100] proposed an off-line Arabic signature 

recognition and verification technique.  In their paper, a system 

of two separate phases for signature recognition and 

verification is developed. In the first phase some features based 

on Translation, circularity feature, image enhancement, partial 

histogram, centres of gravity, global baseline, thinning etc. are 

extracted.  In the second phase some more features are also 

extracted such as Central line features, Corner line features, 

Central circle features, Corner curve features and Critical point 

features.  A set of signature data consisting of 220 genuine 

samples and 110 forged samples is used for experimentation.  

 They obtained a 95.0% recognition rate and 98.0% 

verification rate from their system. 

 

Table1. Comparison of performances of diff. methods. 

 

6. COMPARITION OF DIFFERENT APP-

ROACHES WITH RESULT 

Sr. 

No. 

Approaches FRR FAR Accurac

y (%) 

1 Hierarchical Random 

Graph Model  [101] 

21.6 

 

11.6 - 

2 Weighting Factor based  

Approach [102] 

3.30 16.85 - 

3 Enhanced Modified 

Direction Feature[103] 

2.88 

 

1.71 91.21 

4 Hybrid Statistical 

Modelling [104] 

10.00 22.00 - 

5 Writer-independent 

Approach[105] 

- - 91.80 

6 Based on Fuzzy 

modeling [106] 

12.7 12.7 - 

7 Based on Neural 

Network [107] 

0.01 

 

0.02  

8 Structure Feature  

Correspondence[108] 

6.30 

 

8.20 91.80 

9 SVM based approach 

[109] 

4.83 

 

5.30 94.9 

10 Exterior Contours and 

Shape Features[110] 

6.50 6.90 

 

93.80 

11 Fuzzy Modeling 

Approach [111] 

12.60 12.60 - 

12 Virtual Support Vector 

Machine [112] 

16.00 13.00 - 

13 Person verification based 

approach [113] 

1.55 2.54 97.89 

14 Based on Feature  

matching[114] 

20.5 

 

20.5 - 

15 Based On Global  

Features[115] 

5.40 

 

4.60 - 

16 Chinese Signature 

Verification  [116] 

9.49 6.93  

17 Orientations Of Geo- 

metric Centroids [ 117] 

14.66 25.11 - 

18 Rotation Invariant 

Approach [118] 

10.40 10.40 - 

19 Based on Neural 

Network [119] 

15.0 

 

3.0 - 

20 Contourlet-based method 

[120] 

3.3 13.3 - 



  

The comparisons of different important methods with 

associated results are shown in Table 1.  

    In table 1, accuracy (%) denotes the average Identification 

rate of different databases. For verification, in the case of FAR 

some authors specify the rate of FAR separately for different 

levels of forgeries and the other authors specify the rate of 

FAR for all the different forgeries. In the table 1 the FAR is 

shown for all different forgeries. It is also noted that some 

authors show the verification result but do not show the 

identification result and vice versa in their paper. The results 

shows that very good high accuracy is still lacking from 

existing systems and hence further work is required in this 

area. 

 

7. OUR REALIZATION AND FUTURE 

WORK 
As we could observe, despite the vast amount of work 

performed thus far for signature verification, there are still 

many challenges in this research area.  Signatures may be 

written in different languages and we need to undertake a 

systematic study on this. Also one problem of this area is, for 

security reasons, it is not easy to make a signature dataset of 

real documents (such as banking documents, for example) 

available to the signature verification community. Publicly 

availability signature datasets of real documents would make it 

possible to define a common experimentation protocol in order 

to perform comparative studies in this field. Researchers have 

used different features for signature verification. Combination 

of different classifiers as well as novel classifiers should be 

explored in future work to enhance performance.  Accordingly 

in this survey we noted that all the published work is based on 

foreground information. A combination of background and 

foreground information may be considered for better results in 

the future. 

 

8. CONCLUSION 
To highlight the state-of-the-art to researchers in the field, this 

paper presents a brief survey of the recent works on off-line 

signature verification. Different existing approaches are 

discussed and compared along with their FAR, FRR and 

accuracies. The accuracy obtained so far from the available 

systems is not very high and more research on off-line 

signature verification, on-line signature verification as well as 

non-English signature verification is required.     
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