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We demonstrate phase super-resolution in the absence of entangled states. The key insight is
to use the inherent time-reversal symmetry of quantum mechanics: our theory shows that it is
possible to measure, as opposed to prepare, entangled states. Our approach is robust, requiring
only photons that exhibit classical interference: we experimentally demonstrate high-visibility phase
super-resolution with three, four, and six photons using a standard laser and photon counters. Our
six-photon experiment demonstrates the best phase super-resolution yet reported with high visibility
and resolution.

Common wisdom holds that entangled states are a nec-
essary resource for many protocols in quantum informa-
tion. An example is quantum metrology, which promises
super-precise measurement, surpassing that possible with
classical states of light and matter [1, 2]. In the last 20
years quantum metrology schemes have been proposed
for improved optical [3–8] and matter-wave [9] interfer-
ometry, atomic spectroscopy [10], and lithography [11–
13]. The entangled states in these schemes give rise to
phase super-resolution, where the interference oscillation
occurs over a phase N-times smaller than one cycle of
classical light [14, 15] and phase super-sensitivity, a re-
duction of phase uncertainty.

Many quantum metrology schemes are based on path-
entangled number states. The canonical example is the
noon-state [1], a two-mode state with either N par-
ticles in one mode and 0 in the other or vice-versa,
i.e., (|N0〉+|0N〉)/

√
2. A deterministic optical source

of path-entangled states is yet to be realised, requiring
optical nonlinearities many orders of magnitude larger
than those currently possible. However, entangled states
can be made non-deterministically using single-photon
sources, linear optics, and photon-resolving detectors
[16]: leading to a flurry of proposals to generate path-
entangled states [17–20]. While phase super-resolution
with two-photons has been demonstrated often since
1990 [21–24], phase super-resolution was experimentally
demonstrated for 3-photon [14] and 4-photon [15] states
only recently. As efficient photon sources and photon-
number resolving detectors do not yet exist, all demon-
strations to date necessarily used multiphoton coinci-
dence post-selection [25]. Problematically, current pho-
ton sources are extremely dim and true photon-number
resolving detectors are expensive and uncommon. In this
paper we introduce a time-reversal technique that elim-
inates the need for exotic sources and detectors, achiev-
ing high-visibility phase super-resolution with a standard
laser and photon detectors.

Fig. 1a) depicts a method for probabilistically gener-
ating noon states via linear optics and post-selection.
Single photon states are prepared in each of the N in-
put modes, |Ψi〉=|11...1〉12...N, of a linear optical multi-
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FIG. 1: Non-deterministic a) preparation & (b measurement of
noon-states for phase super-resolution, as described in text. i)
photon-counting after a 50% beamsplitter to measure 〈N |1 & 〈0|2.
ii) coherent-state detection, 〈α|1 & 〈α|2, via a 50% beamsplitter
and two homodyne detectors to measure amplitude and phase. (i
& (ii are the corresponding time-reversed processes.

port interferometer, Umulti [26]. With probability ηp, no
photons are found in modes 3 to N, heralding the noon-
state in modes 1 and 2, (|N0〉12 + |0N〉12)/

√
2. A relative

phase shift, φ, between modes 1 & 2 introduces a Nφ shift
between the terms in the state—phase super-resolution.
Maximum fringe visibility will be achieved when the sys-
tem is measured in a state 〈ψN| which has equal over-
lap, κN=|〈ψN|N0〉|2=|〈ψN|0N〉|2, with both components
of the noon-state. Fig. 1 shows two possible measure-
ments, i) yields κi

N=1/2N [19], ii) yields κii
N=κi

N/
√

2πN
in the optimum case |α|2=N/2. The probability of de-
tecting a final state 〈Ψf |=〈ψN|12〈0...0|3...N after prop-
agating through the multiport and phase shifter, Uφ,
is P=|〈Ψf |UφUmulti|Ψi〉|2=ηpκN(1+cos Nφ). This prob-
ability exhibits phase super-resolution since the fringes
complete N oscillations over a single cycle of 2π.

Probabilities in quantum mechanics are invariant un-
der time reversal [27–29], i.e., if we swap the input and
measured states and suitably time-reverse the operation
of the multiport, as shown in Fig. 1(b, the probability
is unchanged, P=|〈Ψi|U†

multiU
†
φ|Ψf 〉|2=ηpκN(1+cos Nφ).

In the time-reversed picture, the interferometer no longer
plays the role of probabilistic noon-state generator, but
rather constitutes a probabilistic noon-state detector :
since the probability, P , is invariant under time rever-
sal, phase super-resolution is also invariant. Experimen-
tally, detecting noon-states is much easier than creating
them: time-reversing turns the difficult generation of N
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FIG. 2: Ideal multiports, Umulti: a) symmetric 3×3 and b) asym-
metric 4×4 (6×6), constructed from 2×2 beamsplitters with re-
flectivities as shown (PBS, polarising beamsplitter). Laser light is
input to modes 1, 2, with no light to modes 3-6. In a) the internal
phase, β, ensures each input transforms to an equal superposition
of the three outputs; in b) polarisation rotations U1 to U3 set the
phases of the singles fringes. c), d) Experimental realisations of a),
b). In c) the indicated HWP’s are set to 22.5◦ to form 1/2 beam-
splitters with the beam displacers, the third is set to 17.6◦ so that
2/3 of the light intensity takes the upper path; the angle of the
tilted HWP sets β, its optic axis is at 0◦. In d), the beamsplitter
for modes 3, 4 is a pellicle; for modes 5, 6 it is a microscope slide set
at a small angle of incidence, ∼10◦, to avoid polarisation effects.
Reflectivities are not ideal, the rates are equalised with lossy cou-
pling. U1 to U3, are realised using waveplates: the orientation and
tilt of each waveplate was adjusted so that one detector reaches an
interference minimum every 22.5◦ for N=4; every 15◦ for N=6.

single photons into straightforward detection of N pho-
tons in coincidence, and turns the problematic detection
of the vacuum into vacuum inputs which are automati-
cally available with perfect fidelity. Successful detection
of a noon-state is signalled by the coincident detection
of a single photon at each output detector; this is the
time-reverse of the coincident creation of a single photon
at each input. This time-reversal technique is a simple
example of a more general measurement technique intro-
duced by Pregnell and Pegg [29, 30].

This theory assumes that the input photons are indis-
tinguishable. A significant advantage of our approach
is that it is robust: phase super-resolution occurs even
when the photons are distinguishable. Creating noon
states relies on non-classical interference, which requires
indistinguishable photons. In our time-reversed scheme
we require only that the inputs display classical interfer-
ence: this is not affected by the degree of distinguishabil-
ity between the photons, or the photon arrival statistics.
Experimentally, there is a trade-off between temporal dis-
tinguishability and counting rate: photons become dis-
tinguishable as the coincidence window time is increased
above the input light coherence time, but this increases
the counting rate. We run in the high counting rate limit
to achieve the best statistics, limited only by saturation

effects in our coincidence-counting electronics.
In our experiments the two bright inputs to the multi-

port, modes 1 & 2, are the vertical and horizontal polari-
sation modes of the one spatial mode from a laser. We use
an attenuated He:Ne laser (Uniphase 1135P) and set the
polarisation with a half-wave plate (HWP) followed by a
quarter-wave plate (QWP) at an angle of 45◦. Changing
the angle of the HWP by φ/4 changes the relative phase
between the modes by φ, while ensuring the vertical &
horizontal modes are the same amplitude. In classical
interferometry, this yields one oscillation for 0<φ<2π.

Multiports can be symmetric (every input mode is con-
verted into an equal superposition of N output modes
[19]) or asymmetric (not every input satisfies this condi-
tion [18]). Scaling up symmetric multiports beyond N=2
can be done either with a polynomial number of nested
standard interferometers [26], which would be arduous to
phase lock, or a single N×N fused fibre except that it is
not known how to control the large set of internal phases
[19]. Fortunately symmetric multiports are not required
for phase super-resolution: an asymmetric multiport suf-
fices for even-N. Fig. 2 shows our symmetric N=3, and
asymmetric N=4, 6 multiports (the N=4 multiport was
independently proposed in [31]): all designs are passively
stable and do not require active phase-locking.

In fig. 2c) the output modes are sent to three pin-
hole photon counting detectors, D1–D3, where the small
aperture is a single-mode fibre without a coupling lens; in
Fig. 2d) each output mode is first passed through a polar-
ising beamsplitter and then detected. The singles rate is
the number of photons per second detected by an individ-
ual detector: for N=3 the maximum was 5×104 Hz; for
N=4, 6 the maximum singles rate was 1.3×105 Hz. The
N singles rates are recorded individually. For N=3, the
N-fold coincidence rate is measured using two ORTEC
567 Time-to-Amplitude Converter/Single Channel Ana-
lyzer (TAC/SCA) modules each with a 1.5µs coincidence-
window; for N=4, 6 coincidence counting was performed
using up to 3 TAC/SCAs and an ORTEC CO4020 Quad
Logic Unit. For N=4 (6) all pulse length inputs to the
Quad were set to 1.5µs (5µs) as were the coincidence-
windows on the TAC/SCA. In all cases, due to a re-
stricted number of recording channels, the singles were
measured immediately after a coincidence run. To avoid
saturation in the coincidence electronics, the mean num-
ber of photons per coincidence-window must be ≤1: for
N=3, 4, and 6 it was up to 0.07, 0.15, and 0.48.

Fig. 3 shows the coincidence and singles rates for the
N=3 symmetric, and the N=4, 6 asymmetric experiments
of Fig. 2c) & d). Fig. 3a)-c) shows the three-, four-, and
six- fold coincidence rates as a function of the phase,
φ, with three, four, and six distinct oscillations within
a single phase cycle. This is in contrast to the fringes
observed in the singles rates, Fig. 3d)-f), which undergo
only a single oscillation over the same range. This is
the experimental signature of phase super-resolution. We
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FIG. 3: a)-c) Three-, four- & six- fold coincidence rates as a func-
tion of phase, φ, respectively exhibiting 3, 4, and 6 distinct oscilla-
tions within a single phase cycle. The main source of uncertainty
is Poissonian statistics: error bars represent the square root of the
count rate. The solid line is a fit to a product of 3, 4, and 6 sinu-
soidal fringes, as explained in the text. d)-f) Corresponding singles
rates as a function of φ, each exhibiting only one oscillation per
phase cycle. Error bars are contained within the data points; solid
lines are the individual sinusoidal fringes obtained from a)-c). In d)
D1 to D3 are respectively indicated by black, blue, and red; in e)-f)
D1 to D6 are indicated by black, grey, blue, cyan, red, and pink.
Ideally, the phase differences between adjacent fringes is 2π/N, our
fits give: 122◦ & 119◦ for N=3; 92◦, 90◦ & 90◦ for N=4; and 55◦,
66◦, 56◦, 62◦ & 56◦ for N=6.

emphasize that this was achieved without production of a
path-entangled state, which would have had the signature
of flat singles rates over an optical cycle [15, 24].

As discussed above, time-reversed phase super-
resolution does not rely on non-classical interference: the
coincidence rate is determined entirely by the product of
the singles rates. Consider an N×N multiport set up so
that the detection probability in the kth output mode is
Pk ∝ 1+cos(φ+2πk/N+ϕ), where ϕ is a constant phase
offset. The N-fold coincidence probability is then sim-
ply the product of the single mode probabilities, i.e.,
P11...1 ∝ 1+cos(Nφ+∆(N,ϕ)) which clearly exhibits N
oscillations per cycle, where ∆ is the offset. Applying
this to Figs. 3a)-c), we respectively fit a product of 3, 4,
and 6 sinusoidal fringes, si=civi sin(φ+δi)+ci where vi is
the visibility, and ci & δi are amplitude and phase off-
sets, of the ith fringe. The resulting fits—the solid lines
in Figs. 3a)-c)—are very good, with reduced χ2 of 1.6, 6,
and 1.7, respectively. (The high value in the N=4 case is
most likely due to observed amplitude instability of the

D3 signal during the course of the coincidence measure-
ment.) The coincidence fringes for all three experiments
differ from a pure sinusoid due to small variations in the
underlying singles rates, and become more pronounced
for larger values of N . The solid lines in Fig. 3d)-f) are
the individual sinusoidal fringes, si, scaled by a constant
factor that matches the amplitude to the data but does
not alter the visibility or phase of each fringe. Again
the agreement is very good. The N=6 case matches the
largest phase super-resolution reported to date, obtained
in an ion-trap system [32], but has significantly better
visibility.

Our results clearly show that path-entangled states are
not required for phase super-resolution [33]. Previous
optical demonstrations used nonclassical light sources,
which are notoriously dim, limiting the three- and four-
fold coincidence rates to 5 Hz [14] and 0.1 Hz [15] respec-
tively [34]. We significantly improve on this, achieving
phase super-resolution with a six -photon coincidence rate
of about 2.7 Hz; furthermore, owing to the high-visibility
singles and extremely stable construction of the multi-
ports, our fringe patterns all exhibited high visibility.
Fitting a single sinusoid, and without any background
subtraction, the fringe visibilities for the N=3, 4, and 6
cases are respectively 81±3%, 76±2%, and 90±2%—well
exceeding previously reported raw visibilities of 42±3%
for N=3 [14] and∼61% for N=4 [15]. An alternative tech-
nique for realising phase super-resolution sums multiple
occurrences of a fringe pattern narrowed by nonlinear de-
tection, either spatial [36] or temporal [37]. This suffers
from exceedingly low visibility: when the number of ex-
posures equals the number of fringes, V=2(N !)2/(2N)!,
for N=6 this predicts V∼0.2%.

Phase super-sensitivity occurs when there is a re-
duction of the phase uncertainty as compared to that
possible with classical resources. Unlike phase super-
resolution, phase super-sensitivity cannot be determined
solely from the fringe pattern: careful accounting is
needed to determine the resource consumption required
to achieve the measured signal. For small variations
in phase around a given value, the phase uncertainty
is ∆φ=∆A/

∣∣∣d〈A〉
dφ

∣∣∣, where A and ∆A are an observable
and its associated uncertainty [3]. All other things being
equal, the slope in the denominator is increased by phase
super-resolution, reducing ∆φ. Phase super-sensitivity is
achieved when ∆φ is less than the classical limit,

∆φclass =
1√
Ntot

=
√
η

N
, (1)

where η allows for non-ideal efficiency in using Ntot re-
sources to estimate ∆φ. Phase super-resolution produces
normalized fringes of the form (1-V cos Nφ)/2, where
V is the fringe visibility, and the slope is d〈A〉/dφ =



4

1
2NV sinNφ. Beating the classical limit requires,

ηV 2 >
4(∆A)2

N| sin2(Nφ)|
. (2)

Consider A to be a projector with measurement outcomes
bounded by 0 and 1; the worst case is ∆A=1/2. At the
point of minimum phase uncertainty, Eq. 2 reduces to,

ηV 2N > 1. (3)

By this criterion, although several experiments have
demonstrated phase super-resolution, there has been no
unambiguous demonstration of phase super-sensitivity.

The best known preparation efficiency in nondeter-
ministic optical schemes is η=2N!/NN [17–19]. In the
ideal limit, Eq. 3 gives 2N!/NN−1>1, which is true only
for N=2, 3. Phase super-sensitivity cannot be achieved
in any described nondeterministic scheme for N≥4 [38].
An alternative version of phase super-sensitivity arises if
the important physical resource is the number of pho-
tons passed through the sample, not the total number of
photons consumed. Phase super-sensitivity can then be
achieved for all N since in principle time-forward schemes
can be heralded with perfect efficiency [17–19]. In a
recent work using trapped ions, phase super-resolution
was observed for 4, 5, and 6 ions with respective vis-
ibilities of 69.8±0.3%, 52.7±0.3%, and 41.9±0.4% [32].
Determining if phase super-sensitivity was achieved re-
quires knowledge of the uncertainty for each data point,
which can not be determined from the published data. In
the worst case, Eq. 3 shows that phase super-sensitivity
was achieved if the overall efficiencies were respectively
51.3±0.4%, 72.0±0.8%, and 95±2% for 4, 5, and 6 ions.

We have used a time-reversal analysis to show that
it is not necessary to produce path-entangled states to
achieve phase super-resolution. We show that phase
super-resolution is possible even in the absence of non-
classical interference; and derive the necessary condi-
tions to claim phase super-sensitivity from phase super-
resolution. Using standard laser sources we obtain high-
visibility and high-contrast phase super-resolution of up
to 6 oscillations per cycle in a six-photon experiment.
The improvement in phase resolution is homologous to
that achieved in a standard path interferometer driven
at a wavelength of 105.5 nm—one-sixth the wavelength
of our He:Ne laser. Inverting the roles of state produc-
tion and measurement is an application of a more general
time-reversal analysis technique [29, 30]: given the dra-
matic improvement demonstrated here, it remains an in-
teresting open question as to which other quantum tech-
nologies will benefit from this technique.
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