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Abstract In this talk we have applied an enhanced (G /G)-expansion method to find the traveling
wave solutions of the (2 + 1)-dimensional Zoomeron equation. The efficiency of this method for
finding the exact solutions has been demonstrated. As a result, a set of exact solutions are derived,
which can be expressed by the hyperbolic and trigonometric functions involving several parameters.
When these parameters are taken as special values, the solitary wave solutions and the periodic
wave solutions have been originated from the exact solutions. It has been shown that this method

is effective and can be used for many other nonlinear evolution equations (NLEEs) in mathematical

physics.

© 2014 Production and hosting by Elsevier B.V. on behalf of Ain Shams University.

1. Introduction

NLEEs are encountered in various fields of mathematics,
physics, chemistry, biology, engineering and numerous appli-
cations. Exact solutions of NLEEs play an important role in
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the proper understanding of qualitative features of many
phenomena and processes in various areas of natural science.
Exact solutions of nonlinear equations graphically demonstrate
and allow unscrambling the mechanisms of many complex
nonlinear phenomena such as spatial localization of transfer
processes, multiplicity or absence steady states under various
conditions, existence of peaking regimes and many others.
Even those special exact solutions that do not have a clear
physical meaning can be used as test problems to verify the
consistency and estimate errors of various numerical, asymp-
totic, and approximate analytical methods. Exact solutions
can serve as a basis for perfecting and testing computer algebra
software packages for solving NLEEs. It is significant that
many equations of physics, chemistry, and biology contain
empirical parameters or empirical functions. Exact solutions
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allow researchers to design and run experiments, by creating
appropriate natural conditions, to determine these parameters
or functions. Therefore, investigation of exact traveling wave
solutions is becoming successively attractive in nonlinear sci-
ences day by day. However, not all equations posed of these
models are solvable. As a result, many new techniques have
been successfully developed by diverse groups of mathemati-
cians and physicists, such as, the Hirota’s bilinear transforma-
tion method [1,2], the Modified simple equation method [3-5],
the tanh-function method [6], the Exp-function method [7-10],
the Jacobi elliptic function method [11], the (G /G)-expansion
method [12-22], the homotopy perturbation method [23-25],
the enhanced (G’/G)-expansion method [26,27], the Kudrya-
shov method [28], and the tanh—coth function method [29,30].

Various ansatze have been proposed for seeking traveling
wave solutions of nonlinear differential equations. The choice
of an appropriate ansdtze is of great importance in the direct
methods.

Recently, Wang et al. [14] have introduced a simple method
which is called the (G'/G)-expansion method to look for trav-
eling wave solutions of nonlinear evolution equations, where
G = G(¢) satisfies the second order linear ordinary differential
equation G"(&) + AG' (&) + pG(&) = 0, where / and u are arbi-
trary constants and u(&) = a,, (%)m + ... be the traveling wave
solution of NLEEs. By means of this method they have solved
the KdV equation, the mKdV equation, the variant Boussinesq
equations and the Hirota—Satsuma equations.

Guo and Zhou [21] have introduced an another method so
called extended (G'/G)-expansion method where G = G(¢) sat-
isfies the second order linear ordinary differential equation:

1 _ ) dG() L dPGE) e
G +[JG—0, where G—T,G == C—,\—V[l,
i

Vis a constant and u() = ay+ .1, (a/(G'/G)'+ bi(G'/G)
a(l +((”f—f')2>) be the traveling wave solution. They

proposed extended (G /G)-expansion method to construct
traveling wave solutions of Whitham—Broer—Kaup-Like equa-
tions and coupled Hirota—Satsuma KdV equations.

For further references of the (G'/G)-expansion method see
the articles [12-22].

Among those approaches, an enhanced (G'/G)-expansion
method is a tool to reveal the solitons and periodic wave solu-
tions of NLEEs in mathematical physics and engineering. The
main ideas of the enhanced (G'/G)-expansion method are that
the traveling wave solutions of NLEEs can be expressed as ra-
tional functions of (G'/G), where G = G(¢) satisfies the second
order linear ordinary differential equation G” + uG = 0. The
main advantage of this method is that new exact solutions of
many nonlinear evolution equations can be determine more
successfully in comparison with other methods.

The objective of this article is to present an enhanced
(G'/G)-expansion method to construct the exact solutions for
NLEEs in mathematical physics via the (2 + 1)-dimensional
Zoomeron equation. The Zoomeron equation is completely
integrable. Therefore, it has N-soliton solutions.

The article is arranged as follows: In Section 2, the en-
hanced (GI/G)-expansion method is discussed. In Section 3,
we apply this method to the nonlinear evolution equations
pointed out above; in Section 4, results and discussions; in
Section 5, comparisons, and in Section 6 conclusions are
given.

2. An enhanced (G /G)-expansion method

In this section, we describe the enhanced (G'/G)-expansion
method for finding traveling wave solutions of NLEEs. Sup-
pose that a nonlinear partial differential equation, say in two
independent variables x and ¢ is given by

) =0, (2.1)

where u(&) = u(x, t) is an unknown function, R is a polyno-
mial of u(x, £) and its partial derivatives in which the highest
order derivatives and nonlinear terms are involved. In the fol-
lowing, we give the main steps of this method [26,27]:

ER(M7 Upy Uy Upgy Uy Uy - -

Step 1. Combining the independent variables x and ¢ into
one variable £ = x = wt, we suppose that

u(&) = u(x, 1), E=xt ot (2.2)

The traveling wave transformation Eq. (2.2) permits us to
reduce Eq. (2.1) to the following ODE:

R(u, o', u",...) =0, (2.3)
where R is a polynomial in u(¢) and its derivatives, while

(&) =¢.u'(&) = ZZ%‘ and so on.

Step 2. We suppose that Eq. (2.3) has the formal solution

[ _ate /6y (. /67
”(g)_2<(1+ﬂ(c’/c))"+ <1+ . ))

(2.4)

bi(G')G)""

where G = G(&) satisfies the equation G” + uG =0,  (2.5)

in which a;,b;,(—n < i < m;n € N) and A are constants to be
determined later, and ¢ = £ 1, u#0.

Step 3. The positive integer n can be determined by consid-
ering the homogeneous balance between the highest order
derivatives and the nonlinear terms appearing in Eq. (2.1)
or Eq. (2.3). Moreover precisely, we define the degree of
u(&) as D(u(&)) = n which gives rise to the degree of other
expression as follows:

d’ d'u\*
D (d—;) =n+gq,D (u” (dg“l‘;> ) =np+s(n+q). (2.6)

Therefore we can find the value of n in Eq. (2.4), using Eq.
(2.6).

Step 4. We substitute Eq. (2.4) into Eq. (2.3) using Eq. (2.5)
and then collect all terms of same powers of (G /G) and

(G'/GY a(l +i(G’/G)2> together, then set each coeffi-

cient of them to zero to yield a over-determined system of
algebraic equations, solve this system for a;, b;, A and w.
Step 5. From the general solution of Eq. (2.5), we get

When u < 0,
G — Jmanh(4 + ) @)
And% = /—ucoth(4 + /—ué) (2.8)
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Again, when u > 0,

G~ Vitan(d - Vi) 29)

4

And% = pcot(A4 + \/ué)

where A4 is an arbitrary constant. Finally, substituting
ai,bi(—n<i<mneN),,, o and Egs. (2.7)-(2.10) into
Eq. (2.4) we obtain traveling wave solutions of Eq. (2.1).

(2.10)

3. Application

In this section, we will exert enhanced (G /G)-expansion meth-
od to solve the (2 + 1)-dimensional Zoomeron equation in the
form,

(&)” - (“_}) +2(), =0, (3.1)

u u

where u(x, y, 7) is the amplitude of the relative wave mode.
This equation is one of incognito evolution equation. The
equation was introduced by Calogero and Degasperis [31]. In
the literature, there are a few works about this equation. Re-
cently, Abazari [22] obtained periodic and soliton solutions
to Zoomeron equation by means of (G’/G)-expansion method.

The traveling wave transformation equation u(x, y, 1) =
u(é), ¢ = x + y — ot transform Eq. (3.1) to the following or-
dinary differential equation:

w? (‘;) - (“;) " 2o(u?)" = 0. (3.2)

Now integrating Eq. (3.2) with respect to ¢ twice, we have
(* = D" — 20u* + ku = 0, (3.3)

where k is a constant of integration. Balancing the highest-or-
der derivative term «” and the nonlinear term «° from Eq. (3.3),
yields 3n = n + 2 which gives n = 1.

Hence for n = 1 Eq. (2.4) reduces to

~a(1+AG/G)) a1(G')G)
T e T A@e)
+b.,(G'/G) a<1 + i (G//G)Z)

+bo(G')G)”! a(l + i (G’/G)z)

+ by (1 +-(G'/G) ) (3.4)

where G = G(¢) satisfies Eq. (2.5). Substitute Eq. (3.4) along
with Eq (2 5) into Eq. (3.3). As a result of this substitution,
polynomlal of (G'|GY and

(G')GY a<1+ (G /G From these polynomials, we

equate coefficients of G /GY and

(G'/GY a<1
an over-determined system that consists of twenty-five alge-

braic equations. Solving this system for «;, b;, 2 and w, we ob-
tain the following sets:

+!14(G’/G)2>, and setting them to zero, we get

Set 1:k=—-2u(c0*—1),0=0w,A=0,a_=0,ay =0,

2
a =+ (“’w 1>7b,| —0,b=0,b =0.

2
k= 72#(('027 1),6{):0\),2:07[1,1 = :t,u @

[0 :0,(l| :O,b,l :O,bo :O,b] =0.

wZ

k=-2u(0®—1),0=w,l=ia,==+u

{ui aI:O,b,lzo,bO:O,bI:O.

o’ — 1

Set 2 : k—72uw71)+6,u( )w—wA—O

602

alfi,u ao*Oalz

b,lfo,bofo,blfo.
Set3:k=u(w —1),0=wA=72a,=0a=0a=0,

2
“’ b1_0

b_l —0 b() :|:[,t

—uw -1, wo=w,A=2a,=0,a=0,a,=0,b_; =0,

b0—0b1: 1 _1

2 —1
(‘” ),blzo,bozm
(0]

J—

yo=0,A=0,a_; =0,ay =0,

/\
—_
—
‘:

v

1 2 -1
k:——uw—l CU—U)/L—)»,C{]—:EE ((w )),

< ) a1=0,b,1=0,
2
- 51/ (“’ b1:0.

Now substituting Sets 1-4 and Eq. (2.5) into Eq. (3.4), we de-
duce copious traveling wave solutions of Eq. (3.1) respectively
as follows.

When p <0 and & = x + y — wt, we get the following
hyperbolic function solutions:

Family 1. u;5(¢) = /=

tanh A+ /=ué),

M3‘4(5) = i\/——/,t ) COth(A + \/——,ui),
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Family 2. us¢(&) = £2/=n ( 1)csch(Z(A + /=),

Family 3. u75(¢) = F/—1 (( 1)>csch (A4 /—né),

woiol®) =TIy (%) sech(A + V=RE),
Family 4. u;; (&) = £+ \/_\/ tanh A+ /=pé)

+ Isech(A4 + /—puf))

u13,14(6 i \/—1 / COth A + \/—é)

+ csch(4 + /=ué))

Consequently, When p > 0 and & = x + y — wt, we obtain
the following plane periodic solutions:

Family 5. u;516(&) = £/1 1) tan(A4 — \/ué),

w718(8) = £/1

cotA+\/_é

Famlly 6. M19720(f) = :|:2\/ﬁ

)ese2(4 % Vi),

. (0?2 =1)
Family 7. us1 (&) = F/1 (T) csc(A — \/ué),
U324(& :F\/_\/ secAJr\/_f
Famlly 8. Ups. 26 =+ \/_’ tan A \/‘f)

+ Isec(4 — \/_f

nn(@) = Vi) (o) cotta 4 vie) +esela + )

Remark: We have checked all the obtained solutions by putt-
ing them back into the original equation and found correct.
From the obtained solutions we observe that m #0, +1.

4. Results and discussion

In this section we will discuss about the desired solutions of
(2 + 1)-dimensional Zoomeron equation. It is interesting to
point out that the delicate balance between the nonlinearity
effect and the linear effect gives rise to solitons, that after a
fully interaction with others, the solitons come back retaining
their identities with the same speed and shape. If two solitons

collide, then these just pass through each other and emerge
unchanged.

The determined solutions from Family 1 to Family 4, for
1 < 0, are hyperbolic function solutions which are traveling
wave solutions. For uy= -1, 4 =y =0 and wave speed
o = 2, Family 1 (u; »(¢)) are kink wave solution within the
interval —3 < x, ¢ < 3 represented in Fig. 1. Fig. 2 represents
singular kink wave solutions for y = —1, 4 = y = 0 and wave
speed @ = 2 within the interval —3 < x, ¢ < 3 (only shows the
shape of us¢(¢)). Fig. 3 represents Bell shaped solition of
uy.10(¢) for the values of u = —1, 4 = y = 0 and wave speed
® = 2 within the interval —3 < x,7 < 3. For the values of
= -5 4=y =0and wave speed = —7 within the inter-
val =3 < x, 1 < 3, uy3,14(&) are singular soliton solutions repre-
sented in Fig. 4.

o
o [ —_

M I PN N

|
o
[

Figure 1
o =2.

Kink shape of (u; (&) for u = -1, A =y =0 and

Figure 2
and v = 2.

Singular kink shape of us (&) foru=—-1, 4=y =0
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Figure 3  Bell shaped profile of ug 19(§) for p = -1, 4 =y =10
and o = 2.

Consequently, for ¢ > 0, Family 5-Family 8§ are trigono-
metric function solutions, also said to be plane periodic travel-
ing wave solutions are represented in Figs. 5-8 respectively.

The wave speed w plays an important role in the physical
structure of the solutions obtained above. For the positive
values of wave speed @ the disturbance represented by
u(¢) = u(x — wt) are moving in the positive x-direction.
Consequently, the negative values of wave speed w the distur-
bance represented by u(¢) = u(x — wt) are moving in the
negative x-direction.

4.1. Graphical representation

Some of our obtained traveling wave solutions are represented
in the figures with the aid of commercial software Maple:

Figure 4

Singular soliton of wuy3 4()For p= -5 4=y =
and v = —7.

Figure 5 Periodic profile of u;5,4() for p =1, 4 = y = 0 and
w = 2.

A
\
A

-

f

Figure 6 Periodic profile of u920(¢) for p = 1,4 = y = 0 and
w = 2.

5. Comparisons

Comparison with (G’/G)-expansion method: Abazari [22]
examined exact solutions of the (2 + 1)-dimensional Zoomer-
on equation by using the (G'/G)-expansion method and ob-
tained five solutions (see Appendix A). On the contrary by
using the enhanced (G'/G)-expansion method in this article
we have obtained fourteen solutions. It is remarkable to point
out that for particular values of the parameters some of our
solutions obtained by enhanced (G’/G)-expansion method are
coincided with existing solutions of Abazari [22] which were
obtained by (G’/G)-expansion method. The comparisons
among the solutions of (G/G)-expansion method done by
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Figure 7  Periodic profile of up;54(&) for p =1, 4 =y = 0 and
o= 2.

Abazari [22] and the enhanced (G /G)-expansion method used
in the article are shown in the following table:

Figure 8 Periodic profile of uy75(¢) for u =2, 4 =2,y =10
and o = 2.

nonlinear partial differential equations which arising in the
theory of soliton and other nonlinear sciences.

Solutions of Abazari [22] obtained by (G,/G)—expansion method

Solutions obtained by enhanced (G'/G)-expansion method in this article

i. If we set ¢ = —1 and 5y = 0 then the solution (21a)

becomes uy (&) = F1/(=28) tanh (_% (AR) ),

where £ = x + y — ot

ii. If we set ¢ = —1 and 5y = 0 then the solution (21 b)

becomes uy (&) = F3 @coth (—% (=22) )3

where ¢ = x + y — ot

iii. If we set ¢ = —1, R = —R and 57 = 0 then the solution (23a)

becomes uz(&) = F3 \/@tan (—% (32 ),

where ¢ = x + y — ot

iv. i. If we set ¢ = —1, R = —R and 5y = 0 then the solution (23b)

becomes uz(&) = F14/(28) cot (—% (2% ),

where ¢ = x + y — ot

i If we set /=i = —1,/(5*) and 4 = 0 in our solution u; 5(¢)
then it becomes u; (&) = F5 1/ (=2£) tanh (—% () ),

where £ = x + y — ot

ii. If we set /=i = —1,/(5*) and 4 = 0 in our solution us 4(¢)
then it becomes u3 4(&) = F14/ (=28) coth (7% () ),

where £ = x + y — wt
iii. If we set \/u = %1/(%), and 4 = 0 in our solution u;5_14(¢)
then it becomes uys,16(¢) = F34/ (28) tan (7% ) ),

where £ = x + y — wt

iv. If we set (/= —14/(:3%;). and 4 = 0 in our solution u7,15(¢)

then it becomesui7,15(€) = F3 41/ (%) cot (,% (w%ﬂ) ),

where ¢ = x + y — ot

6. Conclusions

In this paper, an enhanced (G /G)-expansion method has been
successfully applied to find the solitary wave solutions for the
(2 + 1)-dimensional Zoomeron equation. The method has
been used to find new exact solutions. As a result, hyperbolic
function solutions, and trigonometric function solutions with
several free parameters have been obtained. The obtained solu-
tions with free parameters may be important to explain phys-
ical phenomena. The paper shows that the devised algorithm is
effective and can be used for many other NLEEs in mathemat-
ical physics. Thus, we can say that the enhanced (G /G)-expan-
sion method can be extended to solve the problems of

Appendix A.

By using the (G'/G)-expansion method Abazari [22] obtained
the following three types of traveling wave solutions:

Case 1. For )2 —4u > 0,

1 —2R
MH(Xa% )= ¢§ o

X tanh (—

| —

N

(21a)
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1 —2R
MH(X»)’a l) = :FE "o

1 2R
x coth (-5 (m) (x—cy—a)t) —1’]1.1),

(21b)

where 5, = tanh~ ( ) Ci < G5 and C,, C, are arbitrary
constants.

Case 2. For /> — 4u <0,

)
x tan (—% (wzzlj 1)(x—cy—wt) —WT>,

1
uT(x7y7 t) =F=

(23a)
2R
PR,
X cot( %1/ e 1>(x—cy wt) — ’17)
(23b)

where 7, = tan™! (%), Cf > Cﬁ and C;, C, are arbitrary
constants.

Case 3. For /> —4u =0,

c(?=1)C
(1) = F (@ - DG e

o(Cy + Cy(x — ¢y — o)) (_ W)
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