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Abstract 
Recently the cost-benefits of automated sensing 
over traditional field surveys for population 
management of fauna has been recognised 
[1,2]. Remote monitoring through automatic 
identification based on sensor networks has 
followed one of two approaches [3,7,18]; using 
the sensor nodes to perform data analysis 
within the network or alternatively using the 
sensor network as a means for collecting data to 
be centrally processed. In either case a key goal 
is minimising power consumption in sensor 
nodes which imposes constraints on both 
processing and communication capabilities. 
While the first approach aims to minimise 
communication requirements the other aims to 
reduce processing requirements. In the context 
of sensor networks for remote monitoring 
utilising centralised processing, this paper 
considers the impact on two different strategies 
for reducing communication requirements on 
the overall system performance. 

Introduction 
Automatic identification of different fauna 
based on acoustic information has been an area 
of study over the last decade. This includes 
automatic identification of bird and frog calls 
[4,5,6,7], bat echolocation calls [8, 9] and insect 

sounds such as those made by grasshoppers and 
cicadas [10].  

Traditionally this has been performed by 
deploying data loggers in the field that are later 
retrieved and the captured audio data analysed. 
More recently wireless sensor networks have 
been identified as providing advantages for 
automatic remote monitoring. These advantages 
stem from being able to simultaneously deploy 
a large number of low cost sensing nodes since 
the potential effectiveness of sensor networks is 
related to the number of sensing nodes. The 
power constraints of sensor network nodes 
means they typically operate at low bandwidths 
and have limited processing capabilities. A 
typical sensor node such as one based on the 
Zigbee or IEEE 802.15.4 protocol has a total 
bandwidth of 128 kbps [11] and a low power 
embedded processor. 

Early attempts at fauna identification made use 
of decision tree machine learning approaches 
[12]. Improved performance can be obtained via 
more advanced methods including k-Nearest 
Neighbour, Gaussian Mixture Models, Support 
Vector Machines [13,14] or Neural Networks 
[15] which all yield performance within a few 
percent of each other. These methods however 
require more processing power than is typically 
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available in a low power sensor network node 
and require the use of central processing. 

The disadvantage of centralised processing in a 
sensor network is that many streams of 
essentially raw data from each node must be 
sent to the centralised server for analysis. The 
aggregate bandwidth capacity of any node 
receiving multiple streams of data can be easily 
overloaded if not carefully managed. This, as 
well as the need to minimise transmit power 
dissipation in each node drives the need to 
reduce the amount of data being transferred. 
Assuming a statistical multiplexing model in 
the time domain, the number of sensing nodes 
that can be active in any period of time (hence 
the effectiveness of the network) is inversely 
proportional to the size of each data stream. 
Data stream size reduction can be achieved by 
having sensor nodes select how much data to 
send and then compressing data prior to being 
sent through the network.  

The question is, what is the impact of these data 
reduction strategies have on the performance of 
automatic identification? The answer will 
depend on the specific approaches used to 
implement these strategies and in the case of 
compression, the processing constraints in 
sensor nodes determines what type methods can 
be used. Accordingly the analysis in this 
evaluates the impact of ADPCM [16], being a 
relatively simple yet effective compression 
strategy that fits within the capability profile of 
typical embedded processors used in low-power 
sensor nodes as well as MP3 compression as an 
upper limit benchmark reference.  

Apart from compression, how much data is 
transferred from a node through the network 
depends on the sample rate and length of the 
capture window. The sample rate is however 
not an independent variable since identification 
of certain animals requires specific frequencies 
to be captured which according to the Nyquist 
criteria determines the required sample rate. 
Hence the only means for controlling the 
amount of data being sent left to us is setting 
the length of the capture window. This in turn 
determines the analysis window size of the 
feature extraction algorithms and the 
performance of the automatic identification. 

Acoustic Identification 
Acoustic identification of different animals is 
typically based on classification of a 
combination of temporal features of the audio 
signal together with spectral features derived 
from the short term Fourier transform or Mel-
Frequency Cepstral Coefficients (MFCCs) [17]. 
Success rates vary in the range from 60% [18] 
to about 90% [15] depending mainly on 
whether the identification is performed in the 
field or under laboratory conditions. As the 
more advanced classification methods [13-15] 
perform within a few percent of each other we 
have selected the k-Nearest Neighbour 
approach for this evaluation. 

For audio classification, a typical feature vector 
is composed of the signal bandwidth (BW), 
spectral centroid (SC), short-term energy (E), 
energy flux (F), Zero Crossing Rate (ZCR), and 
pitch (P) by means of sub harmonic summation 
[19]. These are defined as follows: 
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F = E(n) – E(n-1)    (4) 
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The first six MFCCs are also used as part of the 
feature vector. These are calculated as the 
cepstrum of the mel-warped spectrum:  
 

( ) ( )1001log2595 10 ffMel +=  (7) 
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Experimental Results 
For evaluation we have used a database of 2590 
instances of fifteen different species of native 
Australian frog calls from the Myobatrachidae 
family (Southern Frogs). These calls were each 
sampled at 22kHz and 16 bit resolution. A 12 
dimensional feature vector consisting of the 
features (1) – (8) was extracted from the raw 
data using an analysis window of 1024 samples.  

Using tenfold cross validation and k-Nearest 
Neighbour classification where k=1 achieved an 
83.8% correct classification as the base 
performance. The F-measure defined as two 
times the product of precision and recall divided 
by the their sum is shown in Table 2. The 
confusion matrix is shown in Table 3. 

At 22 kHz using 16 bit samples requires a 352 
kbps bandwidth, which is not viable for 
continuous streaming data, but works as long as 
the nodes are not continuously capturing and 
the data transfer load is properly managed. 
Reducing the amount of data sent by any one 
node improves the network utilisation. 
Accordingly we reduced the capture window 
length and then extracted the feature vector and 
classified it again using the same method as 
before. The new window sizes were 128, 256 
and 512 samples. The results using 2500 
training vectors presented in Table 1 confirms 
that classification accuracy falls proportionately 
as a logarithmic function of the window size. 

We next tested the effects of compression. This 
is required for continuous capture and reduces 
the bandwidth requirements to 88 kbps, which 
is within the network capacity. All the instances 
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of frog calls were then compressed offline 
using 4-bit ADPCM and then decoded again 
into raw audio for analysis. The ADPCM 
introduces quantisation noise into the audio 
data. The same features as before were then 
extracted from this less accurate data for all 
four different window sizes and classified using 
the same k-Nearest Neighbour method.  

As is evident from Figure 1 ADPCM 
compression using 4 bits per sample relates to 
about a 2.5% drop on average in classification 
accuracy irrespective of analysis window size. 
This results because decreasing window size 
reduces the frequency resolution that the 
classification algorithm has to work with. 

 

Window 
Size 

ADPCM 
encoded 

Raw 
Accuracy 

128 67.5 % 69.8% 

256 73.2 % 75.6% 

512 76.4% 78.8% 

1024 81.2 % 83.1% 

2048 83.4 % 86.0% 

Table 1. Compression and Window Size Effects 
on Classification Accuracy 

 
In rare cases sensor nodes may have sufficient 
processing capability to utilise more advanced 
compression methods such as MP3. The higher 
level of compression provided by an MP3 
encoder operating at 24 or 32kbps provides 
about a three times bandwidth saving over 
ADPCM and a commensurate drop in 
identification accuracy as is evident in table 2.   

Window 
Size 

24 kbps 
Accuracy 

32 kbps 
Accuracy 

128 10.8 % 12.4% 

256 39.4 % 40.3% 

512 61.0 % 62.3% 

1024 77.1 % 77.1% 

Table 2. MP3 Compression Effects on 
Classification Accuracy with 2500 vectors 

 

The very low identification accuracy achieved 
for small window sizes with MP3 is not 
completely unexpected since the MP3 encoder 
reduces frequency resolution by discarding 
frequency information. Some compensation for 
this problem can be obtained by increasing the 
number of training vectors used in training the 
classifier as shown in Table 3, although for the 
purposes of this evaluation the number of 
training vectors has been kept constant (2500) 
for all tests.  

Keeping the number of training vectors constant 
ensures that the same number of data points are 
used for training each instance if the classifier, 
however it could be argued that this causes 
those tests using smaller window sizes to train 
on less total amount of information as each 
vector summarises less original data. For 
example, generating 2,500 vectors using a 
window size of 1024 samples means that a total 
of 2.5 million samples are used (or 116 seconds 
of training data) whereas using a window size 
of 128 equates to only 320,000 samples used 
(14 seconds of data). Rather than keep the 
number of training vectors constant we can 
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keep the total amount of data samples (time) 
analysed constant. We note from the results in 
Table 3 that improved performance can be 
achieved in all cases with an increased number 
of vectors used for training the classifier.  

 

Window 
Size 

Training 
Vectors 

ADPCM  MP3   
32 kbps 

128 24,000 73.5% 65.1% 

256 14,000 78.4% 70.4% 

512 7,000 81.4% 75.2% 

1024 3,500 83.8% 79.0% 

2048 1,750 86.8% - 

Table 3. Accuracy as a function of number of 
training vectors  

 

In summary while MP3 provides three times 
the bandwidth savings over ADPCM the 
reduction in identification accuracy, using the 
same number of training vectors is in the range 
of 9% - 57%. In the best case this reduction is 
commensurate with the expected bandwidth 
savings but is far worse with the smaller 
window sizes. This is presented in Table 4 and 
graphically in Figure 4 that shows the average 
reduction in identification accuracy against the 
compression ratio when using a constant 
number of training vectors for various window 
sizes in percent reduction per unit of 
compression ratio.  

 

 

 

Window  ADPCM  MP3  

128 0.57 5.22 

256 0.60 3.21 

512 0.60 1.50 

1024 0.47 0.55 

Table 4. Accuracy Bandwidth Ratio for constant 
number of training vectors 

 
In contrast the results obtained when using a 
constant total amount of information (about 160 
seconds of data) for the training of the classifier 
are notably better. Table 5 shows that even in 
this case the reduction of accuracy against the 
compression ratio is still lower for the ADPCM 
compressed data than for the MP3 compressed 
data. 
 

Window  ADPCM  MP3  

128 0.25 0.76 

256 0.43 0.73 

512 0.50 0.56 

1024 0.28 0.44 

Table 5. Accuracy Bandwidth Ratio for constant 
amount of information 

 

Conclusion and Further Work 
This study has evaluated the impacts of using 
data compression within sensor networks for 
automatic acoustic identification. While 
compression reduces the identification accuracy 
in all cases the benefits in bandwidth reduction 
may outweigh this reduction. It appears that for 
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this purpose the higher compression methods 
such as MP3 under perform compared to more 
lightweight methods such as ADPCM as 
demonstrated by the accuracy-bandwidth ratio. 
Using ADPCM a fourfold reduction in 
bandwidth equates to roughly a 3% reduction in 
identification accuracy.  

The use of smaller capture windows relating to 
smaller packet sizes increases the effectiveness 
of sensor networks through the properties of 
statistical multiplexing but also reduces 

identification accuracy by a greater margin. 
Hence compression is preferred as a means for 
data reduction. 

Further work will consider to what extent the 
type of sounds being identified affects these 
results. Consideration will also be given to 
whether different classifiers respond in the same 
way to the effects of compression and widow 
size reduction. 

 

 

 

Scientific Name  Common Name  F-Measure 
Adelotus brevis  Tusked Frog 0.824 
Assa darlingtoni  Pouched Frog 0.913 
Crinia deserticola  Torrid Froglet 0.755 

Crinia parinsignifera  Beeping Froglet 0.881 

Crinia signifera  Common Eastern Froglet 0.806 

Crinia tinnula  Wallum Froglet 0.753 

Heleioporus australiacus  Giant Burrowing Frog 0.91 

Lechriodus fletcheri Black-soled Frog 0.739 

Limnodynastes convexiusculus  Marbled Marsh Frog 0.94 

Limnodynastes dumerilii dumerilii  Eastern Pobblebonk 0.679 

Limnodynastes dumerilii grayi  Eastern Pobblebonk 0.944 

Limnodynastes fletcheri  Barking Marsh Frog 0.681 

Limnodynastes ornatus  Ornate Burrowing Frog 0.95 

Limnodynastes peronii  Striped Marsh Frog 0.727 

Limnodynastes salmini  Salmon-striped Frog 0.694 

Table 5. F-Measures for fifteen species of Southern Frogs 
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Effect of ADPCM Compression on Accuracy
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Figure 1. ADPCM Compressed Audio Classification Performance 

 

Effect of MP3 Compression on Accuracy
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Figure 2. MP3 Compressed Audio Classification Performance 
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Accuracy Reduction-Compression Ratio for a 
constant amount of training data
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Figure 3. Accuracy Reduction-Compression Ratio 

 A B C D E F G H I J K L M N O 
A 7           1   1 
B  257  1 4 2     3    10 
C   123 41        4  3  
D  1 22 353 1      1 3  3  
E  7   56 5       1 2 3 
F  5  1  84  1  1 5  3  9 
G       233 2  11     5 
H      1 4 123 1 11    4 25 
I  2  1    4 289  8 1 6 1 1 
J      2 15 10 0 125     28 
K  2  2  4   5  345  2 1  
L 1  3 2     2  1 64 1 13 13 
M      2   3  6  229   
N  2 7 5 3   11 1  1 8  112 9 
O  9  7 1 14 9 13 1 40  7  8 245

Table 6. Frog Call Confusion Matrix for window size of 1024 samples 

References 



 

 9

                                                 
[1] T.D.Penman, F.L. Lemckert, M.J.Mahony, 2005, "A cost benefit analysis of automated call 

recorders" Applied Herpetology, Vol.2, No.4, 2005, pp.389-400. 

[2] Bridges and Dorcas 2000 “Temporal Variation in Anuran Calling Behavior: Implications for Surveys 
and Monitoring Programs.”  Copeia.  2:587-592 

[3] H.Wang, J.Elson, L.Girod, D.Estin and K.Yao, "Target Classification and Localization in Habitat 
Monitoring", In Proceedings of IEEE International Conference on Acoustics, Speech, and Signal 
Processing (ICASSP 2003) Hong Kong, China.  

[4] Miguel A. Acevedoa, Carlos J. Corrada-Bravoc, Héctor Corrada-Bravob, Luis J. Villanueva-Riverad 
and T. Mitchell Aidea, “Automated classification of bird and amphibian calls using machine 
learning: A comparison of methods” Ecological Informatics Volume 4, Issue 4, September 2009, 
Pages 206-214. 

[5] Mills H. 1995. “Automatic detection and classification of nocturnal migrant bird calls.” J Acoust Soc 
Amer. 97: 3370-3371. 

[6] H.Wang, J.Elson, L.Girod, D.Estin and K.Yao, "Target Classification and Localization in Habitat 
Monitoring", In Proceedings of IEEE International Conference on Acoustics, Speech, and Signal 
Processing (ICASSP 2003) Hong Kong, China.  

[7] Darren Moore. "Demonstration of bird species detection using an acoustic wireless sensor network." 
33rd IEEE International Conference on Local Computer Networks (LCN 2008) : SenseApp 2008; 
Montreal, Que. IEEE; 2008: 730-731. ISBN: 9781424424122  

[8] Vaughan N, Jones G and Harris S.1997. “Identification of British bat species by multivariate analysis 
of echolocation call parameters.” Bioacoustics 7: 189-207. 

[9] Parsons S.2001. “Identification of New Zealand bats in flight from analysis of echolocation calls by 
artificial neural networks.” J Zool London 253: 447-456. 

[10] Ohya Eand Chesmore ED.2003. “Automated identifica-tion of grasshoppers by their songs.” Iwate 
University, Morioka, Japan: Annual Meeting of the Japanese Society of Applied Entomology and 
Zoology. 

[11] Burchfield, T.R., Venkatesan, S., Weiner, D. 2007. “Maximizing Throughput in ZigBee Wireless 
Networks through Analysis, Simulations and Implementations.” UTDCS-24-07 and in proceedings 
of First International Workshop on Localized Algorithms and Protocols for Wireless Sensor 
Networks (LOCALGOS 2007) 



 

 10

                                                                                                                                                           
[12] A.Taylor, G.Watson, G.Grigg and H.McCallum, "Monitoring Frog Communities: An application of 

Machine Learning", in the Proceedings of 8th innovative applications of AI conference (IAAI) 
Portland, Oregon 1996, pp.1564-1569 

[13] Chenn-Jung Huang, Yi-Ju Yang, Dian-Xiu Yang, "Frog classification using machine learning 
techniques", Expert Systems with Applications: An International Journal  Volume 36 ,  Issue 2  
(March 2009) Pages 3737-3743  ISSN:0957-4174 

[14] Miguel A. Acevedoa, Carlos J. Corrada-Bravoc, Héctor Corrada-Bravob, Luis J. Villanueva-
Riverad and T. Mitchell Aidea ," Automated classification of bird and amphibian calls using 
machine learning: A comparison of methods," Ecological Informatics, Volume 4, Issue 4, September 
2009, Pages 206-214 

[15] Yen, Gary G.; Fu, Qiang, "Automatic frog call monitoring system: a machine learning approach" 
Proc. SPIE Vol. 4739, p. 188-199, Applications and Science of Computational Intelligence V, Kevin 
L. Priddy; Paul E. Keller; Peter J. Angeline; Eds, 2002 

[16] ITU Recommendation G.726, “40, 32, 24, 16 kbit/s Adaptive Differential Pulse Code Modulation 
(ADPCM)” 

[17] Peltonen, V. Tuomi, J. Klapuri, A. Huopaniemi, J. Sorsa, T., “Computational auditory scene 
recognition”, Proceeding of. International Conference on Acoustics, Speech, and Signal Processing, 
(ICASSP 2002). IEEE, May 13-17, 2002, Orlando, FL, USA, vol.2, pp:1941-1944 

[18] Ning-Han Liu , Chen-An Wu and Shu-Ju Hsieh, Long-Term Animal Observation by Wireless 
Sensor Networks with Sound Recognition, WASA 2009, LNCS 5682, p.1-11, 5th Aug  2009 

[19] D.J.Hermes, “Measurement of pitch by subharmonic summation” J. Acoust. Soc. Am. Volume 83, 
Issue 1, pp. 257-264 (January 1988) 


