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Abstract 

An accurate estimation of scour depth around a pile is very difficult due to the complex 

behavior of flow around a pile structure on an erodible bed. In the current study, 

Regression Trees (RT) and Artificial Neural Networks (ANNs) as remedy data mining 

approaches are suggested to estimate the scour depth due to regular waves. These 

approaches were used to predict normalized scour depth as a function of two separate sets 

of parameters: (i) dimensional parameters and (ii) dimensionless parameters. The ANN 

trained by dimensional parameters provides more accurate results compared to that 

trained by dimensionless parameters. As opposed to the ANN model, the RT model based 

on dimensionless input parameters predicts normalized scour depth outperformed the one 

based on dimensional inputs. In addition, these models outperformed the existing 

empirical formulae. A committee model based on the geometric mean of the results of 

RT and ANN (developed by dimensionless parameters) is presented as the best model. To 

determine relative importance of input parameters in the prediction of the scour depth, a 

sensitivity analysis was then performed and it was found that the Keulegan-Carpenter 

number (KC) was found to be the most important one. The error statistics for two classes 
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of KC (KC < 10 and KC > 10) indicated that the suggested approach performs better in 

the range of KC < 10 for the prediction of dimensionless scour depth. 
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1. Introduction 

Piles are one of the most important parts of a hydraulic structure used in pile-deck 

structures such as bridge piers and offshore platforms. A vertical pile is frequently 

employed as a foundation to support a hydraulic structure and transfer forces to the bed. 

The presence of a vertical pile located on an erodible bed changes the flow pattern around 

the pile. These changes can increase the local sediment transport and can lead to scouring 

around the pile.  

The developed scour can be due to waves and currents or the combination of these two 

phenomena. One of the first studies on scour around obstructions due to random wave 

has been carried out by Palmer [1]. He found that the scour is independent of sediment 

characteristics for the range of studied median grain diameters (0.12 – 0.63 mm). Wang 

and Herbich [2] investigated scour around a pile due to the combination of wave and 

current. Sumer et al. [3] conducted an experimental study on the scour around a single 

circular pile exposed to waves. They conducted three sets of tests and normalized 

equilibrium scour depth (S) with pile diameter (D). They noted that the scour depth is 

mainly controlled by the Keulegan-Carpenter (KC) number and represented a formula for 

scour depth as a function of KC. A field study of the random wave induced scour around 

a group of piles has been reported by Bayram and Larson [4]. They developed an 

empirical relationship between scour depth and KC number that agreed with some earlier 
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laboratory experiments. Myrhaug and Rue [5] using a stochastic procedure, suggested 

some equations for predicting normalized scour depth around piles in random waves. 

Recently, Sumer et al. [6] conducted experiments on wave scour around a circular pile in 

three types of soils with different relative densities. Using their data, Guven et al. [7] 

proposed a linear genetic programming for modeling the scour depth. 

An accurate estimation of scour depth is hard to be accomplished by means of empirical 

equations. In the last decade, investigators have tried to improve the accuracy of scour 

depth estimation. Artificial Neural Networks (ANNs) have been widely used in hydraulic 

engineering problems because of their flexibility, ability to generalize and power to 

approximate nonlinear and complex phenomena. ANNs have been used to estimate scour 

below spillways [8], scour downstream of a ski-jump bucket [9] and scour downstream of 

grade-control structures [10]. Recently, Kambekar and Deo [11] used ANNs to estimate 

piles group scour. Their results indicated that ANNs could be a suitable procedure to 

predict scour geometries. Estimation of scour properties around a group of piles with 

feed-forward Multi Layer Perceptron (MLP) has been investigated by Khosronejad et al. 

[12]. Bateni and Jeng [13] also combined ANNs with Fuzzy Inference System (FIS) to 

predict the scour depth due to wave around pile groups. However, the application of the 

regression trees and ANNs to the prediction of scour depth around a single pile has not 

been tested yet. 

Regression trees can be applied to this problem since they are primarily aimed at 

recognition of a complex pattern in a given set of input values. Regression trees are 

useful to model an input with the corresponding output. RT has been used for soil 

properties prediction in environmental science [14], risk management analysis in 
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petroleum pipeline construction [15] and prediction of significant wave height [16]. In 

this paper, CART algorithm [17] is employed for building and evaluating regression 

trees. CART builds classification and regression trees for predicting continuous 

(regression) and categorical predictor variables (classification). This study aims to 

investigate the skills of the RT and ANN in the prediction of scour depth around a pile 

due to regular waves and to determine the relative importance of dimensional and 

dimensionless parameters on the scour process. 

  

2. Data Mining Approaches 

2.1. Artificial Neural Network 

An Artificial Neural Network (ANN) is a simplified mathematical model to simulate 

Biological Neural Networks (BNNs) specifics. A typical neuron consists of n inputs. 

Each input is multiplied by the weight of input. Also, each neuron has a threshold value. 

A neuron uses nonlinear functions to determine outputs. The typical nonlinear function is 

sigmoidal function (F), which is defined below: 

*
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where oi is the output value, i is the number of neurons, j is number of inputs, x is the 

input value, w is the weight of input and φ is the threshold value.  
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2.2. CART Algorithm 

The Classification and Regression Trees (CART) method of Breiman et al. [17] is 

another data mining tool that generates binary decision trees.  CART is a nonparametric 

statistical methodology developed for analyzing classification issues either from 

categorical or continuous dependent variables. If the dependent variable is categorical, 

CART produces a classification tree. Otherwise, if the dependent variable is continuous, 

it produces a regression tree. The CART tree is constructed by splitting subsets of the 

data set using all predictor variables to create two child nodes repeatedly, beginning with 

the entire data set. The best predictor is chosen using a variety of impurity or diversity 

measures. The goal is to produce subsets of the data which are as homogeneous as 

possible with respect to the target variable [18]. In CART algorithm, for each split, each 

predictor is evaluated to find the best cut point (continuous predictors) or groupings of 

categories (nominal and ordinal predictors) based on improvement score or reduction in 

impurity [17].  

In regression trees, the Least Squared Deviation (LSD) impurity measure is used for 

splitting rules and goodness of fit criteria. The LSD measure R(t) is simply the weighted 

within node variance for node t, and it is equal to the re substitution estimate of risk for 

the node [17]. It is defined as: 
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where NW (t) is the weighted number of records in node t, ωi is the value of the weighting 

field for record i (if any), fi is the value of the frequency field (if any), iy  is the value of 

the target field, and ( )y t  is the mean of the dependent variable (target field) at node t. 

The LSD criterion function for split s at node t is defined as: 

(6) ( , ) ( ) ( ) ( )L RQ s t R t R t R t= − −  

where R(tR) is the sum of squares of the right child node and R(tL) is the sum of squares 

of the left child node. The split s is chosen to maximize the value of Q(s, t). 

 

3. Governing parameters and data used  

The most important dimensional and dimensionless parameters determining the scour 

depth around a pile due to regular waves may be recognized such as bed grain size (d), 

pile diameter (D), wave period (T), maximum flow velocity (Um), maximum shear 

velocity (Ufm), pile Reynolds number (Re), Shields parameter (θ ), Keulegan-Carpenter 

number (KC) and sediment number (Ns) defined below [3,11,13]: 
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1
2(0.5 )fm mU f U=                                                                                                            (11) 

where ν is the kinematic viscosity, Gs is the relative specific gravity, g is the gravitational 

acceleration and f is the wave friction factor. 

For an ANN model the quality of database is very important [13]. Hence, training and 

testing data were obtained from the laboratory experiments of Sumer et al. [3] and Dey et 

al. [19]. The ranges of various parameters are summarized in Table 1 .It should be 

mentioned that the proposed models (ANNs and CARTs) are applicable within these 

ranges.     

 

4. Scour depth prediction 

Data set was separated into two input categories as inputs for prediction of the scour 

depth: dimensional (d, D, T, Um and Ufm) and dimensionless (Re, θ, KC and Ns). Other 

influential parameters (Gs, g and ν) were constant during training and were not used as 

input directly. Scour depth normalized by pile diameter (S/D) was used as the output. 

Dimensional and dimensionless data sets were divided into two parts for training and 

testing the models. The total numbers of data points were 88 which 75% of them were 

used for training and 25% for testing the models.  

Statistical measures such as the Root Mean Square Error (RMSE), the correlation 

coefficient (R), the Bias and Scatter Index (SI) were employed for qualitative evaluation 

of the models. These measures are defined below: 

2
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Bias o m= −                                                                                                                     (14) 

RMSESI
m

=                                                                                                                    (15) 

where o  and m  are the average of the network output and the measured values and N is 

the total number of data points. 

 

4.1 Dimensional inputs 

As mentioned above, the data set was divided into two data subsets for training and 

testing the models. Here, grain bed size (d), pile diameter (D), wave period (T), 

maximum flow velocity (Um) and maximum shear velocity (Ufm) were used as the inputs 

and normalized scour depth (S/D) was used as the output variable. A Multi Layer 

Perceptron (MLP) with Back Propagation (BP) learning rule was used to train the 

network. To prevent overfitting during the training of the ANN, the number of nodes of 

the hidden layer was chosen using expression given by Huang and Foo [20]: 

M ≤ 2Z+1                                                                                                                        (16) 

where M and Z are number of the nodes in hidden and input layers, respectively. 

The number of the neurons of the input and output layers were 5 and 1, respectively. One 

hidden layer with 3 neurons was found to be the best topology. The comparison between 

predicted and observed values of the training and testing data using dimensional 

parameters for ANN, are shown in Fig. 1. Fig. 2 shows a comparison between observed 

and predicted S/D by CART algorithm for training and testing data. The error statistics of 
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the models generated by dimensional parameters for testing data are given in Table 2. As 

seen, the correlation coefficient of the ANN model for testing data is about 13% more 

and RMSE and SI are about 64% less than those of CART model. From the comparison 

between Fig. 1 and Fig. 2, it can be deduced that ANN is more skillful and accurate than 

CART in prediction of S/D. Also, ANN model has a Bias of 0.018 that shows this model 

slightly overestimates S/D.  

 

4.2 Dimensionless inputs 

Here, the models are trained by dimensionless inputs such as pile Reynolds number (Re), 

Shields parameter (θ), Keulegan-Carpenter number (KC) and sediment number (Ns). The 

dimensionless parameters used in the present study are similar to those used in the prior 

studies [3, 4, 6, 11 and 13]. In the ANN model, the numbers of the neurons in input and 

output layers were 4 and 1, respectively. One hidden layer with 5 nodes was found as the 

optimum topology. The performance of this ANN model was not better than that of 

previous model (Table 2). This result is in line with the results of Kambekar and Deo [11] 

and Bateni and Jeng [13]. They also found that using dimensional parameters yields more 

accurate results for the estimation of scour depth. The R value of the testing was 0.924 

that is about 4.4% less than that of ANN model developed by dimensional data (Table 2). 

Additionally, this model has a testing RMSE and SI of 0.075 and 0.203 respectively that 

are more than those of the ANN model trained by dimensional data. Bias of -0.005 

showed that this model slightly underestimates normalized scour depth. Fig. 3 shows the 

comparison between predicted values for training and testing data of the trained ANN 

with dimensionless data set. As seen, the results yielded by the ANN model are 



 10 

satisfactory but not as accurate as those of the ANN model trained by the dimensional 

data set. However, it should be noted that the models based on dimensional parameters 

obtained from small scale measurements can not be used for design purposes.  

In contrast with the ANN results, the CART model trained by dimensionless data was 

more accurate than that trained by dimensional data. Fig. 4 displays observed and 

predicted values of normalized scour depth for training and testing data of CART model 

trained by dimensionless data. The testing results of CART model developed by 

dimensionless data (Table 2) have R, RMSE and SI values of 0.955, 0.069 and 0.186, 

respectively. These values indicate an increase in the R (1.12 times) and a decrease in 

errors parameters (reduction by 57% in RMSE and SI) compared to those of CART model 

trained with dimensional data. Also, the testing results indicate that regression tree and 

ANN models based on dimensionless data performed approximately the same. 

 In brief, the regression tree can be preferred to the ANNs since it is a non parametric 

approach. In addition, in regression trees application there is no need to find the network 

parameters such as optimum numbers of hidden layers and neurons by the process of trial 

and error. Use of dimensional parameters may yield better results but these parameters 

are in a limited (laboratory) ranges and it is not possible to generalize the results to real 

(prototype) cases.  By employing dimensionless parameters to train the data mining 

models, it is possible to generalize the results to real (prototype) cases. 

In order to develop a more accurate model, a committee model generated by the 

combination of the results of ANN and CART models based on dimensionless parameters 

was also tested. The results were obtained by the simple geometric mean of the output 

values of ANN and RT models developed by non dimensional data, defined as: 
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where oC, oA and oR are the outputs of the committee, ANN and regression tree models 

(based on dimensionless parameters), respectively. Fig. 5 compares the outputs of this 

committee model and the measured values. As shown in Table 2, the R value has 

increased about 0.4% and RMSE and SI have decreased about 17.2% relative to those of 

the best model (ANN based on dimensional parameters). 

 

5. Comparison between present study and the empirical method 

Results obtained by ANN and CART approaches for the prediction of normalized scour 

depth were also compared with that of existing empirical formulae. Sumer et al. [3] 

presented the following empirical expression for scour depth around a vertical circular 

pile due to regular oscillatory waves: 

1.3{1 exp[ 0.03( 6)]}S KCD = − − − : for KC ≥6                                                             (18) 

Several assumptions need to be considered in the development of regression models. The 

assumptions such as (a) randomness of errors with zero mean, normality of errors, 

homoscedasticity of errors and uncorrelatedness of errors may restrain the application of 

regression analysis (see also [21]). 

In the traditional approach of statistical regression data had to follow a pre-defined 

distribution (normal distribution), while in data mining approaches the statistical 

distribution of the data does not need to be known [21]. 

Fig. 6 shows observed scour depth plotted against predicted scour depth using the 

empirical equation as well as data mining models.  



 12 

Table 2 also, displays the statistical measures of the present study and the empirical 

formulae. As can be seen, the developed models predict the scour depth more accurately 

than the conventional approach. The ANN model based on dimensional parameters has 

RMSE and SI values of 0.058 and 0.157, respectively; i.e. 27% improvement compared to 

the error statistics of the best empirical formulae [3]. CART model generated by 

dimensionless parameters also, performed better than Sumer et al. [3] equation. In 

addition, the committee model (ANN and CART based on dimensionless parameters) 

estimates S/D better than equation 18. This is reflected in 39% decrease in RMSE and SI, 

2.2% increase in the R and lower value of Bias (0.010) compared to those of Sumer et al. 

[3] formulae. Guven et al. [7] also proposed genetic programming (GP) and adaptive 

neuro-fuzzy system (ANFIS) models for prediction of scour due to regular waves. They 

showed that their models are superior to Sumer et al. [3] equation (Eq. 18).  

 

6. Sensitivity analysis 

To investigate the dependency of S/D to the input parameters, the most widely used 

measures, i.e. the linear correlation coefficient (R); which indicates the relationship 

between model output and inputs; RMSE, Bias and SI were used. To estimate the 

importance of different parameters, new models based on each parameter were trained 

and tested individually. It should be mentioned that parameters such as wave height and 

flow depth were not considered because they are not reported in the experiments and their 

effects are considered in maximum flow velocity. The results (Table 3) show that pile 

diameter is the most important dimensional parameter and the other important 
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dimensional variable is T. Also, the conducted sensitivity tests show that S/D depends 

mainly on KC values. This result is in line with the results of the previous studies.  

It is also interesting to examine the skills of the models as a function of KC. Two classes 

of KC values (Table 4) were defined for this purpose. As can be seen, for KC < 10 the 

error statistics are less than those of KC > 10. When KC is less than 10, scour process is 

directly related to the lee-wake vortex in the form of vortex shedding and when KC is 

more than 10, scour process is governed by combined horseshoe vortex and vortex 

shedding [3]. Hence, it could be conferred that scour process for KC < 10 is less complex 

(compared with KC > 10 regime) and the developed models and empirical methods show 

less errors in this regime. 

 

7. Summary and conclusions  

This study presents alternative soft computing tools for evaluation of regular waves 

induced scour around a circular pile. The performances of regression trees and ANNs 

approaches were demonstrated by showing their skills in prediction of scour depth. The 

secondary objective of this paper was to determine whether these models perform better 

than the conventional semi-empirical formulae. The selection of input variables to the 

network has a large impact on the model accuracy. Hence, two sets of parameters 

(dimensional and dimensionless) were utilized to analyze the models. The ANN model 

results showed that the scour depth could be best predicted by using dimensional data. 

The CART model based on dimensionless inputs predicted scour depth more accurately 

compared to the CART model based on dimensional inputs. In addition, this model 

outperformed the existing empirical formulae (Eq. 18). It was argued that the CART 
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algorithm is preferred to the ANN since it is non parametric and does not require 

optimization of network parameters. Finally, it was shown that the combination 

(geometric mean) of the results of ANN and CART models performs the best 

(RMSE=0.048 and SI =0.13) and is more accurate than the existing approach 

(RMSE=0.079 and SI =0.21). 

A sensitivity test was also carried out and it was shown that KC number is the most 

important parameter on scour process. Also, it was found that pile diameter has more 

influence on scour depth than the other dimensional parameters. In the prediction of S/D 

in KC < 10 regime, the developed models and empirical methods showed less RMSE 

relative to that of KC > 10 regime. The present study shows that data mining tools such 

as CART and ANN can model the systems with nonlinear and complex input-output 

relations smartly. The main limitation of these models is the range of applicability which 

is limited to the range of parameters used for the training. The used approaches could 

easily be extended to similar problem in hydraulic engineering such as analysis of scour 

around pile groups. 
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Figures Caption 
 

Fig. 1. Comparison between observed and predicted normalized scour depth of ANN 

model for the dimensional data set 

Fig. 2. Comparison between observed and predicted normalized scour depth of CART 

model for the dimensional data set 

Fig. 3. Comparison between observed and predicted normalized scour depth of ANN 

model for the dimensionless data set 

Fig. 4. Comparison between observed and predicted normalized scour depth of CART 

model for the dimensionless data set 

Fig. 5. Comparison between observed and predicted normalized scour depth of the 

committee model results for dimensionless data set 

Fig. 6. Comparison between the present study and the empirical approaches 
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Fig. 1. Comparison between observed and predicted normalized scour depth of ANN 

model for the dimensional data set 
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Fig. 2. Comparison between observed and predicted normalized scour depth of CART 

model for the dimensional data set 
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Fig. 3. Comparison between observed and predicted normalized scour depth of ANN 

model for the dimensionless data set 
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Fig. 4. Comparison between observed and predicted normalized scour depth of CART 

model for the dimensionless data set 
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Fig. 5. Comparison between observed and predicted normalized scour depth of the 

committee model results for dimension data set 
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Fig. 6. Comparison between the present study and the empirical approach 
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Table1: Ranges of data set used to train and test the network 

Range Parameter                               

18-58 m 

0.01-0.20m 

1.19-588.24 s 

0.112-0.533 m/s 

0.013-0.025 m/s 

0.03-1.10 

0.04-0.22 

6.4-5626 

1.99-9.87 

0-1.56 

Grain size (d×10-5) 

Pile diameter (D) 

Wave period (T ) 

Maximum flow velocity (Um) 

Maximum shear velocity (Ufm) 

Pile Reynolds number (Re×105) 

Shields parameter (θ ) 

Keulegan-Carpenter number (KC) 

Sediment number (Ns) 

dimensionless equilibrium scour depth (S/D) 
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Table 2: Statistical error measures of various approaches to estimate S/D, testing data 

SI Bias RMSE R Approach  

0.214 

 

0.157 

 

0.186 

 

0.130 

 

0.436 

 

0.203 

0.022 

 

0.018 

 

0.040 

 

0.010 

 

0.026 

 

-0.005 

0.079 

 

0.058 

 

0.069 

 

0.048 

 

0.161 

 

0.075 

0.950 

 

0.967 

 

0.955 

 

0.971 

 

0.852 

 

     0.924 

Sumer et al.[3], Eq. (18) 

 

ANN  based on dimensional data 

 

CART based on dimensionless data  

 

Committee model results (ANN and 

CART based on dimensionless data) 

CART based on dimensional data 

 

ANN based on dimensionless data 
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Table 3: Statistical error measures of ANNs based on each individual parameter  

SI Bias RMSE R ANN based on  

0.764 

0.658 

0.737 

0.815 

0.780 

0.517 

0.298 

0.764 

0.753 

0.205 

0.178 

0.190 

0.211 

0.195 

0.115 

0.101 

0.211 

0.221 

0.282 

0.243 

0.272 

0.301 

0.288 

0.191 

0.110 

0.282 

0.278 

-0.477 

0.413 

0.390 

0.181 

0.159 

0.559 

0.941 

0.521 

0.332 

Bed grain size (d) 

Pile diameter (D) 

Wave period (T ) 

Maximum flow velocity (Um) 

Maximum shear velocity (Ufm) 

Pile Reynolds number (Re) 

Keulegan-Carpenter number (KC) 

Shields parameter (θ ) 

Sediment number (Ns) 
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Table 4: The RMSE of two classes of KC using different approaches 

RMSE 

(KC>10) 

RMSE 

(KC<10) 

Approach  

0.128 

0.069 

0.091 

0.059 

0.065 

0.053 

0.058 

0.040 

Sumer et al.[3], Eq. (18) 

ANN (based on dimensional data) 

Regression tree (based on dimensionless data) 

Committee model (ANN and CART based on 

dimensionless data) 

 

 
 


