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Abstract—In this paper, an artificial neural network (ANN) is 

applied to several civil engineering problems, which have 
difficulty to solve or interrupt through conventional approaches 
of engineering mechanics. These include tide forecasting, 
earthquake-induced liquefaction and wave-induced seabed 
instability. As shown in the examples, ANN model can provide 
reasonable accuracy for civil engineering problems, and a more 
effective tool for engineering applications. 
 

Index Terms—neural network, artificial intelligence, civil 
engineering, engineering design. 
 

I. INTRODUCTION 
HE origins of artificial neural networks (ANN) are in the 
field biology. The biological brain consists of billions of 
highly interconnected neurons forming a neural network.  

Human information processing depends on this connectionist 
system of nervous cells.  Based on this advantage of 
information processing, neural networks can easily exploit the 
massively parallel local processing and distributed storage 
properties in the brain.  

A classical comparison of information processing by a 
human and a computer is focused on the ability of pattern 
recognition and learning.  The computer can calculate large 
numbers at high speeds but it cannot recognize something 
such as a classification problem, written text, data 
compression and a learning algorithm.  On the contrary, a 
human easily recognizes and deals with the challenges 
mentioned above by processing information with highly 
distributed transformations through thousands of 
interconnected neurons in the brain. 

Generally speaking, an ANN is an informational system 
simulating the ability of a biological neural network by 
interconnecting many simple neurons (Fig. 1).  The neuron 
accepts inputs from a single or multiple sources and produces 
outputs by simple calculations, processing with a 
predetermined non-linear function.  Therefore, the primary 

 
Manuscript received July 30, 2003.  
D.-S. Jeng is with the School of Engineering, Griffith University Gold 

Coast Campus, PMB 50 GCMC, QLD 9726, Australia (corresponding author 
to provide phone: 617 555-28683; fax: 617-555-28065; e-mail: 
d.jeng@griffith.edu.au).  

D. H. Cha is with the School of Engineering, Griffith University Gold 
Coast Campus, QLD 9726, Australia (e-mail: f.cha@griffith.edu.au). 

M. Blumenstein is with the School of Information Technology, Griffith 
University Gold Coast Campus, PMB 50 GCMC, QLD 9726, Australia (e-
mail: m.Blumenstein@griffith.edu.au). 

characteristics of an ANN can be presented as following: (1) 
the ability of learning; (2) distributed memory; (3) fault 
tolerance and (4) operating in parallel.  

 
Fig. 1. Structure of Artificial Neural Network model. 

Recently, artificial neural network (ANN) models have been 
widely applied to various relevant civil engineering areas such 
as geotechnical engineering, water resources and coastal 
engineering [1-6]. 

In this paper, three civil engineering problems will be re-
examined by neural network model. These include: tide 
forecasting (coastal engineering), earthquake-induced 
liquefaction (earthquake engineering) and wave-induced 
seabed instability (coastal geotechnical engineering). Several 
numerical examples will be used to demonstrate the 
application of ANN on the above civil engineering problems. 

 

II. APPLICATION OF ANN IN TIDAL LEVEL FORECASTING 

A. Tidal Level Forecasting 
Tidal level record is an important factor in determining 

constructions or activity in maritime areas. To describe the 
property of the tidal-level variations for an open sea, Darwin 
[7] proposed the equilibrium tidal theory, but it did not 
accurately estimate the tidal level for the complex bottom 
topography in the near-shore area. Later, Doodson [8] 
employed the least-squares method to determine harmonic 
constants. Since then, the least-squares analysis in determining 
harmonic parameters has been widely used to predict the tidal 
level. However, the shortcoming of this method is that the 
parameters of the tidal constituents are determined by using a 
long-term tidal record in site.  

Kalman [9] proposed the Kalman filtering method to 
calculate the harmonic parameters instead of the least squares 
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method. In this model, a large tidal data was not required. 
Mizumura [10] also proved that the harmonic parameters 
using the Kalman filtering method could be easily determined 
from only a small amount of historical tidal records. Yen et al. 
[11] utilized the Kalman filtering method in determination of 
parameters in the harmonic tide-level model as well. The 
estimation of harmonic parameters could predict accurately 
the tidal level using the Kalman filtering method, which is 
solved by the covariance matrix. However, it is necessary to 
determine the available parameters of the local tide before 
predicating the tidal level. Tsai and Lee [5] applied the back-
propagation neural network to forecast the tidal level using the 
historical observations of water levels without determining the 
harmonic parameters. However, their model is used only for 
the instant forecasting of tidal levels, not a long-term 
prediction. 

Besides the prediction of tidal level, supplement of tidal 
record is also important for a complete observation tide 
database.  The discontinuous observations may come from the 
damage of recording facilities, natural disasters or 
inappropriate operation and so on.  The discontinuous record 
could either be short-term (few hours) or long-term (few 
months even up to one year). Thus, establishing a simple and 
executable supplementary model for tidal record is desired. 

B. ANN Model for Tide Forecasting 
To demonstrate the ANN model, we use different data 

based in the training procedure to predict the one-year tidal 
level in Taichung Harbor. Based on the 15-day collected data 
(1-15 Jan 2000), the one-year prediction of tidal level (Jan 
2000- Dec, 2000) against the observation is illustrated in Fig. 
2. In the figure, solid lines denote the observation data, and 
dashed lines are the predicted values. The prediction of the 
present model overall agree with the observation. The 
correlation coefficient over one yea is 0.9182, which is 
reasonable good. 
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Fig. 2. Comparison of observed tide levels with those 
predicted over one year for Taichung Harbor (4/1996, 
10/1996, 2/1997). 

III. APPLICATION OF ANN IN EARTHQUAKE-INDUCED 
LIQUEFACTION 

A. Earthquake-Induced Liquefaction 
Recently, numerous strong earthquakes occurred 

worldwide, such as North American, Taiwan, Japan, Turkey, 
China and so on. The occurrence of earthquakes does not only 
destroy the residents’ properties, but also cause the instability 
of the whole societies. For example, the earthquake with 
Richter magnitude of 7.3 occurred at Chi-Chi City on 
September 21, 1999 has been recognized as the most serious 
disaster by public concerns in Taiwan.  During the earthquake, 
numerous civil structures, such as buildings, highway 
embankments and retaining structures etc. have been damaged 
or completely destroyed. The resident regions affected by the 
earthquake have not been re-established until now. 

In general, damage of civil structures during earthquakes 
occurs with two general failure modes evident.  The first 
mode is that of structural failure, caused by strong 
acceleration of the earthquake, results in the damage of the 
structure itself.  The second mode is that of foundation failure, 
caused by liquefaction, resulting in collapse of the structure as 
a whole.  Therefore, estimation of the earthquake-induced 
liquefaction potential is essential for the civil engineers in the 
design procedure. 

Since the 1960s, numerous researches have been devoted to 
the evaluation of earthquake-induced liquefaction.  The 
penetration resistance of the standard penetration test (SPT) is 
commonly used as an index of liquefaction potential.  The 
reason why SPT test has been commonly used in the 
prediction of the liquefaction potential is because the in-site 
SPT-N value is easily obtained with reasonable accuracy.  In 
the SPT-N value method, the earthquake-induced cyclic stress 
ratio (CSR) must be determined first, and then the cyclic 
resistance ratio can be calculated for the estimation of 
earthquake-induced liquefaction potential [12, 13]. Also, 
Japanese Road Association [14] proposed an empirical 
procedure for liquefaction assessment.  

B. ANN Earthquake Model 
Conventional SPT-N method for evaluating the liquefaction 

potential requires soil and seismic variables, including the 
magnitude of the earthquake, vertical stress, effective vertical 
stress, N value, average shear stress, depth, peak horizontal 
acceleration at ground surface, fines content, average grain of 
soil and so on.  Since only limited amount of in site material 
parameters are available, the desired material parameters are 
obtained from correlation formula. However, some parameters 
cannot be directly obtained by from the test site. Thus, the 
methodology of determining the optimal value is a challenge.  

In this study, we try to employ the ANN to assess the 
liquefaction potential.  Firstly, we chose the parameters 
determining form the field measurement as the input neurons, 
such as depth, N value and fines content.  Then, liquefaction 
site is expressed as the "output" column, in which “1” denotes 
the observation of liquefaction, while “0” represents no 
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liquefaction.  By using the existing correlations and the given 
parameters, the corresponding values of unknown soil and 
seismic parameters are determined.   

To illustrate the capability of the ANN model, a site in the 
Wufeng city, Taiwan is selected. There are fourteenth boring 
holes at Wufeng city. These situations are categorized by in-
situ survey, including for settlements, no damaged and sand 
boil.  
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Fig. 3. Train results of CASE 1 between the present ANN 
model and JRA [14]. 

 
Since the soil in Wefeng City is gravel, the cost of using 

SPT test is more economic than CPT test. Also, the depth of 
boring hole is limited to 20 m, because the soil conditions are 
difficult to control.  The liquefaction assessment for the 
fourteenth boring holes was performed with the following 
steps: 

(a) Firstly, we use the boring data with 1.5 m interval to 
obtain the corresponding SPT-N value and fine content (FC). 

(b) Since the conventional methods have difficulties to 
determine whether liquefaction occurs or not at particular soil 
depth.  In general, the conventional methods can only 
determine the occurrence of liquefaction, based on the failure 
condition at the surface of the ground.  Thus, we consider the 
effect of the depth in this model, and use the conventional 
methods to calculate the possibility of liquefaction at each 
depth. We use “1” to represent the occurrence of liquefaction, 
and “0” to denote no liquefaction. 

(c) To ensure the ANN model can effectively predict the 
occurrence of liquefaction, we choose 12 boring data (about 
150 sets of data) for training of ANN model.  The other two 
boring data (about 30 sets of data) are used to forecast the 

occurrence of the liquefaction. 
Figure 3 show the training result of CSAE 1 （no damaged 

and no settlement）, the solid lines are the results of JRA 
[14]; the symbols are the results of the proposed ANN model.  
As shown in Fig. 3(a), overall good agreement between JRA 
and ANN models are observed.  The accuracy of the ANN 
predicted model can be also seen in the Fig. 3(b). An error 
value greater than |0.5| denotes an error; whereas if the results 
are less than 0.5.  Fig. 3(c) demonstrates a 90% success rate in 
liquefaction assessment. Comparing the result of the ANN and 
JRA, there are still good correlation. In other words, only 
three parameters data input at the training example can be 
learned in ANN model.  

It is desirable to predict the liquefaction for the unknown 
boring hole. The comparisons between the ANN and JRA [14] 
of CASE 1 for liquefaction’s prediction are also illustrated 
Figure 4. As shown in the figure, there are three incorrect 
simulations out of 30 data sets, which claim a 90% success 
rate.  

15 30-1

-0.5

0

0.5

1

1.5

2

Data set number

Case 1-Forecast resultsJRL (1996)
ANN

 

15 30-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Data set number

E
rr

or

Case 1-Forecast resultsError=ANN- JRL (1996)

 

15 30-1

0

1

2

Data set number

Case 1- ANN vs JRA(1996)

Forecasting success rate=90%

 
Fig. 4. Forecast results of CASE 1 between the presented 
ANN model and JRA [14]. 

 
Similarly, we compare the results of ANN model and 

another two conventional methods, Seed’s method [12] and 
T&Y method [13] in Figs. 5 and 6.  Again, an overall good 
agreement between ANN model and Seed’s model [12], T&Y 
method [13] has been found. 

Based on the above comparisons, more than 80% of success 
rate between ANN model and three conventional methods 
have been achieved in CASE 1. This demonstrates that the 
proposed ANN model with three parameters (depth, SPT-N 
values and FC) can predict the occurrence of the earthquake-
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induced liquefaction well.  
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Fig. 5. Train and Forecast results of CASE 1 between the 
present ANN model and Seed et al. [12]. 
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Fig. 6. Train and Forecast results of CASE 1 between the 
present ANN model and T&Y model [13]. 

Figs. 7-9 illustrate the prediction of the occurrence of the 
earthquake-induced liquefaction in CASE 2, 3 and 4.  Among 
these, CASE 2 is the cases with no damaged, but sand boiling 
occurs (Fig. 5), while CASE 3 is for settlement and sand 

boiling occur (Fig. 6). Case 4 is of the case with sand boiling 
(Fig. 7).  The above comparisons indicate that the proposed 
ANN model can provide a high accurate prediction of the 
earthquake-induced liquefaction. 
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Fig. 7. Forecast results of CASE 2 using by ANN with three 
different methods. 
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Fig. 8. Forecast results of CASE 3 using by ANN with three 
different methods. 
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Fig. 9. Forecast results of CASE 4 using by ANN with three 
different methods 
 

IV. APPLICATION OF ANN IN WAVE-INDUCED SEABED 
INSTABILITY 

A. Wave-Induced Seabed Instability 
The evaluation of the wave-induced seabed instability is 

particular important for coastal geotechnical engineers 
involved in the design of marine structures (such as offshore 
platform, pipeline and caisson etc.). In general, when ocean 
waves propagate over the ocean, they create dynamic pressure 
fluctuation on the sea floor. These fluctuations further cause 
changes in effective stress and excess pore pressure within the 
soil skeleton, and can be potentially lead to partial liquefaction 
(and thus loss in strength) of the seabed sediments.  

Numerous investigations for the wave-induced seabed 
instability have been carried out. Most of them have been 
based on the poro-elastic theories proposed by Biot [15]. 
These include analytical approaches [16, 17], numerical 
modeling [18, 19] and physical modeling [20].  

B. ANN Model for Wave-Induced Liquefaction 
All the aforementioned approaches have their limitations, as 

reviewed in Jeng [21]. Thus, in this section, we attempt to 
apply ANN model to the predication of the wave-induced 
liquefaction potential. 

To illustrate the application of ANN model, we established 
the database base don the poro-elastic model proposed by 
Jeng [17], which cover most wave and soil characteristics in 
real situations. Fig. 10 illustrates the convergence of training 
procedure. A comparison of the predication of ANN model 

and theoretical results is given in Figure 11 with 5% and 10% 
control error. As shown in the figure, the successful rate of 
ANN model is 78% with 5% error, while it is 85% with 10% 
error. This result can be further improved by increasing the 
size of the database. 

 

 
Fig. 10. Training procedure of ANN model for wave-induced 
liquefaction in a porous seabed. 
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Fig. 11. Comparison of the predication of ANN model and 

theoretical results. 

V. CONCLUSION 
In this paper, three civil engineering problems have been 

re-investigated by artificial neural network model. The 
numerical examples demonstrate the application of ANN 
model in civil engineering problems. 

Based on this study, ANN models are expected to be 
applicable to other civil engineering problems, and will have 
wider applications in various engineering problems. 
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