
Optional and Responsive Fine-Grain Locking
in Internet-Based Collaborative Systems

Chengzheng Sun

Abstract—Locking is a standard technique in distributed computing and database systems used to ensure data integrity by prohibiting

concurrent conflicting updates on shared data objects. Internet-based collaborative systems are a special class of distributed

applications which support human-to-human interaction and collaboration over the Internet. In this paper, a novel optional and

responsive fine-grain locking scheme is proposed for consistency maintenance in Internet-based collaborative editors. In the proposed

scheme, locking is made optional in the sense that a user may update any part of the document without necessarily requesting a lock,

thus saving the users the burden of having to use locks while editing and the system the overhead of executing locking operations most

of the time in a collaborative editing session. In the face of high communication latency in the Internet environment, responsive locking

is achieved by granting the permit to the user for updating the data region immediately after issuing a locking request. Moreover,

multiple fine-grain locks can be placed on different regions inside a document to allow concurrent and mutually exclusive editing on the

same document. Protocols and algorithms for locking conflict resolution and consistency maintenance are devised to address special

technical issues involved in optional and responsive fine-grain locking. The proposed locking scheme and supporting techniques have

been implemented in an Internet-based collaborative editor to demonstrate its feasibility and usability.

Index Terms—Consistency maintenance, optional locking, responsiveness, operational transformation, collaborative editors,

distributed systems, Internet computing.

�

1 INTRODUCTION

INTERNET-BASED collaborative systems are a special class of
distributed applications which support human-to-human

interaction and collaboration over the Internet [7], [9], [16],
[21], [26]. We are particularly interested in Internet-based
real-time collaborative editing systems which allow a group
of users to view and edit the same text/graphics/image/
multimedia document at the same time over the Internet [5],
[6], [12], [14], [19], [21]. The goal of our research is to design
and implement real-time collaborative editing systems
meeting the following requirements [21]:

1. high responsiveness—the response to local user actions
must be quick, ideally as quick as a single-user
editor;

2. high concurrency—multiple users are allowed to
concurrently edit any part of the document at any
time; and

3. ability to hide communication latency—the system
should work well in an environment with high and
nondeterministic communication latency, such as
the Internet.

These requirements have led us to adopt a replicated

system architecture for the storage of shared documents:

The shared documents are replicated at the local storage of

each collaborating site. A collaborating site can be a PC or a

workstation, consisting of a local user interface for generat-

ing local operations and for displaying local document

state, a local storage for storing document replicas, and

computing and communication facilities for processing and

propagating operations. With the replicated architecture, it

becomes possible for multiple users to concurrently edit

their local copies of the shared document and to get their

operations reflected on their local interfaces immediately.

One of the most significant challenges in the design and

implementation of replicated collaborative editing systems

is consistency maintenance of replicated documents in the

face of concurrent updates [21].
Locking is a standard technique in distributed comput-

ing and database systems to ensure data integrity by

prohibiting concurrent conflicting updates on shared data

objects [1]. Locking has also been used for consistency

maintenance of shared documents in various collaborative

editing systems [2], [10], [12], [13], [14], [15]. All existing

locking schemes have one thing in common: Locking is

compulsory in the sense that a lock must be requested before

updating a data region.
In contrast to existing locking schemes, the locking

scheme proposed in this paper is optional in the sense that a

user may update any (unlocked) region without necessarily

requesting a lock on it. If a lock has been placed on a region,

however, a user can update this region only if she/he owns

a lock covering the region. Locking is made optional

because our research in collaborative editing has found that

1. there is no role for locking to play in maintaining
syntactic consistency (see detailed discussions in
Section 3, and

2. there is no need to use locks when multiple users are
editing different regions most of the time in a
collaborative editing session.

994 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 9, SEPTEMBER 2002

. The author is with the School of Computing and Information Technology,
Griffith University, Brisbane, Qld 4111, Australia.
E-mail: c.sun@cit.gu.edu.au.

Manuscript received 21 Dec. 2000; accepted 8 Jan. 2002.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 113341.

1045-9219/02/$17.00 � 2002 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Griffith Research Online

https://core.ac.uk/display/143861806?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Only when a user wishes to ensure her/his exclusive
updating right to a region may she/he occasionally request
a lock on a region. Under the optional locking scheme, it is
possible that one user accidentally intrudes on an unlocked
region being updated by another user. If this happens, the
system can notify both users involved and let the users take
proper actions to resolve the conflict. For example, one of
the users could then place a lock on the region and repair
the inconsistency (if any) by using system-provided undo
facilities [24], [17], [19]. This way of handling conflict is
reasonable since conflicts are rare in collaborative environ-
ments [4],and, if conflicts do occur, human users are
capable of adjusting their actions and repairing temporary
inconsistencies. The major advantage of optional locking is
that it saves the users the burden of having to use locks
while editing and the system the overhead of executing
locking operations in most of the time in a collaborative
editing session.

Apart from being optional, the proposed locking scheme
is also highly responsive in the sense that a user requesting a
lock on a region is immediately granted permission to edit
the region without being blocked. High responsiveness is
particularly important in the Internet environment with a
high and nondeterministic communication latency. A major
technical challenge in achieving highly responsive locking
is how to resolve the conflict when multiple locks are
requested concurrently on the same data region in the
document.

Moreover, to support concurrent editing on the same
document by multiple users, our locking scheme is fine-
grained at the level down to individual characters in a
document. In our locking scheme, users are allowed to
place locks on any region of an arbitrary size inside a
document, which is in contrast to coarse-grain locking on an
entire file or document in traditional file systems and many
collaborative systems. A special technical challenge in
supporting fine-grain locking is how to maintain locking
status consistency across all collaborating sites in the face of
concurrent locking and editing operations.

In this paper, we will discuss the special technical issues
and solutions involved in supporting optional and respon-
sive fine-grain locking in Internet-based real-time colla-
borative text editing systems. The basic ideas of our work
on optional locking have been presented in an earlier
conference publication [23]. This paper is a significant
revision and extension of the earlier version. Additional
contributions in this paper include a new responsive
locking scheme combined with protocols for resolving
concurrent locking conflict (Section 4) and new algorithms
for locking permission check and for realizing the new
conflict resolution protocols (Section 6).

The rest of this paper is organized as follows: First, some
basic concepts and definitions in collaborative text editing
are introduced in Section 2. Next, the role of locking in
maintaining two different classes of consistency in colla-
borative editing systems is examined in Section 3. A
responsive locking scheme combined with protocols for
resolving locking conflict is proposed and discussed in
Section 4. Special technical issues and solutions involved in
achieving consistent fine-grain locking are discussed in

Section 5. Algorithms for realizing the responsive fine-grain
locking scheme are presented in Section 6. The proposed
locking scheme is compared to the traditional and alter-
native locking schemes in Section 7. Finally, major con-
tributions and future work of our research are presented in
Section 8.

2 BASICS IN COLLABORATIVE TEXT EDITING

2.1 A Text Document Data Model

A text document (with no formatting) is modeled by a
sequence of characters, referred to from 0 to the end of the
document. Each primitive editing/locking operation on the
document has one position parameter which specifies the
absolute position in the document at which the operation is
to be performed.

It should be pointed out that the above text document
data model is just a conceptual view of the text document
and it does not dictate the actual data structure which is
used to implement the document state. This conceptual data
model could be implemented in various different internal
data structures, such as a single array of characters, the
linked-list structures, the buffer-gap structure, and virtual-
memory blocks [25].

2.2 Primitive Operations

The document state can only be changed by executing the
following two primitive editing operations:

1. Insert½S; P �, which inserts string S at position P .
2. Delete½N;P �, which deletes N characters starting

from position P .

It has been shown that practical text editing systems, such
as vi and Emacs, can be implemented on top of these two
primitives [10], [19], [21], [25]. It is assumed that each
collaborating site maintains a History Buffer (HB) to keep
track of all executed operations at that site. The current
document state can be uniquely determined by applying
the sequence of operations in the HB on the initial
document state.

In addition to editing operations, the following two fine-
grain locking operations may also be generated to lock or
unlock any region of an arbitrary length in the document:

1. Lock½N;P �, which locks a region with N characters
starting from position P .

2. Unlock½N;P �; which unlocks a region with N
characters starting from position P .

It is assumed that each collaborating site maintains a
Locking Table (LT) to keep track of executed Lock operations
at that site. All entries in the LT together represent the
current locking status of the document at that site.

2.3 Operation Relationship

Both editing and locking operations can be generated and
executed in arbitrary orders in a collaborative editing
environment. Following Lamport [11], the causal ordering
relationship among all operations is defined in terms of
their generation and execution sequences as follows:

Definition 1 (Causal ordering relation “! ”). Given two
operations Oa and Ob, generated at sites i and j, then Oa !

SUN: OPTIONAL AND RESPONSIVE FINE-GRAIN LOCKING IN INTERNET-BASED COLLABORATIVE SYSTEMS 995

Ob iff: 1) i ¼ j and the generation of Oa happened before the
generation of Ob or 2) i 6¼ j and the execution of Oa at site j
happened before the generation of Ob or 3) there exists an
operation Ox, such that Oa ! Ox and Ox ! Ob.

Definition 2 (Dependent and independent operations).

Given any two operations Oa and Ob. 1) Ob is dependent on
Oa iff Oa ! Ob. 2) Oa and Ob are independent (or
concurrent), expressed as Oa k Ob, iff neither Oa ! Ob nor
Ob ! Oa.

To illustrate, consider a real-time collaborative editing
session with three sites, as shown in the time-space graph of
Fig. 1. Three operations are generated in this scenario:
operation O1 generated at site 0 and operations O2 and O3

generated at site 1. An operation is first executed on the
local replica, then propagated to remote sites and executed
there upon their arrival. The communication channel
between any pair of sites is assumed to be reliable and
order-preserving. The arrows in the graph represent the
propagation of operations from the local site to remote sites.
Each vertical line in the graph represents the activities
performed by the corresponding site. At site 1, for example,
O2 is executed first, followed by O1 and O3.

According to Definitions 1 and 2, there are two pairs of
dependent operations in this scenario: O1 ! O3 because the
execution of O1 happens before the generation of O3, and
O2 ! O3 because the generation of O2 happens before the
generation of O3. Moreover, there is one pair of indepen-
dent operations in this scenario: O1 k O2 since neither O1

nor O2 has been executed before the generation of the other
operation.

3 THE ROLE OF LOCKING IN CONSISTENCY

MAINTENANCE

There exist two classes of consistency in collaborative
editing systems [22]: One is syntactic consistency, which is
concerned with whether all sites have the same view of the
shared document, regardless of whether the common view
makes sense or not in the application context; and the other
is semantic consistency, which is concerned with whether
the common view of the shared document makes sense or

not in the application context. A common misconception
about locking in collaborative editing research literature is
that locking can be used to maintain both classes of
consistency. In this section, we explain why this is a
misconception by examining the role of locking in main-
taining these two different classes of consistency.

3.1 Syntactic Inconsistency Problems

In [21], three syntactic inconsistency problems—divergence,
causality-violation, and intention-violation—have been
identified. In this section, we will illustrate and explain
why locking is not able to resolve any of them.

3.1.1 Divergence Problem

In a collaborative editing session, operations may arrive and
be executed at different sites in different orders, resulting in
divergent final results. As shown in Fig. 1, the three
operations in this scenario are executed in the following
orders: O1, O2, and O3 at site 0; O2, O1, and O3 at site 1; and
O2, O3, and O1 at site 2. If operations are not commutative
(as in text editing), final editing results would not be
identical among collaborating sites.

Since divergence is independent of whether or not
editing operations refer to the same text region, locking is
not able to resolve this problem (unless the granularity of
locking is the whole document, thus prohibiting concur-
rency in the system). The following example is to illustrate
this point.

Consider the scenario in Fig. 1. Suppose site 0 has
initially placed a lock on the region covering four characters
“ABCD” (which means only site 0 is allowed to delete any
of these four characters and to insert any new characters in
this region) and site 1 has initially placed a lock on the
region covering another four characters “EFGH.” Let
O1 ¼ Insert½ 00100; 1�, which is to insert the character “1” at
position 1 (within the region of the lock owned by site 0);
O2 ¼ Delete½1; 7�, which is to delete one character at
position 7 (within the region of the lock owned by site 1);
and O3 ¼ Insert½ 003 00; 7�, which is to insert the character “3”
at position 7 (also within the region of the lock owned by
site 1) in the document after executing both O1 and O2. The
execution steps at each site are as follows:

At site 0: O1 is executed first and the document becomes:
“A1BCDEFGH.” When O2 arrives, it will delete the
character “G” at position 7 (which is within the region of
the lock owned by site 1) so the document becomes:
“A1BCDEFH.” When O3 arrives and inserts “3” at
position 7 (which is also within the region of the lock
owned by site 1), the final document becomes:

00A1BCDEF3H: 00

At site 1: O2 is executed first and the document becomes:
“ABCDEFG.” When O1 arrives, it will insert “1” at
position 1 (which is within the region of the lock owned
by site 0) and the document becomes: “A1BCDEFG.”
After O3 is generated and executed, the final document
becomes:

00A1BCDEF3G: 00

996 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 9, SEPTEMBER 2002

Fig. 1. A scenario of a real-time collaborative editing session. The initial

document contains a string of characters “ABCDEFGH” and is replicated

at all sites.

At site 2: O2 arrives and is executed first so the document
becomes: “ABCDEFG.” When O3 arrives, it will insert
“3” at position 7 (which is within the region of the lock
owned by site 1) and the document becomes: “ABC-
DEFG3.” When O1 arrives, it will insert “1” at position 1
(which is within the region of the lock owned by site 0)
and the final document becomes:

00A1BCDEFG3:00

It is clear that no locking-violation has ever occurred in
any step of the above execution process, i.e., every editing
operation has been executed within a locking region owned
by the corresponding site. Locking, however, has not
prevented divergence from happening in this example—the
final document states at different sites are not identical.

The divergence problem can be resolved by any serial-
ization protocol, which ensures the final result is the same
as if all operations were executed in the same order at all
sites [21] or by operational transformation [5], [22], which
ensures the execution of properly transformed operations in
arbitrary orders produces identical results.

3.1.2 Causality Violation Problem

Since each collaborating site generates and broadcasts
operations without synchronization, operations may arrive
and be executed in an order different from their causal
order.

As shown in Fig. 1, operation O3 is generated after the
execution of O1 at site 1, so O1 ! O3. However, since O3

arrives at site 2 before O1, the execution of O3 before O1 may
result in either an undefined operation O3, which refers to a
nonexistent context to be created by O1, or a confused user
at site 2, who observes the effect in O3 before observing the
cause in O1.

Clearly, causality violation is only related to operation
ordering and has nothing to do with whether or not
operations refer to the same text region, hence locking is not
able to resolve causality violation either. As reported in [21],
the causality violation problem can be solved by selectively
delaying the execution of some operations to enforce a
causally ordered execution based on vector logical clock
timestamps [18].

3.1.3 Intention Violation Problem

Due to the concurrent generation of operations, the actual
effect of an operation at the time of its execution may be
different from the originally intended effect of this operation
at the time of its generation.

As shown in Fig. 1, operations O1 and O2 are generated
without any knowledge of each other, so O1 k O2. At site 0,
O2 is executed on a document state which has been changed
by the preceding execution of O1. Therefore, the subsequent
execution of O2 may refer to an incorrect position in the new
document state and result in an editing effect different from
the O2’s intention, which is defined as the editing effect
achieved by applying O2 on the document state from which
O2 was generated [21].

To illustrate, consider the same scenario and operations
as used in the example in Section 3.1.1. After the execution
of O1 at site 0, the independent operation O2 arrives and

will delete the character at position 7, which is currently
“G,” rather than “H” as it was originally. Clearly, the
deletion effect violates the original intention of operation O2

(to delete “H”). As explained in Section 3.1.1, locks had
been imposed on the document, but the intention violated
result could not be prevented.

It should be pointed out that intention violation is an
inconsistency problem of a different nature from the
divergence problem. The essential difference between
divergence and intention violation is that the former can
always be resolved by a serialization protocol, but the latter
cannot be fixed by any serialization protocol if operations
were always executed in their original forms. The only
known solution to intention violation is operational
transformation, which adjusts an operation’s parameters
according to the impact of previously executed independent
operations on the document state, so that the execution of
the transformed operation preserves its intention.

By applying the transformation algorithms in [21] to the
previous example, O2 should be transformed against the
independent operation O1 and becomes O0

2 ¼ Delete½1; 8� at
site 0. The execution of O1, O0

2, and O3 at site 0 will result in
a final document state “A1BCDEF3G,” which clearly
preserves the intentions of all operations.

In summary, locking is unable to solve anyone of the
three syntactic inconsistency problems. The only known
solution to all three problems is operational transformation
(integrated with a causality-preserving scheme). The reader
is referred to [21] for a consistency model with properties of
Convergence, Causality-preservation, and Intention-preservation
(CCI) and an operational transformation approach to
supporting this model.

3.2 Semantic Inconsistency Problems

There is another class of inconsistency problems, which
could not be resolved by operational transformation, but
could be resolved by locking.

To illustrate, consider a shared document with the
following text:

“Transformation preserve operation intention.”

In this text, there is an English grammar error (indicated
by the underlined text), i.e., the underlined text should be
“can preserve,” or “preserves” or the like. Assume that two
users observed the error and wanted to correct it in two
different ways: One user issues an operation to insert “can”
at the starting position of “preserve,” while another user
issues a concurrent operation to insert “s” at the ending
position of “preserve.” Suppose the editing system has used
the operational transformation technique to ensure the CCI
properties. Then, after the execution of these two indepen-
dent operations at all sites, the text would be:

“Transformation can preserves operation intention.”

From a syntactic consistency point of view, this result is
correct since all sites have the same document contents and
the intended effects of both operations have been achieved.
This result is, however, semantically incorrect from the
point of view of English grammar. In other words,
operational transformation is able to ensure plain strings
will be inserted/deleted at proper positions, even though
these strings may not make a correct English sentence—a

SUN: OPTIONAL AND RESPONSIVE FINE-GRAIN LOCKING IN INTERNET-BASED COLLABORATIVE SYSTEMS 997

semantic inconsistency problem which generally cannot be
automatically resolved without the intervention of human
users.

However, if the users are provided with locking facilities
to enforce mutual exclusion over specific regions (e.g., an
English word, a statement, or a section, etc.), then either one
of the two users could obtain an exclusive lock on the whole
statement before modifying it and the final text would be
either:

“Transformation preserves operation intentions”

or:

“Transformation can preserve operation intention,”

which apparently ensures the semantic consistency in terms
of English grammar.

In general, by allowing only one user at a time to update
a text region, locking can resolve semantic inconsistency
problems because it prevents concurrent conflicting opera-
tions from updating the same region.

From the above discussion, it is clear that operational
transformation and locking could play complementary roles
in consistency maintenance in collaborative text editors:
Operational transformation can be used to achieve the
syntactic consistency characterized by CCI properties,
whereas locking can be used to maintain data integrity by
enforcing mutual exclusion over specific text regions. It was
this recognition of their complementary roles that moti-
vated our work on integrating a locking scheme with
operation transformation for maintaining both syntactic and
semantic consistency in collaborative editors. Moreover,
since locking has no role to play for maintaining syntactic
consistency and is not needed for maintaining semantic
consistency when users are editing different regions of the
same document most of the time, we decided to make
locking optional in our system.

4 RESPONSIVE LOCKING AND CONFLICT

RESOLUTION

The high responsiveness of our locking scheme is based on
the notion of tentative lock: When a user requests a lock on
an (unlocked) region, she/he is immediately granted a
tentative lock so that she/he can edit the region without
being blocked. A tentative lock will eventually become
committed or aborted. When it is committed, its owner is then
guaranteed to have an exclusive right to the region. When it
is aborted, its owner will not be allowed to continue editing
the region. The period between when a tentative lock is
granted and when the tentative lock becomes committed/
aborted is called the transition period.

A direct consequence of achieving high responsiveness
by tentative locks is that locking conflict may occur when
multiple users try to lock overlapping regions concurrently.
Initially, all users are granted with tentative locks. How-
ever, the underlying locking system must ensure that only
one of the tentative locks will eventually gain an exclusive
updating right to the region (i.e., become committed) and
the rest will be aborted. So, there is an issue of determining
which tentative lock to commit at all sites in a consistent
manner. In addition, at the time of locking commitment,

there is an issue of how to deal with the concurrent updates

on the same region made by multiple users during the

transition period. In this section, two different conflict

resolution protocols will be proposed for determining

which concurrent locking operation will win when there

is a conflict and one strategy is proposed for handling

concurrent updates during the transition period.

4.1 A Distributed Protocol

The basic distributed conflict resolution protocol is defined

below.

Definition 3 (Basic Distributed Conflict Resolution

Protocol).

1. When a Lock operation is generated at a local site:

a. If the region has been locked, then the new Lock
operation will be rejected.

b. Otherwise, a tentative lock will be granted and the
new Lock operation will be propagated to all other
remote sites.

2. When a Lock operation arrives at a remote site:

a. If the region is unlocked, then the new Lock
operation will be accepted.

b. If the region is locked but the new Lock operation
has a higher priority than the existing lock, then
the new operation will take over the existing lock.
Otherwise, the new operation will be rejected.

There are many ways of determining the priority of

concurrent locking operations. For example, the priority can

be simply defined by means of the site identifiers of locking

operations: A locking operation with a smaller site identifier

has a higher priority than another concurrent operation

with a larger site identifier. However, this simple way of

defining priority is not fair to all collaborating sites since it

statically assigns higher priorities to collaborating sites with

smaller site identifiers. A more fair and dynamic way of

determining the priority is to use the total ordering “) ”

relationship among all operations, which can be defined by

a linear logical clock [11], [20] or by a vector logical clock

[21]. For any two concurrent locking operations, Oa and Ob,

if Oa) Ob, then Oa has a higher priority than Ob.
Since a locking region may have an arbitrary length, the

overlapping relationship among concurrent locking opera-

tions can be arbitrary as well. Moreover, concurrent locking

operations may be executed in arbitrary orders at different

sites. The arbitrary overlapping relationship and arbitrary

execution orders of concurrent locking operations can cause

inconsistency in the final locking status of the document at

different sites.
To illustrate, consider three concurrent operations,

O1 k O2 k O3, which are trying to lock three regions with

overlapping relationships as follows:

00ABCD
|fflffl{zfflffl}

O1

E FG
|{z}

O3

H

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

O2

00;

998 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 9, SEPTEMBER 2002

which means O1 locks “BCD,” O3 locks “FG,” and O2

locks “ABCDEFGH.” Furthermore, it is assumed that

O1) O2) O3.
At one site, these three operations may be executed in the

order of O1, O2, and O3. First, O1 is accepted. Second, O2 is

rejected since its region overlaps with O1 and O1) O2.

Third, O3 is accepted since its region does not overlap with

the accepted O1. So, the final locking status of the document

at this site should look like:

00ABCD
|fflffl{zfflffl}

O1

E FG
|{z}

O3

H:00

At another site, however, these three operations may be

executed in a different order: O2, O3, and O1. First, O2 is

accepted. Second, O3 is rejected since its region overlaps

with O2 and O2) O3. Third, O1 takes over O2 since its

region overlaps with O2 and O1) O2. In this case, the final

locking status of the document at this site would look like:

00ABCD
|fflffl{zfflffl}

O1

EFGH: 00

Clearly, the final locking status at these two sites is
inconsistent. One way of resolving this inconsistency is to
ensure that the final locking status of the document at all
sites will be the same as if all concurrent operations were
executed in the order of their priority, regardless of their
arbitrary execution orders at different sites. This locking
effect is called the serialized locking effect. To achieve the
serialized locking effect, we need to keep track of all
executed locking operations, accepted, or rejected in the
internal locking table LT at each site. When a remote Lock
operation arrives at a site, it is checked against accepted
operations in the LT with a higher priority than the new
operation to see whether the new operation is overlapping
with any of them. If yes, the new operation is rejected (but
still recorded in the LT). Otherwise, the new operation is
accepted and all operations in the LT with a lower priority
will be reassessed for acceptance or rejection. More
precisely, the extended distributed conflict resolution
protocol is defined below.

Definition 4 (Extended Distributed Conflict Resolution

Protocol).

1. When a Lock operation is generated at a local site:

a. If the region has been locked, then the new Lock
operation will be rejected.

b. Otherwise, a tentative lock will be granted and the
new Lock operation will be propagated to all other
remote sites.

2. When a Lock operation arrives at a remote site:

a. If the region is locked by an operation with a
higher priority than the new operation, then the
new operation is rejected, but recorded in the LT.

b. Otherwise, the new operation is accepted and all
operations in the LT with a lower priority than the
new operation are reassessed for acceptance or
rejection one by one in the order of their priority,
taking into account the effect of the new operation.

To illustrate how the extended distributed conflict
resolution protocol works, consider a system with three
fully connected collaborating sites, as shown in Fig. 2.
Suppose three concurrent locking operations, O1, O2, and
O3, are generated by the three sites, respectively. Assume
O1) O2) O3 and O2 overlaps with both O1 and O3, but
O1 and O3 do not overlap, which is similar to the previous
example.

At site 1, the execution order is: O1, O2, and O3. A
tentative lock for O1 is first granted and then O1 is
propagated to sites 2 and 3. When O2 arrives, it will be
rejected since its region overlaps with O1 and O1) O2.
When O3 arrives, it will be accepted since its region does
not overlap with the accepted O1.

At site 2, the execution order is: O2, O3, and O1. A
tentative lock for O2 is first granted and then O2 is
propagated to sites 1 and 3. When O3 arrives, it will be
rejected since its region overlaps with O2 and O2) O3, but
O3 is still recorded in the LT. When O1 arrives, it will be
accepted since no operation with a higher priority overlaps
with O1. Then, operations with lower priorities—the
accepted O2 and the rejected O3—in the LT will be
reassessed in the presence of O1: O2 will be rejected since
its region overlaps with O1 and O3 will be accepted since its
region does not overlap with the accepted O1.

At site 3, the execution order is: O3, O2, and O1. A
tentative lock for O3 is first granted and then O3 is
propagated to sites 1 and 2. When O2 arrives, it will take
over O3 since it overlaps with O3 and O2) O3. When O1

arrives, it will be accepted since its region does not overlap
with any operation with a higher priority. Then, operations
with lower priorities—the accepted O2 and the rejected
O3—in the LT will be reassessed in the presence of O1: O2

will be rejected since its region overlaps with O1 and O3 will
be accepted since its region does not overlap with the
accepted O1.

After executing three operations at all sites, the final
locking status of the document at all sites is consistent: O1

and O3 were accepted and O2 was rejected.
There are two important points related to the distributed

protocol which should be pointed out explicitly. First, a
tentative lock may be temporarily rejected during its
transition period. For example, at site 3 in Fig. 2, O3 was
first accepted, then rejected due to the acceptance of O2, and
finally reaccepted due to the acceptance of O1 and the

SUN: OPTIONAL AND RESPONSIVE FINE-GRAIN LOCKING IN INTERNET-BASED COLLABORATIVE SYSTEMS 999

Fig. 2. A scenario of distributed conflict resolution protocol.

rejection of O2. Although this accept-reject-accept phenomena
does not have impact on the final locking status of the
document, it does have an impact on the user interface since
the user issuing O3 may temporarily be prohibited from
updating the region associated with O3, which may cause
confusion to this user. Second, if there were one additional
collaborating site x in Fig. 2 and if this site did not generate
any operation, after executing the three operations at all
sites, all sites (except site x) would not be able to know
whether the locks imposed by O1 and O3 had been
committed since they did not know whether site x had
generated any concurrent and overlapping operation with a
higher priority. Only after these sites had received a status
updating message from site x could they be confirmed as to
the commitment of locks imposed by O1 and O3. If speedy
confirmation of the commitment/abortion of a tentative
lock is needed, the distributed conflict resolution protocol
has to require every site to broadcast an acknowledgment
message after receiving a locking operation (if this site has
not broadcast any operation which is concurrent with the
received locking operation).

For the system with three sites in Fig. 2, two messages are

needed for processing each locking operation. In general, for a

system of N collaborating sites, the distributed conflict

resolution protocol needs N 	 1 messages for processing a

locking operation without speedy confirmation of commit-

ment or abortion or ðN 	 1Þ � ðN 	 1Þmessages (in the worst

case) for processing a locking operation with speedy

confirmation of commitment or abortion. The (worst case)

length of transition period for a tentative lock to become

committed or aborted equals the round-trip time for a locking

operation to travel from its generating site to the most distant

remote site and vice versa.

4.2 A Coordinator-Based Protocol

Alternatively, locking conflict resolution can be based on the

use of a centralized locking coordinator, which may be a

dedicated site or a site elected from one of theN collaborating

sites. The coordinator-based conflict resolution protocol is

defined below.

Definition 5 (Coordinator-Based Conflict Resolution

Protocol).

1. When a Lock operation is generated at a local site:

a. If the region has been locked, then the new Lock
operation will be rejected.

b. Otherwise, a tentative lock will be granted and the
new Lock operation will be sent to the coordinator
site.

2. When a Lock operation from a collaborating site
arrives at the coordinator site:

a. If the region has been locked, then the remote
operation will be rejected.

b. Otherwise, the remote operation will be accepted
and broadcast to all collaborating sites (including
the site from which the operation came).

3. When a Lock operation from the coordinator site
arrives at a collaborating site, it is always accepted as a
committed lock. Moreover, any operation in the LT

which is overlapping with the newly committed lock
should be removed.

Under the coordinator-based protocol, when multiple
concurrent and overlapping locking operations are gener-
ated, the operation first arriving the coordinator will win. In
other words, the final locking effect for a group of
arbitrarily overlapping and concurrent locking operations
is defined by the order in which they arrive at the
coordinator.

To illustrate how the coordinator-based conflict resolu-
tion protocol works, consider a system with three collabor-
ating sites, with site 3 being the locking coordinator, as
shown in Fig. 3. Suppose three concurrent locking opera-
tions, O1, O2, and O3, are generated by these three sites,
respectively. Assume O2 overlaps with both O1 and O3, but
O1 and O3 do not overlap, which is similar to the scenario in
Fig. 2. Moreover, it is assumed that these three operations
arrive at the coordinator in the order of O3, O2, and O1.

At the coordinator site, O3 is local and will be the first
one accepted and broadcast to sites 1 and 2. When O2

arrives, it will be rejected and not broadcast to any site since
it overlaps with the committed O3. When O1 arrives, it will
be accepted, committed, and broadcast to sites 1 and 2 since
it does not overlap with the committed O3.

At site 1, a tentative lock for O1 is first granted and then
O1 is sent to the coordinator. When O3 arrives at site 1, it
will be simply accepted and committed. When O1 arrives at
site 1, the tentative lock imposed by O1 will become
committed.

At site 2, a tentative lock for O2 is first granted and then
O2 is sent to the coordinator. When O3 arrives, it will be
accepted as a committed lock. Moreover, the tentative lock
imposed by O2 will be aborted since it overlaps with the
committed lock imposed by O3. When O1 arrives, it will
simply be accepted and committed.

At the end of this scenario, all three sites have the same
two locks imposed by O1 and O3. In addition, all sites have
been confirmed as to the commitment of these two locks. In
this scenario, three messages are used for processing and
confirming a committed lock and one message is used for
processing an aborted lock (O2). There is no need for
additional acknowledge messages for confirming locking
commitment or abortion.

In general, for a system of N sites, the coordinator-based
conflict resolution protocol needs N messages for proces-
sing and confirming a committed lock and only one

1000 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 9, SEPTEMBER 2002

Fig. 3. A scenario for coordinator-based conflict resolution protocol.

message for processing an aborted lock. The (worst-case)
length of transition period for a tentative lock to become
committed or aborted is equal to the round-trip time for a
locking operation to travel from its generating site to the
coordinator site and vice versa.

Compared to the distributed protocol, the coordinator-
based protocol needs a smaller total number of messages for
processing and confirming each locking operation (N
versus ðN 	 1Þ � ðN 	 1Þ). The coordinator needs to receive
and broadcast almost the same number of locking opera-
tions as a normal collaborating site would do in the
distributed protocol, but the coordinator uses a simpler
algorithm to check the acceptance or rejection of a new
locking operation. So, the work load performed by the
coordinator is less than a normal collaborating site in the
distributed protocol. Finally, a tentative lock stays in the
accepted mode until it becomes committed or aborted in the
coordinator-based protocol, whereas a tentative lock may
go through an accept-reject-accept process in the distributed
protocol. Because of the above considerations and because
of the availability of an existing central server in our web-
based collaborative environment, the coordinator-based
protocol has been adopted and implemented in our web-
based prototype system.

4.3 Strategies for Handling Concurrent Updates

During the transition period, there may exist multiple
tentative locks on the same region and multiple users may
update the same region concurrently. At the time of
committing a tentative lock, if the region has been updated
by multiple users, which user’s updates should be retained
and which one’s should be undone?

One possibility is to undo all concurrent updates made
by all users during the transition period. The problem with
this strategy is that all work done during the transition
period gets lost due to concurrency, which is too con-
servative since concurrency does not necessarily cause
inconsistency.

Another possibility is to retain the updates made by the
user whose tentative lock has become committed and to
undo concurrent updates made by other users whose
tentative locks have been aborted, which is the strategy
taken by some existing optimistic locking schemes [7], [8].
The problem with this strategy is that some users’ work gets
lost due to concurrent updates and users cannot see what
other users have done during the transition period, thus
losing important hints about users’ intentions, which can be
useful in deciding what to do next in the collaboration
process.

The final possibility is to retain all concurrent updates
made by all the users during the transition period and to
give the user with a committed lock the choice to undo or
retain the updates by other users. This is the strategy taken
by our system. The arguments for this strategy are:

1. It ensures the work done by a user is never
distroyed by concurrent operations from other
users, which is one important requirement for
intention preservation [21] and

2. It provides users with a complete picture about what
others intended to do so that they can make a better
assessment of the situation and decide what to do
next.

For example, the user with a committed lock may decide to
use the system-provided undo facility [24] to undo any
update performed during the transition period or to keep
all updates if that is desired.

In general, we advocate a design principle for collabora-
tive systems: In case of conflict (caused by concurrency), it
is usually better to preserve all users’ work to facilitate a
user-decided solution to the conflict, rather than to destroy
some users’ work to impose a system-decided solution to
the conflict. Conflicts among collaborative users are better
understood and resolved by these users if the system can
provide explicit information about all users’ actions and
suitable undo facilities to support error recovery.

5 CONSISTENT FINE-GRAIN LOCKING BY

OPERATIONAL TRANSFORMATION

Fine-grain locking operations are similar to editing opera-
tions in their way of representing a locking/editing region
by means of its starting position and its length (see
Section 2.2). Similar syntactic inconsistency problems which
occur to editing operation, may also occur to locking
operations. Therefore, there is an issue of consistency
maintenance for locking operations in the system. In this
section, we will show how operational transformation can
be extended to support consistent fine-grain locking.

To illustrate inconsistency problems and solutions under
the circumstance of mixed locking and editing operations,
we assume that editing operations are transformed before
their executions, but locking operations are always executed
in their original forms.

5.1 Problems and Solutions

5.1.1 Preserving Locking Causality

When locking operations are mixed with editing operations
in the system, their causal ordering must also be respected.
Otherwise, problems may occur.

To illustrate, consider the scenario in Fig. 1. Let

O1 ¼ Insert½ 001234;00 0�;

O2 ¼ Delete½4; 4� (to delete “EFGH”), and O3 ¼ Lock½8; 0� (to
lock “1234ABCD”). At site 2, after executing O2, the
document state becomes:“EFGH.” Since O3 arrives at site 2
before O1, O3 will try to lock eight characters in the
document which has only four characters at the moment!

Clearly, this problem has the same symptom as the
causality violation problem for editing operations and,
hence, can be resolved by using the same causality
preserving scheme based on vector logical clocks [3], [18].
Therefore, the solution is to timestamp locking operations
by vector logical clocks and to execute locking operations
only when they are causally ready. For this particular
example, the properly timestamped O3 will be suspended
until O1 has arrived and been executed at site 2.

5.1.2 Preserving Locking Intentions

When a locking operation is generated concurrently with
editing operations, the actual effect of this locking operation
at the time of its execution may not be the same as the
intended effect at the time of its generation.

SUN: OPTIONAL AND RESPONSIVE FINE-GRAIN LOCKING IN INTERNET-BASED COLLABORATIVE SYSTEMS 1001

To illustrate, consider again the scenario in Fig. 1. Let

O1 ¼ Lock½6; 1�, which intends to lock the region beginning

at position 1 and covers six characters “BCDEFG,” as

indicated below:1

00BCDEFG
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

R½s0;6;1�

H 00;

O2 ¼ Insert½ 00123; 00 0�, which is to insert three characters

“123” at position 0; and O3 ¼ Delete½1; 2�, which is to delete

one character “3” at position 2. At site 1, O2 is executed first,

and the document becomes: “123ABCDEFGH.” Then, O1

arrives and is executed in its original form. So, the

document locking status becomes:

00 123ABCD
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

R½s0;6;1�

EFGH;00

which obviously violates the intention of O1, which is to

lock the region covering “BCDEFG,” rather than

“23ABCD.” After that, when O3 is generated to delete

character “3” at position 2, it will fail because character “3”

is currently being locked by site 0!

Clearly, this problem has the same symptom as the

intention-violation problem for editing operations and,

hence, can also be resolved by the same operational

transformation technique. Therefore, the solution is to

apply transformation on locking operations before execut-

ing them. For this particular example, when the locking

operation O1 arrives, it should be transformed against the

concurrent editing operation O2 and becomes O0
1 ¼

Lock½6; 4� (see Section 5.2.1 for the definition of the

transformation function). The execution of O0
1 will result

in the following document locking status:

00123ABCDEFG
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

R½s0;6;4�

H;00

which preserves the intention of O1.

5.1.3 Dealing with Concurrent and Overlapping Locking

and Editing Operations

Since locking is optional, an editing operation may fall into

the locking region of a concurrent locking operation. For

example, consider the scenario in Fig. 1. Let O1 ¼ Lock½6; 1�,
and O2 ¼ Insert½ 00123;00 2�. Clearly, the insertion position of

O2 falls in the locking region covered by O1. Then, after

executing both O1 and O2, what is the document content

and locking status?
One possible scheme of dealing with this situation is to

treat locking operations as more privileged than editing

operations by prohibiting (or undoing) the execution of

concurrent overlapping editing operations. In the above

example, O2 will either be prohibited from being executed

at site 0 or be undone at site 1 and 2. In this scheme, an

editing operation may fail due to its region overlapping

with a concurrent locking operation.

Another possible scheme is to treat concurrent locking
and editing operations equally by accommodating the
effects of both: The locking region will expand or shrink
to accommodate the effects of concurrent editing opera-
tions. In the above example, after executing both O1 and O2,
the locking region of O1 will be expanded to cover the
characters inserted by O2 and the document content and
locking status will become:

00AB123CDEFG
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

R½s0;9;1�

H:00

Following the general principle that when there is a
conflict (due to concurrency), it is better to preserve the
effects of all operations (see Section 4.3), the second scheme
has been chosen for our system. One additional advantage
of choosing the second scheme is that it can be supported by
using the same operation transformation technique (see
Section 5.2) for supporting intention preservation.

5.1.4 Adjusting Locking Regions after Editing

A locking region may be changed not only by concurrent
editing operations, but also by subsequent editing opera-
tions under the following circumstances:

1. When a subsequent insertion or deletion operation is
performed within a locked region, the locked region
will expand or shrink.

2. When a subsequent insertion or deletion operation is
performed on the left side of a locked region, the
locked region may shift to right or left.

Therefore, a Locking Region Adjustment (LRA) scheme is
needed to adjust existing locking regions after executing
every editing operation.

For example, suppose the current document locking
status is as follows:

00ABCDEF
|fflfflfflfflffl{zfflfflfflfflffl}

R½s0;5;1�

GH IJKLMNO
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

R½s1;7;8�

PRSTUVWX
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

R½s2;6;17�

Y Z;00

where three users have locked three different regions of the
document. Suppose the user at site 1 issues a new editing
operation Insert½ 001200; 11� to insert string “12” at position
11, which is within the region locked by this user. After
executing this editing operation, the locking region owned
by site 1 should expand to cover the two new characters,
and the locking region owned by site 2 should be shifted to
the right by two positions, but the locking region owned by
site 0 remains unchanged, as shown below:

00ABCDEF
|fflfflfflfflffl{zfflfflfflfflffl}

R½s0;5;1�

GH IJK12LMNO
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

R½s1;9;8�

PRSTUVWX
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

R½s2;6;19�

Y Z:00

The adjustment of a locking region with respect to a
subsequent editing operation is essentially the same as the
transformation of a locking operation against an editing
operation. Therefore, the LRA scheme in our system will be
realized by using the same functions devised for locking
operation transformation (to be described in Section 5.2.1).

Moreover, locking regions may also need adjustment
after executing a Lock operation that overlaps with existing
locked regions belonging to the same user. When this

1002 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 9, SEPTEMBER 2002

1. The brace under a text region represents a locked region labeled by
R½si; N; P �, where si is the identifier of the site which owns this region, N is
the length of the region, and P is the starting position of the region.

happens, existing locked regions may be merged into a
bigger new region.

For example, suppose the current document locking
status is as follows:

00ABCDEF
|fflfflfflfflffl{zfflfflfflfflffl}

R½s1;5;1�

GH IJKLMNO
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

R½s1;7;8�

PRSTUVWX
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

R½s2;6;17�

Y Z:00

Suppose the user at site 1 issues a new operation Lock½11; 0�
to lock a region starting from position 0 and covering
11 characters. Clearly, the locking region of this new

operation overlaps with two existing locking regions owned
by the same user. Therefore, after executing this new
locking operation, the two existing regions will be merged
into one bigger region and the locking status of the

document becomes:

00ABCDEFGHIJKLMNO
|ffl{zffl}

R½s1;15;0�

PRSTUVWX
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

R½s2;6;17�

Y Z:00

To unlock a locked region, a user only needs to place
her/his curser at any position in that region and then click

the unlock button at the interface. The region of an Unlock

operation is always equal to an existing locked region.

5.2 Locking Operation Transformation

In this section, we discuss the extension of operational
transformation to support consistent fine-grain locking.

5.2.1 Transformation Functions

Types of transformation functions. To support editing
operations transformation, two types of transformation

functions—inclusion and exclusion—have been defined in
[21]. The inclusion transformation (IT) function transforms
operation Oa against operation Ob in such a way that the

impact of Ob is effectively included. The exclusion trans-
formation (ET) function transforms Oa against Ob in such a
way that the impact of Ob is effectively excluded. The ET
and IT functions are reversible in the sense that if

O0
a ¼ IT ðOa;ObÞ, then it must be that Oa ¼ ET ðO0

a; ObÞ.
Since there is never a need to apply exclusion transfor-

mations on a locking operation against an editing operation
in the HB, we only need to define inclusion transformation

functions between locking and editing operations. More-
over, since executed locking operations are not saved in the
HB and do not change the contents of the document, there is

never a need to transform an editing operation against a
locking operation. Therefore, we only need to define
functions for transforming locking operations against

editing operations. Finally, since the transformation strate-
gies for both Lock and Unlock operations are essentially the
same, the following discussion will be confined to Lock

operation transformation functions only.
To facilitate the description of transformation functions,

the following notations are introduced:

1. P ðOÞ: the position parameter of operation O.
2. LðOÞ: the length of operation O. For Insert, it is the

the number of characters to be inserted. ForDelete, it
is the number of characters to be deleted. For Lock, it
is the number of characters to be locked.

Basic transformation strategy. To transform locking
operation Oa against editing operation Ob, the inclusion
transformation function applies the following transforma-
tion strategy:

1. compare the parameters of Oa and Ob to determine
the relationship of their operation regions;

2. assume that Ob has been executed to find Oa’s new
locking region in the changed document state; and

3. adjustOa’s parameters to produce a new operationO0
a,

according to the comparison result in Step 1 and the
impact of the assumed execution of Ob in Step 2.

Transforming Lock against Insert. IT LIðOa;ObÞ is
defined to apply the inclusion transformation to a Lock
operation Oa against an Insert operation Ob.

Function 1 IT LIðOa;ObÞ
{

if P ðObÞ
 P ðOaÞ þ LðOaÞ O0
a :¼ Oa;

else if P ðOaÞ > P ðObÞ
O0
a :¼ Lock½LðOaÞ; P ðOaÞ þ LðObÞ�;

else O0
a :¼ Lock½LðOaÞ þ LðObÞ; P ðOaÞ�;

return O0
a;

}

If Ob refers to a position which is to the right of the
locking region covered by Oa (i.e., P ðObÞ
 P ðOaÞ þ LðOaÞ),
then the execution of Ob must not have any impact on the
parameters of Oa. Therefore, no adjustment is made to Oa.
However, if Ob refers to a position which is to the left of the
locking region covered by Oa (i.e., P ðOaÞ > P ðObÞ), then the
execution of Ob must shift the locking region of Oa to the
right. Therefore, the position parameter of Oa is incremen-
ted by LðObÞ. The last case is that the insertion position of
Ob falls into the locking region covered by Oa, so the length
parameter of Oa is incremented by LðObÞ.

For example, suppose the initial document contains the
string “ABCDEF” and there are two concurrent opera-
tions Oa ¼ Lock½5; 1� (issued by site 0 to lock “BCDEF”)
and Ob ¼ Insert½ 00123;00 0�. If Ob is executed before Oa, Oa
should be transformed against Ob. The transformation
outcome will be O0

a ¼ IT LIðOa;ObÞ ¼ Lock½5; 4� since
ðP ðOaÞ ¼ 1Þ > ðP ðObÞ ¼ 0Þ. After executing Ob and O0

a,
the document state and locking status would be:

00123ABCDEF
|fflfflfflfflffl{zfflfflfflfflffl}

R½s0;5;4�

:00

Transforming Lock against Delete. IT LDðOa;ObÞ is
defined to apply the inclusion transformation to a Lock
operation Oa against a Delete operation Ob.

Function 2 IT LDðOa;ObÞ
{

if P ðObÞ
 ðP ðOaÞ þ LðOaÞÞ O0
a :¼ Oa;

else if P ðOaÞ
 ðP ðObÞ þ LðObÞÞ
O0
a :¼ Lock½LðOaÞ; P ðOaÞ 	 LðObÞ�;

else if P ðObÞ � P ðOaÞ and

ðP ðOaÞ þ LðOaÞÞ � ðP ðObÞ þ LðObÞÞ
O0
a :¼ Lock½0; P ðObÞ�;

else if P ðObÞ � P ðOaÞ and

ðP ðOaÞ þ LðOaÞÞ > ðP ðObÞ þ LðObÞÞ

SUN: OPTIONAL AND RESPONSIVE FINE-GRAIN LOCKING IN INTERNET-BASED COLLABORATIVE SYSTEMS 1003

O0
a :¼ Lock½P ðOaÞ þ LðOaÞ 	

ðP ðObÞ þ LðObÞÞ; P ðObÞ�;
else if P ðObÞ > P ðOaÞ and

ðP ðObÞ þ LðObÞÞ
 ðP ðOaÞ þ LðOaÞÞ
O0
a :¼ Lock½P ðObÞ 	 P ðOaÞ; P ðOaÞ�;

else O0
a :¼ Lock½LðOaÞ 	 LðObÞ; P ðOaÞ�;

return O0
a;

}

If Ob refers to a position which is to the right of the
locking region covered by Oa (i.e., P ðObÞ
 P ðOaÞ þ LðOaÞ),
then the execution of Ob must not have any impact on the
parameters of Oa. Therefore, no adjustment is made to Oa. If
Ob refers to a position which is to the left of the locking
region covered by Oa (i.e., P ðOaÞ
 P ðObÞ), then the
execution of Ob must shift the locking region of Oa to the
left. Therefore, the position parameter of Oa is decremented
by LðObÞ. If the locking region of Oa overlaps with the
deleting region of Ob (i.e., the last four cases in
IT LDðOa;ObÞ), the execution of Ob must remove the
overlapping region from the locking region of Oa. For the
special case that the locking region of Oa is completely
covered by the deleting region of Ob (i.e., P ðObÞ � P ðOaÞ
and ðP ðOaÞ þ LðOaÞÞ � ðP ðObÞ þ LðObÞÞ), the length of the
locking region of Oa will be reduced to zero.2

For example, suppose the initial document contains
the string “ABCDEF” and there are two concurrent
operations Oa ¼ Lock½6; 0� (issued by site 0 to lock all
six characters) and Ob ¼ Delete½2; 4� (to delete “EF”). If
Ob is executed before Oa, Oa should be transformed
against Ob. The transformation outcome will be O0

a ¼
IT LDðOa;ObÞ ¼ Lock½4; 0� s ince P ðObÞ > P ðOaÞ and
ðP ðObÞ þ LðObÞÞ
 ðP ðOaÞ þ LðOaÞÞ. After executing Ob
and O0

a in sequence, the document state and locking
status would be:

00ABCD
|fflfflfflffl{zfflfflfflffl}

R½s0;4;0�

:00

5.2.2 Transformation Control Algorithm

Under two circumstances, a locking operation needs to be
transformed against an executed editing operation. First,
when an editing operation has been executed, each locking
operation in the LT needs to be transformed against this
newly executed editing operation. Under this circumstance,
the IT LI and IT LD functions can be directly applied
between the locking operation and the new editing
operation. Second, when a remote locking operation
becomes causally ready for execution, it needs to be
transformed against executed concurrent editing operations
in the HB. In this case, simply applying the IT LI and
IT LD functions between the new locking operation and
concurrent editing operations in the HB may not always
produce the correct result due to the fact that concurrent

editing and locking operations may be generated and

defined on different document states.
To illustrate the problem, consider the scenario in Fig. 4:

The initial document contains the string “ABC”; site 0

generates operation O1 ¼ Insert½ 00xyz00; 1�; and site 1 in-

dependently generates operations O2 ¼ Insert½ 001234500; 0�
and O3 ¼ Lock½5; 0� in sequence. After executing these three

operations, the document content and locking status at both

sites should be:

00 1 2 3 4 5
|fflfflfflfflffl{zfflfflfflfflffl}

R½s1;5;0�

AxyzBC;00

which preserves the intentions of all three operations.
At site 1, O2 and O3 are executed in sequence. When O1

arrives, it is transformed against the concurrent editing

operation O2 to become O0
1 ¼ Insert½ 00xyz;00 6� since the

insertion position of O1 was at the right side of the insertion

position of O2. After the execution of all three operations,

site 1 has the correct final document state and locking

status, as shown in Fig. 4.
At site 0, however, the situation is different. After the

execution of O1, the document becomes: “AxyzBC.” When

O2 arrives, it is transformed against the concurrent

operation O1 to become O0
2 ¼ O2 since the insertion

position of O2 was on the left side of the insertion

position of O1. After executing O2, the document becomes

“12345AxyzBC.” Finally, when the locking operation O3

arrives, it will be transformed against the concurrent

editing operation O1. By comparing the locking region of

O3 (to lock the region from position “0” to position “5”)

with the insertion position of O1 (to insert at the position

“1”), it seems that O1 is inserting in the locking region of

O3 (but this is actually wrong). According to our scheme

for handling concurrent and overlapping locking and

editing operations (see Section 5.1.3), the locking region of

O3 should be extended by a length of “3” to accom-

modate the three characters inserted by O1. Therefore, the

transformed O3 will be O0
3 ¼ Lock½8; 0�. After executing

O0
3, the document content and locking status at site 0 look

will be:

1004 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 9, SEPTEMBER 2002

Fig. 4. A scenario for illustrating incomparable concurrent operations.
The underline for a string of characters represents a locking region.

2. It should be noted that reducing a locking region to a zero length does
not remove the lock from the LT. The owner of this zero-length lock may
insert a new string at the lock’s position, thus extending its locking region.
A zero-length lock may also be generated directly from the user interface if
the user wants to protect a string being inserted at a particular position in
the document.

00 12345Axy
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

R½s1;8;0�

zBC;00

which is obviously incorrect!
The root of the problem is that the two concurrent

operations O1 and O3 were not generated (and, hence, not
defined) from the same document state: O1 was generated
when the document state was “ABC,” but O3 was generated
when the document state was “12345ABC” after the
execution of O2. Consequently, the parameters in these
two operations are not directly comparable for assessing
their overlapping relationship and the IT function would
not be able to produce the right result.

This is a nontrivial problem. The main challenge here is
how to ensure that the two input operations will be defined
on the same document state in every application of the
IT function. Fortunately, we found that this problem is
similar to the transformation control problem for pure
editing operations and, hence, solutions devised for con-
trolling editing operation transformation can be applied to
locking operations as well. In the following, the generic
operational transformation control algorithm GOTO pro-
posed in [22] will be directly applied for controlling locking
operation transformation.

The GOTO algorithm will transform a new locking
operation O according to the following three different
situations in the HB: First, if there is no executed editing
operation in the HB which is concurrent with O, then O can
be executed without transformation. Second, if there are
some operations in the HB which are concurrent with O and
they are all placed after the operations causally before O in
the HB, then O is transformed against these concurrent
operations one by one to determine its execution form.
Third, if operations concurrent with or causally before O are
mixed in their orders in the HB, then all operations in the
HB will be reordered (by transformation and position shift)
in such a way that operations which are causally before O
are positioned on the left side of the HB and operations
which are concurrent with O are positioned on the right
side. Then, O is transformed against concurrent operations
one by one to determine its execution form.

To describe the GOTO algorithm precisely, the function
LIT ðO;LÞ is defined to apply the IT function on operation
O against a list of operations in L.

LIT(O, L) {

for(i = 0, i < sizeof(L); i++)

O = IT(O, L[i]);

return O;

}

Moreover, a procedure LTranspose(L) is defined
below to transform and circularly shift the list of operations
in L.

LTranspose(L) {

for(i = sizeof(L) - 1; i > 1, i–) {

O = ET(L[i], L[i-1]); L[i] = IT(L[i-1],

O);

L[i]=IT(L[i-1], O);

L[i-1] = O;

}

}

Algorithm 1 GOTOðO;LÞ : O0. O: a new locking operation.

L: the list of editing operations ½O0; O1; . . . ; Om� in the HB.

O0: the transformed form of O.

1. Scan L½0;m� from left to right to find the first
operation Ok such that Ok k O. If no such an
operation is found, then return O0 :¼ O.

2. Otherwise, scan L½kþ 1;m� to find operations
causally before O. If no single such operation is
found, then returnO0 :¼ LIT ðO;L½k;m�Þ.

3. Otherwise, let L1 ¼ ½Oc1 ; . . . ; Ocr � be the list of
operations in L½k;m� which are causally before O.

. LTransposeðL½kþ i	 1; ci�Þ, for 1 � i � r;

. return O0 :¼ LIT ðO;L½kþ r;m�Þ.
To illustrate how the GOTO algorithm works, we apply

the GOTO algorithm to the processing of O3 at site 0 in

Fig. 4. When O3 arrives at site 0, GOTOðO3; L ¼ ½O1; O2�Þ is

invoked to determine the execution form of O3 as follows:

1. Scan ½O1; O2� to find the first operation O1 which is
concurrent with O3.

2. Scan ½O2� to find the first operation O2 which is
causally before O3.

3. Apply LTransposeðL ¼ ½O1; O2�Þ to transform and
swap O1 and O2 as follows:

. L½0� :¼ O2 ¼ ET ðO2; O1Þ since

O2 ¼ IT ðO2; O1Þ;

i.e., the execution of O1 had no impact on the

original parameters of O2.
. L½1� :¼ O0

1 ¼ Insert½
00xyz00; 7� ¼ IT ðO1; O2Þ,

where O0
1 is the form that O1 would have taken

if it was generated after the execution of O2.
. Return O0

3 :¼ O3 ¼ IT ðO3; O
0
1Þ, which is the

correct execution form of O3 (see the definition
of IT LI).

From this example, we can also see that, in each of the

two applications of the IT function, the pair of input

operations are indeed defined on the same document state:

1) O1 and O2 in IT ðO1; O2Þ are defined on the same

document state “ABC”; and 2) O3 and O0
1 in IT ðO3; O

0
1Þ are

defined on the same document state “12345ABC.”

6 IMPLEMENTATION ALGORITHMS

In this section, we discuss how to implement responsive
and consistent fine-grain locking based on the solutions

devised in the previous sections.

6.1 The Locking Table

The major data structure for supporting fine-grain locking

is the locking table LT maintained by each site. Each entry in

the LT is a Lock operation which represents a locked region

belonging to a single user. A successful execution of a Lock

operation adds an entry into the LT or merges several

entries belonging to the same user into one bigger entry. A

successful execution of an Unlock operation may remove an

existing entry from the LT. When a site starts a new session,

its LT is initialized to an empty table. When a site joins an

SUN: OPTIONAL AND RESPONSIVE FINE-GRAIN LOCKING IN INTERNET-BASED COLLABORATIVE SYSTEMS 1005

existing session, its LT is initialized to the concurrent

content of an existing site. When a site leaves a session, all
locks owned by this site must be removed from the LTs at

other sites. No entry can have an overlapping region with

another entry in the LT for ensuring exclusiveness. When

the system is in a quiescent status (i.e., all sites have

executed the same collection of operations and there is no

operation in transit), the LTs have the same content at all
sites. A successful execution of a Lock operation adds an

entry into the LT or merges several entries belonging to the

same user into one bigger entry. A successful execution of

an Unlock operation may remove an existing entry from the

LT. No entry can have an overlapping region with another

entry in the LT for ensuring exclusiveness.

6.2 Local Operation Permission Check

With optional locking in place, a locking or editing

operation can be executed if and only if the operation
region is either unlocked or locked by the same user. When

an operation is generated at a local site, it needs to pass a

Local Permission Check (LPC), as defined below. In the

following discussion, the notation SidðOÞ is used to denote

the site identifier of operation O.

LPC(O, LT) {

for(i = 0; i<sizeof(LT); i++) {

if(Sid(O)!=Sid(LT[i])) &&

overlap(O,LT[i]))

return false;

}

return true;

}

The function LPC(O, LT) scans the local locking table LT

to check whether there exists any entry belonging to a

different user (i.e., Sid(O) != Sid(LT[i])) and over-

lapping with the newly generated operation O (by invoking

overlap(O, LT[i])). If one such entry is found, O is not

permitted and false is returned; otherwise, O is permitted

and true is returned.
If the permission check is successful, the operation will

be executed immediately at the local site. If O is an editing
operation, it will update the document state and then be put

into the local HB. If O is a Lock operation, it will be put into

the local LT, which means a tentative lock has been granted

to the local user. If O is an Unlock operation, it will remove

the corresponding locking entry from the local LT. A

locking operation is regarded as having been executed at a
site if and only if this operation has finished its manipula-

tion of the LT at that site.
It should be stressed that the process of checking and

executing a local operation is nonblocking. Only the local

LT needs to be examined for permission check, the local

HB and document state are updated for executing an

editing operation, and the local LT is updated for
executing a locking operation. There is never a need for

consulting and communicating with any remote site, so

the responsiveness of local operations is good. After the

local operation has been executed, it is timestamped and

propagated to remote sites.

6.3 Remote Operation Processing

When an operation arrives at a remote site and becomes
causally ready for execution, it is transformed against the
editing operations in the HB under the control of the GOTO
algorithm.

If the remote operation is an editing operation, it is
guaranteed to have permission for execution at the remote
site according to the scheme for handling concurrent and
overlapping editing and locking operations (see
Section 5.1.3).

For remote locking operation processing, we assume the
coordinator-based conflict resolution protocol (see
Section 4.2) is adopted. When a remote locking operation
arrives at the coordinator site, if it is an Unlock operation, it
is executed by simply removing the corresponding entry
from the LT at the coordinator site and then it is broadcast
to all other sites except the one from which the operation
came. If the remote locking operation is a Lock operation,
the following Coordinator-based Conflict Resolution (CCR)
procedure will be executed.

CCR(O, LT) {

for(int i = 0; i<sizeof(LT); i++)

if(Sid(O)!=Sid(LT[i])) &&

overlap(O,LT[i]))

return; // reject O

putinLT(O, LT);// accept O

broadcast(O);

return;

}

The CCR (O, LT) procedure scans the locking table LT at
the coordinator site to check whether there is an entry
which belongs to a different user (i.e., Sid(O)!=Sid(L
T[i])) and overlaps with O (by invoking overlap(O,L

T[i])). If one such entry is found, O is rejected since
another concurrent locking operation has been executed at
the coordinator site. Otherwise, O is accepted and put in the
LT (by putinLT(O,LT))3 and then O is broadcast to all
remote sites (by broadcast(O)) to notify the commitment
of its locking status.

When a remote locking operation from the coordinator
arrives at a noncoordinator site, if it is an Unlock operation,
it is executed by simply removing the corresponding entry
from the LT at this site. If the remote locking operation is a
Lock operation, the following Committed Lock Processing
(CLP) procedure will be executed:

CLP(O, LT) {

for(int i = 0;i<sizeof(LT);i++)

if(overlap(O, LT[i]))

remove(i, LT);

putinLT(O,LT);//commit O

The CLP(O, LT) procedure scans the local locking
table LT to find out all entries which are overlapping with
the remote locking operation O and remove them from the
LT, regardless of whether these entries belong to the local
site or any other site. Finally, O is put in the LT and becomes
committed.

1006 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 9, SEPTEMBER 2002

3. When a new Lock operation is put into the LT, if the LT contains any
overlapping Lock operations belonging to the same user, the new operation
is merged with them.

6.4 Locking Region Adjustment

After executing an editing operation, whether a local or a
remote one, the Locking Region Adjustment (LRA) procedure
must be executed to adjust existing locking regions in the
LT by taking into account of the impact of the newly
executed editing operation.

LRA(O, LT) {

for(int i=0; i<sizeof(LT); i++)

IT(LT[i], O);

}

The LRA(O, LT) procedure transforms each Lock
operation in the local locking table LT against the newly
executed editing operation O. In this way, the locking
regions in the LT can be kept consistent with the current
document state.

7 COMPARISON TO RELATED WORK

Compared to locking schemes in traditional distributed
computing and database systems, the locking scheme
proposed in this paper for collaborative systems has the
following important differences: First, the most fundamen-
tal difference is that locks in our system are used by
intelligent human users rather than by preprogrammed
processes, as in traditional distributed systems. Human
users are capable of adjusting or redirecting their actions
according to feedback from the underlying system. Second,
after requesting a lock on a region, the human user is never
blocked, and may go on updating the requested region or
updating any other region, whereas the process issuing a
lock request is blocked until the lock is granted or rejected
in traditional locking systems. Third, a direct consequence
of the second point is that there is no danger of deadlock in
our system, whereas deadlock may occur in traditional
locking systems. Fourth, contents in a locked region are
visible (i.e., readable) to other users without a lock on the
region in our system, but contents in a locked region are
unreadable by other processes if the lock is a write-lock in
traditional distributed systems.

Locking in other collaborative editing systems is all
compulsory. The requirement for compulsory locking was
largely due to a misconception that locking has a role to
play for resolving all inconsistency problems in collabora-
tive editors. Our research, however, has discovered that
locking can help reduce conflict which may cause semantic
inconsistency, but, at least in the text editing domain,
locking has no role to play in resolving any syntactic
inconsistency problem. Syntactic inconsistency problems
have to be resolved by the operational transformation
technique. Locking is made optional in our scheme because
operational transformation has been used to ensure
syntactic consistency (characterized by the CCI properties);
locking is only occasionally needed to help avoid semantic
conflicts.

Some existing locking schemes in collaborative editors are
optimistic in the sense that a user is permitted to edit a region
while waiting for the requested lock. Due to its nonblocking
nature, optimistic locking is regarded to be well-suited to an
collaborative environment where communication latency is

high but conflict is rare [7], [8]. The optional locking scheme
proposed in this paper is one step further toward a higher
degree of optimism: Optimistic locking schemes are optimis-
tic in the sense that they allow the users to edit a region
without having obtained a lock (which is normally granted
anyway), whereas, the optional locking scheme is more
optimistic in the sense that it allows the users to edit a region
even without requesting a lock (which is normally not needed
anyway). If locking requests are normally granted (since
conflicts are rare) and inconsistencies are repairable by
human users (if conflicts do occur), why do we have to
request a lock on a region in the first place?

The high responsiveness of our locking scheme is
achieved by immediately granting the user a tentative lock
and then applying either a distributed or a coordinator-
based protocol to resolve conflict if multiple tentative locks
happen to be concurrently placed on overlapping regions.
In contrast to existing optimistic locking schemes [7], which
undo concurrent updates if a (tentative) lock is eventually
aborted, our responsive locking scheme preserves all
concurrent updates during a transition locking period and
leaves it to the users to decide what updates should be
retained and what should be undone. We believe the
strategy of preserving all users’ work to facilitate a user-
decided solution to conflict is more suitable to collaborative
environments since conflicts among collaborative users are
better understood and resolved by these users. Usage
experiments are planned to evaluate this and other design
decisions.

Fine-grain locking allows a high degree of concurrency
in a collaborative editing session, but supporting fine-grain
locking in the face of concurrent editing is nontrivial. To the
best of our knowledge, the inconsistency problems asso-
ciated with fine-grain locking operations have never been
addressed by any existing locking scheme for collaborative
systems. Our locking scheme is unique in applying and
extending the operational transformation technique to
support responsive and consistent fine-grain locking.

8 CONCLUSIONS

In this paper, we have contributed a novel optional and
responsive fine-grain locking scheme for Internet-based
real-time collaborative editing systems. We start from
examining the role of locking in consistency maintenance
to point out that (fine-grain) locking is unable to maintain
syntactic consistency but is able to help maintain semantic
consistency. Based on this observation and on the fact that
operational transformation has been used for maintaining
syntactic consistency, locking is made optional to save the
users the burden of having to use locks while editing and
the system the overhead of executing locking operations
most of the time in a collaborative editing session. Then, a
responsive locking scheme and protocols for conflict
resolution have been proposed. Furthermore, a range of
special technical issues related to achieving consistent fine-
grain locking in collaborative text editors have been
examined and resolved and the operational transformation
technique has been extended to support consistent fine-
grain locking. Algorithms for realizing the proposed
schemes and protocols in the Internet environment have

SUN: OPTIONAL AND RESPONSIVE FINE-GRAIN LOCKING IN INTERNET-BASED COLLABORATIVE SYSTEMS 1007

been also devised and discussed in detail. The similarities
and differences of our locking scheme with existing locking
schemes in traditional distributed computing and other
collaborative editors are also discussed.

The optional and responsive fine-grain locking scheme
has been implemented in the Web-based REDUCE (REal-
time Distributed Unconstrained Cooperative Editing)
system, which is publically demonstrated at http://
reduce.qpsf.edu.au. By means of this prototype system,
we are currently conducting usability study on the
proposed locking scheme from end-users’ perspective. In
addition, we are working on the formal specification and
verification of the schemes and algorithms presented in
this paper.

Consistency maintenance is a fundamental issue in many
areas of distributed computing. Research on Internet-based
real-time collaborative computing systems has drawn
inspirations from traditional distributed computing techni-
ques (e.g., state-vector timestamping, locking, etc.) and has
also invented nontraditional techniques (e.g., operational
transformation and optional locking, etc.) to address special
issues in distributed, interactive, and collaborative comput-
ing environments. The generalization and application of
these nontraditional techniques to other areas of distributed
computing and collaborative computing is an exciting
direction for future exploration.

ACKNOWLEDGMENTS

The author wishes to thank Lingzhong Zhou and Dashan
Zhou for their assistance in implementing the optional and
responsive fine-grain locking scheme in the Internet-based
REDUCE system. The work reported in this paper has been
partially supported by an ARC (Australia Research Coun-
cil) Large Grant (A00000711).

REFERENCES

[1] P. Bernstein, N. Goodman, and V. Hadzilacos, Concurrency Control
and Recovery in Database Systems. Addison-Wesley, 1987.

[2] R.M. Baecher et al, “The User-Centered Iterative Design of
Collaborative Writing Software,” Proc. ACM INTERCHI Conf.
Human Factors in Computing Systems, pp. 399-405, 1993.

[3] K. Birman, A. Schiper, and P. Stephenson, “Lightweight Causal
and Atomic Group Multicast,” ACM Trans. Computer Systems,
vol. 9, no. 3, pp. 272–314, Aug. 1991.

[4] J.D. Campbell, “Usability and Interference for Collaborative
Diagram Development,” Proc. ACM Workshop Collaborative Editing
Systems (CSCW ’2000), 2000.

[5] C.A. Ellis and S.J. Gibbs, “Concurrency Control in Groupware
Systems,” Proc. ACM SIGMOD Conf. Management of Data, pp. 399-
407, 1989.

[6] C.A. Ellis, S.J. Gibbs, and G.L. Rein, “Groupware: Some Issues and
Experiences,” Comm. ACM, vol. 34, no. 1, pp. 39-58, Jan. 1991.

[7] S. Greenberg et al., “Issues and Experiences Designing and
Implementing Two Group Drawing Tools,” Proc. Hawaii Int’l Conf.
Systems Sciences, pp. 138-150, 1992.

[8] S. Greenberg and D. Marwood, “Real Time Groupware as a
Distributed System: Concurrency Control and Its Effect on the
Interface,” Proc. ACM Conf. Computer Supported Cooperative Work,
pp. 207-217, Nov. 1994.

[9] A. Karsenty and M. Beaudouin-Lafon, “An Algorithm for
Distributed Groupware Applications,” Proc. 13th Int’l Conf.
Distributed Computing Systems, pp. 195-202, May 1993.

[10] M. Knister and A. Prakash, “Issues in the Design of a Toolkit for
Supporting Multiple Group Editors,” J. Usenix Assoc., vol. 6, no. 2,
pp. 135-166, Spring 1993.

[11] L. Lamport, “Time, Clocks, and the Ordering of Events in a
Distributed System,” Comm. ACM, vol. 21, no. 7, pp. 558-565, July
1978.

[12] L.J. McGuffin and G.M. Olson, “ShrEdit: A Shared Electronic
Workspace,” CSMIL Technical Report #45, Univ. of Michigan,
1992.

[13] J. Munson and P. Dewan, “A Concurrency Control Framework for
Collaborative Systems,” Proc. ACM Conf. Computer Supported
Cooperative Work, pp. 278-287, Nov. 1996.

[14] R.E. Newman-Wolfe et al., “MACE: A Fine Grained Concurrent
Editor,” Proc. ACM COCS Conf. Organizational Computing Systems,
pp. 240-254,

[15] R.E. Newman-Wolfe et al., “Implicit Locking in the Ensemble
Concurrent Object-Oriented Graphics Editor,” Proc. ACM Conf.
Computer Supported Cooperative Work, pp. 265-272, Nov. 1992.

[16] D. Nichols, P. Curtis, M. Dixon, and J. Lamping, “High-Latency,
Low-Bandwidth Windowing in the Jupiter Collaboration System,”
Proc. ACM Conf. User Interface Systems and Tools, pp. 111-120, Nov.
1995.

[17] A. Prakash and M. Knister, “A Framework for Undoing Actions in
Collaborative Systems,” ACM Trans. Computer-Human Interaction,
vol. 4, no. 1, pp. 295-330, 1994.

[18] M. Raynal and M. Singhal, “Logical Time: Capturing Causality in
Distributed Systems,” Computer, pp. 49-56, Feb. 1996.

[19] M. Ressel, D. Nitsche-Ruhland, and R. Gunzenbauser, “An
Integrating, Transformation-Oriented Approach to Concurrency
Control and Undo in Group Editors,” Proc. ACM Conf. Computer
Supported Cooperative Work, pp 288-297, Nov. 1996.

[20] C. Sun and P. Maheshwari, “An Efficient Distributed Single-Phase
Protocol for Total and Causal Ordering of Group Operations,”
Proc. IEEE Third Int’l Conf. High Performance Computing, pp. 295-
300, Dec. 1996.

[21] C. Sun, X. Jia, Y. Zhang, Y. Yang, and D. Chen, “Achieving
Convergence, Causality-Preservation, and Intention-Preservation
in Real-Time Cooperative Editing Systems,” ACM Trans. Compu-
ter-Human Interaction, vol. 5, no. 1, pp. 63-108, Mar. 1998.

[22] C. Sun and C.A. Ellis, “Operational Transformation in Real-Time
Group Editors: Issues, Algorithms, and Achievements,” Proc.
ACM Conf. Computer-Supported Cooperative Work, pp. 59-68, Nov.
1998.

[23] C. Sun and R. Sosie, “Optional Locking Integrated with Opera-
tional Transformation in Distributed Real-Time Group Editors,”
Proc. 18th ACM Symp. Principles of Distributed Computing, pp. 43-
52, 1999.

[24] C. Sun, “Undo Any Operation at Any Time in Group Editors,”
Proc. ACM Conf. Computer-Supported Cooperative Work, pp. 191-200,
2000.

[25] R. Valdes, “Text Editors: Algorithms and Architectures, Not Much
Theory, but a Lot of Practice,” Dr. Dobb’s J., pp. 38-43, 1993.

[26] Y. Yang, C. Sun, Y. Zhang, and X. Jia, “Real-Time Cooperative
Editing on the Internet,” IEEE Internet Computing, pp. 18-25, May/
June 2000.

Chengzheng Sun received a degree in wireless
telecommunication technology from North-East-
ern University, China, in 1976. He received an
MPhil degree in computer engineering from
East-China Institute of Computing Technology
in 1982, the PhD degree in computer engineer-
ing from Changsha Institute of Technology,
China, in 1987, and the PhD degree in computer
science from the University of Amsterdam, The
Netherlands, in 1992. He is a full professor

(Chair of Internet Computing) in the School of Computing and
Information Technology at Griffith University, Brisbane, Australia. His
research interests and expertise include: Internet and Web computing
technologies and applications, real-time groupware systems and CSCW
(Computer-Supported Cooperative Work), distributed operating systems
and computer networks, and parallel implementation of object-oriented
and logic programming languages.

. For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

1008 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 9, SEPTEMBER 2002

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

