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A condition that a tangential quadrilateral is also
a chordal one

Mirko Radić∗, Zoran Kaliman† and Vladimir Kadum‡

Abstract. In this article we present a condition that a tangential
quadrilateral is also a chordal one. The main result is given by Theo-
rem 1 and Theorem 2.
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1. Introduction

A polygon which is both tangential and chordal will be called a bicentric polygon.
The following notation will be used.

If A1A2A3A4 is a considered bicentric quadrilateral, then its incircle is denoted
by C1, circumcircle by C2, radius of C1 by r, radius of C2 by R, center of C1 by I,
center of C2 by O, distance between I and O by d.
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The first one who was concerned with bicentric quadrilaterals was a German
mathematician Nicolaus Fuss (1755-1826), see [2]. He found that C1 is the incircle
and C2 the circumcircle of a bicentric quadrilateral A1A2A3A4 iff

(R2 − d2)2 = 2r2(R2 + d2). (1.1)

The problem of findings relation (1.1) has ranged in [1] as one of 100 great
problems of elementary mathematics.

A very remarkable theorem concerning bicentric polygons is given by a French
mathematician Poncelet (1788-1867). This theorem is known as the Poncelet’s
closure theorem. For the case when conics are circles, one inside the other, this
theorem can be stated as follows:

If there is a bicentric n-gon whose incircle is C1 and circumcircle C2, then there
are infinitely many bicentric n-gons whose incircle is C1 and circumcircle C2. For
every point P1 on C2 there are points P2, . . . , Pn on C2 such that P1 . . . Pn are a
bicentric n-gon whose incircle is C1 and circumcircle C2.

In the following (Section 3) bicentric quadrilaterals will also be considered, where
instead of an incircle there is an excircle. As will be seen, there is a great analogy
between those two kinds of bicentric quadrilaterals.

2. About one condition concerning bicentric quadrilaterals

First, let us briefly discuss the notations to be used.
If A1A2A3A4 is a given tangential quadrilateral, then by t1, t2, t3, t4 we denote

its tangent lengths such that

ti + ti+1 = |AiAi+1|, i = 1, 2, 3, 4. (2.1)

By β1, β2, β3, β4 we denote angles �IAiAi+1, i = 1, 2, 3, 4, where I is the center
of the incircle of A1A2A3A4. (See Figure 2.1)
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The following theorem will be proved.
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Theorem 1. Let A1A2A3A4 be any given tangential quadrilateral, and let t1,
t2, t3, t4 be its tangent lengths such that (2.1) holds. Then this quadrilateral is also
a chordal one if and only if

|A1A3|
t1 + t3

=
|A2A4|
t2 + t4

=
√

k, (2.2)

where
1 < k ≤ 2. (2.3)

Proof. First we suppose that (2.2) holds. From Figure 2.1 we see that the
equality |A1A3|2 = k(t1 + t3)2 can be written as

|A1A2|2 + |A2A3|2 − 2|A1A2||A2A3| cos 2β2 = k(t1 + t3)2

or

(t1 + t2)2 + (t2 + t3)2 − 2(t1 + t2)(t2 + t3)
t22 − r2

t22 + r2
= k(t1 + t3)2, (2.4)

since

cos 2β2 =
1− tan2 β2

1 + tan2 β2
, tanβ2 =

r

t2
.

The equality |A1A3|2 = k(t1 + t3)2 can also be written as

(t1 + t4)2 + (t4 + t3)2 − 2(t1 + t4)(t4 + t3)
t24 − r2

t24 + r2
= k(t1 + t3)2, (2.5)

where
2β4 = measure of �A1A4A3, cos 2β4 = (t24 − r2)/(t24 + r2).

In the same way can see that the equality |A2A4|2 = k(t2 + t4)2 can be written
in the following two ways:

(t1 + t2)2 + (t1 + t4)2 − 2(t1 + t2)(t1 + t4)
t21 − r2

t21 + r2
= k(t2 + t4)2, (2.6)

(t3 + t2)2 + (t3 + t4)2 − 2(t3 + t2)(t3 + t4)
t23 − r2

t23 + r2
= k(t2 + t4)2. (2.7)

Solving equation (2.4) for t2 we get

(t2)1 =
[
− 4r2t1 − 4r2t3 −(
(4r2t1 + 4r2t3)2 − 4(4r2 + t21 − kt21 − 2t1t3 − 2kt1t3 + t23 − kt23)

(r2t21 − kr2t21 + 2r2t1t3 − 2kr2t1t3 + r2t23 − kr2t23)
) 1

2
]
/(

2(4r2 + t21 − kt21 − 2t1t3 − 2kt1t3 + t23 − kt23)
)
, (2.8)
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(t2)2 =
[
− 4r2t1 − 4r2t3 +(
(4r2t1 + 4r2t3)2 − 4(4r2 + t21 − kt21 − 2t1t3 − 2kt1t3 + t23 − kt23)

(r2t21 − kr2t21 + 2r2t1t3 − 2kr2t1t3 + r2t23 − kr2t23)
) 1

2
]
/(

2(4r2 + t21 − kt21 − 2t1t3 − 2kt1t3 + t23 − kt23)
)
. (2.9)

It is easy to see that equation (2.4) in t2 has the same solutions as equation (2.5)
in t4, that is

{(t2)1, (t2)2} = {(t4)1, (t4)2}.
Since equation (2.4) has t2 as one solution, and equation (2.5) has t4 as one solution,
it follows that

{(t2)1, (t2)2} = {(t4)1, (t4)2} = {t2, t4}. (2.10)

Putting t2 = (t2)1, t4 = (t2)2 in (2.6) we get

(−1 + k)r2(t1 + t3)2

−4r2 + (−1 + k)t21 + 2(1 + k)t1t3 + (−1 + k)t23
= t1t3. (2.11)

Solving this equation for t3 yields

t3 ∈
{

r2

t1
,
−t1 − 2

√
k t1 − kt1

−1 + k
,
−t1 + 2

√
k t1 − kt1

−1 + k

}

Thus, the only positive t3 is given by

t3 =
r2

t1
. (2.12)

Now we find that from (2.8) and (2.9) there follows

(t2)1 · (t2)2 =
r2(t1 + t3)2(1− k)

(t1 − t3)2 + 4r2 − k(t1 + t3)2
,

which according to (2.10) and (2.12) can be written as

t2t4 = r2. (2.13)

That also t1t3 = r2, that is
t1t3 = t2t4 = r2, (2.14)

follows from (t1+ t2+ t3+ t4)r2 = t1t2t3+ t2t3t4+ t3t4t1+ t4t1t2 putting t4 = r2/t2.
Namely, we get r2(t2 + t4) = t1t3(t2 + t4), from which follows t1t3 = r2.

We shall prove that these relations are sufficient for a tangential quadrilateral
to be a chordal one. The proof is as follows.

Since

cos 2β2 =
t22 − r2

t22 + r2
, cos 2β4 =

t24 − r2

t24 + r2
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using (2.14) we can write

cos 2β4 =
(r2/t2)2 − r2

(r2/t2)2 + r2
= − t22 − r2

t22 + r2
= − cos 2β2.

In the same way we find that cos 2β3 = − cos 2β1.
Thus, from (2.2) it follows that the given tangential quadrilateral A1A2A3A4 is

also a chordal one since 2β1+2β3 = 2β2+2β4 = π. In this connection let us remark
that it is not difficult to check that identically holds

r(t1 + t2 + t3 + t4) =
√
(t1 + t2)(t2 + t3)(t3 + t4)(t4 + t1)

for every positive numbers r, t1, t2, t3, t4 such that t1t3 = t2t4 = r2.
Now we prove that relations (2.14) are necessarily for a tangential quadrilateral

to be a chordal one. The proof is easy; namely, it is easy to see that

cos 2β2 = − cos 2β4

or
t22 − r2

t22 + r2
= − t24 − r2

t24 + r2

is valid only if t2t4 = r2.
In the same way it can be seen that cos 2β1 = − cos 2β3 only if t1t3 = r2.
Here let us remark that the following holds. If A1A2A3A4 and B1B2B3B4 are

two bicentric quadrilaterals which have the same incircle and

ti + ti+1 = |AiAi+1| , i = 1, 2, 3, 4
ui + ui+1 = |BiBi+1| , i = 1, 2, 3, 4

t1t3 = t2t4 = r2,

u1u3 = u2u4 = r2,

then these quadrilateral need not have the same circumcirle. It will be only if

t1t2 + t2t3 + t3t4 + t4t1 = u1u2 + u2u3 + u3u4 + u4u1 = 2(R2 − d2).

(See Theorem 3.2 in [3].)
In this connection may be interesting how radius R can be obtained and some

other relations. In short about this.
Let C1 and C2 denote the incircle and the circumcircle of the considered bicentric

quadrilateralA1A2A3A4, and let the other notation be as stated in the introduction.
The radius of C2 can be obtained using well-known relations which hold for a

bicentric quadrilateral:

R2 =
(a1a2 + a3a4)(a1a3 + a2a4)(a1a4 + a2a3)

16J2
, J2 = a1a2a3a4

where a1 = t1 + t2, a2 = t2 + t3, a3 = t3 + t4, a4 = t4 + t1, J = area of A1A2A3A4.
It can be found that

16R2 = a2
1 + a2

2 + a2
3 + a2

4 +
a1a2a3

a4
+

a2a3a4

a1
+

a3a4a1

a2
+

a4a1a2

a3
(2.15)
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or, using relations (2.14),

R2 =
[(r2 + t21)(r2 + t22)][(r2 + t21)(r2 + t22) + 4r2t1t2]

16r2t21t
2
2

. (2.16)

Now we shall prove that

k =
2R2

R2 + d2
. (2.17)

For this purpose, in (2.8) and (2.9) we shall put 2R2

R2+d2 instead of k, and r2

t1
instead

of t3. It can be found that

(t2)1 =
(R2 − d2)t1 +

√
D

r2 + t21
, (2.18)

(t2)2 =
(R2 − d2)t1 −

√
D

r2 + t21
, (2.19)

where
D = (R2 − d2)2t21 − r2(r2 + t21)

2. (2.20)

It is easy to check that (t2)1 · (t2)2 = r2 or, since (2.10) holds,

t2t4 = r2. (2.21)

Besides, we have to prove one lemma. In this lemma will be used values tm and
tM given by

tm =
√
(R − d)2 − r2, tM =

√
(R + d)2 − r2. (2.22)

See Figure 2.2. As can be seen, tm and tM are the lengths of the least and the
largest tangent that can be drawn from C2 to C1.
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Lemma 1. Let u1 be any given value (tangent length) such that

tm ≤ u1 ≤ tM , (2.23)
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and let u2, u3, u4 be given by

u2 =
(R2 − d2)u1 +

√
D

r2 + u2
1

, (2.24)

u3 =
r2

u1
, (2.25)

u4 =
r2

u2
, (2.26)

where
D = (R2 − d2)2u2

1 − r2(r2 + u2
1)

2. (2.27)

Then the bicentric quadrilateral B1B2B3B4, where |BiBi+1| = ui + ui+1, i =
1, 2, 3, 4, has the same incircle and circumcircle as the considered quadrilateral
A1A2A3A4.

Proof. Since in the expression of u2 appears the term
√

D, we have to prove
that D ≥ 0 for every u1 such that tm ≤ u1 ≤ tM . For this purpose, as can be
readily seen, it is sufficient to prove that D = 0 for u1 = tm and u1 = tM . The
proof is as follows:

(R2 − d2)2t2m − r2(r2 + t2m)2 = (R − d)2[(R2 − d2)2 − 2r2(R2 + d2)] = 0,

because of (1.1)

(R2 − d2)2t2M − r2(r2 + t2M )2 = (R − d)2[(R2 − d2)2 − 2r2(R2 + d2)] = 0.

That C1 is incircle of B1B2B3B4 it is clear from

r2(u1 + u2 + u3 + u4) = u1u2u3 + u2u3u4 + u3u4u1 + u4u1u2

= r2(u2 + u3 + u4 + u1), since u1u3 = u2u4 = r2.

To prove that C2 is circumcircle of B1B2B3B4 we have to prove that

[(r2 + u2
1)(r2 + u2

2)][(r2 + u2
1)(r2 + u2

2) + 4r2u1u2]
16r2u2

1u
2
2

= R2. (2.28)

First, using u2 given by (2.24), we find that (r2 + u2
1)(r

2 + u2
2) in (2.28) can be

written as 2(R2 − d2)u1u2.
Now, it is easy to see that

2(R2 − d2)u1u2

[
2(R2 − d2)u1u2 + 4r2u1u2

]
= 16R2r2u2

1u
2
2

is equivalent to Fuss’ relation (1.1).
Thus, Lemma 1 is proved. (Cf. with Theorem 3.3 in [3].) ✷

It remains to prove that k given by (2.17) is not only sufficient but also necessary
for A1A2A3A4 to be a bicentric one. It will be proved using one of the relations
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(2.4)-(2.7). So, starting from (2.4) we can write

t22[(t1 + t3)2 − k(t1 + t3)2] + 4r2(t1 + t3)t1t2 + r2(t1 + t3)2(1− k) = 0,
t22(t1 + t3)(1 − k) + 4r2t1t2 + r2(t1 + t3)(1 − k) = 0,

1− k =
−4r2t1t2

(r2 + t21)(r2 + t22)
,

1− k =
−4r2t1t2

2(R2 − d2)t1 · (R2−d2)t1+
√

D
r2+t21

= − 2r2

R2 − d2

since t2 = (t2)1 given by (2.18) .
Now, we have

1− 2R2

R2 + d2
= − 2r2

R2 − d2
or

R2 − d2

R2 + d2
= − 2r2

R2 − d2
,

since Fuss’ relation (1.1) holds.
At the end we prove the following assertion: If A1A2A3A4 is a bicentric quadri-

lateral, then |A1A3|
t1+t3

= |A2A4|
t2+t4

=
√

k.
Proof. Let denote by F relation obtained from (2.4) putting

t2 =
(R2 − d2)t1 +

√
D

r2 + t21
, t3 =

r2

t1
, t4 =

r2

t2
, k =

2R2

R2 + d2
,

where
D = (R2 − d2)2t21 − r2(r2 + t21)

2.

Using computer algebra it is easy to show that

F ⇐⇒ (R2 − d2)2 − 2r2(R2 + d2) = 0,

which proves |A1A3| = (t1 + t3)
√

k. In the same way can be proved that |A2A4| =
(t2 + t4)

√
k. ✷

This completes the proof of Theorem 1. ✷

Now some of its corollaries will be stated.
Corollary 1. Let t1, t2, t3, t4 be any given lengths (in fact positive numbers)

such that t1t3 = t2t4 = r2, and let R2 and d2 be given by

R2 =
[(r2 + t21)(r

2 + t22)][(r
2 + t21)(r

2 + t22) + 4r2t1t2]
16r2t21t

2
2

, (2.29)

d2 =
[(r2 + t21)(r

2 + t22)][(r
2 + t21)(r

2 + t22)− 4r2t1t2]
16r2t21t

2
2

. (2.30)

Then holds Fuss’ relation (1.1).
Proof. From (2.29) and (2.30) it follows

(R2 − d2)2 = [(r2+t21)(r
2+t22)]

2

4t21t22
, (2.31)

2r2(R2 + d2) = [(r2+t21)(r
2+t22)]

2

4t21t22
.
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✷

Corollary 2. Under the condition of Corollary 1 it holds

t1t2 + t2t3 + t3t4 + t4t1 = 2(R2 − d2).

Proof. Since (2.31) holds we can write

2(R2 − d2) = (r2+t21)(r2+t22)
t1t2

(2.32)

= (t1 + r2

t1
)(t2 + r2

t2
)

= (t1 + t3)(t2 + t4)( since t3 = r2

t1
, t4 = r2

t2
)

= t1t2 + t2t3 + t3t4 + t4t1.

✷

Corollary 3. If k = 2R2

R2+d2 and (1.1) hold, then every positive solution of the
system with equations (2.4)-(2.7) can be expressed such that there holds

tm ≤ t1 ≤ tM ,

t2 =
(R2 − d2)t1 +

√
D

r2 + t21
, t3 =

r2

t1
, t4 =

r2

t2

where D = (R2 − d2)2t21 − r2(r2 + t21)
2.

Corollary 4. Let A1A2A3A4 be any given tangential quadrilateral and let t1,
t2, t3, t4 be lengths of its tangents such that

ti + ti+1 = |AiAi+1|, i = 1, 2, 3, 4.

Then this quadrilateral is also a chordal one iff

t1t3 = r2, (2.33)

where r is radius of the incircle of A1A2A3A4.
Proof. From (t1 + t2 + t3 + t4)r2 = t1t2t3 + t2t3t4 + t3t4t1 + t4t1t2 it follows

t4 =
t1t2t3 − r2(t1 + t2 + t3)
r2 − t1t2 − t2t3 − t3t1

.

Putting t3 = r2

t1
we get

t4 =
r2(t21 + r2)
(t21 + r2)t2

=
r2

t2
.

Thus, (2.14) it holds and Corollary 4 is proved. ✷

Corollary 5. Instead of (2.33) in Corollary 4 it can be put t2t4 = r2.
Corollary 6. Instead of (2.33) in Corollary 4 it can be put

t1
t21 + r2

=
t3

t23 + r2
. (2.34)
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Proof. From (2.34) it follows

t1t3(t1 − t3) = r2(t1 − t3).

✷

Let us remark that t1 = t3 only if d = 0, and in this case it holds t1 = t3 = r,
t1t3 = r2.

Corollary 7. Instead of (2.33) in Corollary 4 can be put

t2
t22 + r2

=
t4

t24 + r2
. (2.35)

Corollary 8. Instead of (2.33) in Corollary 4 can be put

t21 − r2

t21 + r2
=

r2 − t23
r2 + t23

.

Corollary 9. If (2.33) is fulfilled, then

4∏
i=1

sinαi =
2r2

R2 + d2
,

where αi = measure of �Ai−1AiAi+1 (Of course, A0 = A4).
Proof. As

sinαi =
2rti

t2i + r2
=

2rti
t2i + titi+2

=
2r

ti + ti+2
,

we can write

4∏
i=1

sinαi =
16r4

[(t1 + t3)(t2 + t4)]2
=

4r4

(R2 − d2)2
=

2r2

R2 + d2
,

since (t1 + t3)(t2 + t4) = t1t2 + t2t3 + t3t4 + t4t1 = 2(R2 − d2) and holds (1.1). ✷

Corollary 10. It holds

4∑
i=1

sinαi sinαi+1 =
8r2

R2 − d2
.

Corollary 11. It holds

4∑
i=1

cosαi cosαi+1 = 0.

Proof. cosαi =
t2i − r2

t2i + r2
, cosαi+2 =

r2 − t2i
r2 + t2i

. ✷



A condition that ... 43

Corollary 12. Let t1, t2, t3 be any given lengths (in fact positive numbers).
Then there are lengths t4 and r such that

(
4∑

i=1

ti)r2 =
4∑

i=1

titi+1ti+2, t1t2t3t4 = r4. (2.36)

Proof. From

t4 =
t1t2t3 − r2(t1 + t2 + t3)
r2 − t1t2 − t2t3 − t3t1

, t4 =
r4

t1t2t3

we get the following cubic equation for r2

r6 − r4(t1t2 + t2t3 + t3t1) + r2(t1 + t2 + t3)t1t2t3 − t21t
2
2t

2
3 = 0.

Its roots are given by

(r2)1 = t1t2, (r2)2 = t2t3, (r2)3 = t3t1.

✷

Corollary 13. If (2.36) holds, then there are three possibilities:

t1t2 = t3t4, t2t3 = t4t1, t1t3 = t2t4.

Proof. According to Corollary 12, it holds

(t4)1 =
t1t2
t3

, (t4)2 =
t2t3
t1

, (t4)3 =
t3t1
t2

.

✷

In the third case we have a bicentric quadrilateral.
Corollary 14. If the first part of (2.36) holds, then

t1t2t3t4 = r4 ⇐⇒
4∑

i=1

r

ti
=

4∑
i=1

ti
r

.

Corollary 15. All of the bicentric quadrilaterals which have the same incircle
and the same circumcircle have the same product of diagonals. In other words, if
A1A2A3A4 is a bicentric quadrilateral, then

|A1A3| · |A2A4| = 2(R2 + 2r2 − d2)

Proof. Since

|A1A3| · |A2A4| = (t1 + t3)(t2 + t4)
2R2

R2 + d2
= 2(R2 − d2)

2R2

R2 + d2

it is easy to show that

2(R2 − d2) · 2R2

R2 + d2
− 2(R2 + 2r2 − d2) = 0 ⇐⇒ (R2 − d2)2 − 2r2(R2 + d2) = 0.

✷
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3. The case when a quadrilateral is a tangential one in rela-
tion to an excircle

Let A1A2A3A4 be a tangential quadrilateral such that there is a circle C1 with the
property that

|AiAi+1| = |ti − ti+1|, i = 1, 2, 3, 4 (3.1)

where ti is the length of the tangent drawn from Ai to C1 (see Figure 3.1).

A
1

A
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A
3

A
4

C
1

I

r

Figure 3.1.

Such a tangential quadrilateral, for convenience in the following expression, will
be called ex-tangential quadrilateral. In the case when A1A2A3A4 is also a chordal
one, then such a quadrilateral will be called ex-bicentric quadrilateral. The following
notation will be used.

If A1A2A3A4 is a considered ex-bicentric quadrilateral, then its excircle is de-
noted by C1, circumcircle by C2, radius of C1 by r, radius of C2 by R, center of C1

by I, center of C2 by O, distance between I and O by d.
As it is well-known, the Fuss’ relation (1.1) also holds for ex-bicentric quadri-

laterals. In this connection let us remark that from (1.1) it follows

d2 = R2 + r2 ±
√
4R2r2 + r4,

and that for ex-bicentric quadrilaterals holds

d2 = R2 + r2 +
√
4R2r2 + r4, (3.2)

whereas for bicentric quadrilateral considered in the preceding section holds

d2 = R2 + r2 −
√
4R2r2 + r4. (3.3)

Also let us remark that circles C1 and C2 are not intersecting in the case of
ex-bicentric quadrilateral since from (3.2) it follows

d2 > R2 + r2 + 2Rr or d > R + r.

Now we can prove the following theorem.
Theorem 2. Let A1A2A3A4 be any given ex-tangential quadrilateral and let t1,

t2, t3, t4 be its tangent lengths such that

|ti − ti+1| = |AiAi+1|, i = 1, 2, 3, 4. (3.4)
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Then this quadrilateral is also a chordal one if and only if

|A1A3|
t1 + t3

=
|A2A4|
t2 + t4

=
√

k, (3.5)

where
0 < k < 1. (3.6)

Proof. First we suppose that (3.5) holds. From Figure 3.2 we see that the
equality |A1A3|2 = k(t1 + t3)2 can be written as

|A1A2|2 + |A2A3|2 − 2|A1A2||A2A3| cosα2 = k(t1 + t3)2

or

(t1 − t2)2 + (t2 − t3)2 + 2(t1 − t2)(t2 − t3)
t22 − r2

t22 + r2
= k(t1 + t3)2, (3.7)

since

cosα2 = − cos 2β2 = − t22 − r2

t22 + r2
.

The equality |A1A3|2 = k(t1 + t3)2 can also be written as

(t1 − t4)2 + (t4 − t3)2 + 2(t1 − t4)(t4 − t3)
t24 − r2

t24 + r2
= k(t1 + t3)2. (3.8)

Figure 3.2.

In the same way can be seen that equality |A2A4|2 = k(t2 + t4)2 can be written
in the following two ways:

(t1 − t2)2 + (t1 − t4)2 − 2(t1 − t2)(t1 − t4)
t21−r2

t21+r2 = k(t2 + t4)2, (3.9)

(t3 − t2)2 + (t3 − t4)2 − 2(t3 − t2)(t3 − t4)
t23−r2

t23+r2 = k(t2 + t4)2. (3.10)

Solving equation(3.7) for t2 we get

(t2)1,2 =
2r2(t1 + t3)±

√
D

(t1 − t3)2 − k(t1 + t3)2 + 4r2
, (3.11)
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where

D = 4r4(t1 + t3)2 − [(t1 − t3)2 − k(t1 + t3)2 + 4r2][r2(t+t3)2(1− k)]. (3.12)

It is easy to see that equation (3.7) in t2 has the same solutions as equation
(3.8) in t4, that is

{(t2)1, (t2)2} = {(t4)1, (t4)2}.
Since equation (3.7) has t2 as one solution, and equation (3.8) has t4 as one solution,
it follows that

{(t2)1, (t2)2} = {(t4)1, (t4)2} = {t2, t4}. (3.13)

Putting t2 = (t2)1, t4 = (t2)2 in (3.9) we get

r2(t1 + t3)2(1− k)
(t1 − t3)2 − k(t1 + t3)2 + 4r2

= t1t3. (3.14)

From (3.11) it follows

(t2)1(t2)2 =
r2(t1 + t3)2(1 − k)

(t1 − t3)2 − k(t1 + t3)2 + 4r2
, (3.15)

which according to (3.13) and (3.14) can be written as

t1t3 = t2t4. (3.16)

Solving equation (3.14) for t3 we get

(t3)1 =
r2

t1
, (t3)2 =

(1 +
√

k)t1
1−√

k
, (t3)3 =

(1 −√
k)t1

1 +
√

k
. (3.17)

First we consider the case when t3 is given by

t3 =
r2

t1
. (3.18)

In this case, according to (3.16), it holds

t1t3 = t2t4 = r2. (3.19)

The proof that A1A2A3A4 is in this case also a chordal one is done in the same way
as that in Theorem 1.

Let C2 denote the circumcircle of A1A2A3A4 and let the other notation be stated
as in the beginning of this section. The radius of C2 is given by

R2 =
(ab+ cd)(ac + bd)(ad + bc)

16J2
, J2 = abcd

where a = t1 − t2, b = t2 − t3, c = t4 − t3, d = t1 − t4. It can be found that

R2 =
[(r2 + t1)2(r2 + t22)][(r

2 + t21)(r
2 + t2)2 − 4r2t1t2]

16r2t21t
2
2

. (3.20)
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Now we shall prove that

k =
2R2

R2 + d2
. (3.21)

For this purpose in (t2)1 and (t2)2, given by (3.11), we shall put 2R2

R2+d2 instead of

k, and r2

t1
instead of t3. It can be found that

(t2)1 =
(d2 − R2)t1 +

√
D

r2 + t21
, (t2)2 =

(d2 − R2)t1 −
√

D

r2 + t21
(3.22)

where
D = (d2 − R2)2t21 − r2(r2 + t21)

2. (3.23)

It is easy to check that (t2)1 · (t2)2 = r2 or, since (3.13) holds,

t2t4 = r2.

In the following lemma will be used lengths tm and tM given by

tm =
√
(d − R)2 − r2, tM =

√
(d +R)2 − r2. (3.24)

See Figure 3.3. It holds

tm = |MN | =
√
(d − R)2 − r2, tM = |PQ| =

√
(d +R)2 − r2.

C
2

C
1

P
R O

r

M

N

I

Figure 3.3.

Lemma 2. Let u1 be any given value (tangent length) such that

tm ≤ u1 ≤ tM , (3.25)

and let u2, u3, u4 be given by

u2 = (d2−R2)u1+
√

D
r2+u2

1
, (3.26)

u3 = r2

u1
, (3.27)

u4 = r2

u2
, (3.28)

where
D = (d2 − R2)2u2

1 − r2(r2 + u2
1)

2. (3.29)
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Then the ex-bicentric quadrilateral B1B2B3B4, where |BiBi+1| = |ui − ui+1|, i =
1, 2, 3, 4, has the same excircle and circumcircle as the considered quadrilateral
A1A2A3A4.

Proof. Since in the expression of u2 there appears the term
√

D, we have to
prove that D ≥ 0 for every u1 such that tm ≤ u1 ≤ tM . For this purpose, as can
be readily seen, it is sufficient to prove that D = 0 for u1 = tm and u1 = tM . The
proof is as follows:

(d2 − R2)2t2m − r2(r2 + t2m)2 = (d − R)2[(d2 − R2)2 − 2r2(d2 +R2)] = 0,
(d2 − R2)2t2M − r2(r2 + t2M )2 = (d − R)2[(d2 − R2)2 − 2r2(d2 +R2)] = 0.

That C1 is the excircle of B1B2B3B4 is clear from

r2(u1 − u2 + u3 − u4) = −u1u2u3 + u2u3u4 − u3u4u1 + u4u1u2,

since u1u3 = u2u3 = r2. (See relation (3.10) in [4].)
To prove that C2 is the circumcircle of B1B2B3B4 we have to prove that

[(r2 + u2
1)(r2 + u2

2)][(r2 + u2
1)(r2 + u2

2)− 4r2u1u2]
16r2u2

1u
2
2

= R2. (3.30)

The proof is analogous to the proof of (2.28). The Lemma 2 is proved. ✷

In connection with the relation (3.21) let us remark that in the case when (3.19)
holds, then from each of the relations (3.7)-(3.10) follows k given by (3.21). So,
starting from the relation (3.7), we can write:

(t21 + r2)(1 − k)t22 − 4r2t1t2 + r2(t21 + r2)(1− k) = 0,

1− k = 4r2t1t2
(r2+t21)(r2+t22)

,

from which, since t2 =
(d2−R2)t1+

√
D

r2+t21
, we get

1− k =
2r2

d2 − R2
.

Putting k = 2R2

d2+R2 we have the equality

1− 2R2

d2 +R2
=

2r2

d2 − R2
,

since Fuss’ relation (d2 − R2)2 = 2r2(d2 +R2) holds.
Now we shall consider the other two solutions for t3 given by (3.17), that is

(t3)2 =
(1 +

√
k)t1

1−√
k

, (t3)3 =
(1 +

√
k)t1

1−√
k

.

Putting (t3)2 instead of t3 in (3.11) we get

(t2)1 =
(1 +

√
k)t1

1−√
k

, (t2)2 = t1.



A condition that ... 49

It is not difficult to see that from

{t1, t2, t3, t4} =
{

t1,
(1 +

√
k)t1

1−√
k

,
(1 +

√
k)t1

1−√
k

, t1

}

follows that C2 must be a point, that is, t1 = 0.
In the same way can be seen that (t3)3 is possible only if t1 = 0.
At the end we prove the following assertion: If A1A2A3A4 is an ex-bicentric

quadrilateral, then
|A1A3|
t1 + t3

=
|A2A4|
t2 + t4

=
√

k.

Proof. Let denote by F relation obtained from (3.8) putting

t2 =
(d2 − R2)t1 +

√
D

r2 + t21
, t3 =

r2

t1
, t4 =

r2

t2
, k =

2R2

R2 + d2
,

where
D = (d2 − R2)2t21 − r2(r2 + t21)

2.

Using computer algebra it is easy to show that

F ⇐⇒ (d2 − R2)2 − 2r2(d2 +R2),

which proves |A1A3| = (t1 + t3)
√

k. In the same way can be proved that |A2A4| =
(t2 + t4)

√
k. ✷

This completes the proof of Theorem 2. ✷

Here are some of its corollaries.
Corollary 16. Let A1A2A3A4 be an ex-bicentric quadrilateral and let |AiAi+1| =

|ti − ti+1|, i = 1, 2, 3, 4. Then

R2 =
[(r2 + t21)(r

2 + t22)][(r
2 + t21)(r

2 + t22)− 4r2t1t2]
16r2t21t

2
2

, (3.31)

d2 =
[(r2 + t21)(r2 + t22)][(r2 + t21)(r2 + t22) + 4r2t1t2]

16r2t21t
2
2

. (3.32)

The proof is analogous to the proof of Corollary 1.
Corollary 17. It holds

2(d2 − R2) =
(r2 + t21)(r

2 + t22)
t1t2

= t1t2 + t2t3 + t3t4 + t4t1.

The proof is analogous to the proof of Corollary 2.
Corollary 18. If k = 2R2

d2+R2 and (1.1) holds, then every positive solution of
the system with equations (3.7)-(3.10) can be expressed such that following holds

tm ≤ t1 ≤ tM ,

t2 =
(d2 − R2)t1 +

√
D

r2 + t21
, t3 =

r2

t1
, t4 =

r2

t2
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where D = (d2 − R2)2t21 − r2(r2 + t21)2.
Corollary 19. Let A1A2A3A4 be any given ex-tangential quadrilateral and let

t1, t2, t3, t4 be lengths of its tangents such that

|ti − ti+1| = |AiAi+1|, i = 1, 2, 3, 4.

Then this quadrilateral is also a chordal one iff

t1t3 = r2, (3.33)

where r is the radius of the excircle of A1A2A3A4.
Proof. From

(t1 − t2 + t3 − t4)r2 = −t1t2t3 + t2t3t4 − t3t4t1 + t4t1t2

it follows

t4 =
t1t2t3 + r2(t1 − t2 + t3)
r2 + t1t2 + t2t3 − t3t1

.

Putting t3 = r2

t1
we get

t4 =
r2(t1 + r2)
t2(t21 + r2)

=
r2

t2
.

✷

Corollary 20. Instead of the relation given by (3.33) each of the following five
relations can be put:

t2t4 = r2,

t1
r2 + t21

=
t3

r2 + t23
,

t2
r2 + t22

=
t4

r2 + t24
,

t21 − r2

t21 + r2
=

r2 − t23
r2 + t23

,
t22 − r2

t22 + r2
=

r2 − t24
r2 + t24

.

Corollary 21. Let (3.33) be fulfilled. Then

4∑
i=1

sinαi =
2r2

d2 +R2
,

where αi = measure of �Ai−1AiAi+1, A0 = A4.
Proof. Analogous to the proof of Corollary 9. ✷

Corollary 22. It holds

4∑
i=1

sinαi sinαi+1 =
8r2

d2 − r2
.

Corollary 23. It holds

4∑
i=1

cosαi cosαi+1 = 0.
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Corollary 24. Let t1, t2, t3 be any given lengths (in fact positive numbers).
Then there are lengths t4 and r such that

(t1 − t2 + t3 − t4)r2 = −t1t2t3 + t2t3t4 − t3t4t1 + t4t1t2, (3.34)

t1t2t3t4 = r4 (3.35)

Proof. Analogous to the proof of Corollary 12. Here we have the equation

r6 + r4(t1t2 + t2t3 − t3t1)− r2(t1 − t2 + t3)t1t2t3 − t21t
2
2t

2
3 = 0,

whose roots for r2 are given by

(r2)1 = −t1t2, (r2)2 = −t2t3, (r2)3 = t1t3.

✷

Corollary 25. Let (3.34) and (3.35) be fulfilled. Then

t1t2t3t4 = r4 ⇐⇒
4∑

i=1

(−1)i r

ti
=

4∑
i=1

(−1)i ti
r

.

Corollary 26. All of ex-bicentric quadrilaterals which have the same excircle
and the same circumcircle have the same product of diagonals. In other words, if
A1A2A3A4 is an ex-bicentric quadrilateral, then

|A1A3| · |A2A4| = 2(d2 − 2r2 − R2).

Proof. The proof is obtained in the same way as the proof of Corollary 15,
namely it holds

2(d2 − R2) · 2R2

d2 +R2
− 2(d2 − 2r2 − R2) = 0 ⇐⇒ (d2 − R2)2 − 2r2(d2 +R2) = 0.

✷

In this connection let us remark that in [4, Theorem 3.2] it is proved that

t1t2 + t2t3 + t3t4 + t4t1 = 2(d2 − R2).
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