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Selecting the Corner in the -Curve Approach to Tikhonov
Regularization

Peter R. Johnston and Ramesh M. Gulrajani*

Abstract—The performance of two methods for selecting the corner
in the -curve approach to Tikhonov regularization is evaluated via
computer simulation. These methods are selecting the corner as the point
of maximum curvature in the -curve, and selecting it as the point where
the product of abcissa and ordinate is a minimum. It is shown that both
these methods resulted in significantly better regularization parameters
than that obtained with an often-used empirical Composite REsidual and
Smoothing Operator approach, particularly in conditions where corre-
lated geometry noise exceeds Gaussian measurement noise. It is also shown
that the regularization parameter that results with the minimum-product
method is identical to that selected with another empirical zero-crossing
approach proposed earlier.

Index Terms—Electrocardiography, electroencephalography, inverse
problems, -curve, regularization.

I. INTRODUCTION

Tikhonov regularization is often employed in the ill-posed inverse
problems of electrocardiography and electroencephalography in order
to stabilize the solution in the face of measurement noise or errors in ge-
ometry. In the zero-order version of Tikhonov regularization, the func-
tional to be minimized is given by

M(�) = kA�� �mk
2 + tk�k2 (1)

where� denotes then� 1 solution matrix,�m them� 1 column ma-
trix of data potentials, andA the transfer matrix relating the two. The
symbolk k denotes the Euclidean norm and the regularization param-
etert serves to determine the relative weight accorded to the residual
error and the solution norm. The corresponding regularized solution is
given by

�(t) = A
T
A+ tI

�1

A
T�m (2)

whereI is the identity matrix and the superscriptT denotes the trans-
pose. Too small a value fort results in continued instability of the so-
lution, whereas too large a value results in an overregularized solution
that, while stable, has an unnecessarily large residual error. If the true
solution�s is knowna priori (as in simulation studies), an optimal
choicetopt for t can be determined where the relative error (RE), de-
fined asRE(t) = k�� �sk=k�sk, is a minimum. In a clinical situa-
tion, however, an alternative choice fort is needed that ideally should
approachtopt.

Two approaches for selectingt that have gained wide acceptance are
Composite REsidual and Smoothing Operator (CRESO) [1] and the
L-curve [2], [3]. TheL-curve approach involves a plot, using a log-log
scale, of the norm of the solutionk�k on the ordinate against the norm
of the residualkA� � �mk on the abscissa, witht as a parameter
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along the resulting curve. As long as the uncorrelated measurement
noise in�m dominates the more highly correlated geometry noise in
A, this plot is in the form of anL, and thet value at the corner of theL
intuitively suggests an appropriate solution wherein both the norm and
the residual simultaneously attain low values. Since the corner of the
L is often rounded, Hansen and O’Leary [4] suggested that the corner
be found as the point of maximum curvature. More recently, Lianet al.
[5] have proposed that thet value, and hence the corner, be selected as
the point on theL-curve where the product

P (t) = k�kkA�� �mk (3)

is a minimum. This minimum-product criterion is a special case (cor-
responding to� = 1) of a more general criterion that minimizes the
product(k�k2)�(kA� � �mk

2) where� > 0 [6]. The present short
communication describes simulation tests that we have done to eval-
uate the Hansenet al. and Lianet al. choices fort. Results with both
choices are compared to those obtained with the optimal and CRESO
choices fort. We also show that the minimum-product criterion yields
a t value that is identical to one that results with a “zero-crossing” ap-
proach recently proposed by us [7].

II. M ETHODS

A. Hansen and O’Leary’s Point of Maximum Curvature

Many of the expressions needed below are most conveniently de-
termined following a singular value decompositionA = U�VT of
the transfer matrixAAA. For example, the regularized solution (2) can be
written as [7]

�(t) =

n

i=1

�ii�i

�2ii + t
vi (4)

where
�ii are the elements of the diagonal matrix�;
�i is the scalar productuTi �m;
ui andvi are thecolumns ofU andV, respectively.

Accordingly, since the matricesU andV are orthonormal, we have

k�(t)k2 =

n

i=1

�2ii�
2

i

(t+ �2ii)
2
: (5)

Similarly, the residual can be written as [7]

kA�� �mk
2 =

n

i=1

t2�2i

(t+ �2ii)
2
+ kr?k

2 (6)

wherer? is the residual vector of a conventional unregularized least-
squares-error solution given by�lse = (AT

A)�1AT�m, i.e.,r? =
A�lse � �m.

Hansenet al.’s choice is the point on theL-curve

(�(t); �(t)) � (log kA�� �mk; log k�k) (7)

that has maximum curvature. Here, the curvature,�, is defined as

�(t) =
� 0�00 � � 00�0

f(� 0)2 + (�0)2g3=2
(8)
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where differentiation is with respect tot. Implementation of the above
formula is reasonably straightforward. Recall that

�(t) = log k�(t)k = 1

2
log k�(t)k2 (9)

so

�
0(t) =

1

2

dk�(t)k2

dt
k�(t)k2 (10)

and

�
00(t) =

d2k�(t)k2

dt2
k�(t)k2 �

dk�(t)k2

dt

2

2k�(t)k4
(11)

with similar expressions for� 0(t) and� 00(t) in terms ofkA�� �mk
2

and its derivatives with respect tot. The first and second derivatives of
k�k2 andkA� � �mk

2 can be found by differentiating (5) and (6),
respectively. Substituting the expressions for�0, �00, � 0 and� 00 in (8)
finally allows evaluation of the curvature�(t). The maximum curvature
is found by simply evaluating�(t) over the entireL-curve, and yields
the t value denotedtL in the sequel.

B. The Lian et al. Minimum-Product Criterion for the Corner

We wish to find the value oft that minimizes the productP (t) =
k�kkA���mk. Since this product is always positive, we can look for
the value oft that minimizes the squared productk�k2kA�� �mk

2.
To find the required value oft, we differentiate the squared product
with respect tot, and set the derivative to zero. Employing (5) and (6),
we have

d

dt
[k�k2kAAA�� �mk

2]

=
d

dt

n

i=1

�2ii�
2

i

(t+ �2ii)
2

n

i=1

t2�2i

(t+ �2ii)
2
+ kr?k

2

= �2

n

i=1

�2ii�
2

i

(t+ �2ii)
3

n

i=1

t2�2i

(t+ �2ii)
2
+ kr?k

2

+ 2t

n

i=1

�2ii�
2

i

(t+ �2ii)
2

n

i=1

�2ii�
2

i

(t+ �2ii)
3

= 2

n

i=1

�2ii�
2

i

(t+ �2ii)
3

t

n

i=1

�2i (�
2

ii � t)

(t+ �2ii)
2
� krrrrrrrrr?k

2
:

Since each term in the first summation is positive, it follows that the
above derivative is zero when

t

n

i=1

�2i (�
2

ii � t)

(t+ �2ii)
2
� kr?k

2 = 0 (12)

Equation (12) can be written asB(t) = 0, where

B(t) = t

n

i=1

�2i (�
2

ii � t)

(t+ �2ii)
2
� kr?k

2 = tk�(t)k2 � kA�� �mk
2
:

(13)
The zero-crossing approach described by us [7] also involved solving

B(t) = 0, and taking the smallestt value for which a solution exists
as the zero-crossing regularization parameter. Thus, the zero-crossing
approach and the minimum-product corner criterion are equivalent, and
the determinedt value is denotedtP in the sequel. The parametertP
can be found either from the smallest zero ofB(t) or, equivalently, by
plottingP (t) and determining its minimum.

C. The CRESO Regularization Parameter

The CRESO regularization parametertCRE is determined as the
smallestvalue oft > 0 that results in a local maximum of the function

C(t) = k�(t)k2 + 2t
d

dt
k�(t)k2: (14)

Using (5), this CRESO function can be rewritten as

C(t) =

n

i=1

�ii�i

t+ �2ii

2

1�
4t

t+ �2ii
: (15)

This function can be plotted for different values oft and its first local
maximum determined.

D. Simulation Protocol

The simulation protocol that we used to compare the performances
of the maximum-curvature, minimum-product and CRESOt values is
described in our earlier paper [7] and hence is only briefly summarized
here. It consists of three radial dipoles (two pointing inward and one
outward) placed inside a realistic-geometry epicardium comprising 610
nodes and 1216 triangles. Infinite-medium potential equations were
used to approximate the epicardial potential distribution at the 610 node
points. This epicardial source distribution was placed inside a homo-
geneous torso model that also comprised 610 nodes and 1216 triangles
and the boundary element method employing a linear variation of po-
tential over each triangle was used to compute a 610� 610A matrix,
and hence, the 610 torso node potentials. The three dipoles resulted in
an epicardial potential distribution with one maximum and two minima,
but a smoothed torso potential distribution with a single maximum and
a single minimum (see [7, Fig. 4]). Next, 168 of these torso potentials
were used to inversely compute the potentials at 114 uniformly dis-
tributed epicardial nodes. The required 168� 114A matrix for the
inverse solution was recomputed from a coarser 114-node epicardial
mesh, with, however, the original 610-node torso, by first computing
a 610� 114A matrix and then extracting rows corresponding to the
168 torso positions. Using the smaller 168� 114 reducedA matrix
in the inverse computations introduced an intrinsic amount of geom-
etry noise on account of the simplified epicardial geometry. To this,
we added some more geometry noise by offsetting the heart 1 cm in
each of two diametrically opposite directions, one inward toward the
torso center and the other outward toward the anterior torso surface.
An incorrect reducedA matrix was computed each time and used for
the inverse computations. The geometry noise introduced by the offset-
ting is an even more highly correlated form of noise than the intrinsic
geometry noise. A final set of simulations added 0.5% Gaussian mea-
surement noise to the 168 starting torso potentials.

III. RESULTS

As in our earlier study, the initial simulations with geometry noise
alone verified that theL-curve approach broke down under these con-
ditions. This is shown more explicitly in Fig. 1 (left column) where
we show (from top to bottom) theL-curve, a plot of its curvature, the
minimum product functionP (t) together with the relative error curve
RE(t), and the CRESO functionC(t), for simulations with intrinsic
geometry noise plus the heart offset 1 cm inward. TheL-curve has an
indistinct corner. Its curvature plot exhibits three maxima, of which the
first is the largest. If thet value (6� 10�12) corresponding to this first
maximum is selected, the solution will be extremely underregularized,
as may be verified by looking at theRE(t) curve which revealstopt as
8� 10�4. Indeed, thet value corresponding to the third (smallest) peak
in the curvature plot lies closest totopt and is the one that should be
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Fig. 1. Inverse solutions with realistic heart-torso geometries. The left-hand column shows the curves for intrinsic geometry noise plus geometry noise obtained
by offsetting the heart 1 cm inward toward the center of the torso (see text). The right-hand column shows curves when, in addition to the intrinsic geometry noise
and geometry noise due to a 1 cm heart offset inward, 0.5% Gaussian measurement noise is also included. The first row plots theL-curves, the second the curvature
of theL-curves as a function oft, the thirdP (t) andRE(t) (dotted and solid trace, respectively), and the fourth the CRESO functionC(t). Values oft (�),
t (�), t (+) andt (�) are marked as appropriate.

selected, and is, accordingly, the one marked on the curvature andRE

plots. Strictly speaking though, the absence of a corner in theL-curve
alerts us to the fact that the curvature plot is meaningless, and accord-
ingly that the maximum-curvature criterion for the corner breaks down.
What is more interesting is the absence of a minimum in the product
functionP (t). Thus, this function also serves as an indicator of the
absence of a corner in theL-curve, and the minimum-product crite-
rion also breaks down. Finally, the CRESO function reveals thattCRE

has to be selected corresponding to the second (rather than the first)

local maximum in order to be closest totopt. Thus, all three techniques
for selectingt break down, with the minimum-product criterion iden-
tifying this breakdown by the absence of a minimum inP (t) and the
maximum-curvature criterion by the absence of a sharp corner in the
L-curve. Very similar situations prevailed for the case of intrinsic ge-
ometry noise and that of intrinsic geometry noise plus the heart offset
1 cm outward (see Table I).

This complete breakdown is avoided when Gaussian measurement
noise is added, even as little as 0.5% noise. The corner in theL-curve
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TABLE I
SUMMARY OF INVERSION PARAMETERS FORREALISTIC HEART-TORSO

GEOMETRIES WITHTHREE RADIAL DIPOLESWITHIN THE HEART

Asterisks indicate where Maximum Curvature and CRESO techniques broke
down. No Minimum Product solutions were obtained under conditions of geometry
noise alone.

becomes prominent, the maximum in the curvature plot does identify
the corner, and a minimum appears in the product function plot. These
features are easily verified in Fig. 1 (right column) which shows the
results when, in addition to the intrinsic geometry noise and heart offset
inward, 0.5% noise was added to the body surface potentials. Note,
however, that while bothtL and tP fall in the corner region of the
L-curve,topt falls to the right of the corner. Also, once again it is the
second local maximum in the CRESO function that is closest totopt,
and one could argue that the CRESO approach again breaks down. With
intrinsic geometry noise, heart offset outward and 0.5% noise, however,
all three techniques worked as stipulated witht values at the corner of
theL-curve, buttopt still remained to the right of the corner (Table I).

IV. DISCUSSION

The demonstration that the Lianet al.minimum-product corner cri-
terion results in the samet values as our earlier more empirical zero-
crossing approach offers a rational explanation as to why the latter
approach for regularization parameter selection was successful, some-
thing that we were not able to show earlier, and that we redress here.
Quite simply, the zero-crossing approach is equivalent to theL-curve
approach employing a minimum-product corner criterion.

Our simulations show thattL andtP are generally superior totCRE ,
resulting more often than not in a lowerRE. One advantage oftP is
that when correlated geometry noise dominates measurement noise, no

minimum appears inP (t), thus, explicitly indicating that the method
breaks down. The same can also be said fortL as the corner in the
L-curve disappears under these conditions, and when, accordingly, no
maximum-curvature criterion is applicable. No such warning is pro-
vided by CRESO. Indeed, the first local maximum of the CRESO func-
tion under these geometry noise conditions may not yield the most ap-
propriate solution. In the real clinical or experimental solution, how-
ever, once measurement noise is present, this drawback oftCRE dis-
appears.

Thus, when Gaussian measurement noise starts to dominate geom-
etry noise, all three methods work. The parameterstL, tP andtCRE all
lie in the vicinity of the corner in theL-curve withtopt to the right of
the corner. Additional simulations described by us earlier [7] showed
that with increased Gaussian noise, the corner moves outward, i.e., to
the right, and eventually catches up withtopt. At this point, tL, tP ,
tCRE , andtopt are all close to the corner. As the noise increases fur-
ther and the corner continues to move outward, all four continue to
move outward with the corner. Thus, it is mainly in the low-noise set-
ting that significant differences are seen between all four, and it is in
this low-noise setting that inverse solutions computed withtL, tP , and
tCRE exhibit larger relative errors than the optimum solution.

These simulations indicate that an appropriate strategy for inverse
solutions obtained by Tikhonov regularization would be to first com-
pute theL-curve and ensure the presence of a corner. The corner can
then be identified either by the point of maximum curvature, or in easier
fashion by plottingP (t) and finding its minimum. Both these corner
criteria will yield solutions that will either be close to the optimal so-
lution or, if topt does not happen to be at the corner, solutions that will
be underregularized.
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