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Abstract: 

Introduction: Gene therapy mainly depends on the use of appropriate delivery vehicles with no 

induction of immune responses and toxicity. The limitations of viral gene carriers such as 

induction of immunogenicity, random integration in the genome of the host, limitations in the 

size, has led to a movement toward non-viral systems with much safer properties. Biodegradable 

and biocompatible polymeric nanocarriers due to several unique properties such as excellent 

biocompatibility, prolonged gene circulation time, prevented gene degradation, passive targeting 

by using the enhanced permeability and retention (EPR) effect, and possibility of modulating 

polymers structure to obtain desirable therapeutic efficacy, are among the most promising 

systems for gene delivery. However, biodegradable gene delivery systems have some limitations 

such as inadequate stability and slow release of therapeutics which have to be overcome. Thus, a 

variety of advanced functional biodegradable delivery systems with more efficient gene delivery 

activity has recently been introduced. 

Areas covered: This review summarizes different aspects of biodegradable and biocompatible 

nano carriers including formulation, mechanism of intracellular uptake, various potential 

applications of biodegradable nanoparticles and finally recent studies on the therapeutic efficacy 

of these nanoparticles in sustained delivery of genes. 

Expert opinion: 
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Biocompatible and biodegradable polymers will play a necessary and important role in 

developing new and safe carriers for oligonucleotide delivery. More working and the 

development of optimized polymers will reveal more their efficacy in the treatment of patients 

via helping in better gene therapy. 

Key words: Gene therapy, Biodegradable, Biocompatible, Polymeric nanocarriers 

 

Article highlights 
• Biocompatible and biodegradable polymers play an essential and important role in 

developing new and safe carriers for oligonucleotide delivery. 
• Nanoparticles based on polysaccharides represent excellent biocompatibility and are thus 

promising gene delivery carriers. 

• Polyesthers such as PLA, PLGA, PCL and PHA in conjugation with cationic polymers 
show an important role in delivery of nucleic acid. 

• Polyamide cationic nanoparticles due to biodegradability and non-toxicity are of good 
polymeric gene delivery vectors. 

• Inorganic polyphosphates are almost ubiquitous polymers that have high potential in 
controlled release of genes after functionalization.  

 

1 Introduction: 

Gene therapy is a new paradigm and promising approach in medicine for the treatment of a 

variety of genetic diseases as well as an alternative method to conventional chemotherapy used 

in cancer therapy (1, 2). In general, "gene therapy" refers to the transfer of foreign DNA into 

cells to replace a missing or deficient gene or express, enhance or suppress a targeted gene. The 

most difficult challenges for the clinical application of gene therapy are the lack of safe, 

efficacious and controllable methods without eliciting adverse effects(1, 3). Therefore, the 

success of gene therapy largely depends on the choice of effective carriers that compact and 
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protect therapeutic genes from degradation by serum nucleases, extracellular enzymes and finally 

by intracellular degradation in endosomal/ lysosomal compartments (1, 4). Since gene therapy 

was first conceptualized in 1972, many different tools have been developed for efficient 

introduction of genes into target site as well as to overcome specific gene delivery barriers(5). 

Currently, there are different types of gene carriers being used for gene therapy applications and 

each has its advantages and limitations. These gene-transfer vehicles can be broadly classified 

into viral and non-viral subgroups. Early efforts in gene delivery have focused primarily on 

recombinant viral vectors such as retroviruses, lentiviruses, adenoviruses, adeno-associated 

viruses (AAV), and several other viral types (6, 7).Viruses can be used as gene carriers by 

removing pathogenic and un-necessary genes from virus genome and replacing it with a 

therapeutic nucleic acid. Such recombinant viral vectors will be nonpathogenic and will be able 

to infect and replicate in specific target cells. Despite the promise of viral vectors as efficient 

gene carriers, there are several obstacles including immunogenicity, toxicity, potential 

oncogenicity, random integration in genome of the host, restricted cell-targeting, storage 

difficulties, inflammatory potential, limitations in the size, and difficult scale-up procedures 

which limit their use as safe gene delivery vehicles(8). These limitations in viral gene carriers 

have given rise to the need for other  delivery systems which mainly include non-viral systems 

with much safer properties, low cost, high flexibility and easier to manufacture than viral gene 

carriers(9, 10). Non-viral gene carriers are mostly based on nanoparticles (NPs), which are made 

from a variety of non-organic and organic materials such as polymers, lipids, peptides and their 

derivatives. Most of these NPs with net positive charge could effectively condense nucleic acids 

by electrostatic interaction and form particles with nano-scale sizes which could protect DNA 

from premature degradation by intra- and extracellular nucleases leading to modulation of gene 
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expression for a desired period of time (8, 11). Nevertheless, following the entry of positively 

charged NPs into the blood stream, interactions between the NPs surface and serum proteins 

occur which may lead to their removal by the mononuclear phagocyte system (MPS) in liver and 

spleen(12). On the other hand, accumulation of non-biodegradable NPs in the body, especially in 

liver and spleen,can lead to toxic effects(13, 14). Therefore, the need for  biocompatible, 

biodegradable and non-toxic nanocarriers which could effectively condense nucleic acids and 

avoid accumulation inside the cells is evident (15). This review intends to summarize the current 

understanding on most important biocompatible and biodegradable NPs as gene carriers 

especially biodegradable polymers obtained from biological sources (Table 1). 
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Figure 1. Barriers to successful in vivo delivery of nucleic acids using nonviral vectors.This figure was 

obtained with permission from reference(8). 

Table 1.Biodegradable and biocompatible polymers in gene therapy 

Polymer Important examples Chemical structure Main 
resources 

Advantages and 
disadvantages for use in 

gene delivery 

Polysaccharides 

Chitosan Composed of 
randomly distributed 
β-linked D-
glucosamine and N-
acetyl-D-

Crustaceans;  
fungi 

Biodegradability, 
biocompatibility, facile 
chemical modification on 
functional groups, 
diversity in 
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glucosamine polysaccharides structure, 
ability of receptor 
targeting (Hyaluronic 
acid), usually with low 
cytotoxicity 

Hyaluronic acid β-(1-4)-linked 
repeating 
heteropolymer 
consisting of 
glucuronic acid and 
N-
acetylglucosamine 

Animal 
products 

Dextran α-(1,6)-linked 
homopolymerconsist
ing ofglucopyranose 
units with α-(1,2)/α-
(1,3)/ 
α-(1,4)-glycosidic 
branch linkages 
 

Bacteria 

Polyesters 

Polylactic acid Consisting of L- or 
D-lactic acid 

Plant 
products 
such as corn 
starch; lactic 
bacteria 

Biodegradability, 
biocompatibility, 
DNA-carrying capacity, 
the simplicity of large-
scale production, long-
term delivery, 
Lowcytotoxicity, the 
majority are generally 
hydrophobic and neutrally 
charged 

Poly (lactide-co-glycolide) With different ratios 
between its 
constituent 
monomers, lactic 
(LA) and glycolic 
acid (GA) 

Crude oil 

Polycaprolactone Ring opening 
polymerization of ε-
caprolactone – a 2-
Oxepanone 
homopolymer 

Crude oil 

Polyhydroxyalkanoates Synthesized from 
hydroxyacids, HO-
R-COOH 

Bacteria 

Polyamides 

Poly(ε-L-lysine) Homopolypeptide of 
25–30 L-lysine 
residues 

Bacteria Biodegradability, 
biocompatibility,  to, 
formation of nanosized 
polyplexes with nucleic 
acids, Non-toxic 

Poly(γ-glutamate) Repeating units of l-
glutamic acid, d-
glutamic acid or 
both 

Bacteria 

Polyanhydrides Polyphosphates Consists of 
orthophosphate units 
(PO4) linking by 
high-energy 
phosphoanhydride 
bonds 

All living 
cells 

Biodegradability, 
biocompatibility,  
similarity to 
biomacromolecules and 
presence of pentavalent 
phosphorus in 
polyphosphates, Non-
toxic, hydrophobic, 
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functionalization is 
necessary before 
employing 

 

2 What is biocompatibility and biodegradability? 

Up to now, many different types of NPs such as carbon nanotubes (16), graphene oxide(17), 

dendrimers(18), liposomes (19), polypropylenimine(11), quantum dots (20), gold (21), silver and 

magnetic NPs (22) have been designed and introduced as gene and drug carriers (23-25). In order 

to be able to use nanomaterials in cancer therapy, it would be better to formulate therapeutic 

agents in safe, biocompatible and biodegradable nanoparticulate systems with lower overall 

toxicity in the body (26, 27). The selection of the NPs as gene carrier is dependent on different 

parameters such as 1) size and zeta potential of the desired NPs, 2) condensation efficiency 3) 

endosomal scape mechanism by which the polyplex released into the cytosol, 4) various surface 

modifications and functionality, 4) degree of biodegradability and biocompatibility of NPs (25, 

28-30). 

The word biocompatibility is referred to "the ability of a material to perform with an appropriate 

host response in a specific situation" (29, 31). In general, ahigh degree of biocompatibility of 

NPs is achieved when a NP interacts with the body without induction of undesirable effects such 

as toxicity, thrombogenicity, immunogenicity, and carcinogenicity. Therefore, non–

biocompatible NPs may either stimulate immune system response or trigger inflammatory 

reactions which finally lead to faster removal by the immune system (32). The clearance of NPs 

is often a crucial step after the introduction of NPs into the body and determines their outcome. 

Size and surface charges of NPs are the most important factors in determining the NPs clearance 

rate. Many studies have shown that surface charge has the most important role in the fate of NPs, 
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generally, neutral or negatively charged NPs lead to less inflammatory reactions compared to 

positively charged NPs (29). Biocompatibility of nanomaterials depends on their structure, size, 

formulation and many otherfactors(29, 33). Therefore, we need appropriate and safe 

biodegradable nanoparticulate systems for the delivery of gene, drug, peptides, and proteins to be 

used in the field of nanomedicine as well as tissue engineering (29). Furthermore, degradation of 

these biodegradable NPs can be used as a mean of  the release of the payloads (drug and gene) 

into the target cells (4). However, low gene transfer efficiency of most non-viral gene carriers 

must be improved by surface modification via appropriate chemical methods such as PEGylation 

for inhibition of undesired interactions with serum compartments as well as conjugation with 

targeting agents such as antibodies (34), peptides (2), aptamers(35) and other targeting ligands 

for receptor-mediated endocytosis. Nowadays, a variety of polymers, both synthetic and natural, 

have been introduced as biodegradable and biocompatible NPs for biomedical purposes. 
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Figure 2. Nanoparticle biocompatibility trends. The zeta potential, size, and solubility affect the cytotoxicity 

(surface reactivity), clearance process (renal or biliary), MPS/RES recognition, and EPR effect.This figure 

was obtained with permission from reference (33). 

3 Polysaccharides 

3TPolysaccharide-based NPs because of their natural origin and 3Tunique physicochemical properties 

such as availability, excellent biocompatibility, biodegradability, low toxicity, highly chemical 

reactivity and low cost have attracted special interest in the fields of pharmacological and 

therapeutic applications. Naturally occurring polysaccharides are a large group of polymeric 

carbohydrates with long chains of monosaccharide repeating units adjoined by glycosidic 

linkages. Polysaccharides areabundant in nature obtained fromvarious sources such as algae (e.g. 

alginate), plants (e.g. pectin, cellulose, cyclodextrins), microorganisms (e.g. dextran, pullulan), 

and animals (chitosan, chondroitin, hyaluronic acid) (36). Structure and chemical composition of 

polysaccharides are often heterogeneous, neutral or charged, linear or branched with varying 

molecular weights (Mw). Polysaccharides have a larger number of functional groups(such as 

amines and carboxylic acids) in their glycosidic units which are prone to facile chemical 

modifications(37, 38). Structural modifications may impart better specificity for binding to the 

target site. Moreover, chemical modifications can improve the properties of the polysaccharides 

in such a way that could overcome their specific shortcomings such as fast clearance, low 

endosomal escape and insufficient nucleic acid binding (39). One of the most popular and most 

efficient structural modification strategies applied on polysaccharides is their conjugation with 

polyethylene glycol (PEG). PEG is a nonionic hydrophilic polyether and has been widely used to 

protect enzymatic degradation and premature clearance during circulation. The chemical 

modifications although have advantages including in enhancing delivery of agents by NPs, they 

nevertheless should not interfere in biocompatibility of NPs and, in fact, should be biologically 
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inert. For example, some reports assert that PEGylated NPs contrary to the impression may cause 

stimulating the immune system in which an intravenous injection of PEG-conjugates leads to a 

second dose. The immunogenicity of PEG can be due to its repeating –O–CH2–CH2– subunit 

(40, 41). Therefore, this limitation may take into account in the current focus on biocompatible 

NPs. 

NPs fabricated with polysaccharides due to diversity in polysaccharides structure can overcome 

various existing extra- and intracellular barriers specifically in nucleic acid delivery (37). In 

addition, the influence of the chemical microenvironment on their physicochemical identity by 

interaction with macromolecules such as nucleic acids has a role in their preparation as 

conjugates or complexes. The mechanism of the polysaccharides-DNA complex formation 

involves the electrostatic interactions between cationic polymers and anionic DNA to form 

polyplexes. This type of complex formation provides enhanced efficacy of genes delivery to 

targeted cells. Furthermore, some polysaccharides owing to their intrinsic ability, are able to 

recognize specific cell types and hence facilitate the design of targeted delivery systems through 

receptor-mediated endocytosis (38). 

3.1 Chitosan 
 
Chitosan is a (1→4) 2-amino-2-deoxy-β-D-glucan that is obtained by partial alkaline 

deacetylation of chitin (a polysaccharide found in the exoskeleton of crustaceans and insects and 

the cell wall of fungi). It is a linear and cationic polysaccharide composed of randomly repeating 

units of D-glucosamine (deacetylated unit) and N-acetyl-D-glucosamine (acetylated unit) by β-

1→4 linkages. In addition to previously mentioned ideal characteristicsof polysaccharides, 

because of its extensive positive charge and globular shape, chitosan is an excellent and 

attractive candidate among natural polysaccharides for the delivery of negatively charged nucleic 
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acids. It can effectively bind DNA and protect it from enzymatic degradation (42-44). Likewise, 

the included nucleic acid benefits from the mucoadhesive property of chitosan that permits a 

sustained interaction with the membrane epithelia, promoting more efficient uptake. Finally, 

chitosan possesses the ability to open intercellular tight junctions and thus facilitates the 

transport of its payload into the cells more effectively (45, 46). 

Special chitosan formulations can render a promising combination therapy. These specific 

formulations were capable of delivering plasmid DNA and siRNA effectively to HepG2 and 

Caco-2 cancer cell lines leading to high levels of both GLP-1 expression and DPP-VI silencing 

in vitro in type 2 diabetes therapy(47). The application of an in situ chitosan hydrogel delivery 

system for osteosarcoma gene therapy combined with chemotherapy with a combination of 

chitosan-doxorubicin and chitosan-pigment epithelium derived factor resulted in a potential 

treatment for osteosarcoma and strong inhibition of tumor growth, bone lysis, and metastasis to 

lungs (48). 

Polyionic hydrogels formed as a result of interaction between biodegradable cationic and anionic 

biopolymers due to the improvement of both shelf-life and half-life in biological fluids have 

proven remarkable characteristics for drug encapsulation and delivery. Chitosan and alginate are 

two biodegradable polysaccharide biopolymers that are of much interest and have been largely 

investigated for such applications. Alginate as a poly anionic copolymer is not applied as much 

as cationic polymers in nucleic acid delivery, but it improves the gene transfer by polycations. 

Alginate-chitosan complex is formed through interactions between the carboxyl groups of 

alginate and the amine groups of chitosan. This complex is stronger at lower pH values in which 

chitosan dissolves (49-51). Yang et al., have employed chitosan-alginate nanoparticles as carriers 

of the pAcGFP1-C1 plasmid with an ultrasound regimen. This complex could protect the 
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transgene from DNase I degradation and incorporate plasmid DNA up to 600-650 nm in size 

with a loading efficiency of greater than 90% (52).Alginate-chitosan complex also by forming 

3D scaffolds and macrocapsules facilitate gene-to-cell transfer(53). The combination of 

polyethylenimine (PEI) with the chitosan/DNA complex exhibited 1000 folds enhancement in 

gene expression in HeLa cells over that of induced by chitosan alone. Furthermore, cytotoxicity 

of PEI considerably decreased upon combination with the chitosan/DNA complex (54). In 

another study, Hoet al., conjugated arginine (Arg) residues to chitosan (CS)backbone via 

extending arms consisting of disulfide spacers and introduced a novel non-viral carrier(CS–SS–

Arg) for gene delivery in human embryonic kidney 293 (HEK 293) cell line. In this fabrication, 

Arg residues could efficiently condense DNA through electrostatic interactions and form CS–

SS–Arg/DNA NPs with a diameter and zeta potential of 130 nm and 35 mV, respectively. 

Cleavage of disulfide spacers in reductive environment of cytoplasm and biodegradable 

properties of CS–SS–Arg led to enhanced release of DNA into the cytoplasm(55).  

 

Figure 3.Schematic illustrations showing the potential mechanisms of intracellular gene expression of CS–SS–
Arg/DNA nanoparticles. This figure was obtained with permission from reference(55). 
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3.2 Hyaluronic acid (HA)  
 
Hyaluronic acid is a glycosaminoglycan (GAG) disaccharide occurring as a natural hydrophilic 

polyanionic linear polymer composed of glucuronic acid and N-acetylglucosamine repeats via a 

β-1→4 linkage. It exists naturally in the body with a half-life of nearly three days and 

comprises50% of the total resides in skin tissue (56). It can be stated that the most versatile 

existing macromolecule in the connective tissues of vertebrates is HA. Moreover, it is an 

essential and abundant constituent in some other tissues such as vitreous humor of the eye and 

synovial joint fluid (57). 

HA is involved in different cell functions such as cell adhesion, morphogenesis, inflammation 

regulation, cell signaling and even transcription. It has gained a lot of interest in a great number 

of clinical applications. The US FDA approved it for injection for treating some diseases (58). 

This biopolymer, due to some advantageous and well-known features which improve 

transfection efficacy, has become an attractive polymer in the field of pharmaceutical technology 

and drug and gene delivery in recent years. Several studies have shown that establishment of 

complexes of polycations such as polyethylenimine (PEI) with HA, as a coating agent, could 

enhance gene transfection efficiency and improve their stability (59-62). For example, He et al. 

used HA as a natural anionic polysaccharide for shielding of PEI positive charge for targeted 

gene delivery into HepG2 and B16F10 cells expressing HA receptor. They used reducible 

shielding of hyaluronic acid (HA-SS-COOH) and add them to DNA/PEI complexes via 

electrostatic interaction to form ternary complexes. The shielding of DNA/PEI polyplexes with 

HA led to enhanced stability of NP and prevented aggregation mediated by salt and serum 

albumin as well as enhancement of cellular uptake by HA receptor-mediated endocytosis. 
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Furthermore, in the reductive environment of cytoplasm, deshielding of HA-SS-COOH led to 

DNA release and thereby increased the gene transfection efficiency(60). 

In addition to acting as the protective coating, HA could also work as a ligand for cell 

targeting(63-65). Since HA is a ligand for receptors such as CD44, RHAMM, LYVE-1, and toll-

like receptor 4 (TLR-4), it can be ideally employed as targeting moiety in gene carriers(37). Has 

with molecular weight profiles in the range of 103−107 Da have been studied in numerous 

applications. They possessed various physiological characteristics in different molecular weights. 

It has been known that HAs with low molecular weights are able to bind various cellular 

receptors such as CD44 which is overexpressed in normal human epithelium cells, chondrocytes 

and cancerous cells (66). Martens et al., have used HA as an electrostatic coating for polymeric 

gene nanomedicines, complexes of anionic plasmid DNA and the cationic N,N′-

cystaminebisacrylamide-4-aminobutanol (p(CBA-ABOL) vector), for intravitreal delivery of 

therapeutic nucleic acids towards the retina with help of an optimized ex vivo model based on 

excised bovine eyes. Due to the presence of HA throughout the retina and as a major constituent 

in vitreous humor as well as presentation of CD44receptors on many retinal cell types, it might 

be an interesting molecule in ocular delivery for patients suffering from blinding disorders (67). 

Despite all prominent features, the shortcomings of HA include both high water solubility and 

rapid degradation. However, its capability of interacting with positively charged materials and 

polymers, could enhance the stability of HA upon dilution and in the presence of serum proteins 

(68). For some of the target cells, HA PEGylation could lead to prolonged blood circulation time, 

inhibiting enzymatic degradation, improving tumor accumulation, reducing aggregation and 

promoting stability of the therapeutic (69). 
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Figure 4. Schematic representation of DPS complexes for gene delivery. (1) Condensation of DNA by PEI to 
form DNA/PEI binary complexes (2) Shielding of DNA/PEI with bioreducible and targeted HA-SS-COOH by 
electrostatic interaction to construct DNA/PEI/HA-SS-COOH ternary complexes, (3) HA-receptor-mediated 
endocytosis and (4) reduction-triggered deshielding of HA-SS-COOH and DNA release in reductive 
conditions. This figure was obtained with permission from reference(60). 
 

3.3 Dextran 
 
Dextran is a hydrophilic nontoxic biomaterial consisting of α-1,6 linked glucopyranose units 

with a few 1,3-glycosidic branch linkages, which is naturally produced by some bacterial 

species. It is readily soluble in water as well as electrolyte solutions and it is stable for more than 

5 years. Binding of dextran to erythrocytes and platelets increases their electronegativity and thus 

reducing erythrocytes aggregation. Dextran has been used as a plasma volume expander and a 
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blood flow adjuvant (70). It is also applied to stabilize enzymes. Owing to several attractive 

properties and high safety, it can be used for both parenteral and oral administrations. This is 

confirmed by its continuous use in clinics and pharmacy (71). In the field of gene therapy, many 

attempts have been made to investigate the dextran and its derivatives. Native dextrans, charged 

dextrans(dextran sulfate or diethylaminoethyl (DEAE)-dextran) and hydrophobically-modified 

dextran have been studied for pharmaceutical applications to coat some polymeric particles and 

liposomal vesicles. Dextran sulfate is a polymer that has been widely used for preparing 

nanosized polyelectrolyte complexes in different fields(37). Additionally, dextran is employed 

desirably as a carrier for encapsulation of nucleic acids. Raemdoncket al., successfully designed 

biodegradable cationic dextran nanogels for controlled-release delivery of siRNA in HuH-7 

human hepatoma cells by enhancing the endosomal escape mechanism and tailoring the 

degradation kinetics of nanogels inside the cells. These nanoparticles could encapsulate siRNA 

by electrostatic interactions(72). It has been found that the incorporation of polyanions such as 

dextran sulfate or hyaluronic acid resulted in more compact siRNA polyplexes compared to 

complexes with polycations alone (73). 

Different modifications of dextran structure have overcome some of its inherent drawbacks in 

delivery systems. One of the major drawbacks of dextran is its high polarity which may exclude 

its trans cellular passage. Another problem is its susceptibility to enzymatic degradation in the 

human body (74). Conjugations of dextran with moieties such as PEI, glycidyl trimethyl 

ammonium chloride (GTAC), diethylaminoethyl (DEAE), spermine and protamine were found 

to be of great importance in increased cytotoxicity and enhanced transfection efficiency (75). 

Linear dextran bearing a high amount of hydroxyl side groups is amenable to efficient chemical 

modifications. For example, partial oxidation of dextran hydroxyl groups to form aldehydes 
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would enable grafting of branched PEI. Thomas and co-workers designed a cationic dextran 

derivative using protamine in order to evaluate target specific cellular binding. Disuccinidyl 

carbamate and 4-methylaminopyridine were used for activation of the hydroxyl groups followed 

byconjugation to the amino group of protamine. The transfection efficiency of the polymer/DNA 

complex represented capability of modified dextran in high gene expression and cellular uptake 

in HepG2 cells (76). 

3.4 Other polysaccharides 
 
There are lesserknown polysaccharides, which can also be applied in gene therapy. Among these, 

polymers such as alginate, cyclodextrins, β-glucans, arabinogalactan, pullulan and pectin could 

be mentioned. Alginate is more applicable in drug delivery systems. It is an unbranched 

polyanionic copolymer, consists of (1-4) linked β-D-mannuronate and α-L-guluronate residues in 

homopolymer or heteropolymer block structures. It is widely used as biomaterials, especially in 

tissue engineering and regeneration and as a carrier for controlled release systems. It has also 

chelating capabilities. The US FDA has approved alginates for use as polymers. Nevertheless, 

there are few reports about its usage as nucleic acids carrier. Similar to hyaluronic acid and 

dextran, alginate has also been exploited in alleviating PEI-mediated cytotoxicity (37, 38). Jiang 

et al. indicated that PEI/DNA polyplexes with an alginate coating enhanced reporter gene 

expression in vivo in comparison to the uncoated complexes. The results of this study 

demonstrated that the anionic alginate coating of the DNA/PEI polyplexes contributed to 

efficient gene delivery in vitro and in vivo(77). 

4 Polyesters 
Polyesters are produced by polymerizing a polyhydric alcohol along with the addition of 

apolybasic acid that could bear hydrolysable backbone (78). Properties of these polymers depend 

on some factors such as monomer composition, mean molecular weight, polydispersity and glass 
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transition temperature (79). Biodegradable polyesters can be classified into two main groups; 

polymers either derived from microorganisms or synthetically made from natural or synthetic 

monomers (80). The biodegradable polyesters in a different classification include poly (lactic 

acid), polyhydroxyalkanoates with agro-resources, polycaprolactone, biodegradable aliphatic 

polyesters, aromatic copolyesters and polyesteramide with petroleum resources (81). 

Polyesters have been widely explored in biomedical applications such as tissue engineering, 

controlled drug delivery of both hydrophobic and hydrophilic drugs, sutures and implants (82). 

Notwithstanding that polyesters have excellent tissue compatibility; their hydrophobicity can be 

a barrier in medical applications including their use as gene delivery agents. Hence, polyesters 

conjugated with other cationic polymers, or chemically modified in structure will gain the 

capability of forming polyionic complexes through electrostatic interactions with DNA. 

Furthermore, functionalizing of aliphatic polyesters imparts other useful properties to modified 

complex(83, 84). On the contrary to some counterpart vectors employed for gene delivery, 

polyesters have several advantages including low immunogenicity and toxicity, high DNA-

carrying capacity, the simplicity of large-scale production and long-term delivery of therapeutic 

agents. Moreover, their degradation into low molecular weight products would facilitate their 

renal clearance (85-87). 

Nevertheless, for increasing the efficiency of gene delivery, reducing cytotoxicity and dependent 

degradation in addition to passive and/or active targeting, different derivatives of biodegradable 

polyesters have to be produced, which is further discussed in the following sections (88). 

4.1 Polylactic acid or polylactide (PLA) 
 
PLA is a hydrophobic polyester chiral molecule that is present as two stereoisomers; L- and D-

lactic acid, which can be produced in two ways. One method involves biological production 

E
xp

er
t O

pi
ni

on
 o

n 
B

io
lo

gi
ca

l T
he

ra
py

 



through lactic bacteria mainly related to the genus lactobacillus or fungi and the second approach 

is chemical production using renewable sources (81). Inherent properties of PLAs such as 

biocompatibility, biodegradability, mechanical strength, heat processability, solubility in organic 

solvents, microparticles (MP) and nanoparticles (NP) of PLA have been progressively employed 

as systems for different macromolecules delivery(89). However, many researchers introduce 

dependent groups in the polymer backbone for improving the efficiency of delivery systems 

because the majority of PLA polymers suffer from lack of any functional groups in their 

backbone. Li and Huang synthesized copolymer namely poly[(D,L-lactide-co-4-hydroxy-L-

proline) (PLPH)] using ring-opening polymerization of D,L-lactide with N-cbz-4-hydroxy-L-

proline in the presence of stannous octoate. They revealed that PLHP/pDNA was able to perform 

multiple functions such as controlled degradation rate, negligible cytotoxicity along with 

containing a functional group for further conjugation with targeting ligands (90). 

Liu et al., attached folate (Fa) to poly(ethylene glycol)-b-poly(D, L-lactide) (PEG-PLA) to form 

Fa-PEG-PLA conjugate which binds to receptors on the cell surfaces in order to increase the 

cellular uptake. In vitro transfection efficiency of Fa-NPs/DNA was evaluated in HeLa cells and 

human umbilical vein endothelial cells. Their findings showed that Fa-PEG-PLA NPs could 

function as an excellent carrier for gene loading and delivery and could be considered as tumor 

cell-targeted medicine for the treatment of cervical cancer (91). 

Another approach for improving the properties of PLA as gene carrier is to conjugate it with an 

amphiphilic and cationic lipid. Yang et al. showed that cationic lipid-assisted poly(ethylene 

glycol)-b-poly(D,L-lactide) (PEG–PLA) nanoparticles containing siRNA against the Polo-Like 

kinase-1 (PLK1) gene could induce remarkable apoptosis in both HepG2 and MDA-MB-435s 
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cancer cells. On the other hand, systemic delivery of PEG–PLA nanoparticles loaded with the 

same siRNA suppressed tumor growth in a MDA-MB-435 murine xenograft model (92). 

In another study, siRNAs against Aldh1a2 (retinoic acid (RA)-synthesizing enzyme) and dusp6 

(also known as MAP-kinase phosphatase, mkp3) were encapsulated in cationic lipids (BHEM-

Chol) and PEG–PLA.The siRNA-encapsulated nanoparticles successfully entered the cells and 

resulted in are markable gene-specific knockdown in adult zebrafish heart (as an important 

model organism for studying heart regeneration)(93). 
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Figure 5. Overview of preparation and delivery of nanoparticle-encapsulated siRNAs into zebra fish hearts 
after ventricular resection. This figure was obtained with permission from reference(93).  

 

4.2 Poly (lactide-co-glycolide) (PLGA)  
 

PLGA is aliphatic biodegradable copolyester which is synthesized by means of ring-opening co-

polymerization of two different monomers, namely lactic and glycolic acids. The combination of 

polylactic acid (PLA) and polyglycolic acid (PGA) yields one of the most successfully 

developed biocompatible and biodegradable polymers, especially in drug delivery. Depending on 

the ratio of lactate to glycolate used for the polymerization, different forms of PLGA can be 

produced (78, 94). 

PLGA is a biodegradable and biocompatible copolymer which was approved by the European 

Medicine Agency (EMA) and the US Food and Drug Administration (FDA) for implants, 

parenteral microspheres and periodontal drug-delivery(95-97). The hydrolysis of their ester 

linkages and subsequent biodegradation of PLGA in body releases two non-toxic metabolite 

monomers, lactic and glycolic acids which easily metabolized through the Krebs cycle, resulting 

in minimal systemic toxicity(98, 99). The rate of degradation is related to several factors 

including the monomer ratio of PLGA, the degree of crystallinity, molecular weight, and the 

glass transition temperature (Tg) of the copolymer(100, 101). For example, the polymer 

composed of 50% lactic acid and 50% glycolic acid is hydrolyzed much faster than those 

containing an unequal ratio of monomers(100, 102).  

PLGA copolymers have useful properties such as decomposition to nontoxic by-products, 

mechanical resistance, and regular individual chain geometry, as well as controlled rate of 

degradation (103). Although PLGA nanoparticles could protect the encapsulated DNA from in 

vivo degradation but there are many challenges involved in the application of PLGA as gene 
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carriers such as poor encapsulation efficiency, insufficient lysosomal escape, and low cellular 

uptake. 

Many studies have been done to improve the properties of PLGA nanoparticles as gene delivery 

vector by conjugating it with other polymers such as polyethyleneglycol(PEG), 

polyethylenimine(104), poly-L-lysine(105), polyamidoamine and chitosan(106).These polymers 

could enhance cellular uptake, buffering capacity and endosomal escape of PLGA NPs.  

PEGylation of PLGA NPs also increases their solubility and stability, blood circulation half-life, 

decreases immunogenicity, reduces intermolecular aggregation and finally avoids recognition of 

NPs by reticulo-endothelial system (RES) (96, 97, 107). 

Targeting of PLGA NPs is another approach to efficient and specific delivery of therapeutic 

genes to a target site. Cationic PLGA was modified with asialofetuin (AF) whichis known as an 

excellent ligand molecule selectively recognized by the asialoglycoprotein receptor (ASGPr) on 

hepatocyte cells. The results showed that targeted asialofetuin-PLGA conjugates carrying genes 

encoding for luciferase and interleukin-12 (IL-12) could increase transfection efficiency 

compared to free DNA and non-targeted systems in cultured HeLa cells(108). 

 

4.3 Polycaprolactone (PCL) 
 
PCL is a polymer existed in petroleum sources, which is normally produced by ring-opening 

polymerization of ε-caprolactone in the presence of metal alkoxides(109). Nanoparticles made 

from PCL have a promising place in biomedical applications for their high colloidal stability in a 

biological fluid, facile cellular uptake by endocytosis, low toxicity in vitro and in vivo, and 

controlled release of their cargo (110). PCL nanoparticles can be effective carriers for RNAs 

because of high stability and stealth properties. Palamàet al., in a study conducted on the effect 
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of mRNA-protamine complex encapsulated PCL nanoparticles in the intracellular delivery of 

mRNA molecules, reported that efficiency of mRNA on transfected NIH 3T3 fibroblasts, HeLa 

cells, and MG63 osteoblasts led to higher loading efficiency, better stability, and controlled 

release of the mRNA over  time (111). Diao et al. improved oligodendroglial precursor 

cell(OPC) differentiation and maturation using miR-219 and miR-338 incorporated into PCL 

nanofibers(112). 

4.4 Polyhydroxyalkanoates (PHAs) 
 

PHAs are a family of biodegradable, non-toxic, biocompatible and natural linear polyesters, 

which are synthesized using a wide variety of bacteria (113). The synthesis of biodegradable 

cationic copolymers containing PHAs such as Poly [(R)-3-hydroxybutyrate] (PHB), produces 

gene delivery vectors acquiring good water solubility. Polyethylenimine (PEI) and poly(2-

dimethylamino)ethyl methacrylate) (PDMAEMA) as a cationic polymer can be used to design 

such copolymers. PDMAEMA-PHB-PDMAEMA triblock copolymers have been demostrated 

that bear significantly lower toxicity and more efficient gene transfection as compared to PEI and 

PDMAEMA homopolymers. This copolymer had strong condensation ability for negatively 

charged plasmid DNA (pDNA) to form copolymer/pDNA polyplexes which resulted in an 

excellent gene transfection in COS-7 and HEK293 cells(114). Accordingly, for PHAs to be 

translated into therapeutic applications, they need to be chemicallly functionalized especially for 

imparting hydrophilic property(115). A (PHB-b-PEG-NH2) nanoparticle platform was prepared 

via trans-esterification reactions to be able to condense nucleic acids and to be applicable as a 

delivery system. This carrier system was synthesized for protection from enzymatic degradation, 

increased intracellular capture and improved delivery(116). 

E
xp

er
t O

pi
ni

on
 o

n 
B

io
lo

gi
ca

l T
he

ra
py

 



5 Polyamides 

Polyamides are biopolymers with repeating units held together by amide bonds. They either 

occur naturally or artificially. The well-known and typical examples are protein and nylon, 

respectively. Polyamides have different industrial and biomedical applications which include 

water softener, feed preservative, cosmetics, and bio molecular delivery (117). Usually, 

polyamides applied in controlled delivery systems are synthesized in microorganisms by 

enzymatic processes independently from ribosomal protein biosynthesis. These non-ribosomally 

synthesized biopolymers occur in several bacteria mainly inBacillus spp. These are referred to as 

poly(amino acids) in order to distinguish them from the proteins (118). They have been 

employed in the delivery of therapeutic molecules because they possess properties such as 

biocompatibility, biodegradability, and non-toxicity. In comparison to other potent vectors, 

families of polyamides such as cationic poly(amido amine)s have been studied considerably as 

polymeric gene delivery vectors. Upon binding to nucleic acids, these polymers can form 

nanosizedpolyplexes and mediate their endosomal escape and thereby inducing improved 

transfection efficiency (119). 

5.1 Poly(ε-L-lysine) (PLL) 
 

PLL with a biodegradable polymer backbone in which the α-carboxyl group is linked to the ε-

amino group of lysine is a cationic polymer at neutral pH and is widely used as an antimicrobial 

agent for preservation of animal feed (118). Upon formation a complex of nucleic acid-poly-

lysine-ligand (polyplex), the genetic material transfer is facilitated via receptor-mediated 

endocytosis. It is known that PLLs have a poor endosomal escape (pH 5–6.5) and thus there is a 

probable subsequent degradation of the nucleic acid cargo in the late lysosomes (pH ∼4.5). 
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However, PLL has protonated amino groups with high charge density, controllable molecular 

size, and shape as well as a potential flexibility for chemical modifications, and thereby can be 

considered as a promising candidate for gene delivery. To assist endosomal escape, various 

modifications of PLL such as attachment of fusogenic/synthetic peptides and pH-sensitive 

moieties can be helpful (120). Gueet al., by using of a pH-triggered amphiphilic poly-L-lysine 

nanocarrier delivered therapeutic small interfering RNA to suppress prostate cancer growth in 

mice. Modification of polymers with PEG chains can prevent their non-specific binding to serum 

proteins and particle self-aggregation which results in longer blood circulation times. In this 

work, PEGylation of poly-L-lysine modified with cholic acid (PLL-CA), was investigated for 

siRNA delivery. These nanoparticles have the capability of entering the inflammation sites as 

well as solid tumors and attaining to reduced liver filtration. PEGylation of these amphiphilic 

PLL nanoparticles improved the delivery potential of the materials in the various ways (120). In 

addition, PLL has excellent plasmid DNA (pDNA) condensation capacity. To overcome the 

relatively high cytotoxicity and low transfection efficiency of PLL, the group of Zhoua 

synthesized well-defined glycopolymers by reversible addition-fragmentation transfer 

polymerization which was then grafted onto PLL. These modified polymers can be used to 

condense pDNA with proper strength, which can protect DNA from enzyme degradation and 

consequent release of the condensed pDNA inside the cells. Transfection of NIH3T3 and HepG2 

cells showed improved transfection efficiencies (121). 

5.2 Poly(γ-glutamate) (PGA) 
 
PGA is a water-soluble, anionic, biodegradable non-toxic polyamide which consists of glutamic 

acid repeats with amide linkages between the α-amino and γ-carboxyl groups. It is a material 

E
xp

er
t O

pi
ni

on
 o

n 
B

io
lo

gi
ca

l T
he

ra
py

 



widely used in industry as thickener, cryoprotectant, sustained release material, drug carrier, 

curable biological adhesive, highly water-absorbable hydrogels and heavy metal absorbers (122). 

Although polycationic vectors can easily interact with DNA molecules and condense them 

effectively to form polyelectrolyte complexes (polyplex), but binding non-specifically to 

negatively charged proteoglycans available on cell membranes and aggregation with blood 

components due to the presence of strong cationic surface charges, can be major barriers to using 

them as controlled delivery carriers. Accordingly, several strategies such as covering the cationic 

polymers surface by polymers such as PEG and polyvinylpyrrolidine or reducing the surface 

charges and recharging them with anionic compounds such as PGA have been successfully led to 

enhanced transfection efficiency (123). In one in vivo study, liposome/siRNA complexes 

(lipoplexes) coated with chondroitin sulfate C, poly-L-glutamic acid and poly-aspartic acid for 

siRNA delivery by intravenous injection were developed to evaluate the biodistribution and gene 

silencing effect in mice. The findings showed that PGA coatings for cationic lipoplex containing 

cholesterol-modified apolipoprotein B siRNA might induce accumulation in the liver and 

suppress the liver-specific apolipoprotein B mRNA level(123). Penget al., in an in vitro study on 

HT1080 (human fibrosarcoma) cells evaluated cellular uptake and transfection efficiency of 

poly(γ-glutamic acid) chitosan/DNA nanoparticles. After incorporating γ-PGA in chitosan/DNA 

complexes, a significant increase in transfection efficiency was observed. Significantly enhanced 

cellular uptake, the presence of specific trypsin-cleavable proteins involved in the internalization 

of these complex nanoparticles as well as improving the release of DNA intracellularly were 

observed(124). 

6 Polyanhydrides 
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Polyanhydrides are a class of biodegradable polymeric carriers, which specified by repeat units 

of the polymer backbone chain linked by anhydride bonds. The instability of the anhydride bond 

allows the degradation of polyanhydrides into non-toxic diacid monomers and hence they are 

considered biocompatible. They have been considered extensively as useful biomaterials in drug 

delivery to various organs of the human body such as the brain, bone, blood vessels, and eyes 

(125, 126). Inorganic polyphosphates are linear polymers formed by linking orthophosphate 

units (PO4) by high-energy phosphoanhydride bonds. They are the only polyanhydrides present 

in all living cells from bacteria to mammals (127). Polyphosphates have received particular 

attention in biomedicine. Excellent biocompatibility and biodegradability, similarity to 

biomacromolecules such as nucleic acids, as well as the presence of pentavalent phosphorus that 

possesses potent covalent linking to the drugs, offers them as fascinating drug delivery systems. 

They also by the convenient functionalization of phosphorus can indicate good flexibility (128-

130). In spite of the fact that very few studies have been reported concerning the utility of 

polyphosphates in the area of gene therapy, however, functionalization of polyphosphates is a 

popular topic to improve the performance of the controlled release of genes. In one study, 

evaluation of L-tyrosine polyphosphate-plasmid DNA (LTP-pDNA) nanoparticles in an in vivo 

setting was implemented via injection into rodent uterine tissue. In this study, Ditto et al. showed 

that nanoparticles formulated from an amino acid based polyphosphate polymer encoding for 

theβ-gal gene in E. coli have successfully transfected the uterus in an in vivo rat model (131). 

Furthermore, polyphosphates have been explored to reduce the cytotoxicity of other nonviral 

vectors such as polyethylenimine by masking of the high cationic surface charge of PEI. Huang 

et.al., showed that polyethylenimine–tripolyphosphate nanoparticles have significant transfection 

efficiency than polyethyleniminealone for both pDNA and siRNA delivery in different cell lines 
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while conferring little or no toxicity in the cells, and thus polyphosphates could improve the  

performance of PEI as gene delivery vector(132). 

 

7. Conclusion 

Polymers with biodegradability property such as polymers consisting of carbohydrate, ester and 

amide backbones produce natural byproducts such as water and organic acids after being broken 

down. On the other hand, biocompatible polymers produce desirable effects without causing 

unwanted host responses making them suitable as gene or drug carriers. That is why 

biodegradable and biocompatible polymers have raised great interest in the biomedical fields. 

More interestingly, these polymers are inert towards their cargos owing to their proper size and 

charge density which offer them as ideal delivery vehicles in the recent years. They have been 

able to significantly solve the delivery challenges in nucleic acids-based therapy as an excellent 

approach for the treatment of many genetic diseases. MOREOVER, as multifunctional nano-

scale carriers, they have shown promising results in gene delivery applications. It is expected that 

by applying various effective strategies including improving functional quality of the 

biodegradable polymers, the future direction will be translation of these polymers as carriers for 

gene and drug delivery applications. 

 

 
8. Expert opinion 
 

There is a growing interest in developing chemically based nanomaterials for oligonucleotide 

delivery. However, most of these materials are not as efficient as viral vectors in gene transfer 

activity and are neither safe nor their fate in cells/tissues clearly known. Biocompatible and 
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biodegradable polymers represent excellent choices addressing the safety problems usually 

encountered with either viral or other non-viral vectors in oligonucleotide delivery. Despite 

recent improvements to the gene transfer ability of biocompatible and biodegradable polymers 

but the biggest challenge ahead is to greatly improve on the gene transfection activity of these 

carriers so that they can be translated into clinical applications.  

The most important issue that still requires special attention and would determine the future 

direction of research in this filed constitutes structural modifications of currently available 

biocompatible and biodegradables. There are numerous biodegradable and biocompatible 

polymers with different physicochemical characters and we believe that a single material will not 

satisfy the entire design criteria, thus one approach would be to employ advantages of each 

biocompatible polymer and build these advantages into one hybrid structure by which it would 

be expected to improve on the transfection efficiency of the gene carrier without compromising 

the safety issues. Current trend in polymeric gene carriers is the interest in multifunctional nano-

scale carriers. The basic principles for gene carriers to be translated into clinical applications 

include not only exhibit efficient gene transfer activity, but in addition, it could have a 

hydrophilic corona for prolonged circulation time after being injected although it may deteriorate 

the gene transfer activity of the carrier as has been observed with PEGylation. It may also be 

decorated with a ligand such as peptides, antibodies, or aptamers to deliver the oligonucleotide 

payloads to the target cells which could potentially enhance the transfection efficiency of the 

carriers and reduce the possible side effects. Although there are many reports on the targeted 

gene delivery into cells using biocompatible and biodegradable polymers, but there are many 

other targeting ligands that have not been tested yet. The carrier may possess a chemical entity to 

pass through the cell membrane in order to efficiently reach the cytosol or an intracellular target. 
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The polymeric carrier may as well being conjugated to a contrast agent to allow for 

visualization in vivo after injection, if necessary, and have a pH-sensitive function to control the 

release of the gene payload under acidic pH of endosomal compartment. Future works on 

biodegradable and biocompatible carriers will have to focus on optimizing not only the gene 

transfer activity but also to modify their structures such that they efficiently condense DNA, are 

able to better enter the target cells, are released efficiently from endosomal compartment into the 

cytosol, traffic through cytosol toward nucleus prefery and eventually enter the nucleus for being 

transcribed. Thus, biocompatible and biodegradable polymers will play a necessary and 

important role in developing new and safe carriers for oligonucleotide delivery. 
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