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Abstract
The Giant African Snail (Achatina fulica) is considered to be one the world’s 100 worst inva-

sive alien species. The snail has an impact on native biodiversity, and on agricultural and

horticultural crops. In India, it is known to feed on more than fifty species of native plants

and agricultural crops and also outcompetes the native snails. It was introduced into India in

1847 and since then it has spread all across the country. In this paper, we use ecological

niche modeling (ENM) to assess the distribution pattern of Giant African Snail (GAS) under

different climate change scenarios. The niche modeling results indicate that under the cur-

rent climate scenario, Eastern India, peninsular India and the Andaman and Nicobar Islands

are at high risk of invasion. The three different future climate scenarios show that there is no

significant change in the geographical distribution of invasion prone areas. However, certain

currently invaded areas will be more prone to invasion in the future. These regions include

parts of Bihar, Southern Karnataka, parts of Gujarat and Assam. The Andaman and Nicobar

and Lakshadweep Islands are highly vulnerable to invasion under changed climate. The

Central Indian region is at low risk due to high temperature and low rainfall. An understand-

ing of the invasion pattern can help in better management of this invasive species and also

in formulating policies for its control.

Introduction
One of the greatest threats to global biodiversity, agriculture, livelihoods, human and animal
health, and forestry is invasive alien species [1–3]. Invasive alien species affect not only the
environment or ecology, but also the local economy [3]. Ever-growing international trade,
increased transportation and deliberate introductions have facilitated invasions at an unprece-
dented rate across the globe [4,5]. Another factor that has great implications for biodiversity,
environment and human health is climate change. Invasive alien species acting synergistically
with climate change might be expected to have much larger impact on local ecosystem than
either acting alone [6]. It has been hypothesized that climate change will aggravate the impacts
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of “non-native/exotic/alien” species naturalization and subsequent invasion across communi-
ties and ecosystems in the new ranges, thus threatening native biodiversity [7–15] and human
well-being [16]. Identifying the probable future distribution of invasive alien species is of para-
mount importance for early detection, prioritization of regions for conservation and effective
management of invasive species [17,18].

The giant African snail (Achatina fulica Férussac, 1821: Achatinidae) is a highly invasive
terrestrial snail native to East Africa. According to the global invasive species database, A. fulica
is the second worst invasive alien species in the world. It has now invaded most parts of the
world with particular impact in tropical and subtropical regions [19]. It was introduced either
accidentally along with agriculture or horticulture produce or deliberately as pets, or ornamen-
tal, medicinal or food resources [20]. Given the very high density of this large pest, it is likely to
have a great impact on the native biodiversity and ecosystems [20]. A. fulica has been recog-
nized as a major agricultural and garden pest [21,22]. It is known to consume more than 50
species of native plants, agricultural and horticultural crops, modify habitats and outcompete
native snails [22,23]. The species reproduces rapidly under optimal field conditions and can
reach high densities and biomass in a very short time [22,24,25]. A. fulica spreads the spores of
pathogens of a variety of cultivated plants in the introduced range [22,26–29]. It is also a vector
of the rat lungworm, Angiostrongylus cantonensis, which causes eosinophilic meningoencepha-
litis in humans [30,31]. Apart from economic loss and human health issues caused by A. fulica,
they are also a general nuisance to people. According to Mead [26], there are reports of car
accidents due to cars skidding on crushed snails on roads.

The pioneering British malacologist, William Henry Benson, brought a pair of A. fulica to
India from Mauritius, and handed them to a friend and neighbor before leaving the country. It
was this friend who released the snails in his garden in Kolkata, eastern India [32]. Later, in
1858, Benson reported that A. fulica had become well established in Kolkata [33,34]. A. fulica
has been considered as a serious pest to small-scale agriculture, horticulture and home gardens
[22]. In India, the spread of A. fulica was primarily mediated by humans. For example, a farmer
has introduced it from Orissa to his farm in Araku valley in Andhra Pradesh in 1996 [35]; a
blacksmith was believed to have brought A. fulica as a pet from Kolkata to north Bihar some
time during 60s [36]. Since then it has invaded many parts of both the states. This could be the
case for many other sites. The snail being large in size and attractive might have fascinated pet
keepers and hence got transported to many parts of the country from Kolkata. By mid-20th

century, A. fulica attained serious pest status in India and caused severe damage to agricultural
crops [37–39]. Many studies in India have reported the impact of A. fulica invasion on horti-
cultural and agricultural crops; however, none have quantified the exact economic loss [40]. In
the late 1970s, this snail was reported to damage ornamental and vegetable crops in Bangalore
[38]. Since then, several reports have shown that A. fulica causes serious damage to variety of
horticultural and agricultural crops viz., mulberry [41], betel-vine, capsicum, areca, banana,
tomato [42], vanilla [39] and vegetable crops such as potato, spinach, radish and tomato [43].
Raut & Ghose [25] stated that nearly 90% plants cultivated in India were eaten by A. fulica. The
pest generally feeds on the succulent parts of the plants and damages the small and tender
parts and seedlings completely. They feed not only on leaves but also on flowers, buds, tender
shoots and fruits. Given the broad spectrum of food choice and increased precipitation in
Southern India due to climate change, the invasion of A. fulicamight exacerbate the situation.
At present, the range has extended through much of India, Nepal, Bhutan, Bangladesh and Sri
Lanka [44]. A recent genetic study showed that all A. fulica now occurring throughout South
Asia, Southeast Asia and the Pacific Region are derived from a single haplotype [45].

In this paper, we assess the potential distribution of A. fulica under present and future cli-
mate change scenarios using ecological niche modeling tools. The ecological niche models
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(ENM) integrate species occurrence records with climatic and other environmental variables
and generate maps of species’ potential distribution [46]. Of late, the ENM approach is being
increasingly used to map potential distributions of invasive species under present and future
climate change scenarios [47–51]. In this study, we used maximum entropy modeling (Max-
Ent) to predict the invasion potential of the introduced invasive snail species, A. fulica in India
and develop a risk map of areas likely to be invaded in the future, which can be used for priori-
tization and effective management of this species. The specific objectives of this paper were (1)
to generate a map of the potential present distribution of A. fulica in India, (2) to assess the
impact of climate change on the potential invasion patterns and (3) to identify bioclimatic fac-
tors that contribute to invasion of A. fulica.

Materials and Methods

Achatina fulica distribution data
A total of 231 records have been collated into the Achatina database. These came from two
sources, a) for the global distribution the data was downloaded from GBIF, and b) for India,
the sources were: i) published records on giant African snails in journals, books and reports, ii)
specimens observed during field survey (mostly opportunistic sampling) by the authors, and
iii) from the Zoological Survey of India Museum. Distribution data collected from these
sources was converted into an MS excel format with specimen location, latitude, longitude,
altitude and data source. All data were geocoded using Google Earth and/or Survey of India
toposheets. The Garmin GPS was used to record the site of occurrence of each specimen
for the primary data. The data for A. fulica distribution India can be accessed at: http://
indiabiodiversity.org/map?layers = lyr_407_achatina_fulica&title=Distribution

Environmental data
To develop the niche model, present environmental data and future predictions were down-
loaded from the Worldclim database website. For present (1950–2000) environmental data, a
total of 19 bioclimatic layers were downloaded fromWorldclim database version 1.4 [52]
(http://www.worldclim.org/; Table 1). We used Intergovernmental Panel on Climate Change
(IPCC) data in its fifth Assessment Report (AR5) [53] for three different future climate scenar-
ios. These were Representative Concentration Pathway (RCP) scenarios (RCP 4.5, RCP 6.0,
RCP 8.5)—each of which is based on one of three different levels of radiative forcing. These
RCPs were developed by three different institutes. RCP 8.5 is characterized by increased green-
house gas emissions throughout the 21st century that lead to high greenhouse gas concentra-
tions over time. This RCP assumes there are no policy changes to reduce emissions in the
future [54]. RCP 6.0 is Intermediate emission scenario where total radiative forcing is stabilized
shortly after year 2100 by using range of technologies and strategies for reducing greenhouse
gas emissions in the future. RCP 4.5 is a more optimistic scenario with emissions peak around
2040 and then decline [54]. All data used for ENM had spatial resolution of 1km2 (30 arc
seconds).

Ecological Niche Modeling
Maximum entropy modeling was used with the MaxEnt algorithm (version 3.3.3k) [55] for
quantifying relative risk of invasion and mapping the potential geographic distribution of A.
fulica in India. The selection of MaxEnt is based on following reasons: (1) it is a presence-only
modeling algorithm (i.e. absence data are not required); (2) the performance is relatively better
than other modeling methods [56]; and (3) the model is hardly influenced by small sample
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sizes and hence prediction will be relatively robust [50,57]. MaxEnt estimates the probability of
presence of a species based on presence records and randomly generated background points by
finding the maximum entropy distribution [55]. MaxEnt uses a regularization parameter to
control over-fitting and can handle both categorical and continuous variables [55]. It uses five
different features viz., linear, quadratic, product, threshold, and hinge, to constrain the geo-
graphical distribution of a species. We have used “logistic” output format in MaxEnt, which is
a continuous map with an estimated probability of species’ presence between 0 and 1, which
allows us to make distinctions between the suitability of different areas [58]. All 19 bioclim lay-
ers were tested for collinearity by examining pairwise correlations between them. When a pair
of variables had a Pearson’s correlation coefficient>0.75, one of the two variables was removed
and finally only seven variables were used for ENM.

A jackknife procedure was used to calculate the significance of the contribution of each vari-
able to the model. The area under the Receiver Operating Characteristic curve (abbreviated as
AUC) [59] was used to evaluate model performance. The AUC is a threshold-independent
measure of a model’s ability to discriminate presence from absence (or background). It varies
from 0.5 to 1.0; an AUC value of 0.5 shows that model predictions are not better than random,
values<0.5 are worse than random, 0.5–0.7 signifies poor performance, 0.7–0.9 signifies rea-
sonable/ moderate performance and>0.9 indicates high model performance [60]. Model vali-
dation was performed using the ‘sub-sampling’ procedure in MaxEnt. 75% of the A. fulica data
were used for model calibration and the remaining 25% for model validation. Ten replicates
were run and average AUC values for training and test datasets were calculated. Maximum iter-
ations were set at 5000. Percent variable contribution and jackknife procedures in MaxEnt
were used to investigate the relative importance of different bioclimatic predictors. For the
present study, we selected five arbitrary categories of the risk of invasion by A. fulica: very low
(0.10–0.25), low (0.25–0.50), moderate (0.50–0.70), high (0.70–0.90) and very high (>0.90)

Table 1. Environmental Data used for ENM for A. fulica. The highlighted variables were included in the
model after testing for correlation between variables.

Codes Variables

BIO1 Annual Mean Temperature

BIO2 Mean Diurnal Range (Mean of monthly (max temp—min temp))

BIO3 Isothermality (BIO2/BIO7) (*100)

BIO4 Temperature Seasonality (standard deviation *100)

BIO5 Max Temperature of Warmest Month

BIO6 Min Temperature of Coldest Month

BIO7 Temperature Annual Range (BIO5-BIO6)

BIO8 Mean Temperature of Wettest Quarter

BIO9 Mean Temperature of Driest Quarter

BIO10 Mean Temperature of Warmest Quarter

BIO11 Mean Temperature of Coldest Quarter

BIO12 Annual Precipitation

BIO13 Precipitation of Wettest Month

BIO14 Precipitation of Driest Month

BIO15 Precipitation Seasonality (Coefficient of Variation)

BIO16 Precipitation of Wettest Quarter

BIO17 Precipitation of Driest Quarter

BIO18 Precipitation of Warmest Quarter

BIO19 Precipitation of Coldest Quarter

doi:10.1371/journal.pone.0143724.t001
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based on predicted habitat suitability as per Kumar et al. [61]. All GIS analysis was conducted
in ArcGIS and statistical analysis was done in PAST 3.

Results

Current invasion pattern
The MaxEnt model for A. fulica predicts three potential hotspots for invasion viz., western
India, parts of peninsular India and eastern India. In western India, the Coast, especially in
Kerala and parts of Karnataka, are most susceptible to invasion. In peninsular India, parts of
southern and northwestern Karnataka, parts of eastern Tamil Nadu and coastal Andhra Pra-
desh have high risk of invasion under current climate scenario. In eastern India, the Tarai
region, the Gangetic region of Bihar, West Bengal and Uttar Pradesh, the Brahmaputra river
basin (in Assam), Meghalaya and Tripura have high (0.50–0.70 suitability scores) to very high
(>0.70 suitability scores) probability of invasion. The low to moderate risk region extends till
Odisha, parts of Andhra Pradesh in the East Coast and the Eastern Ghats (Fig 1a). The Anda-
man and Nicobar and Lakshadweep Islands also have very high risk of invasion (Fig 1b). The
total area at risk of invasion is 2,003,265 km2 (Fig 2), of which 362,553 km2 (4.24%) has moder-
ate risk, 112,759 km2 (1.32%) has high-risk and 98 km2 (<1%) has very high risk (Table 2).

Future invasion risk
There was no significant difference between the areas of suitability between present, RCP 4.5,
RCP 6.0 and RCP 8.5 scenarios (ANOVA: F = 0.09, P = 0.97, df = 3). However, there was an
increase of 0.37% in the area with suitability category>0.5 under RCP 8.0, 0.79% under RCP
4.5 and 1.04% under RCP 6.0 (Fig 2 and Table 2). The currently invaded regions are even more
prone for invasion in the future. High risk of invasibility under climate change was seen mainly
in Daman and Diu (Union Territory), Bihar, Odisha, Lakshadweep Islands, Andaman and Nic-
obar Islands, parts of Karnataka, Jharkhand, Nagaland and Assam (Table 3). Expansion might
occur in Jharkhand, Lakshadweep Islands, Andaman and Nicobar Islands, Odisha, Gujarat and
Karnataka under RCP 4.5 scenario. Under RCP 6.0, Bihar, Andhra Pradesh, Gujarat, Andaman
and Nicobar Islands, Odisha, Dadra and Nagar Haveli, Daman and Diu and Jharkhand were
highly vulnerable. Under RCP 8.5, Gujarat, Jharkhand, Lakshadweep Islands, Andaman and
Nicobar Islands, Bihar and Odisha have high risk of invasion. The risk of invasion is very low
under all the three scenarios for the Central Indian region where there is high summer temper-
ature and low rainfall and high altitude regions with cold climate in the Himalayas. It is inter-
esting to note that the two states Tripura and Goa the invasion risk under all future climate
scenarios is either very low or nil (Table 3). The percentage of land area with more than 0.5
invasion risk under the four scenarios for other Indian states is provided in S1 Table.

Model performance and influencing factors
The MaxEnt model prediction has high AUC for both training and test data for all four scenar-
ios (>0.94) (Table 4 and S1–S4 Figs) indicating good model performance for A. fulica. Annual
Mean Temperature (Bio 1), Temperature Annual Range (Bio 7) and Annual Precipitation (Bio
12) are the three major environmental variables contributing to the risk of invasion by A. fulica,
together accounting for nearly 30% to 45% under all four scenarios. Bio 4 (Temperature Sea-
sonality) and Bio 15 (Precipitation Seasonality (Coefficient of Variation)) are also major con-
tributors to invasion risk (Table 5).

Among different climatic factors, average minimum monthly temperature (°C) (r = 0.672,
P<0.05, df = 10; Fig 3a) and average monthly rainfall (mm) (r = 0.820, P<0.01, df = 10; Fig 3b)
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Fig 1. Potential distribution of A.fulica under current, and three climate change scenario (RCP 4.5, 6.0
and 8.0) a) for mainland India and b) Andaman and Nicobar Islands. Legend: Blue to red colour indicates
unsuitable to highly suitable areas

doi:10.1371/journal.pone.0143724.g001
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Fig 2. Percent difference in the area of different suitability category between RCP 4.5, RCP and 6.0 and RCP 8.0 and current scenario for A.fulica.

doi:10.1371/journal.pone.0143724.g002

Table 2. Area with suitability scores under different climate scenarios. The percentage is given in the parenthesis. The value less the 0.10 is not given.

Range Present RCP 4.5 RCP 6.0 RCP 8.5 RCP
4.5-Current

RCP
6.0-Current

RCP
8.5-Current

Very Low (0.10—
0.25)

1,005,583
(11.76%)

1,391,342
(15.64%)

1,263,375
(14.20%)

1250,113
(14.05%)

385,759
(3.88%)

257,792
(2.44%)

244,530
(2.29%)

Low (0.25—0.50) 522,272 (6.11%) 788,082 (8.86%) 843,751 (9.48%) 768,520
(8.64%)

265,810
(2.75%)

321,479
(3.38%)

246,248
(2.53%)

Moderate (0.50—
0.70)

362,553 (4.24%) 440,610 (4.95%) 452,319 (5.08%) 425,832
(4.79%)

78,057 (0.71%) 89,766 (0.84%
7)

63,279 (0.55%)

High (0.70—0.90) 112,759 (1.32%) 124,382 (1.40%) 81,714 (0.92%) 101,299
(1.14%)

11,623 (0.08%) -31,045
(-0.40%)

-11,460
(-0.18%)

Very high (0.90—
1.00)

98 (0.00%) 0 (0.0%0) 0 (0.00%) 0 (0.00%) -98 (0.00%) 0 (0.0%0) 0 (0.00%)

doi:10.1371/journal.pone.0143724.t002
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are significantly correlated with occurrence of A. fulica in India (Table 6). Most records of A.
fulica were from altitudes ranging from 1-100m asl (62.45%; Fig 4). There were few records
from above 1000m asl.

Discussion
The impact of future climate change on distribution in a wide range of species has been pre-
dicted [62], [63], but the magnitude of the potential impact on biodiversity remains largely
unknown [64]. Not all organisms respond in the same way across different spatial and tempo-
ral scales. Hence, specific information on a species’ response is required for effective conserva-
tion and management of biodiversity. Species may respond to climate change by adapting to
changing environmental conditions, shifting their niche, expanding to newer areas or in the
worst case scenario become extinct if unable to adapt to changing environment [65]. Niche
models can be helpful in predicting species’ distribution in relation to climate change. The cli-
mate change and invasive species together can have a drastic effect not only on biodiversity
[15] but also on human well-being [66,67]. ENM has been used extensively to predict future
ecologically suitable areas for the establishment of invasive alien species under changed climate
scenario [17,68–70].

Current and future distribution
The maximum entropy niche modeling procedure was adopted here to understand A. fulica
distributions in India under present conditions and three climate change scenarios and to iden-
tify the areas most vulnerable to invasion under changed climate. The models show high AUC
values (>0.94 for both test and training data) indicating that models successfully predict spe-
cies distribution with a high degree of accuracy. An earlier work by Sridhar et al. [71] using
CLIMEX model to predict A. fulica invasion under current climate scenario used much coarser
grid (0.5° degrees) than the present study (30 arc seconds). This study showed that much of
Himachal Pradesh, Uttarakhand, Jammu and Kashmir, the warmer and drier regions of

Table 3. Top 10 Indian states with >0.50% probability of invasion risk from A. fulica under present and future climate change scenarios. The values
in table are in percentage.

Sl no STATE Present RCP 4.5 RCP 6.0 RCP 8.5

1 West Bengal 87.93 78.65 75.83 76.08

2 Bihar 80.58 81.01 80.67 82.27

3 Kerala 69.23 63.76 59.56 39.97

4 Assam 51.57 46.43 54.84 55.72

5 Tripura 44.35 0.88 0.28 0

6 Jharkhand 41.71 57.83 50.85 55.05

7 Andaman and Nicobar Is 40.41 55.15 53.8 77.44

8 Goa 30.48 2.51 0 0

9 Karnataka 30.11 34.96 33.91 28.8

10 Lakshadweep Is 29.41 76.47 29.41 47.06

doi:10.1371/journal.pone.0143724.t003

Table 4. Area under curve for training and test points under different scenarios.

No. of points Present RCP 4.5 RCP 6.0 RCP 8.5

Training AUC±SD 172 0.965±0.003 0.964±0.002 0.966±0.002 0.964±0.002

Test AUC±SD 59 0.953±0.011 0.953±0.005 0.949±0.007 0.953±0.008

doi:10.1371/journal.pone.0143724.t004
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Rajasthan and Gujarat and some parts of North Eastern states are less vulnerable to invasion,
which is also shown in our study. Apart from these states, most parts of India are highly prone
to invasion [69]. However, contrary to this, our study being at much finer scale emphasizes
that not all parts of each state are equally vulnerable to invasion. Another study at a much
smaller scale using maximum entropy modeling has predicted an increased infestation of A.
fulica in Kerala [72]. However, our results suggest that there is no significant difference
between invasion risks in Kerala under current and all three future climate change scenarios.

Not all invasive species respond to climate change in a similar way. For example, some inva-
sive species are likely to be reduced in range due to climate change [11,73,74]. The studies have
suggested that American bullfrog and Burmese python will have reduced invasion potential
under climate change scenarios [74,75]. A recent study on Argentine ant invasions at global
level have predicted reduced invasive potential, but there is potential for some regional expan-
sions [76]. On the contrary, increase in temperature expands range for some other invasive
species like Chromolaena odorata and Lantana camara [51,77]. In the Indian scenario, studies
speculate that change in climate will increase wetness and precipitation [78], especially in the
southern Western Ghats and some species will undergo shifts in their range in future [79,80].
The MaxEnt model results suggests that the climate change (under RCP 6.0) is likely to
increase land area at risk of invasion by up to 1.04%. Currently less suitable regions might

Table 5. Relative contribution of different bioclimatic variables to MaxEnt model for A. fulica. Percent contribution values are averages over 10 repli-
cate runs.

Variables Current RCP 45 RCP 60 RCP 85

Annual Mean Temperature (Bio1) 27.3 34.5 30.8 32.6

Temperature Seasonality (standard deviation *100 (Bio 4) 8.6 10.4 11.3 7

Temperature Annual Range (Bio7) 12.9 24.5 23.1 28.3

Annual Precipitation (Bio 12) 40 16 18.3 15

Precipitation of Driest Month (Bio14) 2 4.7 3.9 2.2

Precipitation Seasonality (Coefficient of Variation) (Bio 15) 7.9 8.2 10.4 13.8

Precipitation of Coldest Quarter (Bio19) 1.3 1.7 2.2 1.1

doi:10.1371/journal.pone.0143724.t005

Fig 3. a) Occurrence of A.fulica in different months of the year (n = 158) with min and max temperature; b) Occurrence of A.fulica in different months of the
year (n = 158) with average rainfall.

doi:10.1371/journal.pone.0143724.g003
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become more suitable and vice-versa under changed climate, especially in peninsular India,
and eastern India.

Economic and conservation impacts
The economic costs of agriculture associated with invasions are significant due to loss of pro-
ductivity and resources spent on control efforts [14]. Naylor [81] estimated that the total cost
of Pomacea canaliculata (apple snail) invasion to Philippine rice agriculture in 1990 was US$
425–1200 million. This estimate does not include impacts on ecosystems and human health.
The economic loss due to Dreissena polymorpha (zebra mussel) invasion in the United States
was estimated to be US$ 3.1 billion between 1993–1999 for power plants and over US$ 5 billion
when other sectors are considered [82] and in Canada, impact was estimated at US$ 376,000
annually per generating station estimated in 1994 [82]. In the United States, management
authorities took nearly a decade and US$ 1 million to completely eradicate A. fulica from Flor-
ida [83]; however, there are several recent reports of A. fulica occurrence in this region despite
all the efforts.

The invasion of A. fulica in India is a major problem, not only in semi-urban or peri-urban
areas but also increasingly in rural areas. Agriculture, particularly in India with nearly 60%
being rain-fed, has been a highly risky venture with extremities in monsoon coupled with other
abiotic and biotic factors. Climate change is set to compound the daunting complex challenges

Table 6. Pearson’s correlation between number of A. fulica records and climatic factors.

No. of records Temp max Temp min Rainfall

No. of records 1.000

Temp max (°C) 0.161

Temp min (°C) 0.672* 0.771**

Rainfall (mm) 0.820** 0.232 0.701* 1.000

*P<0.05,

**P<0.01,

df = 10

doi:10.1371/journal.pone.0143724.t006

Fig 4. Percent number of records of A.fulica invasion along the altitudinal gradient.

doi:10.1371/journal.pone.0143724.g004
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already being faced by the farmers. Increasing temperature will have significant negative
impact on crop yield [84]. This along with land use and invasive species such as A. fulica will
have even more impact on small-scale agriculture and horticulture. The invasion is particularly
high during monsoon months (June to November) when most of the small-scale farmers grow
vegetables and horticultural crops. We have found here that regions with high agriculture out-
put in India also have high invasion risk. These regions include Kerala, coastal parts of Karna-
taka and Andhra Pradesh, Tamil Nadu, Maharashtra and Assam [85]. The slow growth regions
in terms of agriculture such as Bihar and parts of Uttar Pradesh are also very economically
backward regions and highly dependent on monsoon for good yield. These regions are also
highly vulnerable to invasion. Increased invasion by A. fulica under future climate in these
regions will only worsen the agriculture situation in India, thus further marginalizing the
small-farming community and adversely impacting local economies. A. fulica not yet invaded
forested regions of India. The impact of snail invasion on native snail fauna is not known.
Given the high endemism in land snails in India [86,87], there is urgent need to study the
impact on native biodiversity.

Factors influencing invasion
The results of niche modelling of A. fulica in India show that most of the invasion risk is in the
regions with high rainfall and warm climate. The regions with extreme cold and heat are less
vulnerable to invasion under current as well as in future climate scenario. A. fulica have a
broad altitudinal (1-1000m asl), precipitation (350-5000m/year) and temperature range (0°C
to 45°C), but with an optimal temperature range from 22°C to 32°C [25]. The ideal condition
for their growth and activity is a good amount of rainfall, humidity, shade and optimum tem-
perature [80,88]. In our study also, in all three scenarios, temperature is the major influencing
factor for distribution of A. fulica. Our model has predicted annual mean temperature, temper-
ature seasonality and temperature annual range to be the major factors determining the inva-
sion in all scenarios reinforcing the above results [88]. The highest infestation takes place with
the onset of monsoon (June) and remains active throughout the rainy season and start declin-
ing gradually from mid-November [89,90]. Our study shows that the maximum invasion risk
occurs between June and November during which India receives monsoon [91] (Fig 3b). Apart
from temperature and rainfall, altitude also plays a significant role in A. fulica invasion. Raut
and Ghose [25] reported that hilly regions of eastern and northern India above 1500m were
not suitable due to low temperature. Raut [92] reported that population of A. fulica decreased
with the increase in altitude, this is also seen in our study. Thus, A. fulica distributions seem to
be predominantly influenced by altitude, mean temperature and precipitation.

Management and policy requirements
The development of management policies is the key to controlling the spread of A. fulica.
These policies should be based on sound science that takes into account interactions between
the species, climate change, land use changes and livelihood aspects of the communities in the
invaded landscape [93]. Since, the snail is a major pest on agricultural and horticultural crops,
it is imperative to consider livelihood while framing the policies. In particular, small farmers
are highly vulnerable to both invasive species as well as climate change. Hence, the cost of inva-
sion on agriculture and horticulture needs to be studied.

Ecological niche modeling is a cost-effective, easy and early warning system that allows the
identification of areas at risk from a potential invasion, thus giving the opportunity to prioritize
the region and target management actions as well as investment of resources in those certain
regions. There is an urgency to set up long-term monitoring studies on A. fulica populations to
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understand the invasion patterns, its impact on native species and economy that will allow bet-
ter understanding for future management of this highly invasive land snail. In order to control
the spread of the existing A. fulica populations, and to prevent further invasions in India, we
consider that the results of this study should be taken into account when identifying vulnerable
areas and making management decisions for control of A. fulica in India.
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