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On strongly polynomial algorithms for some
classes of quadratic programming problems∗†

Jadranka Skorin-Kapov‡

Abstract. In this paper we survey some results concerning polyno-
mial and/or strongly polynomial solvability of some classes of quadratic
programming problems. The discussion on polynomial solvability of con-
tinuous convex quadratic programming is followed by a couple of models
for quadratic integer programming which, due to their special structure,
allow polynomial (or even strongly polynomial) solvability. The theoret-
ical merit of those results stems from the fact that a running time (i.e.
the number of elementary arithmetic operations) of a strongly polyno-
mial algorithm is independent of the input size of the problem.
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Sažetak. O strogo polinomijalnim algoritmima za neke klase
problema kvadratnog programiranja. U ovom radu dajemo pre-
gled nekih rezultata o polinomijalnoj i strogo polinomijalnoj rješivosti
odred̄enih klasa problema kvadratnog programiranja. Nakon diskusije o
polinomijalnoj rješivosti problema kontinuiranog konveksnog kvadratnog
programiranja, predočena su dva modela kvadratnog cjelobrojnog pro-
gramiranja koji, zahvaljujući odred̄enoj strukturi, dozvoljavaju polino-
mijalnu, pa čak i strogo polinomijalnu, rješivost. Teoretski je doprinos
navedenih rezultata u činjenici da vrijeme (tj. broj elementarnih ra-
čunskih operacija) strogo polinomijalnih algoritama ne ovisi o veličini
ulaznih podataka.

Ključne riječi: kvadratno programiranje, polinomijalni algoritmi,
strogo polinomijalni algoritmi, problemi raspored̄ivanja poslova
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1. Introduction

Many problems in economics, statistics and numerical analysis can be formulated
as the optimization of a convex quadratic function over a polyhedral set. Moreover,
some algorithms for solving large scale mathematical programming problems min-
imize a quadratic function over a polyhedral set as a subroutine (e.g. Held [17]).
Several methods that are based on solving a quadratic programming subproblem
to determine a direction of search were also suggested for optimization problems
with nonlinear constraints (see for example Gill et al. [7]). The existence of efficient
quadratic programming algorithms, and the fact that nonlinear functions can some-
times be accurately approximated by quadratic functions, led to development of
approximation methods that make use of quadratic subproblems (e.g. Fletcher[5]).
The above mentioned are just some of the reasons why quadratic programming arose
as a very important part of the rich theory of Mathematical Programming. It can
be viewed as a ”bridge” between linear and (more difficult) nonlinear programming.
Further, many real world problems require a formulation in which all or some of the
variables are restricted to be integral. Since a quadratic objective function enables
one to take into account the interactions between variables, many applications have
natural representations as 0-1 quadratic programming problems (e.g. finance [23]
and capital budgeting [22]). In general, the efficiency of an algorithm is very often
measured via its running time, i.e. the number of arithmetic operations performed
in it. To that end, let us introduce few definitions in order to define a polynomial
and a strongly polynomial algorithm. The dimension of the problem is the number
of data in the input of a given optimization problem. The size of a rational number
is the length of its binary description (i.e. the number of bits needed to record a
given number in a binary format). The size of a rational vector is the sum of sizes of
its components. With these definitions, an algorithm is termed polynomial if it has
running time polynomial in the dimension of the problem and in the input size and,
when applied to rational input, the size of numbers occurring in it is polynomially
bounded by the dimension of the problem and the size of input. An algorithm is
strongly polynomial if its running time is polynomially bounded in the dimension of
the input, independent of the size of the input. Further, when the algorithm is ap-
plied to rational input, then the size of the numbers occurring during the algorithm
is polynomially bounded in the dimension of the input and the size of the input
numbers. Note that a merit of a strongly polynomial algorithm lays in the fact that
its running time is independent of the input size. This paper surveys some results
dealing with polynomial solvability of quadratic programming problems. We first
briefly discuss results leading in the direction of strongly polynomial solvability of a
subclass of continuous convex quadratic programming problems, and its significance
for algorithmic complexity of related 0−1 quadratic programming problems. This is
followed by presentation of two integer quadratic programming models which, due
to their special structures, allow polynomial and/or strongly polynomial solvability.
Finally, this survey is summarized and one direction for future research is outlined.
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2. On polynomial solvability of convex quadratic program-
ming

In 1979 Hačijan [15] proved that a linear programming problem is polynomially
solvable. In the same year, Kozlov, Tarasov and Hačijan [21] extended this result
and proved polynomial solvability of convex quadratic programming. The question
whether linear programming is, in general, strongly polynomially solvable is still
open. However, a significant step in that direction was provided by Tardos [25]
who presented a polynomial algorithm for linear programs in which the number of
arithmetic steps depends only on the size of the numbers in the constraint matrix,
and is independent of the size of numbers on the right hand side and the cost
coefficients. Granot and Skorin-Kapov [10] extended this result to strictly convex
quadratic programming problems of the form

max{cT x− 1
2
xT Dx : Ax ≤ b, x ≥ 0}, (1)

with D being a positive definite matrix. Their algorithm finds optimal primal and
dual solutions to the quadratic programming problem (if they exist) by solving
a sequence of simple quadratic problems (having zero right hand side vector and
linear part of the objective function polynomially bounded by matrices A and D)
via Kozlov et al.’s algorithm, and by checking feasibility of a linear system in time
independent of the right hand side using Tardos’ feasibility algorithm. Denoting by
T (A) the complexity of Tardos’ feasibility algorithm, by K(A, D) the complexity
of Kozlov’s et al.’s algorithm applied to modified quadratic subproblems, and by
∆ the maximal absolute determinant over all square submatrices of the matrix
(D, AT ,−I), the main Granot and Skorin-Kapov’s result was the following theorem:

Theorem 1. (Theorem 3.5 from reference [10]) The quadratic programming
algorithm applied to Problem (1) has running time polynomial in the size of the
matrices A and D and independent of the sizes of the vectors c and b. It runs in
O(n(2n + m)3 + n(2n + m) log(2n + m)∆ + T (A) + nT (A,D) + nK(A,D)) time.

As mentioned earlier, in many applications of quadratic programming, integral-
ity of some or all of the variables is required. For example, problems of the type

max{cT x− 1
2
xT Dx : Ax ≤ b, x ∈ {0, 1}}, (2)

arise naturally in finance [23] and capital budgeting [22]. Different approaches for
solving the above problem can be found in the literature, including linearization
methods in which the quadratic problem is transformed into a linear 0-1 or mixed-
integer program (see Watters [26], Glover [8]). Algorithms based on branch and
bound have been proposed by many authors (e.g. Laughunn [22], Hansen [16]).
McBride and Yormark [24] gave an implicit enumeration algorithm in which at
each node they solve a quadratic programming relaxation of a corresponding in-
teger subproblem using Lemke-Howston’s complementary pivoting algorithm. It
is conceivable that a success of such an implicit enumeration algorithm depends
on the efficiency of the quadratic programming algorithm used, and on the dis-
tance between optimal integer and corresponding continuous solutions. Although
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the polynomiality of an algorithm can not always be identified with real world
computational efficiency or practicality, it is an important theoretical result which
leads the research efforts in the direction of constructing efficient problem oriented
polynomial algorithms. In a related work dealing with proximity and sensitivity of
integer and mixed-integer quadratic programs, Granot and Skorin-Kapov [11] have
shown that for any optimal solution z̄ for a given separable quadratic integer pro-
gramming problem, there exists an optimal solution x̄ for its continuous relaxation,
such that ‖z̄ − x̄‖∞ ≤ n∆(A), where n is the number of variables and ∆(A) is the
largest absolute subdeterminant of the integer constraint matrix A. The extension
to mixed-integer nonseparable quadratic case was also given. Further, Granot and
Skorin-Kapov [9] have shown how to replace the objective function of a quadratic
0− 1 programming problem with n variables by an objective function with integral
coefficients whose size is polynomially bounded by n, without changing the set of
optimal solutions. This result assures that the running time of any algorithm for
solving 0 − 1 programming problems can be made independent of the size of the
objective function coefficients. This since the equivalent problem can then be solved
by e.g. an implicit enumeration algorithm in which at each node the continuous
relaxation of the corresponding integer subproblem is solved in polynomial time
independent of the size of the objective function coefficients. Although, in gen-
eral, quadratic integer programming problems are NP -hard, there are some special
cases solvable to optimality in a reasonable computational time. In the sequel we
will outline two special cases of quadratic integer programming problems allowing
for polynomial solvability. Both applications deal with job scheduling. We first
present an application involving a single machine, followed by an application of job
scheduling on multiple machines.

3. On polynomial solvability of the high multiplicity total
weighted tardiness problem

Hochbaum, Shamir and Shantikumar [19] developed a polynomial algorithm for
solving a job scheduling problem on a single machine. The problem consists of
minimizing the total weighted tardiness for a large number of unit length jobs
which can be partitioned into few sets of jobs having identical due dates and penalty
weights. Let us denote by n the number of sets of unit jobs. Set i includes pi jobs
having the same due date di and penalty weight wi. The number of unit jobs in a
set (pi) is called the multiplicity of that set, and P =

∑n
i=1 pi is the total number of

unit jobs. The objective is to find an assignment of the unit jobs to the P distinct
time intervals (i−1, i], i = 1, ..., P which will minimize the total weighted tardiness.
The weighted tardiness of each unit of type i scheduled at interval (t − 1, t] is
wi × max(t − di, 0). One can assume without loss of generality that w1 ≥ w2 ≥
... ≥ wn > 0, and can permute the types of jobs so that dπ(1) < dπ(2) < ... < dπ(n).
The i-th due date interval is defined as (dπ(i), dπ(i+1)) for i = 0, ..., n. The weight
of job j in interval i, denoted by w

(i)
j , is defined to equal zero if job j is not tardy.

Assume without loss of generality that all due dates are distinct, that is, there are
no empty intervals. Denote dπ(0) = 0 and dπ(n+1) = P . Using this notation, the
following integer programming formulation of the total weighted tardiness problem
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was presented in [19]:

min
n∑

i=0

n∑

j=1

[w(i)
j (dπ(i) − dj +

1
2
)xij + w

(i)
j (

1
2
x2

ij + xij

∑

k|w(i)
k ≥w

(i)
j ,k<j

xik)] (3)

s.t.
n∑

i=0

xij = pj , j = 1, ..., n, (4)

n∑

j=1

xij = dπ(1+1) − dπ(i), i = 0, ..., n, (5)

xij ≥ 0 and integer, ∀ i, j. (6)

In [19] this problem was solved in polynomial time, independent of the size of
the multiplicities and the due dates, but depending on the penalty weights. Granot
and Skorin-Kapov [13] developed algorithms to solve this problem in polynomial
time which is independent of the sizes of the weights. The running time of their
algorithms depends only on the dimension of the problem and on the size of the
maximal difference between consecutive due dates. They suggest two alternatives:
either solve a single related continuous quadratic program and then use a rounding
procedure to obtain the required integral solution, or else solve a sequence of linear
programming problems where the number of problems solved is bounded by the
size of the maximal difference between two consecutive due dates. If the size of the
maximal difference between consecutive due dates is polynomially bounded by the
dimension of the problem, both alternatives from [13] will result with algorithms
which run in strongly polynomial time. In other words, the proposed algorithms are
strongly polynomial in the case when all due dates are ”very big”, that is, all are
clustered close to the sum of all multiplicities.

4. On strongly polynomial solvability of a class of quadratic
scheduling problems

A study by Hochbaum and Shamir [19] has considered a variety of high multiplicity
problems on a single machine. Granot, Skorin-Kapov and Tamir [14] have analyzed
the following multimachine, high multiplicity scheduling problem. Suppose that for
j = 1, ..., n, there are dj unit time jobs of type j available for processing at time
t = 0 (in this formulation dj is the multiplicity of type j). Each one of these dj jobs
is associated with a weight factor, rj , and it must be processed in its entirety by
one of m (parallel) machines. The job types are ordered according to their weight
factors and renamed so that r1 > r2 > ... > rn > 0. The machines may differ in
their processing rates, as well as in their availability. Specifically for i, i = 1, ..., m,
we assume that it takes the i-th machine ti time units to process any unit time job.
The i-th machine is released at time t = qi, and is available for processing only in
the time interval [qi, qi + ci]. The objective is to schedule the set of

∑n
j=1 dj jobs

and sequence them on the m machines so that the total weighted flow time of the
jobs is minimized. The problem becomes NP-hard if the jobs are allowed to be of
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variable length, even when dj = 1, j = 1, ..., n;m = 2, and the two machines are
identical (see for example Garey and Johnson, 1979). Letting xij be the number of
unit time jobs of type j scheduled to machine i, the problem can be formulated as
a nonseparable quadratic integer programming problem with transportation type
constraints as follows:

min
m∑

i=1

n∑

j=1

qirjxij +
m∑

i=1

n∑

j=1

tirj

xij∑

k=1

(
j−1∑

l=1

xil + k) (7)

s.t.
m∑

i=1

xij = dj , j = 1, ..., n, (8)

n∑

j=1

xij = ci, i = 1, ...,m, (9)

xij ≥ 0 and integer, ∀ i, j. (10)

We first show how to replace the nonseparable objective function in this problem
by an equivalent separable one. Denoting by uik =

∑k
t=1 xit, Problem (7-10) can

be equivalently written as

min
m∑

i=1

n∑

j=1

(qi +
1
2
ti)rjxij +

1
2

m∑

i=1

ti

n∑

j=1

(rj − rj+1)u2
ij (11)

s.t.
m∑

i=1

xij = dj , j = 1, ..., n, (12)

n∑

j=1

xij = ci, i = 1, ..., m, (13)

k∑

j=1

xij − uik = 0, i = 1, ...,m; k = 1, ..., n, (14)

xij ≥ 0 and integer, ∀ i, j. (15)

Note that the nonnegativity as well as the integrality of the uij variables follows
directly from the nonnegativity and the integrality of the xij variables and hence
is not included. If we further denote by ui0 ≡ 0, i = 1, ..., m, we obtain xij =
uij − uij−1, j = 1, ..., n. Since uin = ci, i = 1, ...,m, using the fact that

∑n
j=1 dj =∑m

i=1 ci, and further denoting
∑m

i=1 ui1 = d1 ≡ D1 and
∑m

i=1 uij =
∑j

i=1 dj ≡ Dj

for j = 1, ..., n, one obtains an equivalent problem to Problem (7-10) in terms of
the m(n − 1) u variables. For simplicity we denote by pi ≡ 1

2 ti. The equivalent
formulation is then:
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min
n−1∑

j=1

1
2
(rj − rj+1)

m∑

i=1

1
ti

(tiuij + pi)2 (16)

s.t.
m∑

i=1

uij = Dj , j = 1, ..., n− 1, (17)

uij−1 ≤ uij ≤ ci, i = 1, ..., m; j = 1, ..., n− 1, (18)
uij integer, i = 1, ..., m; j = 1, ..., n− 1. (19)

Granot, Skorin-Kapov and Tamir [14] show how to solve the problem in strongly
polynomial time with the solution depending only on the order of the rj ’s, but not
on their actual values. To that end, consider first the relaxation of (16-19) obtained
by omitting the constraints uij−1 ≤ uij , i = 1, ..., m; j = 1, ..., n−1. Since (rj−rj+1)
is a positive constant for j = 1, ..., n − 1, the solution to the relaxed problem can
be found by solving (n− 1) independent quadratic knapsack problems of the form

min
m∑

i=1

1
ti

(tiuij + pi)2 (20)

s.t.
m∑

i=1

uij = Dj , (21)

0 ≤ uij ≤ ci, i = 1, ..., m, (22)
uij integer, i = 1, ..., m. (23)

The right hand side coefficients, D1, D2, ..., Dn−1 corresponding to problems for
j = 1, ..., n − 1 respectively, form a monotonically increasing sequence. Therefore,
it follows from the validity of the general, the so called ‘marginal allocation’ or
‘incremental’ algorithm (see Ibaraki and Katoh [20], section 4.2), that for each
j, j = 1, ..., n − 2, if {u∗ij}, i = 1, ..., m, is an optimal solution to the knapsack
problem j, there exists an optimal solution {u∗ij+1}, i = 1, ..., m, to the problem
for j + 1 such that u∗ij ≤ u∗ij+1, i = 1, ...m. In particular, for j = 1, ..., n − 1,
these solutions {uij}, i = 1, ..., m, satisfy the relaxed constraints, and therefore
constitute an optimal solution to Problem (16-19). These solutions were inductively
generated by using the linear time algorithm of Brucker [4] to solve the continuous
relaxations, and then using the O(m) rounding scheme given in Ibaraki and Katoh
[20 (Theorem 4.6.2, page 76), to obtain the optimal integral solution. The above
algorithm translates basically to the following optimal procedure: consider first the
job type with the largest weight and schedule all jobs of this type optimally by
solving a related quadratic knapsack problem; adjust the available time interval on
the machines and continue the process until all jobs are scheduled. This discussion
implies the following result.
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Theorem 2. (Theorem 1 from reference [14]) Problem (7-10) can be solved
in O(mn) time. Moreover, the solution depends on the order of the rj’s but is
independent of their magnitudes. If we include the preprocessing time, i.e. the time
to sort the weights rj in a decreasing order, the total computational complexity is
O(mn + n log n).

Granot, Skorin-Kapov and Tamir [14] further develop a parametric algorithm to
efficiently solve the identical processing rate case (i.e. the case when pij = 1, wij =
wj ; i = 1, ..., m; j = 1, ..., n). The parametric algorithm can be implemented in
O(m log m) time and in O(m) space by applying conventional data structures (see
e.g. Aho, Hopcroft and Ullman [1]). This led to the following result.

Theorem 3. (Theorem 2 from reference [14]) The total time needed to solve
the identical rates version of Problem (7-10) is O(m log m+n log n). If the job types
are already sorted by the weight factor, the identical rates version of Problem (7-10)
is solvable in O(min(m2 + n; (m + n) log m)) time.

Some additional applications and extensions, as well as the relationship between
the above model and the problem of scheduling n different types of jobs of variable
processing lengths on m parallel machines to minimize the total unweighted flow
time, are also discussed in [14].

5. Summary and directions of future research

In this paper we have surveyed some polynomial algorithmic aspects of certain
classes of quadratic continuous and integer programming problems. The mentioned
results include the first strongly polynomial algorithm for a certain class of strictly
convex quadratic programming problems [10], some proximity results for integer
quadratic programs [11], and simultaneous approximations of objective function
coefficients for integer quadratic programs [9]. More recent work includes results
on polynomial solvability of a class of nonseparable quadratic integer programming
problem with transportation type constraints, with applications to scheduling jobs
on a single machine (the high multiplicity total weighted tardiness problem [13]),
and scheduling jobs on parallel machines (the problem of scheduling n different types
of unit jobs on m parallel machines so as to minimize the total weighted flow time
of the jobs [14]). For illustration, more details were provided concerning this last
work. Finally, we mention an application of this formulation which has motivated
our study (see [12]). It is the following transportation sequencing problem. Suppose
that after the completion of a certain manufacturing process which takes place at
a plant, n types of products are being released. Let dj be the number of units of
product type j released. The products need now to be transferred for additional
processing at any one of m stations. The distance between station i and the plant is
qi units of time, while ci is the total processing capacity at station i. Each product
has a different carrying cost rate which increases in time. Let rj be the carrying cost
rate of one unit of product j per one unit of time. Let ti denote the processing rate
at station i (which is independent of the product). The overall objective is to find for
each j = 1, ..., n ; i = 1, ...,m, quantities of product type j to be processed through



On polynomial algorithms and quadratic programming 103

station i so as to minimize the total carrying (i.e. transportation and processing)
cost. As an example consider the following simplified toxic waste disposal problem
faced by a plant that generates n types of toxic wastes. Each toxic waste of type
j has an impact on the environment which increases in time at a given rate, say
rj . After all wastes are generated they need to be transported for disposal at one
of m given stations with disposal rate ti at station i. The problem of disposing of
all generated wastes while minimizing the total impact on the environment can be
cast as an instance of the above described model.

Future research would include identification of optimization problems arising
in communication networks which could be solved to optimality in polynomial or
strongly polynomial time. Possibilities include examples of specially structured
scheduling problems arising in: (1) multiprocessor computer architectures; and (2)
communication networks with multiaccess channels (communication channels that
can be accessed by several users, but only one user can transmit at any time). In
the latter case, one can divide the communication resource of the channel into a
portion used for packet transmission, and another used for reservation messages
that coordinate the packet transmission. Therefore, the time is divided into data
intervals (where actual data is transmitted) and reservation intervals (for schedul-
ing transmissions from several packet streams). (See Bertsekas and Gallager [3].)
Barcaccia and Bonuccelli [2] considered the time slot assignment problem (TSA)
for variable bandwidth switching systems. An example of such system is a satellite-
switched time division multiple access system in which there are different traffic
rates for different zones covered by the satellite spot beams, in order to make more
efficient use of the system by minimizing bandwidth wastes and increasing system’s
throughput. Time division multiple access (TDMA) communication needs to ex-
hibit control of the user’s access to the common communication medium, so that
the transmission is collision-free. At the same time, TDMA communication has to
be as efficient as possible. A measure od efficiency can be the speed of transferring
the user’s traffic. Barcaccia and Bonuccelli [2] have proposed polynomial algorithm
for finding minimal length time slot assignment. An open question, we want to
concentrate on, is whether there exists a strongly polynomial algorithm for this
problem.
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Zagreb, 1992, 95–105.

[13] F. Granot, J. Skorin-Kapov, On polynomial solvability of the high mul-
tiplicity total weighted tardiness problem, Discrete Applied Mathematics
41(1993), 139–146.

[14] F. Granot, J. Skorin-Kapov, A. Tamir, Using quadratic programming to
solve high multiplicity scheduling problems on parallel machines, Algorithmica
17(1997), 100–110.



On polynomial algorithms and quadratic programming 105
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