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GS–trapezoids in GS–quasigroups

Vladimir Volenec∗ and Zdenka Kolar†

Abstract. In this paper the concept of a GS–trapezoid in a GS–
quasigroup is defined and some characterizations of that are proved and
geometrical representation of the properties of the quaternary relation
GST in the GS–quasigroup C(1

2 (1 +
√
5)) is given.
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In [1] a GS–quasigroup is defined as a quasigroup which satisfies the (mutually
equivalent) identities

a(ab · c) · c = b, a · (a · bc)c = b (1)
′

(1)

and moreover the identity of idempotency

aa = a.(2)

Remark 1. Any groupoid with two identities (1) and (1)
′
is necessary a qua-

sigroup since the identity (1) implies left solvability and left cancellation of the
considered groupoid (Q, ·). Really, for every a, b ∈ Q there is y ∈ Q such that
ya = b. Indeed, we can take y = a(ab · a) because of (1). Further, from ax1 = ax2

it follows a(ax1 · a) · a = a(ax2 · a) · a and according to (1), we have x1 = x2.
Analogously, the identity (1)

′
implies right solvability and right cancellation of the

considered groupoid.
The considered GS–quasigroup (Q, ·) satisfies the mediality, elasticity, left and

right distributivity i.e. we have the identities

ab · cd = ac · bd(3)

a · ba = ab · a(4)

a · bc = ab · ac, ab · c = ac · bc (5)
′

(5)
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Further, the identities

a(ab · b) = b, (b · ba)a = b (6)
′

(6)

a(ab · c) = b · bc, (c · ba)a = cb · b (7)
′

(7)

and equivalencies

ab = c ⇔ a = c · cb, ab = c ⇔ b = ac · c (8)′(8)

also hold.
Example. Let C be the set of points of the Euclidean plane. For any two

different points a, b we define ab = c if the point b or a divides the pair a, c (Figure 1)
or the pair b, c (Figure 2), respectively, in the ratio of the golden section.

Figure 1. Figure 2.

In [1] it is proved that (Q, ·) is a GS–quasigroup in both cases. We shall denote
these two quasigroups by C(1

2 (1 +
√
5)) and C(1

2 (1 − √
5)) because we have c =

1
2 (1 +

√
5) or c = 1

2 (1−
√
5) if a = 0 and b = 1.

The relations in any GS–quasigroup will be illustrated geometrically by figures
which represent relations in the GS–quasigroup C(1

2 (1 +
√
5)).

The considered two quasigroups are equivalent because of the following lemma.
Lemma 1. If the operations · and • on the set Q are connected with the identity

a • b = ba, then (Q, •) is a GS–quasigroup if and only if (Q, ·) is a GS–quasigroup.
From now on, let (Q, ·) be any GS–quasigroup. The elements of the set Q are

called points.
We shall say that points a, b, c, d form a parallelogram and write Par(a, b, c, d)

if the following identity
a · b(ca · a) = d

holds (Figure 3).

Figure 3.
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In [1] the different properties of the quaternary relation Par on the set Q are
proved. We shall mention only the two following properties which we shall use
afterwards.

Lemma 2. If (e, f, g, h) is any cyclic permutation of (a, b, c, d) or of (d, c, b, a),
then Par(a, b, c, d) implies Par(e, f, g, h).

Lemma 3. From Par(a, b, c, d) and Par(c, d, e, f) follows Par(a, b, f, e).
The points a, b, c, d successively are said to be the vertices of the golden section

trapezoid and it is denoted by GST (a, b, c, d) if the identity

a · ab = d · dc

holds (Figure 4).

Figure 4.

Obviously, the following theorem holds.
Theorem 1. GST (a, b, c, d) implies GST (d, c, b, a).
If the relation GST (a, b, c, d) holds, we shall say that the points c, a, d, b form

a GS–trapezoid of the second kind and write GST (c, a, d, b). It means that the
statements GST (a, b, c, d) and GST (c, a, d, b) are equivalent. Because of that, the
statements GST (b, d, a, c) and GST (a, b, c, d) are equivalent and according to Theo-
rem1, the statements GST (a, b, c, d) and GST (c, a, d, b) are also equivalent. Indeed,
it means that the relations GST and GST are mutually symmetric.

Let us prove the next lemma now.
Lemma 4. The statement GST (a, b, c, d) is equivalent to the equality ba · a =

cd · d.
Proof. We have successively

d
(1)

′

= c · (c · da)a
(6)

′

= c · [(c · ca)a · da]a
(5)

′

= c · [(c · ca)d · a]a,
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wherefrom it is obvious that the equalities b = (c · ca)d and d = c(ba · a) are
equivalent. However, by (8) the first equality is equivalent to c · ca = b · bd i.e.
GST (c, a, d, b) i.e. GST (a, b, c, d). Analogously, by (8)

′
the second equality is equiv-

alent to ba · a = cd · d. ✷

Since the equality ba ·a = cd ·d is equivalent to the equality a• (a•b) = d• (d•c)
in the quasigroup (Q, •) where the operation • is defined by a • b = ba by Lemma 1
and Lemma 4, the next theorem follows immediately.

Theorem 2 [theorem about duality for GS–trapezoids]. From every
theorem about GS–trapezoids we get an analogous theorem about GS–trapezoids of
the second kind (and vice versa) if the roles of both factors are interchanged in all
products which appear in the theorem.

Corollary 1. From every theorem about GS–trapezoids we get again a theorem
about GS-trapezoids, if every statement of the form GST (a, b, c, d) is interchanged
by the corresponding statement GST (c, a, d, b) and the roles of both factors are in-
terchanged in all products.

In the interchanges mentioned in Theorem 2 and Corollary 1 it is not necessary to
make any interchange in possible statements about relation Par, since the equality
d = a · b(ca · a) is equivalent to the equality d = (a · ac)b · a.
Really, we get the following

a · b(ca · a) (5)
= ab · a(ca · a) (4)

= ab · (a · ca)a (7)
′

= ab · (ac · c)
(3)
= (a · ac) · bc (5)

= (a · ac)b · (a · ac)c
(6)

′

= (a · ac)b · a.

From the interrelation of two quasigroups C(1
2 (1 +

√
5)) and C(1

2 (1 − √
5))

and according to the theorem about duality, it follows that a GS–trapezoid in one
of these two quasigroups will be a GS–trapezoid of the second kind in the other
quasigroup and vice versa. Indeed, it means it is the matter of convention which of
the two quadrangles (a, b, c, d) or (c, a, d, b) will be called a GS–trapezoid and which
one a GS–trapezoid of the second kind, since we cannot differ them in the general
GS–quasigroup.

Theorem 3. The statement GST (a, b, c, d) is equivalent to the equality ac · c =
db · b. (Figure 4).

Proof. It follows by Corollary 1 from the fact that the statement GST (b, d, a, c)
is equivalent to the equality c · ca = b · bd. ✷

According to (8), the equality a · ab = d · dc is equivalent to the equalities
(a·ab)c = d and (d·dc)b = a, and similarly according to (8)

′
, the equality ac·c = db·b

is equivalent to the equalities c = a(db · b) and b = d(ac · c). From here the next
theorem follows straightforward.

Theorem 4. The statement GST (a, b, c, d) is equivalent with any of the four
equalities a = (d · dc)b, b = d(ac · c), c = a(db · b), d = (a · ab)c (Figure 4).

Corollary 2. A GS–trapezoid is uniquely determined by any three of its ver-
tices.
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Theorem 5.

(i) The statement GST (a, b, c, d) holds iff there is a point e such that eb = a,
ec = d (Figure 4).

(ii) The statement GST (a, b, c, d) holds iff there is a point f such that af = c,
df = b (Figure 4).

Proof. By (8) the equality eb = a is equivalent to e = a · ab, and analogously
ec = d is equivalent to e = d · dc, wherefrom according to the equivalency of the
statement GST (a, b, c, d) and equality a·ab = d·dc, the statement (i) of the theorem
follows. The statement (ii) follows from (i) by Corollary 1 and by the substitution
of the points a, b, c, d, e with the points b, d, a, c, f , respectively. ✷

Remark 2. From now on, like here, the statement (ii) of any theorem follows
from the corresponding statement (i) applying Corollary1 and some substitutions of
the points.
Let us prove now some interesting characterizations of the statement GST (a, b, c, d).

Theorem 6.

(i) The statement GST (a, b, c, d) holds iff for any point x the equality xa·b = xd·c
is valid.

(ii) The statement GST (a, b, c, d) holds iff for any point x the equality a·cx = d·bx
is valid.

Proof. (i) Since we have successively

xa · b (6)
= xa · a(ab · b) (5)

= xa · (a · ab)(ab)
(3)
= x(a · ab) · (a · ab)

(7)
′

= [x · (a · ab)c]c

the equality xa·b = xd·c is equivalent to the equality d = (a·ab)c i.e. GST (a, b, c, d)
because of Theorem 4. ✷

Now, we shall prove some more simple properties of the quaternary relation
GST on the set Q.

Theorem 7. For any three points a, b, c the following statements hold

(i) GST (ab, b, c, ac) (Figure 5),

(ii) GST (b, ca, ba, c) (Figure 5).

Proof. By (8) from ab = d and ac = e it follows a = d · db = e · ec i.e.
GST (d, b, c, e) i.e. GST (ab, b, c, ac). ✷

Corollary 3. For any two points a, b the statements

GST (a, b, b, a), GST (a, a, b, ab) and GST (a, ba, a, b)

hold.
Proof. For any points a, b there is an element c such that cb = a and the first

statement follows from GST (cb, b, b, cb). We get the other two statements from
Theorem 7 with b = a and the substitution c → b because of (2). ✷
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Figure 5.

Theorem 8. For any three points a, b, c the following statements hold

(i) GST (b, ab · b, ac · c, c) (Figure 5),

(ii) GST (b · ba, c, b, c · ca) (Figure 5).

Proof. (i) We have

b · b(ab · b) (4)
= b · (b · ab)b

(1)′
= a

(1)′
= c · (c · ac)c

(4)
= c · c(ac · c). ✷

Theorem 9. For any three points a, b, c the following statements hold

(i) GST (a · ab, c · ca, b · ba, a · ac) (Figure 5),

(ii) GST (ab · b, ba · a, ca · a, ac · c) (Figure 5).

Proof. (i) We have

[(a · ab) · (a · ab)(c · ca)](b · ba) (3)
= (a · ab)b · [(a · ab)(c · ca) · ba]
(3)
= (a · ab)b · [(a · ab)b · (c · ca)a]

(6)
′

= a · ac.

✷

Theorem 10. The statement GST (a, b, c, d) implies the statement
GST (c, d, ad, b · bc) (Figure 6).
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Figure 6.

Proof. As we have the equality d = (a · ab)c, we obtain the following

(c · cd) · ad
(3)
= ca · (cd · d) = ca · [c · (a · ab)c][(a · ab)c]

(4)
= ca · [c(a · ab) · c][(a · ab)c]

(5)
= ca · [c(a · ab) · (a · ab)]c

(3)
= c[c(a · ab) · (a · ab)] · ac

(6)
= (a · ab) · ac

(5)
= a(ab · c) (7)

= b · bc.

✷

Theorem 11.

(i) The statements

GST (a1, b1, b2, a2), GST (a2, b2, b3, a3), . . . , GST (an−1, bn−1, bn, an)

imply the statement GST (an, bn, b1, a1).

(ii) The statements

GST (b2, a1, a2, b1), GST (b3, a2, a3, b2), . . . , GST (bn, an−1, an, bn−1)

imply the statement GST (b1, an, a1, bn).

Proof. (i) It follows straightforward from the equality

a1 · a1b1 = a2 · a2b2 = a3 · a3b3 = · · · = an−1 · an−1bn−1 = an · anbn.

✷

Putting in the previous theorem n = 2 and introducing new labels we get the
following result.

Corollary 4 [“golden” affine Desargues theorem].

(i) The statements GST (a, b, c, d) and GST (a, b, c
′
, d

′
) imply the statement

GST (d, c, c
′
, d

′
) (Figure 7).

(ii) The statements GST (a, b, c, d) and GST (a, b
′
, c, d

′
) imply the statement

GST (d, b
′
, b, d

′
).
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Figure 7.

Theorem 12.

(i) Any two of three statements GST (a, b, c, d), GST (b, c, d, e), GST (c, d, e, a)
imply the remaining statement (Figure 8).

(ii) Any two of three statements GST (a, b, c, d), GST (b, c, d, e), GST (d, e, a, b)
imply the remaining statement (Figure 8).

Figure 8.

Proof. According to Theorem 1 we have symmetry b ↔ e, c ↔ d, so it is
sufficient to prove with the assumption GST (a, b, c, d) i.e. d = (a · ab)c the equiv-
alency of the statements GST (b, c, d, e) and GST (c, d, e, a) i.e. the equivalency of
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the equalities e = (b · bc)d and (c · cd)e = a. However, we obtain

(c · cd) · (b · bc)d = c [c · (a · ab)c] · [(b · bc) · (a · ab)c]
(4)
= c [c(a · ab) · c] · [(b · bc) · (a · ab)c]
(7)
= [(a · ab) · (a · ab)c] [(b · bc) · (a · ab)c]

(5)
′

= (a · ab)(b · bc) · (a · ab)c
(5)
= (a · ab) · (b · bc)c

(6)
′

= (a · ab)b
(6)

′

= a.

✷

Theorem 13.

(i) Any three of the four statements

GST (a, b, c, d), GST (a, b′, c′, d), GST (b, a, b′, e) and GST (c, d, c′, e)

imply the remaining statement (Figure 9).

(ii) Any three of the four statements

GST (a, b, c, d), GST (a′, b, c, d′), GST (a′, a, e, c) and GST (d′, d, e, b)

imply the remaining statement.

Figure 9.

Proof. Because of the assumption GST (b, a, b′, e) i.e. (b · ba)b′ = e and as
we have the symmetry a ↔ d, b ↔ c, b′ ↔ c′, it is sufficient to prove that any
two of three statements GST (a, b, c, d), GST (a, b′, c′, d), GST (c, d, c′, e) imply the
remaining statement i.e. any two of three equalities

d(ac · c) = b,(9)

d(ac′ · c′) = b′,(10)

(c · cd)c′ = e(11)
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imply the remaining equality. We have successively

[d(ac · c)] [d(ac · c) · a] · d(ac′ · c′) (3)
= [d · d(ac · c)] [(ac · c)a] · d(ac′ · c′)

(3)
= [d · d(ac · c)] d · [(ac · c)a · (ac′ · c′)] (3)

= [d · d(ac · c)] d · [(ac · c)(ac′) · ac′]
(3)
= [d · d(ac · c)] d · [(ac · a)(cc′) · ac′]

(3)
= [d · d(ac · c)] d · [(ac · a)a · (cc′ · c′)]

(4)
= d [d(ac · c) · d] · [(a · ca)a · (cc′ · c′)] (7),(7)′

= [(ac · c) · (ac · c)d] · (ac · c)(cc′ · c′)
(5)
= (ac · c) [(ac · c)d · (cc′ · c′)] (7)

= d · d(cc′ · c′) (5)
= d · (d · cc′)(dc′)

(7)
= cc′ · (cc′ · dc′)

(5)′
= (c · cd)c′

then because of (b ·ba)b′ = e, the implications (9), (10)⇒ (11) and (9), (11)⇒ (10)
are obvious and because of (10) and (11) canceling by b′, the equality d(ac · c) ·
[d(ac · c) · a] = b · ba follows, then multiplying on the right-hand side by a because
of (6)′ there follows (9). ✷

Theorem 14. If the statements

GST (a, a′, b′, b), GST (b, b′, c′, c), GST (c, c′, d′, d), GST (d, d′, a′, a)

hold (see Theorem11 (i)) then the statements GST (a, b, c, d) and GST (a′, b′, c′, d′)
are equivalent.

Proof. We have

a · aa′ = b · bb′ = c · cc′ = d · dd′ = o,

wherefrom by (8) it follows

a = oa′, b = ob′, c = oc′, d = od′,

so we get

(a · ab)c = (oa′)(oa′ · ob′) · oc′ (5)
= o · (a′ · a′b′)c′

and it is obvious that the equations (a ·ab)c = d and (a′ ·a′b′)c′ = d′ are equivalent.
✷

Theorem 15. Any two of three statements GST (a, b, c, d), GST (b, e, f, c), ae =
df imply the remaining statement (Figure 10).

Proof. We have

(a · ab)c · b(ce · e) (3)
= (a · ab)b · c(ce · e) (6)

= (a · ab)b · e (6)′
= ae,

and it is obvious that each of three equalities (a · ab)c = d, b(ce · e) = f , ae = df is
the consequence of the remaining two equalities. ✷

Theorem 16. Any three of four statements GST (a, b, c, d), GST (b, e, f, c),
GST (a, e, f, g), ag = d imply the remaining statement (Figure 10).

Proof. As we have

a [(a · ae) · b(ce · e)] (3)
= a [ab · (ae)(ce · e)] (5)′

= a [ab · (a · ce)e)]
(7)′
= a · (ab)(ac · c) (5)

= (a · ab) · a(ac · c)
(6)
= (a · ab)c,
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so it follows that each of the equalities (a · ab)c = d, b(ce · e) = f , (a · ae)f = g,
ag = d is the consequence of the remaining three equalities. ✷

Figure 10.

Theorem 17.

(i) Any three of the four statements GST (a, b, c, d), GST (b, e, f, c), ab = e, dc =
f imply the remaining statement (Figure 11).

(ii) Any three of the four statements GST (a, b, c, d), GST (h, d, a, g), db = g, ac =
h imply the remaining statement (Figure 11).

Figure 11.
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Proof. (i) We have

{c · c [(a · ab)c · c]} · ab
(4)
= {c · [c · (a · ab)c] c} · ab

(1)′
= (a · ab) · ab

(5)
= a(ab · b) (6)

= b,

and each of the equalities (a·ab)c = d, (c·cf)e = b, ab = e, dc = f is the consequence
of the remaining three equalities. ✷

For the proof of some more statements about the relation GST we need some
more lemmas.

Lemma 5.

(i) Any two of the three statements GST (a, b, c, d), Par(a, b, c, e), ae = d imply
the remaining statement (Figure 12).

(ii) Any two of the three statements GST (b, e, d, c), Par(a, b, c, e), ae = d imply
the remaining statement (Figure 12).

Figure 12.

Proof. (i) As we get

a [a · b(ca · a)] (5)
= a · [ab · a(ca · a)] (7)

= b [b · a(ca · a)] (4)
= b [b · (a · ca)a]

(7)′
= b · b(ac · c) (5)

= b · (b · ac)(bc)
(7)
= ac · (ac · bc) (5)′

= (a · ab)c,

it is obvious that each of the three equalities (a · ab)c = d, a · b(ca · a) = e, ae = d
is the consequence of the remaining two equalities. ✷

Lemma 6. Any two of the three statements GST (a, b, c, d), GST (a, b′, c′, d),
Par(b, b′, c′, c) imply the remaining statement (Figure 13).

Proof. Let e be a point such that ae = d. Because of Lemma5 (i), the state-
ment GST (a, b, c, d) is equivalent to the statement Par(a, b, c, e), and the statement
GST (a, b′, c′, d) to the statement Par(a, b′, c′, e). However, because of symmetry
b ↔ b′, c ↔ c′, it is sufficient because of Lemma 2 to prove implications

Par(b, c, e, a), Par(e, a, b′, c′) ⇒ Par(b, c, c′, b′)

Par(e, a, b, c), Par(b, c, c′, b′) ⇒ Par(e, a, b′, c′),

which follow by Lemma3. ✷
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Figure 13.

Lemma 7. Any two of the three statements GST (a, b, c, d), GST (a′, b, c, d′),
Par(a, a′, d′, d) imply the remaining statement (Figure 14).

Figure 14.

Proof. The proof is analogous to the proof of Lemma6, but instead of statement
(i) of Lemma 5 we use statement (ii) and we also use the point e such that eb = c
(Figure 14). ✷

Theorem 18. Any of the statements

GST (a, b, c, d), GST (a, b′, c′, d), GST (a′, b, c, d′), GST (a′, b′, c′, d′)

is the consequence of the remaining three statements (Figure 15).
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Figure 15.

Proof. Because of the symmetry a ↔ a′, d ↔ d′ and b ↔ b′, c ↔ c′, it is
sufficient to prove that the fourth statement is the consequence of the first three
statements. However, by Lemma6 we have implications

GST (a, b, c, d), GST (a, b′, c′, d) ⇒ Par(b, b′, c′, c)

GST (a′, b, c, d′), Par(b, b′, c′, c) ⇒ GST (a′, b′, c′, d′).

✷

Corollary 5. Let the statements GST (a, b, c, d), GST (a, b′, c′, d) be valid and let
a′ be a given point. Then there is one and only one point d′ such that GST (a′, b, c, d′),
GST (a′, b′, c′, d′) are valid (Figure 15).

Corollary 6. Let the statements GST (a, b, c, d), GST (a′, b, c, d′) be valid and let
b′ be a given point. Then there is one and only one point c′ such that GST (a, b′, c′, d),
GST (a′, b′, c′, d′) are valid (Figure 15).

Theorem 19. Any of the statements

GST (a, b, c, d), GST (a, b′, c′, d), GST (b, e, f, c), GST (b′, e, f, c′)

is the consequence of the remaining three statements (Figure 16).
Proof. By Lemma6 any of the statements GST (a, b, c, d), GST (a, b′, c′, d),

Par(b, b′, c′, c) follows from the two remaining statements, and by Lemma 7 any
of the statements GST (b, e, f, c), GST (b′, e, f, c′), Par(b, b′, c′, c) follows from the
remaining two statements, which proves our theorem. ✷
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Figure 16.

Theorem 20. Any four of five statements

GST (a, b, c, d), GST (a′, b′, c′, d′), GST (a, c, c′, a′), GST (b, c, c′, b′), GST (c, d, d′, c′)

imply the remaining statement (Figure 17).

Figure 17.

Proof. First, let there hold GST (a, c, c′, a′) i.e. a′ = (a · ac)c′. We will show
that any three of four statements

GST (a, b, c, d), GST (a′, b′, c′, d′), GST (b, c, c′, b′), GST (c, d, d′, c′)

i.e.
(a · ab)c = d, (a′ · a′b′)c′ = d′, (b · bc)c′ = b′, c · cd = c′ · c′d′
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imply the remaining statement.
However, it is obvious after the following conclusion

c [c · (a · ab)c]
(4)
= c [c(a · ab) · c] (7)

= (a · ab) · (a · ab)c
(5)′
= (a · ab) · (ac)(ac · bc)

(3)
= (a · ab) · (a · ac)(c · bc) (3)

= a(a · ac) · (ab)(c · bc)
(3)
= a(a · ac) · (ac)(b · bc) (3)

= (a · ac) · (a · ac)(b · bc)
(1)′
= c′ · {c′ · [(a · ac) · (a · ac)(b · bc)] c′}c′
(4)
= c′ · c′{[(a · ac) · (a · ac)(b · bc)] c′ · c′}
(5)′
= c′ · c′{[(a · ac)c′] [(a · ac)c′ · (b · bc)c′] · c′}
= c′ · c′{a′ [a′ · (b · bc)c′] · c′}.

We will now prove that statement GST (a, c, c′, a′) i.e. a · ac = a′ · a′c′ follows
from the remaining statements GST (a, b, c, d), GST (a′, b′, c′, d′), GST (b, c, c′, b′),
GST (c, d, d′, c′), i.e. a = (d · dc)b, a′ = (d′ · d′c′)b′, b′ = (b · bc)c′, c′ = (c · cd)d′.
Firstly, we get

a′ = (d′ · d′c′)b′ = (d′ · d′c′) · (b · bc)c′ = d′ [d′ · (c · cd)d′] · [(b · bc) · (c · cd)d′]
(4)
= d′ [d′(c · cd) · d′] · [(b · bc) · (c · cd)d′]
(7)
= [(c · cd) · (c · cd)d′] [(b · bc) · (c · cd)d′]
(5)′
= (c · cd)(b · bc) · (c · cd)d′ (5)

= (c · cd) · (b · bc)d′,

so it follows

a′ · a′c′ = [(c · cd) · (b · bc)d′] · [(c · cd) · (b · bc)d′] [(c · cd)d′]
(5)
= (c · cd) · [(b · bc)d′] [(b · bc)d′ · d′] (5)′

= (c · cd) · [(b · bc) · (b · bc)d′] d′
(6)′
= (c · cd)(b · bc) (7)

= d(dc · d) · (b · bc) (4)
= (d · dc)d · (b · bc)

(3)
= (d · dc)b · (d · bc) (6)′

= (d · dc)b · [(d · dc)c · bc]
(5)′
= (d · dc)b · [(d · dc)b · c] = a · ac.

✷
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