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To solve a parametric model in computational electromagnetics, the Finite Element method is often used. To reduce the  
computational time and the memory requirement, the Finite Element method can be combined with Model Order Reduction Technic 
like the Proper Orthogonal Decomposition (POD) and the (Discrete) Empirical Interpolation ((D)EI) Methods. These three numerical 
methods introduce errors of discretisation, reduction and interpolation respectively. The solution of the parametric model will be 
efficient if the three errors are of the same order and so they need to be evaluated and compared. In this paper, we propose an a-
posteriori error estimator based on the verification of the constitutive law which estimates the three different errors. An example of 
application in magnetostatics with 11 parameters is treated where it is shown how the error estimator can be used to control and to 
improve the accuracy of the solution of the reduced model.     
 

Index Terms— Finite Element Method, Model Order Reduction, POD method, (D)EI method, error estimation, adaptive procedure 
 

I. INTRODUCTION 

inite Element (FE) models are now the standard to study 
electromagnetic devices like electrical machines, 

transformers because they are so accurate that they can be 
considered as a virtual prototype. However, for the design of 
electromagnetic device, these models cannot be used during 
the whole process of design but only at the end because of 
their computational time. In fact, at the beginning of the 
design process, the space of parameters has to be explored 
which requires a huge amount of model runs. To circumvent 
this issue, an analytical model based on physical 
considerations and much faster than a FE model is associated. 
The issue is then the relationship between the solutions given 
by the FE model and the analytical model which does not 
explicitly exists, that is to say that it is not straightforward to 
reconstruct a solution obtained by the analytical model in the 
FE space and reversely to take advantage of the FE solution to 
improve the accuracy of the analytical model. Model Order 
Reduction (MOR) methods have been proposed in order to 
reduce the computational time and the memory storage 
requirement [1-4]. Among these methods, Proper Orthogonal 
Decomposition methods (or derived method like the Reduced 
Basis method) which consist in searching an approximate 
solution in a subspace of the FE space spanned by FE model 
solutions, so called snapshots. This method has been applied 
successfully to solve non-linear problems in time domain in 
computational electromagnetics [5-8] and also to solve 
parametric models [9-12]. The POD solution can be easily 
projected in the space of the FE solution providing a natural 
link with the full FE model. Moreover, the accuracy of the 
POD model can be improved by introducing “naturally” any 
new FE model solution (snapshot). The key point is then the 
control of the accuracy of the POD model which depends 
highly on the choice of the snapshots. A posteriori error 
estimators have been proposed in the literature to evaluate the 
error introduced by the process of reduction. This error 
estimator is then applied along with a greedy algorithm or 

other self-adaptive procedures [12-16]. 
If the equation system, derived from the parametric FE 

model, is affine in parameters that is to say it is written under 
the form of a sum of terms equal to the product of a constant 
matrix and a function of the parameters of the problem, the 
Reduced Basis can be derived which can really alleviate the 
memory requirement and the computational time. Deriving an 
affine expression from the FE model is not always possible, 
approximation methods like (Discrete) Empirical Interpolation 
((D)EI) method can be applied in order to obtain an 
approximation under an affine form [17,18]. An error, so-
called interpolation error in the following, arises which needs 
also to be evaluated.  

Moreover, when applying a model order reduction technic in 
the literature, the FE model is often assumed to be perfect in 
the sense the discretization error due to the application of the 
FE method is negligible. It is assumed that the FE solution is 
equal to the exact solution of the partial differential equation 
system. In practice, this is not true and the discretization error 
always exists and should be also controlled.    

To summarize, we have finally three errors, which are the 
discretization error intrinsic to the FE method, the reduction 
error introduced by the MOR method and finally the 
interpolation error due to the approximation by an affine 
system of equations of the original FE model. These errors 
have to be compared to each other. For example, if the error of 
discretization is about 10 percent  it is useless to obtain a error 
of reduction of less than one percent because it won’t improve 
much the accuracy of the POD model providing that the 
increasing of POD model accuracy comes along with an 
increasing of its construction and computational time. 

At least in computational electromagnetism, the 
simultaneous estimation of the three errors has not been 
treated in the literature. For example in [12], a method is 
proposed to construct adaptively a reduced model from a finite 
element model, without applying the offline/online method. 
The adaptive construction is based on an error estimator which 
enables to evaluate only the reduction error without 
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considering the error of discretisation due to the FE method. 
Since the (D)EI method was not used in [12] to speed up the 
solution of the problem, no approximation error was also 
considered.   

In this paper, we propose a unique error estimator which can 
be applied to evaluate the three kinds of errors and which 
enables to control the accuracy of the full process of reduction. 
This error estimator is based on the verification of the 
constitutive relationship which has been already successfully 
used to estimate the discretization error [19,20]. This error 
estimator can be incorporated in an adaptive procedure in 
order to determine automatically the snapshots and the affine 
interpolation.  

The paper is organized as follow. In order to introduce the 
notation, the two FE potential formations in magnetostatic are 
presented. The principle of the error estimator based on the 
verification of the constitutive relationship is recalled. Then, 
the parametric FE model is detailed particularly the technic to 
account for geometric parameters. The reduction methods like 
POD method and (D)EI method are presented as well as their 
combination. The error estimator enabling to evaluate the 
three sources of errors is then introduced. Finally, the 
proposed approach is applied to reduce a FE model of a 
magnetic holder with 11 parameters. It is shown how the 
proposed error estimator enables to evaluate the different 
kinds of error and how it can be applied to obtain an accurate 
reduced model.                

II. MAGNETOSTATIC FE MODEL 

A. Magnetostatic problem 

We will consider an electromagnetic device which can be 
described by the magnetostatic equations on a domain D. In 
this section, we aim at introducing the notations. All the 
dimensions, the constitutive law of the materials and the 
sources are supposed to be set. The equations to be solved are: 

curl  H(x) = J(x)   (1) 

div B(x) = 0   (2) 

with H(x) the magnetic field, B(x) the magnetic flux density 
and J(x) the current density, which its distribution is assumed 
to be known. In addition, conditions on H(x) and B(x) are 
added on the boundary G of the domain D: 

n(x)×H(x)=0  on GH  (3) 
n(x)⋅B(x)=0 on GB  (4) 

 
With GH∩GB=0, GH∪GB=G and n(x) the outward normal 

vector. Finally, the fields H(x) and B(x) satisfy the 
constitutive law: 

Η(x)=ν(x) [B(x)-Br(x)]  (5) 
 

With ν(x) the magnetic reluctivity and Br(x) the remanent 
magnetic flux density. In practice, the domain D is often 
divided into K subdomains Dk on which the reluctivity (resp. 
the remanent flux density) is constant and equal to νk (resp 
Brk). The reluctivity ν(x) and the remanent magnetic flux Br(x) 
can be written under the form: 

( ) ( ) ∑∑
==

=ν=ν
K

1k
k

K

1k
kk )(I)(I xBxBxx rr k   (6) 

With Ik(x) a function equal to 1 if x belongs to Dk and 0 
elsewhere. To solve a system of Partial Differential Equations 
(PDE) given by (1), (2) and (5), two FE potential formulations 
can be used. 

B. Vector potential formulation 

In the case of the vector potential formulation, the magnetic 
flux density is expressed under the form: curlA (x) = B(x) and 
A(x)×n(x)=0 on GB. Combining (1) and (5), the PDE to solve 
reads:  

 
curl  [ν(x) curlA (x)] = J(x)+ curl  [ν(x) Br(x)] (7) 

 
To find an approximation of the solution, the FE method is 

generally applied. An approximation of the vector potential 
AEF(x) is sought in the edge element space such that [21]: 
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=

=
N

1j
jj )(a xwxA EF    (8) 

with N the number of Degrees of Freedom (DoF’s), wi(x) the 
edge shape functions and ai unknown real coefficients. By 
applying the Galerkin method to a weak form of (7), N 
equations are obtained: 
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Replacing AEF(x) by its expression (8) in (9), we obtain N 
linear equations which can be written under the form: 

SA XA = FA    (10) 

with SA the stiffness matrix (N×N), FA the source vector 
(N×1) and XA the vector of the coefficients ai. The coefficients 
sij of S and fi of F satisfy: 
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⋅=
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  (11) 

C. Scalar potential formulation 

According to (1), the magnetic field H can be expressed as a 
function of the gradient of a scalar potential Ω: H=Hs-gradΩ 
with Ω(x)=Cste on GH. The source field Hs is defined such that 
curlH s(x)=J(x) with Hs(x)×n(x)=0 on GH. Combining (2) and 
(5), the PDE in the case of the scalar potential formulation is: 

 
  div [ν(x)-1grad Ω(x)] =div[ν(x)-1Hs(x)]-div[Br(x)]     (12) 

 
Similarly to the vector potential formulation presented before 

(see (8)), an approximation ΩEF is expressed in the finite 
dimensional space (the nodal element space). Applying the 
Galerkin method to a weak form of (12) leads to solve a 
system of linear equations under the form (10), SΩ XΩ = FΩ    
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III.  ERROR ESTIMATION 

The application of the FE method leads to an error of 
discretization. If (Bex(x),Hex(x)) denotes the exact solution of 
the problem (the solution  satisfies (1)-(5)) in the continuous 
domain, the solution BEF(x)=curlA EF(x) of the FE vector 
potential formulation (7)  is not equal to Bex(x) in the general 
case. This is the same for the solution HEF(x) of the scalar 
potential formulation. The couple (BEF(x),HEF(x)) satisfies the 
equations (1)-(4) but not the behavior law (5). The term  

 
e2=||HEF(x)-ν(x)[BEF(x)-Br(x)]||2ν    (13) 

 

with: 

   ∫ ⋅ν= −
ν

D

)d()()()( xxVxVxxV 12
     

is always positive and is equal to zero when the equation (5) 
is satisfied that is to say that the couple(BEF(x),HEF(x)) is 
equal to the exact solution. Moreover, it can be shown that: 

 
e2=||HEF(x)-Hex(x)||2ν +||BEF(x)-Bex(x)||21/ν

    
 

The diminution of the value of e2 means that the solution is 
closer to the exact solution. The term e2 gives an estimation of 
the error of discretization introduced by the FE method. 
Finally, solving the two potential formulations on the same 
mesh M leads to a couple (BEF(x),HEF(x)) which enables to 
estimate the error due to the FE method by calculating (13). 
We can also define a relative error ε: 
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  (14) 

 
This error estimator based on the verification of the 

constitutive relationship has been widely used to control the 
quality of the FE mesh. The aim of this paper is to extend the 
domain of application of this estimator to the reduction of 
parametric model. To introduce that, we will present in the 
following  the parametric model and the model order reduction 
technics in the case of the vector potential formulation but the 
extension to the scalar potential formulation is 
straightforward.  

 

IV.  PARAMETRIC FE MODELS 

A. Parametric Finite Element Model 

Let consider now that some inputs of the model like 
dimensions, reluctivities νk of some materials or currents in 
some stranded inductors are not fixed. This situation can arise 
during a design process where the inputs are the unknowns of 
the problem and should be fixed in order to satisfy given 
criteria of performances. The inputs can also be considered as 
unknown because of a lack of knowledge or because they are 
intrinsically variables and subject to dispersion. These inputs 
are then considered as parameters. We denote p=(p1,..,pP) the 
parameter set of dimension P. If the parameterization holds on 
the magnitude of the source terms (J and Br) or on the material 
characteristics νk (see (6)), the same mesh (related only to the 
geometry) can be used for any parameter values. The values of 

the coefficients sij and fi (see (11)) have to be calculated for 
each new set of parameters p and the coefficients ai of XA as 
well, which satisfy the system of linear equations dependent 
on p: 

 
SA(p) XA(p) = FA (p)  (15) 

 
The vector potential is then a function of p and we have:  

( ) ( )∑
=

=
N

1j
jj )(a, xwppxA EF  (16) 

The processing of parameterized geometries is slightly 
different than the processing of the previous kinds of 
parameterization on the source or the behavior law and it 
requires additional treatments. An easy way consists in 
remeshing each geometry corresponding to a new parameter 
set p. However, this approach has some drawbacks. With a 
new remeshing for each new parameter set p, the stiffness 
matrix and the source vector must be recalculated, which is 
time consuming. Moreover, remeshing the domain D adds a 
numerical noise on the output data because the mesh (the 
connectivities between elements, the number of elements…) 
changes from a parameter set to another. Finally, the 
expression of the shape functions wi(x) (see (8)) changes as 
well. Consequently, it is not obvious to obtain an explicit 
expression of the vector potential as (16) so the distribution of 
the fields H(x) and B(x). To avoid the former drawback, one 
possibility is to introduce additional functions (enrichment 
basis method) that can account for these discontinuities. This 
technique has been proposed for the stochastic finite element 
method in [22,23]. Another possibility consists in applying the 
transformation method proposed in [24,25] which will be used 
in the following. It can be shown that the parametrization on 
the geometry can be transferred on a parametrization on the 
material characteristics [26]. The unknowns ai of the problem 
remain the same whatever the values of the parameter set p 
and also the connectivities between nodes and elements 
meaning that the matrix filling of S does not depend on p but 
only the coefficient values sij and fi. Finally, whatever the kind 
of parametrization, the parametric model is given by the 
system of equations (15). For the design of electromagnetic 
devices or uncertainty quantification, this system of equations 
should be solved a numerous number of times which can be 
very time consuming even unfeasible if the number of 
unknowns is very high. In the following, we will present MOR 
method in order to alleviate the calculation time and the 
memory storage.  

V. MODEL ORDER REDUCTION TECHNICS 

A. Principles 

In the following, we consider P parameters pk each belonging 
to an interval [pk

min,pk
max]. The parameter set p=(p1,..,pP) 

belongs to the domain  [ ]∏
=

=∆
P

1k

max
k

min
k p,p .  

A Nx×1 vector X(p) of functions defined on  ∆ is given. X(p) 
can be, for example, the solution XA(p) of the parametric 
model (15). The vector X(p) can represent also the vector F(p) 
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or a vectorised form of the N×N matrix S(p). In the last case, 
the mth entry xm(p) of X(p) is given by: 

 
xm(p)=sij(p) with m=(j-1)N+i   (17)  

 
The idea of MOR technics is to find an approximation of 

X(p) under the form: 

( ) ∑
=

≈
R

1q
qq )(x XppX   (18) 

With Xq Nx×1 vectors with constant entries and xq(p) 
functions of p. The reduction holds here in the fact the vector 
X(p) does not require the calculation of Nx functions of p but 
only R which is supposed to be much lower than N.  

Two methods based on the previous principles will be 
presented in the following: the POD method and the (D)EI 
method which can be combined efficiently to reduce a FE 
model. 

B. Proper Orthogonal Decomposition (POD) method 

The POD method, detailed in the following, is one of the 
most popular MOR methods. Consider Z parameter sets 
(p1,…,pZ) and the N×Z matrix A of the associated solutions 
(XA(p1),…, XA (pZ)) of (15). This matrix A is often so-called 
the matrix of snapshots and XA(pi) a snapshot. We define the 
linear space K spanned by the vectors (XA(p1),…, XA(pZ)) and 
the N×R matrix Ψ (R≤Z) of the vectors (Ψ1,..,ΨR), an 
orthogonal basis of the space K. The matrix Ψ  can be 
obtained by a Singular Value Decomposition (SVD) from the 
matrix A. In fact, the matrix is constructed easily from the 
EigenValue Decomposition (EVD) of the Z×Z matrix AtA  
which is almost costless because Z is equal to several dozen in 
practice. The idea of the POD method is to seek for an 
approximation of the solution of (15) in the space K, which 
means that XA (p) is approximated by the following linear 
combination: 

( ) ( ) ( )∑
=

=≈
R

1i
ria iΨppXpX r

AA Ψ   (19) 

The approximation has to satisfy the equation (15), which is 
not generally possible because the system of equations is 
overdetermined. The idea is then to cancel the residue SA(p)Ψ 
XA

r(p)-FA(p) in the space K which is equivalent to solve an 
system of R linear equations: 

Ψ t SA(p)Ψ  XA
r(p) = Ψ t FA(p)    (20) 

The size of the system (20) is then equal to R, which is much 
lower than N, the size of the full system (15). The solution of 
the system of equations is much faster reducing significantly 
the computational time. However, the accuracy of the method 
is closely related to the choice of the snapshots (XA(p1),…, XA 
(pZ)) used to determine the reduced basis. Moreover, we can 
see that we have still to calculate the full matrix SA(p) and the 
vector FA(p) for each new parameter set p. In the following, 
we will present the (D)EI method to approximate the matrix 
SA(p) and the vector FA(p) in order to reduce their 
construction time.   

C. (Discrete)Empirical Interpolation  ((D)EI ) method 

In the following, we will consider the vector F(p) to present 
the (D)EI method. However, as it was mentioned in section V-
A, the (D)EI method can be applied also on the matrix S(p) by 
vectorising it as presented in (17). The idea is to approximate 
F(p) under the form: 

( ) ( ) ( ) ( )∑
=

==≈
Q

1i
iDEI c iUpppFpF cU     (21) 

With c(p)=(c1(p),..,cQ(p)) a vector which entries are linear 
combinations of Q “well-chosen entries” of the vector F(p). 
Then, it is possible to calculate only Q entries of F(p), to 
compute ci(p) and then, by applying (21), to determine an 
approximation FDEI(p) of F(p).  This method works very well 
if the entries of the vector F(p) are strongly correlated  
meaning that they vary in the same way with the parameter set 
p. In order to determine these Q entries, the vector F(p) is 
calculated for Z’ parameter sets (p1,…,pZ’ ). Then, the 
approximation FDEI(p) is sought in the space K’  spanned by 
(F(p1),…,F(pZ’ )) which correspond to a snapshot matrix F. 
Let denote U=(U1,…,UQ), an orthogonal basis of K’ which can 
be determined by a Gram-Schmidt Process or a SVD of the 
snapshot matrix F. Then, by applying the algorithm presented 
in Fig. 1, the most “significant” Q entries of F(p) are 
determined [18]. Let denote I={i 1,..,iQ} their indices (1≤i j≤N) 
and P the N×Q matrix such that the jth column is the ij

th 
column eij of the N×N identity matrix. All the entries of P are 
equal to zero except the Q entriesji j

p (1≤j≤Q). The vector c(p) 

is then given by: 
c(p) = (PtU)-1 Pt F(p)  (22) 

 
The Q×Q  matrix (PtU)-1 can be precalculated and the Q 

entries of the vector  PtF(p) are equal to the Q entries of F(p) 
with indices belonging to the set I={i 1,..,iQ}. Then, F(p) is 
approximated by applying (21). With the (D)EI method, only 
Q entries of F(p) are calculated instead of N, which can save 
calculation time. However, the accuracy of the approximation 
should be controlled and depends also on the choice of the 
parameter sets  (p1,…,pZ’ ). Moreover as shown in the next 
section, the system of equations becomes affine in parameter 
which enables to speed up the computational time of the 
reduced model.     

D. Combination of (D)EI method and POD method 

Using the (D)EI method and according to (21), an 
approximation SDEI(p) of the stiffness matrix S(p) can be 
written: 

( ) ( )∑
=

=
SQ

1i
iDEI s iVppS   (23) 

With V i, Qs sparse matrices with the same data structure as 
S(p) and si(p) linear combinations of Qs entries of S(p). The 
vector F(p) can be approximated also under the form (21) with 
QF vectors Ui and coefficients ci(p). 

Introducing the approximation of S(p) in the reduced model 
(20), we obtain: 

Sr(p) Xr(p)= Fr(p)    (24) 
with 
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The R×R matrices Vri and R×1 vectors Uri can be 
precalculated. Once these terms are pre-calculated, the 
construction of the reduced model (24) for a given parameter 
set p requires only: 

-the calculation of the QS entries of S(p) and QF entries of 
F(p),  

-the determination of the vector s(p) and c(p)  (see (22) with 
a pre-calculated matrix (PtU)-1)  

-the computation of Sr(p) and Fr(p) using (25).  
Consequently, the construction of the reduced model is 

hugely alleviated because only a small number Qs (resp. QF)  
of tiny R×R matrices (resp. Rx1 vectors) are involved in the 
calculation. 

GREEDY ALGORITHM 
 
input U=[U1,…,UQ]     
output I={i 1,…, iQ} and P=(ei1,…,eiQ) 
 
Max() operator 
If V=(v1,…,vm) then Max(V)=vj with |vj|≥|vi|  i∈{1,…,m} 
 
Initialisation 
U=[U1] 
i1=Max(U1)   
I={i 1} 
P=[eϕ1] 
 
For j=2 to Q 
Solve (Pt S) c = Pt Uj  
 residue=Ui-S c 
 i j=Max(residue) 
 U=[U,Ui] and P=[P,eϕi] and I={ I,ij) 
End 

 
Fig. 1: Greedy algorithm to determine the matrix P and the index set I [18] 

 
The combination of the (D)EI method and the POD method 

is very attractive in terms of computational time. However, as 
mentionned above, these methods leads to an approximation 
of the solution and the accuracy of the methods are closely 
related to the snapshots.    

In the following, we will derive an error estimator from the 
one presented in section III in order to control the accuracy of 
the reduced model and to determine adaptively the matrix of 
snapshots.   

VI. ERROR ESTIMATION 

We consider the solutions XA
r(p) and XΩ

r(p) of two reduced 
models derived from the two FE formulations but based on the 
same mesh M. The two reduced models are obtained after 
applying either the POD method or the (D)EI method or both. 
We denote ΨA and ΨΩ , the matrices of the two reduced basis 
(see section V-B) and XA(p)=ΨAXA

r(p) and XΩ(p)=ΨΩXΩ
r(p) 

the projected solutions in the initial mesh M. If the (D)EI 

method is applied alone (which has no practical interest), ΨA 
and ΨΩ are identity matrices. From the vectors XA(p) and 
XΩ(p), two potentials AEF(x,p) and ΩEF(x,p) can be 
determined respectively (see (16)). According to section III, 
an error er

2(p) can be calculated from the fields 
BEF(x,p)=curlA EF(x,p) and HEF(x,p)=Hs(x,p)-gradΩEF(x,p) 
using (13). This error includes the discrepancy not only due to 
the discretization of the mesh M of the full model but also due 
to the approximation by the POD and/or the (D)EI method. 
For a given parameter set p, the error e2(p) of the full model 
will be always lower than e2

r(p) because the two potential 
formulation solutions of the full model minimizes the error 
(13) for a given mesh M. The smaller and the closer the error 
e2

r(p), the better the approximation using POD and (D)EI 
methods.  

We can see that the same error estimator can be used to 
evaluate the discretization error due to the FE method, the 
reduction error due to the POD method and the interpolation 
error due to the (D)EI method.  

This error estimator can be very useful to evaluate the quality 
of the reduction. Moreover, as mentioned above, the accuracy 
of the reduction is strongly dependent on the snapshots. It is so 
legitimate to derive an iterative procedure based on this error 
to determine the snapshots.      

VII.  CONSTRUCTION OF THE PARAMETRIC REDUCED MODEL 

In the following, we will describe how to take advantage of 
the proposed error estimator to construct automatically an 
accurate reduced model. 

A. POD and iterative determination of the snapshots 

Let us consider the nth iteration of the adaptive procedure to 
construct the reduced basis Ψn

A and Ψn
Ω. The reduced basis 

has been obtained by solving the FE model (15) with the two 
formulations for the parameter sets (p1,…,pn). At the nth 
iteration, P new parameter sets (p’1,..,p’P) are considered. The 
parameter set p’ i is determined by changing only the ith 
component of pn.  The reduced problem (24) is solved for the 
P parameters p’ i for both formulations. We denote XA

r(p’ i) 
and XΩ

r(p’ i) the P solutions. Then, for each parameter p’ i, an 
error e2r(p’ i) can be calculated (see section VI). Then, if p’ j is 
the parameter leading to the highest error, the parameter sets 
(p1,…,pn) is completed by pn+1=p’ j. The FE model is solved 
for the two formulations, the snapshot sets are completed with 
XA(p’ n+1) and XΩ(p’n+1) and the new basis Ψn+1

A and Ψn+1
Ω are 

calculated by applying a SVD. Moreover, an error e2(p’ n+1) is 
determined which corresponds just to the discretization error 
due to the FE method. The ratio: 

 

( )
( )1n

2
1n

2
r

1n
e

e
α

+

+
+ =

'

'

p

p
   (26) 

is a good candidate to evaluate the quality of the reduction 
versus the quality of the discretisation by the FE method. In 
fact, since it is always greater than 1 (see VI), if αn+1 is close 
to one, it means that the reduction error is negligible compared 
to the discretisation error.  
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The iterative procedure is repeated until the value of αn 
remains close to 1. We denote Pn the set of parameters pn of 
which correspond to the snapshots. 

With other criteria proposed in the literature, the quality is 
evaluated assuming that the discretization error is negligible, 
which is not necessarily the case in practice, especially when 
the mesh is deformed to account for parameterized geometry.  

B. (D)EI method 

To determine an approximate of the matrix S(p) and the 
vector F(p) using the (D)EI method, an iterative method can 
be also used but at the opposite to the POD method, there is no 
FE system to solve just snapshots of the matrix S(p) and the 
vector F(p) needs to be calculated. An exploration of the 
domain is then affordable. Let denote a set IL of L parameters 
p. For each parameter pi of IL, the matrices SA(p) and SΩ(p) 
and the vectors FA(p) and FΩ(p) are calculated. Then, an 
approximation is calculated that we denote respectively 
SA

DEI,L(p), SΩ
DEI,L(p), FA

DEI,L(p) and FΩ
DEI,L(p). The quality of 

the approximation of the (D)EI method can be evaluated by 
comparing the error e(pi), already calculated for parameter set 
Pn constructed by the iterative procedure used to determine the 
snapshots (see VII.A), to the error er

DEI(pi) calculated using 
the POD-(D)EI model (see V.D). We should pointed out that 
the reduced model given by the POD method interpolates 
perfectly the FE model at the parameter set pi that is to say 
e(pi)=er(pi). Consequently the difference between e(pi) and 
er

DEI(pi) corresponds to the interpolation error due to the (D)EI 
method. However, if the parameter set pi of Pn is employed to 
determine the snapshots of S(p) and F(p) (pi∈IL), then 
er

DEI(pi)=e(pi)=er(pi) (the (D)EI method is also interpolant). 
Consequently, this procedure of evaluation will be efficient if 
the parameter set used for the (D)EI method and the POD 
method are different that is to say Pn∩IL=∅. To estimate the 
error due to the (D)EI we introduce the following ratio: 

          ( ) ( )
( )p

p
p

2

2 DEI
rDEI

e

e
α =    (27) 

To determine the (D)EI approximation of the matrices SA(p) 
and SΩ(p) and the vectors FA(p) and FΩ(p), we consider first a 
sequence of nested set IL of parameters. From given parameter 
set IL, a POD-(D)EI reduced model is constructed from the 
(D)EI approximations SA

DEI,L(p), SΩ
DEI,L(p), FA

DEI,L(p) and 
FΩ

DEI,L(p). Then, the ratio αDEI(p) (see (27)) is calculated for 
each parameter p of Pn. If the values of αDEI(p) remains 
sufficiently close to 1, the (D)EI approximation can be 
considered as good quality if not the next parameter set IL’ is 
considered. The process is repeated until convergence.         

VIII.  APPLICATION 

A. Presentation of the problem 

We consider a magnetic holder modelled by the two 2D 
potential formulations using the FE method. The geometry of 
the device is presented in Fig.2 and is parameterized with 11 
dimensions.  

We should mention that the example of the magnetic holder 
has been also used in [12] to evaluate an adaptive POD 
method to solve a stochastic problem. However, the variation 

intervals of the parameters (dimensions and materials 
characteristics) are not the same as well as the number of 
parameters. For instance, the variation intervals of the 
dimensions considered here are 9 times greater than in [12] to 
emphasize the error of discretisation.  

The ferromagnetic materials are supposed to have a linear 
behavior and the magnetic permeability is equal to 300µ0 with 
µ0 the vacuum permeability. The force experienced by the 
mobile plate, when the coil is not energized (due only to the 
permanent magnet), has been calculated using the Maxwell 
Stress Tensor. We have fixed nominal values for the 
parameters pi

nom (see Table I) and consider an interval of 
variation of [0.1pi

nom,1.9pi
nom] for each parameter. To account 

for the modification of the geometry, the transformation 
method is used but with always the same mesh. To study the 
influence of the mesh, we consider 4 meshes Mi with 
rectangular elements which characteristics are given in Table 
II. The full model, the error estimation, the POD and (D)EI 
methods have been programmed under Matlab environment. 
The feature of the force has been estimated using the finest 
mesh (see VIII.B). Due to the high range of variation of the 
parameters, the ratio between the maximum and the minimum 
of the force is approximately equal to 650. The mean value of 
the force has been estimated equal to 90 N with a standard 
deviation of 81 N showing that the dispersion of the force is 
large. The wide range of parameter values leads to a variation 
of the discretization error due to a high deformation of the 
mesh which needs to be controlled.   

 
Symetry axis

ep

rclo

rbob
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raim

e

hpm

hbob

hent

haim

hclo

Mobile plate (Iron)

Yoke (Iron)

Permanent magnet

Core (Iron)

Coil

 
 
Fig.2: Half of the geometry of the magnetic holder and  the definition of the 

parameters (rcul,raim,rbob,e,rclo,ep,hclo,haim,hent,hbob,hpm)  
 
TABLE I: NOMINAL VALUE FOR THE PARAMETERS (MM) 
rcul raim rbob e rclo ep hclo ,haim hent hbob hpm 
10.5 20.5 32 1 42 0.15 10 5 5 10 10 

 
TABLE II: M ESH CHARACTERISTICS  

Mesh M1 M2 M3 M4 
Elements 130 460 1400 2750 
Nodes 154 504 1476 2856 

 
Using the Latin Hypercube method [27], we have generated 

a sample S of S=1000 parameter sets. If we denote y(p) an 
output of the model (full or reduced), the mean, the standard 
deviation  and the maximum value of y(p) are estimated using 
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always the same sample S by the following expressions: 

S

S

S

∈∀≥

><−=

>=<

∑

∑

∈

∈

pp

p

p

p

p

)y(max(y)

y)(y
S

1
std(y)

)y(
S

1
y

22   (28) 

 
The output y(p) can be any output of the model like the 

relative error ε or the force F. 
 

B. Accuracy of the full problem 

We have reported in Table III the estimation of the mean, the 
standard deviation and the maximum of the relative error  ε(p) 
(see (14)). As expected, the mean <ε> of the error tends to 
zero when the number of elements increases. The standard 
deviation std(ε) is not equal to zero meaning that the 
discrepancy due to the discretization varies with the 
deformation of the mesh due to the parameter variation but we 
can see that this dispersion decreases when the mesh becomes 
finer. We have also calculated the relative difference: 

)(F)(F
)(F-)(F

*2)δF(
ΩA

ΩA

pp
pp

p
+

=  (29) 

with FA(p) and FΩ(p) the vertical forces obtained by the two 
formulations, the statistics are reported in the table IV. As 
stated below for the error, the mean and the standard deviation 
of δF tend to zero when the number of elements increases. We 
can also see a strong correlation between the evolution of the 
statistics of the relative error ε and of the relative force δF 
which ratio is kept almost constant when the number of 
element increases.    

 
TABLE III: STATISTICS  OF  THE ERROR  

Mesh M1 M2 M3 M4 
<ε> (%) 16,3 7.71 4.00 2.61 
std(ε) (%) 8.56 4.49 2.50 1.67 
max(ε)(%) 64.0 38,6 23.3 16.7 

 
TABLE IV: STATISTICS OF THE FORCE DIFFERENCE δF  

Mesh M1 M2 M3 M4 
<δF> (%) 12.9 6.29 3.15 1.95 
std(δF) (%) 10.6 5.69 3.26 2.25 
max(δF)(%) 75.3 46.0 27.6 19.1 

 

C. Accuracy of the POD model 

We have applied the procedure proposed in VII.A to 
determine the snapshots. For each mesh Mi, we have 
represented the evolution of the criterion αn (see (26)) versus 
the iterations of the iterative process in Fig.3. After a fast 
decreasing, as expected, αn remains close but always greater 
than 1. However, for the meshes M1 and M2, αn is always 
lower than 1.09 for n greater than 30. It means that the 
discretisation error is always much greater than the reduction 
error so no improvement of the reduced model are expected by 
increasing n. However with the meshes M3 and M4, we can 
see in Fig.3 that αn fluctuates with maximum values close to 
2. In that case the process of enrichment of the snapshots sets 

is really profitable in terms of accuracy improvements for the 
reduced model.    

To illustrate the previous point, we have stopped the iterative 
procedure after n=10, 30, 50, 70 iterations. Like that, for each 
mesh Mi, we have constructed reduced models with an 
increasing number of snapshots. We present in Fig.4 the 
evolution of the ratio between the mean of the error <er> of 
the reduced model due the discretisation method as well as 
reduction method and the error <e> only due to the 
discretisation. Above n=30, no real improvement of the 
accuracy of the reduced model derived from M1 and M2 can 
be noticed for n greater than 30 which is not the case with M3 
and M4.     

We have also evaluated the quality of the reduced model by 
calculating the mean <εr> and the maximum max(εr) of the 
error εr as well as the maximum of the variation of the force 
difference δFr using (27). The results are reported in Fig.5 and 
Fig.6 for εr and in Fig.7 for δFr. As expected, the error εr (resp. 
the force difference δFr) of the reduced model converges 
towards the error ε (resp. the force difference δF) of the FE 
model. Moreover, if we consider the maximum values of εr 

and δFr we can see that there is no real improvement of the 
accuracy above n=30 snapshots correlating the fact that it is 
useless to increase the number of snapshots to improve the 
accuracy which is bounded by the discretization error of the 
FE method.  

Additionally to that, the additive value of the reduced model 
appears clearly in Fig.3 because with a small number of 
degrees of freedom (equal here to the number of snapshots) 
we can obtain a better accuracy than a FE model. For example, 
a reduced model derived from M4 with 50 snapshots 
(<ε>=6.0%) has a better accuracy than the FE model M2 with 
504 nodes (<ε>=7.7%) with about ten times less DoF’s.    

D. Accuracy of the (D)EI method 

We have applied the (D)EI method in order to approximate 
the matrix S(p) and F(p) (see (15)). We have generated two 
samples of parameter sets of length L equal to 78 and 364 
leading to two samples of matrices SA(p) and SΩ(p) and 
vectors FA(p) and FΩ(p). Applying the (D)EI method on these 
two samples, we have obtained two approximations of the 
matrices SA

DEI,L(p) and SΩ
DEI,L(p) and the vectors FA

DEI,L(p) 
and FΩ

DEI,L(p).  
To evaluate the quality of the approximation, we have 

applied the strategy proposed in VII.B by calculating αn
DEI(pn)

 

(see (27)) for each p belonging to Pn (see VII.A). We remind 
that e(p) has been already calculated during the construction 
of the POD approximation and er

DEI(p) is calculated using the 
reduced model combining the (D)EI method and the POD 
method (see (24)) which is very fast. In Fig.8, we give values 
obtained for 70 snapshots for the four meshes when L=78. For 
most of the snapshots, the ratio is very high proving that the 
(D)EI approximation is not sufficiently accurate. Moreover, 
we can see that the finer mesh is the more sensitive.  

However, with a longer sample of matrices (L=364), the 
value of log(αn

DEI) is always equal to zero meaning that the 
matrix S(p) and the vector F(p) are perfectly interpolated for 
all the pn. The approximation can be considered as valid in 
that case. It can be shown, in this particular example, that the 
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approximation is exact, in fact, we have SA
DEI,364(p), 

SΩ
DEI,364(p), FA

DEI,364(p) and FΩ
DEI,364(p) which are equal to SA 

(p), SΩ(p), FA (p) and FΩ(p) respectively. 
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Fig.3: Evolution of the criterion αn in function of the iteration number  
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Fig.4: Evolution of the ratio between the mean of the error of the reduced 

model <er> and the mean of the error of the FE model <e> in function of the 
number of snapshots 
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Fig.5: Evolution of the mean of the relative error εr in function of the 

number of snapshots (The last value on the right correspond to the error of the 
FE model) 
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Fig.6: Evolution of the maximum of the relative error εr in function of the 

number of snapshots (The last value on the right correspond to the error of the 
FE model) 
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Fig.7: Evolution of the maximum of δFr in function of the number of 
snapshots (The last value on the right correspond to the relative force 
difference of the FE model) 
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Fig.8: Values of log(αn

DEI(p))=log(er
DEI(p)/e(p)) (see (27)) for the 70 

snapshots calculated with the POD method (p∈Pn)   
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TABLE V: STATISTICS OF THE RELATIVE ERROR ε (%) AND THE RELATIVE 

FORCE DIFFERENCE δF (%) 

 
DoF’s <ε> std(ε

) 
max(ε) <δF > std(δF) max(δF) 

Full M4 2700 2.6 1.6 16.2 1.9 2.2 19.0 
Reduced 70 4.4 2.0 18.0 2.2 2.0 19.6 
Full M3 1400 4.0 2.4 23.3 3.1 3.2 27.0 

 
TABLE VI: AVERAGE RELATIVE COMPUTATIONAL TIMES OF THE 

CONSTRUCTION AND THE SOLUTION OF THE SYSTEM OF EQUATIONS FOR THE 

DIFFERENT MODELS (THE REFERENCE IS THE REDUCED MODEL IN THE A 

FORMULATON) 

 DoF’s A Ω 
Full M4 2700 53.4 70.1 
Reduced 70 1.0 1.1 
Full M3 1400 16.5 25.1 

E. (D)EI POD Model 

We consider now the reduced POD-(D)EI model derived 
from: 

-the full model based on the mesh M4,  
-Z=70 snapshots obtained with the iterative procedure 

presented in VII.A based on the proposed error estimator 
which requires the full model solution 70 times for the two 
formulations.  

-Z’=364 calculations of the stiffness matrix S(p) and source 
vector F(p) for the two formulations. The application enables 
to extract automatically, by applying the algorithm given in 
Fig.1,  an expression of the matrix S(p) and the vector F(p) 
under the form (23) with QAs=QΩ

s=60 and QA
F=1 and QΩ

F=2. 
The quality of the approximation has been checked by the 
proposed error estimator (see VIII.B). 

The statistics of the reduced model have been compared to 
the statistics of the FE models M4 and M3 by reporting in 
Table V the relative error ε and the relative force difference 
δF. We can see that the reduction process deteriorates the 
accuracy of the reduced model versus its originate FE model 
M4 which is inevitable. However, the reduced model derived 
from the mesh M4 has similar statistics as the FE model M3 
but with 20 times less unknowns.  

In terms of memory usage, since we have used rectangular 
elements, the number of entries of the matrix S is equal to 9 
times the number of unknowns N. If we account for the source 
vector F, we have to store 10N terms with the full model. 
These 10N terms have to be recalculated for each new set of 
parameters. In the case of reduced model, we have to store the 
QF matrices of size of S and QR vectors of size of F which 
represent approximately 600N terms to store which much 
higher than the full model however with the (D)EI method 
only few terms needs to be recalculated in order to reconstruct 
the reduced model.   

We have reported in Table VI the relative estimated 
computational time to construct and to solve the scalar and the 
vector potential formulations for the different models taking 
the computational time of the reduced model in vector 
potential formulation as reference. We can see that the 
computational time of the two formulations is almost the same 
as expected in 2D. The reduced model is more than 16 faster 
than the FE model M3 with almost the same accuracy.  

Finally, the reduced model obtained by the proposed 
procedure of the construction of the reduced model enables to 

increase the computation speed with a control of the different 
sources of discrepancy. Moreover, the accuracy of the reduced 
model can be always controlled by using the proposed 
estimator. The calculation of the error of the reduced model 
can be also very fast by taking advantage of the (D)EI method 
decomposition of the stiffness matrices. 

IX. CONCLUSION 

In this paper, we have introduced an error estimator which 
enables to evaluate at the same time the discrepancies 
introduced by the FE, the POD and the (D)EI methods. Using 
this estimator, it is possible to balance the errors introduced by 
the three methods.  Based on this error estimator, we have 
proposed a procedure to construct automatically a reduced 
model based on the POD and (D)EI methods. It has been 
applied on an example in 2D magnetostatics to illustrate the 
proposed procedure. The results show that a reduced model 
with almost the same accuracy as a FE model can be 
constructed but with 20 times less of unknowns and 16 times 
faster. 
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