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In this paper, by using the system potential of two bubbles and with a special interest
in the interaction by exchange of volume and without exchange of mass, a system of
equations governing the evolution of two bubbles is proposed. This two-bubble model
shows terms that do not appear in the models of interaction between bubbles. The two-
bubble model is compared with the modified Rayleigh–Plesset equation and a validation
with the experimental study of Ohl [2002] is presented. The numerical results show that,
on one hand, the development of small nearby bubbles can slow down the evolution of the
biggest local one, while their disappearance can favor its growing. Furthermore, in the
case of two bubbles in particular, the small bubble exchanges volume with the big one
during their evolutions. On the other hand, contrary to the modified Rayleigh–Plesset
model, the two-bubble model predicts appearance and disappearance of small bubbles
in the neighborhood of the big bubble as it is observed in the experimental study of
Ohl [2002].

The present findings show in particular that the interaction by exchange of volume
can be very important in the cavitation born phase and it is necessary to take into
account the interaction between bubbles as well as the disappearance of small ones on the
evolution of the biggest local bubble. Also, this two-bubble model predicts an exchange
of volume between both bubbles equal to zero when they are perfectly identical.

Keywords: Cavitation; modeling; multibubble; interactions; exchange of volume.

1. Introduction

The study of phase change phenomena and more in particular cavitation, in which
vapor bubbles are formed in a liquid under pressure drop effect, still remains a
challenge in mechanics.

Experimental studies [Lauterborn and Bolle, 1975; Franc and Michel, 1985;
Arndt et al., 1989; Madadnia and Owen, 1995; Astolfi et al., 2000; Fortes-Patella
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et al., 2000; Ohl, 2002; Stutz and Legoupil, 2003; Bremond et al., 2006; Coutier-
Delgosha et al., 2007; Dular et al., 2012] allowed us to move forward in the under-
standing of the inception, the development and the structure of cavitation as well
as the erosion caused by this phenomenon. More studies [Ohl, 2002; Buogo and
Cannelli, 2002; Abe et al., 2007; Yang et al., 2009; Aghdam et al., 2012] were car-
ried out to comprehend the inception and the evolution of one single cavitation
bubble. However, even in these cases, the single bubble is mostly formed after the
coalescence of a multitude of small bubbles that appear in the early stage of the
bubble inception. These premature disappearances of small bubbles can influence
the evolution and growth of the final bubble. In the experimental study of the cavi-
tation inception, Ohl [2002] concluded that: the observed scenario suggests that the
bubble–bubble interactions have to be taken into account for accurate modeling.
Then, a simple ansatz using a single-bubble model is not valid.

The first theoretical studies on the evolution of single-bubble cavitation were
led by Rayleigh [1917]. The Rayleigh equation was developed by Plesset [1948]
and is known by Rayleigh–Plesset equation. Other equations of single-bubble radial
evolution exists [Gilmore, 1952; Keller and Miksis, 1980].

In the case of two or several bubbles, many studies based on bubbles cloud
and interactions between bubbles were carried out [Chahine, 1984; d’Agostino and
Brennen, 1989; Oguz and Prosperetti, 1990; Kubota et al., 1992; Takahira et al.,
1994; Mettin et al., 1997; Harkin et al., 2001; Bremond et al., 2005; Ida, 2007].

Some multibubble models are based on the modified single-bubble equations. In
fact, these equations are modified to take into account the nearby bubbles influence.
The added terms are functions of the interbubble distances Dij , which represents the
distance between the centers of the bubbles i and j. Also, a great majority of two or
more bubbles make an approximation of the system potential in the neighborhood
of each bubble.

In this study, the idea is to take into account the premature disappearance of
small bubbles at the initial stage of cavitation inception, which can contribute by
exchange of volume without exchange of mass to the growing of a small number of
big bubbles.

In a physical phenomenon study, the understanding of a particular case mostly
allows to move forward in the understanding of the general case. So, in the present
work, we are interested in the interaction by exchange of volume without exchange of
mass. We consider two bubbles separated by the distance D12, the bubbles translate
velocities induced by their mutual interactions are neglected, with specific hypoth-
esis, the system potential will be the sum of the potential bubble. This poten-
tial allows to obtain the system velocity field. With the unidimensional equation
of Navier–Stokes and an interest in the interaction by exchange of volume, the
equation governing the evolution of both bubbles is obtained. The equation shows
terms which do not appear in most of interaction models between bubbles. For the
validation, the model is compared with the modified Rayleigh–Plesset equation and
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the experimental study of Ohl [2002]. The latter is one of rare experimental studies
in which the pressure and the radius of the cavitation bubbles are both measured
as a function of time at cavitation inception.

Our work is divided into two parts. In Sec. 1, the modified Rayleigh–Plesset
equation model is introduced and the two-bubble model is developed. The second
section is dedicated to the comparison of results from each model as well as the
validation with experimental study.

2. Bubbles Evolution Models

Studies [Oguz and Prosperitti, 1990; Harkin et al., 2001; Doinikov, 2001] show that
in the case where the interbubble distance Dij is much bigger than the initial
bubbles radii, the translate velocities of bubbles variation can be very low. Bremond
et al. [2006] showed that the modified Rayleigh–Plesset equation for two bubbles
describes well the instantaneous bubble radii evolution until it reaches 75% of half
the distance Dij . In this present work, Dij remains constant and (Ri+Rj) is inferior
than 0.75 × Dij((Ri + Rj) ≤ 0.75Dij). The same hypothesis has been also used by
Ida [2009], Dij was considered constant (the order of Dij ≥ D0(R0i + R0j) with
D0 = 10).

2.1. Multibubble cavitation model

For the multibubble model, the modified Rayleigh–Plesset equation [Bremond et al.,
2006; Ida, 2009] is used. With Nb the number of bubbles, this equation, rewritten
with the variable flow rate, is:

q̇i =
1
8π

q2
i

R3
i

− 4µL

ρL

qi

R2
i

+
4πRi

ρL
(pgi + pv − pex(t)) − 8πσ

ρL
−

Nb∑
j=1,j �=i

Ri

Dij
q̇j (1)

where Dij is the distance between the centers of bubbles i and j, Ri is the radius,
Ṙi is the normal velocity to the interface, qi = 4πR2

i Ṙi the flow rate, q̇i = ∂qi

∂t =

4π(2RiṘ
2
i + R2

i R̈i), and q̇j = ∂qj

∂t = 4π(2RjṘ
2
j + R2

j R̈j), σ is the surface tension,
µL the dynamic viscosity, ρL is density of liquid, pi is the pressure in the liquid at
the bubble interface. The pressure inside bubbles equals to the sum of the vapor
pressure pv and the gas pressure pgi , modeled by the barotropic Laplace law:

pgi =
(

p0 +
2σ

R0i
− pv

)(
R0i

Ri

)3γ

(2)

where R0i is the initial radius, γ is the polytropitic exponent, p0 is the atmospheric
pressure and pex(t) is the ambient environment pressure.

2.2. Two-bubble model

In the two-bubble model, two isolated bubbles are considered. From now on, the
index 1 will be allocated to the big bubble and the index 2 to the small one: Fig. 1.
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Fig. 1. Schematic position of the two bubbles.

Both bubbles are assumed to remain spherical, the vorticity is assumed to be
zero, the liquid flow is supposed to be potential, and bubbles can be considered
as sources. The condition of sliding is thus not respected exactly. If the bubbles
translation velocity is neglected, the potential of the system will simply be the sum
of the separate potentials due to bubbles

F (x, y, z) = − 1
4π

(
q1

‖XF − X1‖ +
q2

‖XF − X2‖
)

(3)

where XF = (x, y, z), X1 = (−d, 0, 0), X2 = (d, 0, 0) and D12 = 2d. q1 = 4πR2
1Ṙ1

and q2 = 4πR2
2Ṙ2 are the expansion flow rate of bubbles 1 and 2. R1 and R2 are

their radii, respectively.
With Eq. (3), v = ∇F (x, y, z), the velocity of the fluid in x direction between

the centers is

v(x) =
1
4π

(
q1

(d + x)2
− q2

(d − x)2

)
. (4)

With −d + R1 < x < d − R2. Because potential flow is considered in this approach,
the viscosity term in the Navier–Stokes equations is equal to zero. Thus, the Navier–
Stokes equation in the x direction can be written as

∂v

∂t
+ v

∂v

∂x
= − 1

ρL

∂p

∂x
(5)

where p is the local static pressure and ρL is the density of the liquid. By integrating
this equation and taking into account the expression of the velocity at the interface
of the bubble i: vi = Ṙi = qi

4πR2
i
, with Ṙi = ∂Ri

∂t :

1
4π

[
q̇1

(d + x)
+

q̇2

(d − x)

]x2

x1

=

[
p

ρL
+

1
32π2

(
q1

(d + x)2
− q2

(d − x)2

)2
]x2

x1

(6)
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with x1 = −d + R1 and x2 = d − R2.

1
4π

(
q̇1

2d − R2
+

q̇2

R2
− q̇1

R1
− q̇2

2d − R1

)

=
1

32π2

[(
q1

(2d − R2)2
− q2

R2
2

)2

−
(

q1

R2
1

− q2

(2d − R1)2

)2
]

+
p2 − p1

ρL
(7)

It follows:

q̇1

4πR1
− q2

1

32π2R4
1

− p1

ρL
=

q̇1

4π(D12 − R2)
− q̇2

4π(D12 − R1)
− q2

1

32π2(D12 − R2)4

+
q2
2

32π2(D12 − R1)4
+

q1q2

16π2R2
1R

2
2

(
R2

1

(D12 − R2)2

− R2
2

(D12 − R1)2

)
+

q̇2

4πR2
− q2

2

32π2R4
2

− p2

ρL
(8)

with q̇1 = ∂q1
∂t = 4π(2R1Ṙ

2
1 + R2

1R̈1), q̇2 = ∂q2
∂t = 4π(2R2Ṙ

2
2 + R2

2R̈2), p1 and p2 are
pressures in the liquid at the interface of bubbles 1 and 2. Equation (8) governs their
evolution. One can note that the ambient environment pressure does not appear in
Eq. (8) and by considering two quasi-identical bubbles, the functions of D12 terms,
which govern particularly the interactions between bubbles, neutralize each other.
In this case, the interaction by exchange of volume is nil, as all other interactions are
supposed negligible, the evolution of each bubble is governed only by the ambient
environment pressure. So, the ambient environment pressure can be estimated by

− pex(t)
ρL

≈ q̇2

4πR2
− q2

2

32π2R4
2

− p2

ρL
(9)

where pex(t) the ambient environment pressure. Equation (9) is the classic Rayleigh–
Plesset equation rewritten with the variable flow rate. In this case however, it only
allows to estimate the ambient environment pressure and not the evolution of the
bubble.

By considering Eqs. (8) and (9), we obtain the equation governing the evolution
of bubble 1

q̇1

4πR1

(
1 − R1

D12 − R2

)
− q2

1

32π2R4
1

(
1 − R4

1

(D12 − R2)4

)

− q1q2

16π2R2
1R

2
2

(
R2

1

(D12 − R2)
2 − R2

2

(D12 − R1)2

)

=
p1

ρL
− pext(t) − q̇2

4π(D12 − R1)
+

q2
2

32π2(D12 − R1)4
. (10)
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The equation which governs the evolution of bubble 2 is

q̇2

4πR2

(
1 − R2

D12 − R1

)
− q2

2

32π2R4
2

(
1 − R4

2

(D12 − R1)4

)

− q1q2

16π2R2
1R

2
2

(
R2

2

(D12 − R1)2
− R2

1

(D12 − R2)2

)

=
p2

ρL
− pext(t) − q̇1

4π(D12 − R2)
+

q2
1

32π2(D12 − R2)4
. (11)

The equation of equilibrium at the interface of a bubble can be expressed as

p1 = pv + pg1 − 4µL
Ṙ1

R1
− 2

σ

R1
(12)

p2 = pv + pg2 − 4µL
Ṙ2

R2
− 2

σ

R2
. (13)

By considering Ri negligible compared to D12, the terms q̇i

4πD12
and q1q2

16π2D12
( 1

R2
2
−

1
R2

1
) will not appear in the equation governing the evolution of the bubble i in the

majority of existing multibubble models.
We write

q1 − q2 = qe (14)

where qe is the exchange flow rate between bubbles 1 and 2.

3. Results and Discussions

As mentioned earlier, the model validation is performed by comparing the results
obtained from the present work to those obtained in the experimental study of Ohl
[2002]. The measured evolution of the pressure equation pex(t) is

p± =
1
2

[
p10 exp

(
−α1

(
t ± x

c

))
+ p20 exp

(
−α2

(
t ± x

c

))

∗ cos

[(
3∑

i=0

νi

((
t ± x

c

))i
)

2π
(
t ± x

c

)
+ φ

]]

∗
[
1. + tanh

(
n1

(
t ± x

c

))]
∗
[
1. + tanh

(
n2

(
∆ −

(
t ± x

c

)))]
(15)

where c is the speed of sound, other constants are given in Table 1.

Table 1. Values of constants in Eq. (13).

P01 = 2.275 · 107 Pa P02 = 2.77 · 106 Pa α1 = 1.767 · 106 s−1 α2 = −9.987 · 104 s−1

n1 = 4.674 · 107 s−1 n2 = 5 · 106 s−1 υ0 = −3.21 · 103 s−1 υ1 = 2.16 · 1010 s−2

υ2 = −1.03 · 109 s−3 υ3 = −1.08 · 107 s−4 ϕ = 7.44 ∆ = 7 · 10−6 s
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3.1. Large number of bubbles case

The objective of this part is to quantify, with the classic multibubble model (the
modified Rayleigh–Plesset equation), the influence of the nearby bubbles on the
evolution of the local biggest one. We consider different configurations in both cases:
orderly and disorderly bubbles distribution.

For the orderly distribution of bubbles, 3 configurations are tested: see Fig. 2.
In configuration I, 5 bubbles are distributed on a square of side C0 =

√
2D12. A

bubble of initial radius R01 = 10 µm is situated in the center and four of the same
radius (2 µm) are placed on each summit. This configuration can be considered as
a case of two bubbles with radius R1 and R2.

In configuration II, 9 bubbles are distributed in a cube of edge C0 = 2√
3
D12. A

bubble of initial radius R01 = 10 µm is located in the center of the cube and 8 of
the same radius (2 µm) are placed on each summit. This configuration II can also
be considered as a case of two bubbles with radius R1 and R2.

In configuration III, we consider 15 bubbles distributed in a cube of edge C0 =
2D12. A bubble of initial radius R01 = 10 µm is in the center of the cube, 6 bubbles
of the same radius (5 µm) are placed in the center of each face and 8 bubbles of the
same radius (2 µm) are on each summit. This configuration III can be considered
as a case of three bubbles with radius R1, R2 and R3.

For these three configurations, D12 = D0(R01 + R02) with D0 = 10. For the
system of equations, see Appendix.

In the case of disorderly distribution of bubbles, the initial radius of the biggest
bubble is set to R01 = 10 µm and of the smallest one to R0Nb

= 2 µm where Nb ≥ 2
is the number of bubbles. Radii of the other bubbles are determined by a geometrical
continuation of reason (R0Nb

/R01)1/(Nb−1): R0i = (R0Nb
/R01)1/(Nb−1)R0i−1, i ≥ 2

and the distance between centers i and j is Dij = D0(R0i + R0j) with D0 = 10.
Figure 3 represents bubbles evolution in the three configurations of orderly bub-

bles distribution as well as the case of a single-bubble evolution.
The results show there is only small difference in big bubbles radii between

configuration I and the case of only one single bubble, without any small bubble
in the neighborhood. The big bubble in this configuration behaves almost like if

Confi. I Confi. II Confi. III 

D12 

D12 D12 

C0 
C0 

C0 

Fig. 2. Three configurations of orderly bubbles distribution.
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Fig. 3. Bubble evolution in configurations I, II and III and single-bubble evolution case.
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Fig. 4. Evolution of the radius R1 in the configurations I, II and III.

it is alone and the interactions with the 4 small bubbles in the neighborhood are
low. However, in configurations II (with 8 bubbles in the neighborhood) and III (14
bubbles in the neighborhood), the radii of the big bubbles are much smaller than
the one of the single-bubble case.

Figure 4 shows that the radius R1 in configuration I is bigger than the one in
configuration II which is bigger than the one in configuration III.

The results of Figs. 3 and 4 indicate particularly that the more there are small
growing bubbles in the neighborhood of the local big one (R1) the less this one
develops. This finding can also be observed from Fig. 5 which represents the evo-
lution of radius R1 in configurations of disorderly distribution of bubbles: In this
case Nb is the number of bubbles and is equal to 4, 11 and 14. However, the same
figure shows that for Nb = 16 the radius R1 is bigger than in all other cases. This
could be explained by disappearance of small bubbles when Nb = 16. In fact, Fig. 6

Fig. 5. Evolution of R1 from the modified Rayleigh–Plesset model for Nb equal to 4, 11, 14
and 16.

1450071-9
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Fig. 6. Evolution of the radii from the modified Rayleigh–Plesset model for Nb = 16.

represents the evolution of all 16 bubbles. This results show clearly that certain
small bubbles disappear to let the local biggest one develop. Thus, it is important
to take into account the disappearance of these small bubbles on the evolution of
the big one.

From now on, we consider Nb = 2 in the modified Rayleigh–Plesset model, this
allows a better comparison with the two-bubble model. Also, in order to simplify
the curve legends, a variable Y obtained by the modified Rayleigh–Plesset model
will be written as Y MRP D0 = X and the two-bubble one as Y TBM D0 = X .
Example, R1 MRP D0 = 10 represents the radius R1 of the modified Rayleigh–
Plesset model for D0 = 10 and R2 TBM D0 = 10 the radius R2 of the two-bubble
model for D0 = 10.

3.2. Comparison and validation of models

For a better investigation, we consider two initial bubbles of almost the same size
R01 = 10 µm and R02 = 9.9 µm, this allows to have an exchange flow rate between
bubbles almost equal to zero at the early moments.

Figure 7 represents, for different D12 = D0(R01 + R02): D0 equal to 10, 21
and 22, the time evolution of the radii R1 and R2 of the modified Rayleigh–Plesset
model. The results show that, for D0 equal to 22, both bubbles develop at almost
the same size. For D0 equal to 10 and 21, one can see a small difference between both
radii, this difference is explained by the fact that at these distances the interactions
between bubbles could be strong. This observation can clearly be seen in Fig. 8,
which represents the evolution of the radii R1 and R2 of the two-bubble model.

1450071-10
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Fig. 7. Evolution of R1 and R2 from the modified Rayleigh–Plesset model for D0 equal to 10, 21
and 22.
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Fig. 8. Evolution of R1 and R2 from the two-bubble model for D0 equal to 10, 21 and 22.
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Fig. 9. Comparison of R1 from the two-bubble model for D0 equal to 10, 21 and 22.

One can see that for D0 equal to 10 and 21, the small bubble develops at first,
then collapses after a certain time. However, when D0 is equal to 22, as with the
modified Rayleigh–Plesset model, both bubbles develop at almost the same size.

The influence of this collapse, or in a general way the interaction between bub-
bles, can be observed on one hand in Fig. 9 where one can see that the smaller D0

is, the bigger R1 gets. On the other hand, Fig. 10 shows that for different D0, the
radius R1 of the two-bubble model is bigger than the one of the modified Rayleigh–
Plesset model. Figure 11 shows that the radius R2 in the two-bubble model is less
developed than in the modified Rayleigh–Plesset. However for D0 equal to 22, both
models produce almost the same radii R1 and R2. In this case, the interaction
between bubbles is very low.

Interaction between both bubbles can be quantified as the exchange of volume
or flow rate qe between them. Figure 12, which represents the time evolution of flow
rate qe of the models for D0 equal to 10, 21 and 22, is an illustration of models
comparison. The results show that, for D0 equal to 22, the flow rate qe is very
low for both models. Consequently, interactions between bubbles by exchange of
volume are very low, and as indicated in these cases, both bubbles have almost the
same size. Also, the results show that, for D0 equal to 10 and 21, the interaction
by exchange of volume in the two-bubble model is more important than the one
in modified Rayleigh–Plesset model. Also, for the latter and for D0 equal to 10
and 21, one can see that the interactions between bubbles are quite strong even
if these interactions are weaker than for the two-bubble model. This justifies the
differences between bubbles radii in Fig. 7 where two bubbles with initial radius of
9.9 µm and 10 µm were compared using modified Rayleigh–Plesset model.
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Fig. 10. Comparison of R1 from the modified Rayleigh–Plesset model and the two-bubble model
for D0 equal to 10, 21 and 22.
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Fig. 11. Comparison of R2 from the modified Rayleigh–Plesset model and the two-bubble model
for D0 equal to 10, 21 and 22.
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Fig. 12. Evolution of the exchange flow rate qe from the models for D0 equal to 10, 21 and 22.

To highlight the importance of the interaction between bubbles by exchange of
volume and validate the two-bubble model, the numerical results are compared with
the experimental measurements of Ohl [2002]. In the experimental study, bubbles
become visible at around 4 µs. Consequently, only the collapse of small bubbles
around this instant interests us. The experimental study lasts about 10 µs, with
certain value of D0, the condition (Ri +Rj) ≤ 0.75 Dij can be reached before 10 µs.
The minimal value of D0 which allowed to reach 10 µs is equal to 31.

Fig. 13. Evolution of the R1 and R2 from the models with experimental measurements of Ohl
for D0 equal to 31.
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Fig. 14. Evolution of the radius R2 from numerical models and experimental measurements of
Ohl, for D0 equal to 10 and 21.

Fig. 15. Evolution of R1 and R2 from the modified Rayleigh–Plesset model, for R02 = 0.1 µm
and D0 equal to 10.

Figure 13 presents the time evolution of the radii R1 and R2 of the models com-
pared to experimental measurements of Ohl [2002]. It shows that the small bubble
(R2) continues to grow beyond 4 µs in both models, in the modified Rayleigh–Plesset
model case it even remains almost equal to the big one. However, in the two-bubble
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model even if the small bubble grows beyond 4 µs, it finishes by collapsing. This
collapse results in an exchange of volume of the small bubble towards the big one.

Concerning the big bubble radius, both models give satisfactory results, with a
slight advantage for the two-bubble model, with late collapse of the small bubble.
For premature collapses of small bubbles, Fig. 14 shows that, for D0 equal to 10
and 21, the small bubble (R2) of the two-bubble model develops until it reached
the size of the experimental initial bubbles observed before to collapse.

The results indicate particularly that almost all the small bubbles which are in
the neighborhood of the big one, for D0 less than or equal to 21, can develop until
they reach the size of the experimental initial bubbles observed before the collapse.

With the modified Rayleigh–Plesset model, Fig. 15 demonstrates that even a
small bubble of initial radius R02 = 0.1 µm does not collapse.

4. Conclusion

In this study, we were interested in the interaction between bubbles by exchange of
volume in the cavitation inception. For a better investigation of the phenomenon,
a model with two bubbles is proposed. This two-bubble model is compared to the
multibubble model of modified Rayleigh–Plesset and a validation with the experi-
mental measurements of [Ohl, 2002] has been presented. One can conclude that:

The development of the small nearby bubbles can slow down the evolution of
the biggest local one and their disappearance can favor the growing of the latter.

During the evolution of two bubbles, the small bubble exchanges volume with
the big one. This volume gain allows the big bubble to partially compensate its
contraction due to pressure.

With two perfectly identical bubbles, the two-bubble model predicts an exchange
of volume between the bubbles equal to zero.

In the validation case with the experimental measurements of Ohl [2002], con-
trary to the modified Rayleigh–Plesset model, the two-bubble model predicts the
appearance and the disappearance of small bubbles in the neighborhood of the big
one as it is observed in the experimental study.

The findings show that the interaction by exchange of volume can have an impor-
tant role in the cavitation born phase. It is also very important to take into account
the interaction between bubbles and the disappearance of small bubbles on the
evolution of the biggest local one.

Appendix

In configuration I, 5 bubbles are distributed on a square of side C0 =
√

2D12, one
of radius R1 is situated in the center and four of the same radius R2 are placed
on each summit: the center bubble of radius R1 has 4 bubbles of radius R2 at a
distance of D12 = C0√

2
. Each summit bubble of radius R2 has one bubble of radius

R1 at a distance of D12 = C0√
2
, 2 of radius R2 at a distance of C0 and one of radius
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R2 at a distance of
√

2C0. So, one can write the following equations:

q̇1 =
1
8π

q2
1

R3
1

− 4µL

ρL

q1

R2
1

+
4πR1

ρL
(pg1 + pv − pex(t)) − 8πσ

ρL
− 4

√
2R1

C0
q̇2 (A.1)

q̇2 =
1
8π

q2
2

R3
2

− 4µL

ρL

q2

R2
2

+
4πR2

ρL
(pg2 + pv − pex(t)) − 8πσ

ρL
−

√
2R2

C0
q̇1

−
(

2 +
1√
2

)
R2

C0
q̇2. (A.2)

In configuration II, 9 bubbles are distributed on a cube of edge C0 = 2√
3

D12,
one of radius R1 is located in the center of the cube and 8 of the same radius R2 are
placed on each summit: the center bubble of radius R1 has 8 bubbles of radius R2

at a distance of D12 =
√

3
2 C0. Each summit bubble of radius R2 has one of radius

R1 at a distance of D12 =
√

3
2 C0, 3 of radius R2 at a distance of C0, 3 of radius

R2 at a distance of
√

2C0 and one of radius R2 at a distance of
√

3C0. So, one can
write the following equations:

q̇1 =
1
8π

q2
1

R3
1

− 4µL

ρL

q1

R2
1

+
4πR1

ρL
(pg1 + pv − pex(t)) − 8πσ

ρL
− 16R1√

3C0

q̇2 (A.3)

q̇2 =
1
8π

q2
2

R3
2

− 4µL

ρL

q2

R2
2

+
4πR2

ρL
(pg2 + pv − pex(t)) − 8πσ

ρL
− 2R2√

3C0

q̇1

−
(

3 +
3√
2

+
1√
3

)
R2

C0
q̇2. (A.4)

In configuration III, we consider 15 bubbles distributed in a cube of edge C0 =
2D12, one of radius R1 is situated in the center of the cube, 6 bubbles of the same
radius R2 are placed in the center of each face and 8 bubbles of the same radius R3

are located on each summit: the center bubble of radius R1 has 6 bubbles of radius
R2 at a distance of D12 = 1

2C0 and 8 of radius R3 at a distance of D13 =
√

3
2 C0. Each

face bubble of radius R2 has one bubble of radius R1 at a distance of D12 = 1
2C0,

4 of radius R3 at a distance of
√

2
2 C0, 4 of radius R3 at a distance of

√
3/2C0, 4 of

radius R2 at a distance of C0√
2

and one of radius R2 at a distance of C0. Each summit

bubble of radius R3 has one of radius R1 at a distance of D13 =
√

3
2 C0, 3 of radius

R2 at a distance of
√

2
2 C0, 3 of radius R2 at a distance of

√
3/2C0, 3 of radius R3

at a distance of C0, 3 of radius R3 at a distance of
√

2C0 and one of radius R3 at a
distance of

√
3C0. So, one can write the following equations:

q̇1 =
1
8π

q2
1

R3
1

− 4µL

ρL

q1

R2
1

+
4πR1

ρL
(pg1 + pv − pex(t))

− 8πσ

ρL
− 12R1

C0
q̇2 − 16R1√

3C0

q̇3 (A.5)
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q̇2 =
1
8π

q2
2

R3
2

− 4µL

ρL

q2

R2
2

+
4πR2

ρL
(pg2 + pv − pex(t)) − 8πσ

ρL
− 2R2

C0
q̇1

− (4
√

2 + 1)
R2

C0
q̇2 −

(
8√
2

+ 4
√

2√
3

)
R2

C0
q̇3 (A.6)

q̇3 =
1
8π

q2
3

R3
3

− 4µL

ρL

q3

R2
3

+
4πR3

ρL
(pg3 + pv − pex(t)) − 8πσ

ρL
− 2R3√

3C0

q̇1

−
(

6√
2
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)
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