
1. Introduction

In the field of sociology as well as social psychology, the concept of relative deprivation has been one

of the key concepts used in the studies of people’s attitudes, aspirations, grievances, and collective be-

haviors such as social movements or revolutions (Gurr 1968). The term relative deprivation was first

coined by Stouffer and his colleagues in the classical empirical study The American Soldier (Stouffer

et al. 1949). Later, Merton and Kitt (1950) summed up their findings and theoretically discussed the

relation between relative deprivation and the concept of reference groups.

Crosby (1976) proposed five (effectively six) preconditions of relative deprivation on the basis of a

review of theories of relative deprivation mainly by Davis (1959), Runciman (1966), and Gurr (1970).

Crosby (1976: 90) states that

A is relatively deprived of X when (1) A lacks X, (2) A sees that someone else possesses X, (3)

A wants X, (4) A feels entitled to X, (5) A think it feasible to obtain X, and (6) A lacks a sense

of personal responsibility for not having X.

Crosby’s definition is more comprehensive and clear than other definitions, and hence, in my paper

I would like to adopt this definition as a verbal definition for my discussion. By highlighting a sense

of entitlement and lack of responsibility in the preconditions of relative deprivation, we can see that

the feeling of relative deprivation is closely related to a sense of justice, fairness, and equity. Hence,

the concept of relative deprivation, mostly along with the concept of reference groups, is crucial not

only for studies on people’s consciousness and attitudes─wherein these psychical processes are often

regarded as the process mediating objective situation to actual behaviour of people─but also for nor-

mative studies of the evaluation of the distribution of social resources, that is, distributive justice, and

studies on inequality indices (Sen 1973; Yitzhaki 1979).

Boudon (1982) proposed a unique, although primitive, formal model of relative deprivation. Later,

Kosaka (1986) elaborated on this model and derived some interesting implications. In this paper, I re-

fer to this model as the Boudon-Kosaka model. This model has a series of followers (Yamaguchi

An Evolutionary Game Analysis of

the Boudon-Kosaka Model of Relative Deprivation＊

Atsushi ISHIDA＊＊

─────────────────────────────────────────────────────
＊Key Words: relative deprivation, evolutionary game, replicator dynamics

This work was supported by JSPS Grant-in-Aid Scientific Research 2333071 on “Theoretical and Empirical Studies of Rela-
tive Deprivation in Unequal Societies in a Time of Globalization” (2011−2013). The author is grateful to Kenji KOSAKA
and Hiroshi HAMADA, for their useful comments on earlier drafts.
＊＊Associate Professor, School of Sociology, Kwansei Gakuin University

March 2012 ― １５５ ―

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kwansei Gakuin University Repository

https://core.ac.uk/display/143632944?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1998; Reyniers 1998; Hamada 2007), and each of them have revised and expanded the original model

in different ways. In this article, I attempt to reformulate the Boudon-Kosaka model within the frame-

work of the evolutionary game theory, specifically, the theory of replicator dynamics. By doing so, I

aim to analyze the dynamic process of the model and then clarify the paradoxical relationship between

people’s rational choices at the microlevel and the emergence of relative deprivation at the macrolevel.

Furthermore, I attempt to generalize the Boudon-Kosaka model into the n-strategy investment game in

order to describe more realistic situations such as investment choices in a labor market. By comparing

two different operational definitions of relative deprivation in the n-strategy game, we can evaluate the

macro consequences of micro rationality from various perspectives.

In the following section, I present the original model and analyze it. In section 3, I translate the

Boudon-Kosaka model into the frame of the replicator dynamics theory and analyze its dynamics. In

section 4, I analyze the three-strategy investment game as an exemplar of the generalized n-strategy

investment game. Finally, in section 5, I present the conclusion and mention some future research

tasks.

2. The Boudon-Kosaka Model

2. 1 Axioms of the Model
The Boudon-Kosaka model represents a situation where each person in the society interdependently

decides between a high-risk-high-return investment and a no-risk-low-return investment. The following

are the axioms of the model (Kosaka 1986: 36).

Axiom 1 There are N players in the society.

Axiom 2 Players are offered binary choices.

Move 1: Stake C1 for a possible win of B1 and

Move 2: Stake C2 for a win of B2 ,

where B1＞C1 , B2＞C2 , B1＞B2�0, C1＞C2�0, and B1－C1＞B2－C2 . The number of players who

stake C1 is denoted by x1 .

Axiom 3 The numbers of winners of lots B1 and B2 are n1 and n2 , respectively, assuming that n1＋n2

＝N.

Axiom 4 Players are advised to stake C1 rather than C2 if the expected net profit of staking C1 ex-

ceeds that of staking C2 .

The last condition of Axiom 2, that is, B1－C1＞B2－C2 was not introduced clearly by Kosaka

(1986) but was formally introduced by Hamada (2007). B1－C1＞B2－C2 indicates that the profit ob-

tained from the success of Move 1, that is, the win of B1 by staking C1 , is always higher than the

profit obtained from Move 2, that is, the win of B2 by staking C1; this seems to be a rather natural as-

sumption of the model.
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It is worth noting that when B2＝C2＝0, Move 2 indicates non participation in the investment game;

hence, in this situation, each player has to choose between whether to stake investment C1 with a con-

tingent return of B1 or not to participate in the investment. This was a scenario considered by Boudon

in his numerical examples (Boudon 1982: 110−6).

Here, ps is defined as ps＝x1 /N and γ as γ＝n1 /N , each indicating the proportion of those who

choose Move 1 and the winners of lots B1 in the player group, respectively. γ can also be interpreted

as the success rate of staking investment C1 in the society. We now assume that N is sufficiently

large, and we substitute the notations x1 and n1 with ps and γ , respectively, in the analysis of the

model. Hence, a player’s decision tree, given that the proportion of those who choose Move 1 among

the other players is ps－1/N , can be described as Figure 1.

2. 2 Equilibrium Point
I introduce E (Move 1; ps) as the expectation of net profit of a player who chooses Move 1, given that

the proportion of those who choose Move 1 in the society is ps , that is,

E (Move 1; ps)＝(B1－C1) min
⎧
⎨
⎩

1,
γ
ps

⎫
⎬
⎭
＋(B2－C1)（1－min

⎧
⎨
⎩

1,
γ
ps

⎫
⎬
⎭）.

The expectation of net profit of a player who chooses Move 2, denoted by E (Move 2), is

E (Move 2)＝B2－C2 .

If 0＜ps�γ , E (Move 1; ps)＞E (Move 2) holds under all conditions and from the assumption of ra-

tionality (Axiom 4), a player is sure to choose Move 1 in the situation. This means that the situation

p′s, conditioned by γ＞p′s＝ps－(1/N ), can never be an equilibrium. In addition, if γ＝0, then ∀ps∈
(0, 1], E (Move 1; ps)＜E (Move 2), so that every player is sure to choose Move 2. However, this re-

sult is inconsequential.

We would now like to examine the cases where 0＜γ �ps . Kosaka (1986) insists that an equilib-

rium point of the proportion of players who choose Move 1 (staking C1), denoted by p＊s , is given by

the following condition:

E (Move 1; p＊s )＝E (Move 2)． (1)

Figure 1: Decision tree for a player
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This condition can be solved in terms of p＊s as

p＊s ＝（B1－B2

C1－C2）γ＝
B
C

γ , (2)

where B＝B1－B2 , C＝C1－C2 . B /C can be regarded as the incremental benefit-cost ratio indicating

the ratio of the additional advantage B1－B2 to the additional stake C1－C2 . By Axiom 2, B /C＞1.

Kosaka also insists that Equation (2) holds as long as (B /C )γ �1, and if (B /C )γ＞1, it becomes

p＊s ＝1, (3)

which indicates that all of the players in the society choose Move 1.

However, the equilibrium condition of Equation (2) is not directly derived from the axioms of the

model, it seems that another assumption of the dynamic process is required for the derivation of the

condition.

2. 3 Relative Deprivation Rate
In this model, it is assumed that the players who staked C1 but failed to gain B1 and eventually won B2

are put into a position of relative deprivation, since

(i) they are deprived of B1; (ii) they know that there are some others who adopted the same type

of behavior (Move 1) on the same behavioral principle (Axiom 4) and succeeded in obtaining B1;

(iii) they also want B1; and (iv) they see that they are entitled to gain B1 by the equal probability

to all players who adopted Move 1 (Kosaka 1986: 37).

These statements correspond to Runciman’s definitions and Crosby’s definitions of (1) through (5).

Further, it is reasonable to add the statement, corresponding to Crosby’s sixth precondition, that the

player’s do not need to feel a sense of personal responsibility for losing B1 because it is a matter of

probability. Therefore, the following definition is employed for the rate of relative deprivation S that

is:

S＝ps（1－min
⎧
⎨
⎩

1,
γ
ps

⎫
⎬
⎭）＝ps－min{ps, γ }． (4)

If ps＜γ or γ＝0, then S＝0. Therefore, let us examine the relative deprivation rate under the condi-

tion 0�γ �ps . According to Equations (2) and (3), S at the equilibrium point is

S＝
⎧
�

⎨
�

⎩

（B
C
－1）γ , 0�γ�C /B

1－γ , C /B＜γ �1
(5)

In the above equation, B /C－1 can be interpreted as the ratio of incremental net profit B－C to the

incremental cost C .

Figure 2 shows the change in the relative deprivation rate at the equilibrium point by γ ─ the rate

of winning B1─according to the levels of the benefit-cost ratio. We can draw several implications

from Figure 2 (Kosaka 1986: 41−2). One of the main findings is that the function of deprivation rate

is a trigonometric function with the peak at γ＝C /B . The increasing slope of the function, as inter-

― １５８ ― 社 会 学 部 紀 要 第114号



Move 1

1－ p2p2

(Stake C1)
Move 2

(Stake C2)

min 1,
g
p1

1－min 1,
g
p1

1

win B 1 win B 2 win B 2

Player 2

Move 1

1－ p1p1

(Stake C1)
Move 2

(Stake C2)

min 1,
g
p2

1－min 1,
g
p2

1

win B 1 win B 2 win B 2

Player 1

B C 4

B C 3

B C 2

0.2 0.4 0.6 0.8 1.0
γ

0.2

0.4

0.6

0.8

S

preted by Boudon and Kosaka, corresponds to the American Soldier’s paradox: the units with rela-

tively high promotion opportunities report experiencing relatively higher levels of frustration, while the

units with low promotion opportunities tend to be content with such a situation.

3. Evolutionary Game Analysis of the Two-strategy Investment Game

3. 1 Description of the Game and Nash Equilibria
In this subsection, using the framework of the Boudon-Kosaka model, I would like to construct a two-

player investment game that represents an interdependent decision-making situation, which might lead

the players to feel frustrated.

Figure 3 illustrates the structure of the two-player investment game. In the game, it is assumed that

min{1, g/pj} and 1－min{1, g/pj}, which represent the probability of i’s success and failure, respec-

tively, in winning B1 by staking C1 , is determined by the other player j’s probability of choosing

Move 1 as well as by the parameter g. g is interpreted as the minimum success probability when the

other player j is certain to choose Move 1, that is, pj＝1. Apparently, as pj approaches 1, min{1, g/pj}

decreases from 1 to g while 1－min{1, g/pj} increases from 0 to 1－g . This means that as one

Figure 3: Two-players investment game

Figure 2: The relative deprivation rate at the equilibrium point on the basis of γ and B /C
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(B/C ) g
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g
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player’s probability of choosing Move 1 increases, the other player’s probability of winning B1 in the

high-risk stake decreases and the probability of the stake’s failure increases. In such a situation, player

i chooses a mixed strategy (pi , 1－pi)∈Δ, where Δ is the mixed strategy set common to players.

In this game, the mixed strategy function of player i , denoted by ui(p1 , p2), is

ui(p1 , p2)＝（min
⎧
⎨
⎩

1,
g
pj

⎫
⎬
⎭

B－C）pi＋B2－C2 . (6)

Let us denote the best-reply correspondence of player i to the other player j’s strategy pj by β i(pj).

If g＝0, β i(pj)＝0 for all pj∈[0, 1], and consequently, we have only one Nash equilibrium at (p＊1 , p＊2 )

＝(0, 0). If g≠0, it is assumed that pi＞0 (i＝1, 2). Under this condition, every mixed strategy pi in

the interval (0, g] is identical in terms of the best-reply correspondence of player j . Hence, in the fol-

lowing analysis, I let g represent the interval (0, g] and assume g�pi�1 (i＝1, 2) for simplicity of

the description. Under this assumption, the mixed strategy set of this game has to be Δ＝{(pi , 1－pi) |

pi∈[g , 1]}. Hence, this game is an anomalous variant of a mixed extended 2×2 symmetric game.

If 0＜g＜C /B , β i(pj) is

β i(pj)＝
⎧
�

⎨
�

⎩

g, pj＞(B /C )g

[g , 1], pj＝(B /C )g

1, g�pj＜(B /C )g

and if g＝C /B , it is

β i(pj)＝
⎧
⎨
⎩

[g , 1], pj＝1

1, g�pj＜1.

Finally, if C /B＜g�1, then we have β i(pj)＝1 for all pj∈[g , 1].

From these equations, we can determine the Nash equilibria of this game. Let us denote the set of

Nash equilibria by ΔNE. If 0＜g＜C /B , it is

ΔNE＝{((B /C )g , (B /C )g), (g , 1), (1, g)},

Figure 4: Combination of best-reply correspondences in the two-player investment game (when 0＜g＜C /B )
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and if g＝C /B ,

ΔNE＝{(1, 1)}∪{(1, p2) | p2∈[g , 1)}∪{(p1, 1) | p1∈[g , 1)}.

Further, if C /B＜g�1, ΔNE＝{(1, 1)}. As a result, we find that when 0＜g＜C /B , this game is a

variant of the chicken game with respect to the payoff structure (see Figure 4).

3. 2 The Replicator Dynamics
In this subsection, I would like to introduce the framework of the evolutionary game theory and ana-

lyze the replicator dynamics of the game (Taylor and Jonker 1978; Weibull 1995; Hofbauer and Sig-

mund 1998) in order to figure out the dynamic processes resulting in an equilibrium when all mem-

bers in the society play the two-player investment game with each other at random.

In this study, I would like to adopt the replicator dynamics as the selection dynamics of the popula-

tion share of the players who adopt the strategies in the society. The replicator dynamics was first pro-

posed as a biological evolution model, in which the players reproduce offsprings, who then inherit a

pure strategy. Hence, this dynamics is better fitted to biological models. However, the replicator dy-

namics can also be interpreted as a special case of the replication dynamics under the mechanism of a

pure imitation process driven by the players’ dissatisfaction (Weibull 1995: 152−5). The pure imitation

dynamics is a type of simple selection dynamics driven by the players’ learning process, which is

rather suitable for models of social scientific situations. Hence, I would like to adopt the replicator dy-

namics as a pure imitation dynamics.1)

Here, let us introduce basic notations. Let us focus on symmetric two-player games. The set of pure

strategies is denoted by K＝{1, 2, …, k}, and the mixed strategy set, that is, the mixed strategy sim-

plex, is denoted by Δ＝{x∈�k
＋｜∑i∈K xi＝1}. The payoff for strategy x∈Δ, when played against y∈

Δ, is denoted as u(x, y).

Suppose that each player in the population is programmed to play a certain pure strategy in the

symmetric two-player game considered. Further, suppose that pairs of players are repeatedly drawn at

random with equal probability to play the game. Let x(t)＝(x1(t), x2(t), …, xk(t)) be a population state

where each component xi(t) is the population share of players who are programmed to play pure strat-

egy i∈K in the game at time t . Hence, x(t) is identical with a mixed strategy in the game, that is, x
(t)∈Δ.

When the population state is x(t)∈Δ, the expected payoff for a pure strategy i at a random match is

u(ei, x), where ei is a unit vector whose i-th component is unity and the others are zero, for example,

e1＝(1, 0, …, 0). The population average payoff is

u(x, x)＝
�
i∈K

xiu(ei, x) .

Then, the replicator dynamics of the game is defined as

─────────────────────────────────────────────────────
１）It is possible to adopt a more complicated selection dynamics by the learning process, such as trial and error or best re-

sponses, instead of the replicator dynamics (Roth and Erev 1995; Erev and Roth 1998; Fudenberg and Levine 1998).
However, with respect to an asymptotically stable point, almost similar qualitative tendencies to the replicator dynamics
can be obtained by these dynamics.
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dxi

dt
＝[u(ei, x)－u(x, x)]xi , i＝1, 2, …, k. (7)

Consider the replicator dynamics of the the two-player investment game. Let us denote the popula-

tion share of players who choose Move 1, that is, players who stakes C1 , in the society by ps, and de-

note the population share of players who choose Move 2 by 1－ps . Then, the replicator dynamics of

the game is

dps

dt
＝[u(1, ps)－u(ps , ps)] ps

＝[u(1, ps)－u(0, ps)] (1－ps)ps . (8)

In this evolutionary game situation, an arbitrary player plays the two-player investment game with

one of the other players after another in a random sequence. In fact, this process is similar to the situ-

ation where the player plays the two-player investment game with the average player who adopts the

mixed strategy (ps , 1－ps). If the player plays the game with the mixed strategy (ps , 1－ps), where g�
ps , the player’s success probability of staking C1 (Move 1) would be g/ps . Moreover, there are players

who choose Move 1 in the society at the rate of ps . Eventually, the success rate of staking C1 in the

society would be ps(g/ps), and this rate is conceptually equal to γ . Therefore, γ＝g . In the following

equation, g is substituted by γ for simplicity. Similarly, the failure rate of staking C1 in the society

would be

S＝ps（1－min
⎧
⎨
⎩

1,
γ
ps

⎫
⎬
⎭）＝ps－min{ps , γ },

which is equivalent to the relative deprivation rate, defined in Equation (4), of the original Boudon-

Kosaka model.

Since u(1, ps)＝E (Move 1; ps) and u(0, ps)＝E (Move 2), the condition for achieving the inner sta-

tionary point of the replicator dynamics, that is, u(1, ps)＝u(0, ps) is equivalent to condition (1) for

achieving the equilibrium point of the original Boudon-Kosaka model. Hence,

dps

dt
＝[E (Move 1; ps)－E (Move 2)] (1－ps)ps

＝（min
⎧
⎨
⎩

1,
γ
ps

⎫
⎬
⎭

B－C）(1－ps)ps . (9)

If 0＜ps＜γ , then dps /dt＞0, so that the number of players choosing Move 1 increases until it reaches

γ＝ps . If γ �ps�1, the behavior of the dynamics depends on the parameters. In the following, we ex-

amine the dynamics in the interval [γ , 1].

This replicator dynamics is a unidimensional dynamical system. Therefore, it is easy to determine

the stationary points of the system and examine their asymptotical stability (Gintis 2000: 175−7). Sup-

pose f (ps)＝dps /dt . The Stationary points p＊s are the solutions to the equation f (ps)＝0. With respect to

stability, if f′(p＊s )＜0, then the stationary point p＊s is asymptotically stable; meanwhile, if f′(p＊s )＞0,

then p＊s is unstable. If f′(p＊s )＝0, then the second-order condition should be checked for judging the

stability.

Let us check the stationary points of the dynamics. If 0＜γ＜C /B , there are two stationary points
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in [γ , 1], p＊s ＝1 and p＊s ＝(B /C )γ . Since f′(1)＝C－γ B＞0, the point p＊s ＝1 is unstable. At the

same time, the point p＊s ＝(B /C )γ is asymptotically stable since f′((B /C )γ )＝γ B－C＜0 (Figure 5).

If γ＝C /B , there is only one stationary point p＊s ＝1 in [γ , 1], and from f′(1)＝0, f″(1)＝2 C＞0 and

the fact that the point is at the left end of the domain, we see that the point p＊s ＝1 is asymptotically

stable (Figure 6). Finally, if C /B＜γ �1, there is only one stationary point p＊s ＝1 in [γ , 1], and p＊s ＝
1 is asymptotically stable since f′(1)＝C－γ B＜0 (Figure 7).

We can clearly see that S increases as ps increases, and if γ is (nearly) equal to or larger than the

incremental cost-benefit ratio C /B , say, 0.5 as a winning rate along with a double benefit to cost, al-

most all people would be instigated to stake the high-risk investment, paradoxically, despite the rise in

the relative deprivation rate in the society (see Figures 6 and 7). This is a kind of unintended conse-

quence where micro-rationality is aggregated to macro-irrationality (Boudon 1982).

Figure 7: The phase diagram when C /B＜γ �1 (B＝5, C＝1, γ＝0.5)

Figure 6: The phase diagram when γ＝C /B (B＝5, C＝1, γ＝0.2)

Figure 5: The phase diagram when 0＜γ＜C /B (B＝2, C＝1, γ＝0.2)
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4. Evolutionary Game Analysis of the Three-strategy Investment Game

4. 1 Description of the Game
The Boudon-Kosaka model analyzed in the previous section is a two-strategy decision-making model.

The model can easily be generalized into the n-strategy decision-making model in which each invest-

ment strategy has a different benefit-cost ratio and different a success rate γ .

This generalized investment game is useful for describing more realistic situations such as strategic

behaviors in a labor market, and is also useful for analyzing mechanisms explaining how players’ ra-

tional choices are aggregated into a macro-status like the distribution of achievement and the degree of

relative deprivation in the society.

In this section, I would like to analyze the investment game with three strategies as an exemplar of

the generalization of the Boudon-Kosaka model. The decision tree for player i in this model is illus-

trated in Figure 8. In this model, I assume that B1＞B2＞B3�0, C1＞C2＞C3�0, and B1－C1＞B2－
C2＞B3－C3�0 as a natural extension of the original Boudon-Kosaka model’s second axiom. I also as-

sume that 0＜γ 1�pj1 , 0＜γ 2�pj2 , and γ 1＋γ 2�1. Furthermore, in the following analysis, for simplicity

of the analysis and the interpretation, I suppose that B3＝C3＝0. Hence, Move 3 can be interpreted as

the “withdrawal strategy” wherein a player does not participate in any investment with no loss and no

gain.

4. 2 The Replicator Dynamics
Let us analyze the replicator dynamics of the game. A mixed strategy of player i is indicated by a

point in the two-dimensional Cartesian coordinates, pi＝(pi1 , pi2). Further, the expected payoff function

of player i is

ui(p1, p2)＝pi1（ γ 1

pj1
B1－C1）＋pi2（ γ 2

pj2
B2－C2）.

Let p＝(p1 , p2) be the population share of players who choose Move 1 and Move 2 in the society, and

let Δ be the set of possible population shares, that is,

Δ＝{(p1 , p2)∈[γ 1 , 1]×[γ 2 , 1] | p1＋p2�1}.

Figure 8: The decision tree for player i in the three-strategy investment game
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The replicator dynamics of the game is represented by the following simultaneous differential equa-

tions:

dp1

dt
＝f (p1 , p2)＝[u(e1, p)－u(p, p)] p1 ,

＝(1－p1)(B1 γ 1－C1 p1)－p1(B2γ 2－C2 p2)， (10)
dp2

dt
＝φ (p1 , p2)＝[u(e2, p)－u(p, p)] p2

＝(1－p2)(B2 γ 2－C2 p2)－p2(B1γ 1－C1 p1)． (11)

By solving the simultaneous equations f (p1 , p2)＝0, φ (p1 , p2)＝0, we can find two stationary points of

the dynamics in the domain Δ,

p＊＝(β 1 , β 2), q＊＝(π , 1－π ),

where, β k＝(Bk /Ck)γ k (k＝1, 2), and

π＝C1－C2＋B1γ 1＋B2γ 2－
�

4(C1－C2)B2γ 2＋(B1γ 1＋B2γ 2－C1＋C2)2

2(C1－C2)

I conduct here a local stability analysis based on linearization around each stationary point (Gintis

2000: 178−181). Let fx(x＊, y＊) be the partial derivative of f at (x＊, y＊) with respect to x, then the Ja-

cobian matrix of the dynamical system at stationary points p＊ and q＊ are

A1＝
┌
│
│
└

fp1(β 1 , β 2)

φ p1(β 1 , β 2)

fp2(β 1 , β 2)

φ p2(β 1 , β 2)

┐
│
│
┘
＝
┌
│
│
└

B1γ 1－C1

(B2C1γ 2) /C2

(B1C2γ 1) /C1

B2γ 2－C2

┐
│
│
┘

,

A2＝
┌
│
│
└

fp1(π , 1－π )

φ p1(π , 1－π )

fp2(π , 1－π )

φ p2(π , 1－π )

┐
│
│
┘

＝
┌
│
│
└

－(1－2 π )C1＋(1－π )C2－B1γ 1－B2γ 2

(1－π )C1

π C2

π C1＋(1－2π )C2－B1γ 1－B2γ 2

┐
│
│
┘

.

Let us examine the eigenvalues of each Jacobian matrix. As for A1 , there are two different real eigen-

values, λ 11 and λ 12 , and if 1＞β 1＋β 2 , then 0＞λ 11＞λ 12 , indicating that the stationary point p＊ is as-

ymptotically stable.2) Similarly, there are two different real eigenvalues of A2 , λ 21 and λ 22 . If 1＞β 1＋
β 2 , then λ 21＞0, λ 22＜0, indicating that the stationary point q＊ is a saddle point. In contrast, if 1＜β 1

＋β 2 , then 0＞λ 21＞λ 22 , denoting that point q＊ is stable.

To sum up, if 1＞β 1＋β 2 , there is one inner stationary point p＊ that is asymptotically stable and

there is one saddle point q＊ on the edge of Δ, the line defined as p2＝1－p1 . On the contrary, if 1＜β 1

＋β 2 , there is only one stable point q＊. Figure 9 shows the stationary points and the vector field of

the replicator dynamics when 1＞β 1＋β 2 . If 1＞β 1＋β 2 , the asymptotically stable point (β 1 , β 2) can

be set anywhere in the domain Δ depending on the values of the parameters Bk, Ck, and γ k (k＝1, 2).

With respect to the success rates in the society γ k, as γ k increases, point p＊ approaches point q＊, and

─────────────────────────────────────────────────────
２）If 1＝β 1＋β 2 , then 0＝λ 11＞λ 12 , such that it is unable to judge the stability by the local stability analysis.
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finally, if β 1＋β 2＝1, then p＊ is equal to q＊.

It is worth noting that the stationary point q＊ is equal to the only asymptotically stable point of the

two-strategy investment game that is constructed by excluding Move 3, the withdrawal strategy, from

the three-strategy investment game illustrated in Figure 8. Hence, when 1＞β 1＋β 2 , the trajectory

from q＊ to p＊ on the unstable manifold of the saddle point q＊ indicates the transition from a situation

in which all of the players participate in staking either C1 (Move 1) or C2 (Move 2) to a situation in

which some players change their strategy and withdraw from any investment activities (Move 3).

4. 3 Evaluation of the Relative Deprivation
When we suppose that people who are relatively deprived by not having what they want and feel enti-

tled to it are players who staked some costs but failed to gain the corresponding benefits in the same

manner as the original Boudon-Kosaka model, we have two types of relative deprivation rates accord-

ing to the strategies, Move 1 and Move 2. The rates of relative deprivation by Move 1 and Move 2

are

S1＝p1（1－ γ 1

p1）＝p1－γ 1 and S2＝p2（1－ γ 2

p2）＝p2－γ 2 , respectively.

Given that both γ 1 and γ 2 are constants, S1 and S2 increase simply as p1 and p2 increase. On the con-

trary, when p1 and p2 decrease as in the case with the trajectory from the saddle point q＊ to the as-

ymptotically stable point p＊, S1 and S2 decrease. This finding can be interpreted as follows: withdrawal

from investment by a proportion of the players motivated by rationality improves social welfare in

terms of the diminution of the relative deprivation.

However, the relative deprivation rate S1 and S2 are derived from one possible operational definition

of the degree of relative deprivation in a society; it is possible to consider another type of operational

definition that takes distribution of achievement into account. Here, I would like to introduce

Yitzhaki’s conception of relative deprivation as one possible alternative definition (Yitzhaki 1979).

Yitzhaki (1979) regards the reference group with which people compare themselves as the entire so-

ciety and regards income as the object of relative deprivation. He defines the relative deprivation of a

Figure 9: The vector field of the replicator dynamics of the three-strategy investment game
(B1＝8, B2＝4, C1＝2, C1＝1, γ 1＝0.1, γ 2＝0.05)
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person as the sum of the deprivation inherent in all units of income that he/she is deprived of, and the

degree of relative deprivation in the society as the average individual deprivation. Let D be Yitzhaki’s

relative deprivation index. Yitzhaki formulates the equation D＝μ G , where μ is the average income

and G is the Gini coefficient of income distribution in the society. Thus, Yitzhaki’s D is closely re-

lated to the concept of inequality of income distribution.

In the three-strategy investment game, there are five different achievements after the one-shot game

y＝(B1－C1 ,－C1 , B2－C2 ,－C2 , 0) with the proportion of population r＝(γ 1 , p1－γ 1 , γ 2 , p2－γ 2 , 1－
p1－p2). In this situation, Yitzhaki’s D can be represented as the function of a population share of

players who adopt each strategies p＝(p1 , p2), that is

D (p1 , p2)＝
�

i

�
j ri rj｜yi－yj｜

2
,

where ri and yi is the i-th component of vectors r and y, respectively. Solving the maximization prob-

lem of D with respect to p, we find that the maximizing point is (1/2＋γ 1 , γ 2).

It is interesting to consider the behavior of D on the trajectory from the saddle point q＊ to the as-

ymptotically stable point p＊, when 1＞β 1＋β 2 . We can see that under a certain condition, D increases

when a population share of choosing strategies changes from q＊ to p＊ (see Appendix for details). Fig-

ure 10 shows a situation where D increases temporarily as the number of players who withdraw from

investment increases. Thus, with respect to Yitzhaki’s D , withdrawal from investment by some players

somewhat worses social welfare under a certain condition.

As described above, the evaluation of the trajectory from q＊ to p＊ is quite interesting for examining

the different aspects of relative deprivation. A player who rationally withdraws from investment in the

three-strategy game can be interpreted as a discouraged worker in a labor market. Some players with-

drawing from investment decreases the relative deprivation rates S1 and S2 , and this corresponds to the

fact that an increase in the number of discouraged workers decreases the unemployment rate in a labor

market. However, on the other hand, under a certain condition, some players withdrawing from invest-

ment temporarily increases the societal degree of relative deprivation of income D , and this corre-

sponds to the fact that an increase in the number of discouraged workers often results in an increase in

Figure 10: The gradient field of Yitzhaki’s relative deprivation index D (B1＝8, B2＝4, C1＝2, C1＝1, γ 1＝0.1, γ 2＝0.05)
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the income inequality. These two types of definitions reflect the differences in the aspects of relative

deprivation such as the domain of reference groups and the object of deprivation, and the evaluation

of change in social situation resulting from microlevel rationality can vary according to the definitions

of relative deprivation.

5. Conclusion and Future Tasks

In the preceding sections, I reformulated the Boudon-Kosaka model within the framework of replicator

dynamics and analyzed the dynamics of the model. Consequently, I clearly showed the dynamics un-

der which an unintended consequence of rational choice occurs. For example, under a certain condi-

tion of the success rate of investment and the cost-benefit ratio, almost all people would be instigated

to stake the high-risk investment, despite the rise in the relative deprivation rate in the society. Such

dynamics could not be analyzed thoroughly in Boudon and Kosaka’s previous work.

Moreover, I analyzed the replicator dynamics of the three-strategy investment game as an exemplar

of the generalized n-strategy investment game and discussed the differences in the definitions of rela-

tive deprivation. In the future, I would like to conduct an in-depth analysis how different relative dep-

rivation indices behave in the n-strategy investment game; this analysis will probably contribute to an

in-depth understanding of the relationship between micro-rationality and the normative evaluations of

social situations.

Another future task is to link the analysis of the dynamics that I conducted in this paper and the

comparative statics analysis of an equilibrium point of the model. Kosaka (1986) conducted a com-

parative statics analysis regarding the success rate γ and the benefit-cost ratio as exogenous parame-

ters. By combining a dynamics analysis and a comparative statics analysis, we can resolve a mecha-

nism design problem that addresses the issue of reducing the degree of relative deprivation at the so-

cietal level on the basis of people’s rationality at the microlevel.

Appendix

Let us suppose that 1＞β 1＋β 2 . I present the proposition that under a certain condition, the societal

relative deprivation index D increases when a population share of players who choose the strategies

changes from the saddle point q＊ to the asymptotically stable point p＊.

Let

Δ

f be the gradient of f and let u＝(u1 , u2) be the unit vector toward (β 1－π , β 2－(1－π )), that

is,

u＝ (β 1－π , β 2－(1－π ))
‖(β 1－π , β 2－(1－π ))‖ ,

where‖x‖is the Euclidean norm of a vector x. Further, the directional derivative of D(p1 , p2) at (π ,

1－π ) in the direction (β 1－π , β 2－(1－π )) is defined as

Δ

uD(π , 1－π )＝

Δ

D (π , 1－π )・u＝Dp1 (π , 1－π )u1＋Dp2 (π , 1－π )u2

＝(β 1－π ){C1(1－2 π＋2 γ 1)＋2 C2(γ 2－1＋π )}�
｜β 1－π |2＋｜β 2－(1－π )|2
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＋(β 2－(1－π ))C2(2 γ 1＋2 γ 2－1)�
｜β 1－π |2＋｜β 2－(1－π )|2

.

When

Δ

uD＞0 is satisfied, we can say that the proposition is true. A possible sufficient condition ofΔ

uD＞0 simultaneously satisfies the following five conditions:

(i) π＞β 1 , (ii) 1－π＞β 2 , (iii) 1＞1/2＋γ 1＋γ 2 ,

(iv) π＞γ 1＋1/2, (v) 1－π＞γ 2 .

These conditions pertain to the relative positions in the domain Δ among p＊ and q＊ and (1/2＋γ 1 , γ 2),

the maximization point of D . Condition (i) and (ii) call for the configuration that p＊ is on the left be-

low of q＊, condition (iii) simply calls for (1/2＋γ 1 , γ 2) being in the domain, and conditions (iv) and

(v) call for the configuration that q＊ lies on the upper right of (1/2＋γ 1 , γ 2). However, this is just a

possible sufficient condition, and there should be many meaningful sufficient conditions depending on

the parametric values. For example, we can observe many situations, where conditions (i), (ii), (iii),

(v) are satisfied simultaneously but only condition (iv) is not satisfied, satisfy

Δ

uD＞0 (see Figure 10).
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An Evolutionary Game Analysis of the

Boudon-Kosaka Model of Relative Deprivation

ABSTRACT

In this paper, I attempt to reformulate the Boudon-Kosaka model of relative depri-

vation within the framework of the replicator dynamics theory, in order to analyze a

dynamic process of the model and clarify the micro-macro linkage relevant to the

emergence of relative deprivation. The analysis reveals that under certain conditions,

nearly all people would be instigated to stake high-risk investments, paradoxically, de-

spite the rise in the relative deprivation rate in society.

Furthermore, I attempt to generalize the Boudon-Kosaka model into the n-strategy

investment game in order to describe more realistic situations. I analyze the replicator

dynamics of the three-strategy game as an exemplar, and discuss the difference in the

definitions of relative deprivation.

Key Words: relative deprivation, evolutionary game, replicator dynamics
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