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Abstract. Some new approximation results about the 2-dimensional matching distance are presented, leading to the
formulation of an algorithm for its computation (up to an arbitrary input error).

Introduction

Shape Description, Comparison and Retrieval are challenging issues in Computer Vision, Computer Graphics
and Pattern Recognition. Shape models such as 3D objects represented by surface meshes are characterized by a
considerable amount of visual and semantic information. Therefore, they call for powerful feature detection, classi-
fication and retrieval methods. Geometric/topological approaches such as Size Theory and Persistent Homology are
growing important, as they provide mathematical and computational tools able to code salient shape characteristics
[3, 9, 13, 22, 24, 20, 21, 18, 5]. The main idea is to take into account the topological features of a shape with respect
to some geometric properties conveyed by a real function defined on the shape itself [1]. This implies representing a
shape by a pair (X,ϕ), with X a topological space and ϕ : X → R a continuous real-valued measuring function. In
the early 90’s, Size Functions were introduced, allowing to store quantitatively some qualitative information about
(X,ϕ): the Size Function ℓ(X,ϕ) encodes the evolution of the 0-th Betti number in the sublevel sets of X induced by
ϕ. The result is a discrete and proven stable descriptor, made up of a multiset of points in the Euclidean plane, to
be compared using a suitable matching distance

Whereas Size Functions, in their original formulation, have successfully been applied to many Pattern Recognition
problems [4, 10, 19, 28, 29], it is now clear that more complex shape analysis problems cannot be solved by studying a
single real-valued measuring function. In fact, a common scenario in applications is to have data characterized by two
or more properties; this happens for example with physical simulations, where several measurements are made about
an observed phenomenon, or when data have multidimensional features, such as color in the RGB model. These
considerations have recently drawn the attention to the study of a multidimensional setting [1, 2, 6, 8, 20, 24, 25],
where the term multidimensional is related to considering measuring functions taking value in Rk. Despite the
growing efforts [11, 12], differently from what happens in the 1-dimensional situation, a complete and discrete stable
descriptor seems not to be available in the multidimensional setting [1, 7, 14].

The arising computational difficulties have been faced following different strategies, but not completely solved. As
a partial solution, in [1] the authors introduced k-dimensional Size Functions and proved that, when k > 1, it can
be defined a foliation in half planes such that the restriction of a k-dimensional Size Function to these half-planes
turns out to be 1-dimensional. This allowed the definition of a stable matching distance between k-dimensional Size
Functions. Taking a finite number of half-planes, experiments on the comparison of surfaces and volumetric objects
have been performed in the 2- and 3-dimensional settings. Unfortunately, [1] does not make clear how many and
what half-planes to choose to have a reasonable approximation of the matching distance, which could require a huge
number of calculations.

This contribution aims to solve the problem in the 2-dimensional case. We prove new theoretical results (Propo-
sition 2.1, Proposition 2.3 and Theorem 2.5) about the 2-dimensional matching distance, which allow us to bound
the variation of the matching distance values on different half-planes. As a by-product, we develop an algorithm
(Subsection 2.1) which takes as input an arbitrary tolerance (representing the maximum error we are disposed to
accept in the evaluation of the matching distance between 2-dimensional Size Functions) and gives as output an
approximation of the 2-dimensional matching distance up to the input tolerance. Experimental results on 3D objects
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represented by surface meshes will be shown to demonstrate the ability of the algorithm to decimate the number of
calculations required to approximate the matching distance (Section 3).

1. Preliminary definitions and results

In what follows, any pair (X, ~ϕ), where X is a non-empty, compact and locally connected Hausdorff space, and
~ϕ = (ϕ1, ϕ2) : X → R

2 is a continuous function, will be called a size pair. The function ~ϕ will be said to be a
2-dimensional measuring function. The following relations � and ≺ will be considered in R

2: for ~u = (u1, u2) and
~v = (v1, v2), we shall write ~u � ~v (resp. ~u ≺ ~v) if and only if ui ≤ vi (resp. ui < vi) for every i = 1, 2. Moreover, R2

will be endowed with the usual max-norm: ‖~u‖∞ = ‖(u1, u2)‖∞ = max{|u1|, |u2|}.
Now we are ready to introduce the concept of size function for a size pair (X, ~ϕ). The open set {(~u,~v) ∈ R

2×R
2 :

~u ≺ ~v} will be denoted by ∆+, and ∆̄+ will be the closure of ∆+. For every pair ~u = (u1, u2) ∈ R
2, we shall define

the set X〈~ϕ � ~u 〉 as {x ∈ X : ϕi(x) ≤ ui, i = 1, 2}.

Definition 1.1. We call the (2-dimensional) size function associated with the size pair (X, ~ϕ) the function ℓ(X,~ϕ) :

∆+ → N, defined by setting ℓ(X,~ϕ)(~u,~v) equal to the number of connected components in the set X〈~ϕ � ~v 〉 containing
at least one point of X〈~ϕ � ~u 〉.

Definition 1.1 can be easily extended to the case of k-dimensional size functions, for any positive integer k. For a
deeper investigation about this more general setting, the reader is referred to [1].

1.1. The particular case k = 1. In the present paper, a certain relevance will be given to the 1-dimensional case,
i.e. to the case of real-valued measuring functions. Size Theory has been widely developed in this setting [3], proving
that each 1-dimensional size function admits a compact representation as a formal series of points and lines of R2

[23]. As a consequence of this peculiar structure, a suitable matching distance between 1-dimensional size functions
can be easily introduced, showing the stability of these descriptors with respect to such a distance [15, 17]. All these
properties make the concept of 1-dimensional size function central in the approach to the k-dimensional framework
[1], and therefore to the 2-dimensional one we consider here.

According to the notations used in the literature about the case k = 1, the symbols ~ϕ, ~u, ~v will be replaced
respectively by ϕ, u, v.

When referring to a real-valued measuring function ϕ : X → R, the size function ℓ(X,ϕ) associated with (X,ϕ)
contains information about the pairs (X〈ϕ ≤ u〉, X〈ϕ ≤ v〉), where X〈ϕ ≤ t〉 is defined by setting X〈ϕ ≤ t〉 = {x ∈
X : ϕ(x) ≤ t} for t ∈ R. Before going on, we observe that for k = 1, the domain ∆+ of a size function reduces to be
the open subset of the real plane given by {(u, v) ∈ R

2 : u < v}.

Definition 1.2. We shall call the (1-dimensional) size function associated with the size pair (X,ϕ) the function
ℓ(X,ϕ) : ∆

+ → N, defined by setting ℓX,ϕ)(u, v) equal to the number of equal to the number of connected components
in the set X〈ϕ � v 〉 containing at least one point of X〈ϕ � u 〉.

Figure 1 shows an example of a size pair (X,ϕ) together with the size function ℓ(X,ϕ). On the left one can find
(Figure 1(a)) the considered size pair (X,ϕ), where X is the curve drawn by a solid line, and ϕ is the ordinate
function. On the right (Figure 1(b)) the associated 1-dimensional size function ℓ(X,ϕ) is depicted.

As can be seen, the domain ∆+ = {(u, v) ∈ R
2 : u < v} is divided into regions. Each one is labeled by a number,

coinciding with the constant value that ℓ(X,ϕ) takes in the interior of that region. For example, let us compute
the value of ℓ(X,ϕ) at the point (c, d). By applying Definition 1.2, it is sufficient to count how many of the three
connected components in the sublevel X〈ϕ ≤ d〉 contain at least one point of X〈ϕ ≤ c〉. It can be easily checked
that ℓ(X,ϕ)(c, d) = 2.

Due to its typical structure, it has been proved that the information conveyed by a 1-dimensional size function
can be combinatorially stored in a formal series of points and lines [23]. Roughly speaking, this can be done
by observing that each 1-dimensional size function can be seen as a linear combination (with natural numbers as
coefficients) of characteristic functions associated to triangles, possibly unbounded, laying on the domain ∆+. Indeed,
the bounded triangles are of the form {(u, v) ∈ ∆+ : α ≤ u < v < β}, while the unbounded ones are of the form
{(u, v) ∈ ∆+ : η ≤ u < v)}. Hence, a simple and compact representation can be provided if one takes the formal series
obtained by associating a triangular set given by {(u, v) ∈ ∆+ : α ≤ u < v < β} to the point (α, β), and a triangular
set given by {(u, v) ∈ ∆+ : η ≤ u < v)} to the point at infinity (η,+∞). The points of a formal series having finite
coordinates are called proper cornerpoints, while the ones with a coordinate at infinity are said to be cornerpoints
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Figure 1. (a) The topological space X and the measuring function ϕ. (b) The associated size
function ℓ(X,ϕ).

at infinity or cornerlines. For example, the size function ℓ(X,ϕ) shown in Figure 1(b) admits the representation by
formal series given by r + p1 + p2 + p3 + p4, where r is the only cornerpoint at infinity, with coordinates (0,+∞).

According to the 1-dimensional setting, the problem of comparing two size pairs can be easily translated into the
simpler one of comparing sets of points, via the representation by formal series of the associated 1-dimensional size
functions. In [15, 17], the matching distance dmatch has proven to be a suitable distance between these descriptors.
Roughly speaking, the matching distance dmatch can be seen as a measure of the cost of transporting the cornerpoints
of a 1-dimensional size function into the cornerpoints of another one, with respect to a functional δ depending on the
L∞-distance between two matched cornerpoints and on their L∞-distance from the diagonal {(u, v) ∈ R

2 : u = v}.
An application of dmatch is shown in Figure 2(c).
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Figure 2. (a) The size function corresponding to the formal series r + p+ q. (b) The size function
corresponding to the formal series r′ + p′. (c) The matching between the two formal series, realizing
the matching distance between the two size functions.

Let us now define more formally the matching distance dmatch. Assume that two 1-dimensional size functions ℓ1, ℓ2
are given. Consider the multiset C1 (respectively C2) of cornerpoints for ℓ1 (resp. ℓ2), counted with their multiplicities
and augmented by adding the points of the diagonal {(u, v) ∈ R

2 : u = v} counted with infinite multiplicity. If we
denote by ∆̄∗ the set ∆̄+ extended by the points at infinity of the kind (a,∞), i.e. ∆̄∗ = ∆̄+ ∪ {(a,∞) : a ∈ R}, the
matching distance dmatch (ℓ1, ℓ2) is then defined as

dmatch (ℓ1, ℓ2) = min
σ

max
P∈C1

δ(P, σ(P )),

where σ varies among all the bijections between C1 and C2 and

δ((u, v), (u′, v′)) = min

{
max {|u− u′|, |v − v′|} ,max

{
v − u

2
,
v′ − u′

2

}}
,

for every (u, v), (u′, v′) ∈ ∆̄∗ and with the convention about ∞ that ∞− v = v−∞ = ∞ when v 6= ∞, ∞−∞ = 0,
∞
2 = ∞, |∞| = ∞, min{c,∞} = c and max{c,∞} = ∞.
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In plain words, the pseudometric δ measures the pseudodistance between two points (u, v) and (u′, v′) as the
minimum between the cost of moving one point onto the other and the cost of moving both points onto the diag-
onal, with respect to the max-norm and under the assumption that any two points of the diagonal have vanishing
pseudodistance.

As can be seen in Figure 2, different 1-dimensional size functions may in general have a different number of
cornerpoints. Therefore dmatch allows a proper cornerpoint to be matched to a point of the diagonal: this matching
can be interpreted as the deletion of a proper cornerpoint. Moreover, we stress that the matching distance is stable
with respect to perturbations of the measuring functions. Indeed, in [15, 17] the following Matching Stability Theorem
has been proved:

Theorem 1.3 (Matching Stability Theorem). If (X,ϕ), (X,ψ) are two size pairs with maxP∈X |ϕ(P )− ψ(P )| ≤ ε,
then it holds that dmatch(ℓ(X,ϕ), ℓ(X,ψ)) ≤ ε.

For a formal definition and further details about the matching distance the reader is referred to [16, 17].

1.2. Reduction to the 1-dimensional case. In what follows, we shall adopt the methodology first introduced in
[1] and able to reduce the framework of 2-dimensional size functions to the case k = 1, by a change of variable and
the use of a suitable foliation. More precisely, in [1] the authors prove that, when k > 1, a parameterized family of
half-planes in R

k ×R
k can be given, such that the restriction of a k-dimensional size function ℓ(X,~ϕ) to each of these

half-planes turns out to be a particular 1-dimensional size function.
This approach finds motivations in the fact that generalizing to an arbitrary dimension the concepts of proper

cornerpoint and cornerpoint at infinity seems not to be trivial. We recall that these notions, defined in the case
of 1-dimensional size functions, play a central role in the representation by formal series. Consequently, at a first
glance it seems not possible to provide the multidimensional analogue of the matching distance dmatch and therefore
it is not clear how to obtain stability under perturbations of the measuring functions. On the other hand, all these
problems can be overcome via the results we are going to introduce. We shall present them under the assumption
k = 2, and referring the reader to [1] for the generalization to any positive integer k > 1.

First of all, we need to define the half-planes collection foliating ∆+. Before going on, we observe that the foliation
we are going to introduce is differently parameterized with respect to the one given in [1, Def. 7]. On the other
hand, it has been proved that our choice does not affect the following definitions and results (see [12] for details).
Moreover, it allows us to simplify some technicalities in the rest of the present work.

Definition 1.4. For every vector ~λ = (λ1, λ2) ∈ R
2 with λ1, λ2 > 0 and λ1 + λ2 = 1, and for every vector

~β = (β1, β2) ∈ R
2, such that β1 + β2 = 0, the pair (~λ, ~β) will be said linearly admissible. We shall denote by Ladm2

the set of all linearly admissible pairs in R
2×R

2. For every linearly admissible pair, let us define the half-plane π(~λ,~β)

of R2 × R
2 by the parametric equations ~u = σ~λ+ ~β, ~v = τ~λ+ ~β, with σ, τ ∈ R and σ < τ .

From now on, we shall denote by ΠLadm2
the collection

{
π(~λ,~β) : (

~λ, ~β) ∈ Ladm2

}
.

The next proposition shows that ΠLadm2
is actually a foliation of ∆+.

Proposition 1.5. For every (~u,~v) ∈ ∆+ there exists one and only one linearly admissible pair (~λ, ~β) such that
(~u,~v) ∈ π(~λ,~β). Moreover, such a bijection continuously depends on (~u,~v).

Proof. The claim immediately follows by taking, for i = 1, 2,

λi =
vi − ui∑2

j=1(vj − uj)
, βi =

ui
∑2
j=1 vj − vi

∑2
j=1 uj∑2

j=1(vj − uj)
.

Therefore, ~u = σ~λ+ ~β, ~v = τ~λ+ ~β, with σ = u1 + u2 and τ = v1 + v2. �

We can now state the result allowing us to reduce the 2-dimensional setting to the case k = 1.

Theorem 1.6 (Reduction Theorem). Let (~λ, ~β) ∈ Ladm2, and let F ~ϕ

(~λ,~β)
: X → R be the function defined by setting

F
~ϕ

(~λ,~β)
(x) = max

{
ϕ1(x)− β1

λ1
,
ϕ2(x)− β2

λ2

}
.

Then, for every (~u,~v) = (σ~λ+ ~β, τ~λ+ ~β) ∈ π(~λ,~β) it holds that ℓ(X,~ϕ)(~u,~v) = ℓ
(X,F ~ϕ

(~λ,~β)
)
(σ, τ).
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We skip the proof of Theorem 1.6 since it can be immediately obtained from the one of [1, Thm. 3].

In the following, we shall use the symbol F ~ϕ

(~λ,~β)
in the sense of the Reduction Theorem 1.6.

Roughly speaking, the Reduction Theorem 1.6 states that, on each half-plane of ΠLadm2
, the restriction of a given

2-dimensional size function coincides with a particular size function in two scalar variables, i.e. a 1-dimensional one.
A first important consequence is the possibility of representing a 2-dimensional size function ℓ(X,~ϕ) by a collection
of formal series of points and lines, following the machinery described in Example 1.1 for the case k = 1. Therefore,
for every π(~λ,~β) ∈ ΠLadm2

the matching distance between 1-dimensional size functions can be applied, showing that

it is stable with respect to perturbations of the multidimensional measuring functions and to the choice of the leaves
of the foliation [1, Prop. 2 and 3]. These stability properties lead to the following definition of a distance between
2-dimensional size functions (see also [1, Def. 8]).

Definition 1.7. Let (X, ~ϕ) and (Y, ~ψ) be two size pairs, with ~ϕ, ~ψ vector-valued in R
2. The 2-dimensional matching

distance Dmatch(ℓ(X,~ϕ), ℓ(Y,~ψ)) is the (extended) distance defined by setting

Dmatch(ℓ(X,~ϕ), ℓ(Y,~ψ)) = sup
(~λ,~β)∈Ladm2

min
i=1,2

λi · dmatch(ℓ(X,F ~ϕ
(~λ,~β)

)
, ℓ

(Y,F
~ψ

(~λ,~β)
)
).

Remark 1.8. It can be proved [12] that the distance defined in Definition 1.7 coincides with the 2-dimensional
analogous of the one given in [1, Def. 8].

The term “extended” in Definition 1.7 refers to the fact that, if the spaces X and Y are not assumed to be
homeomorphic, the multidimensional matching distance Dmatch still verifies all the properties of a distance, except
for the fact that it may take the value +∞.

Moreover, let us observe that choosing a non-empty and finite subset A ⊆ Ladm2, and substituting sup(~λ,~β)∈Ladm2

with max(~λ,~β)∈A in Definition 1.7, we obtain a computable pseudodistance between 2-dimensional size function, that

is stable and effectively computable.

From now on, for every (~λ, ~β) ∈ Ladm2 the symbol d(~λ,~β)(ℓ(X,~ϕ), ℓ(Y,~ψ)) will be used to denote the value mini=1,2 λi ·

dmatch(ℓ(X,F ~ϕ
(~λ,~β)

)
, ℓ

(Y,F
~ψ

(~λ,~β)
)
).

2. Computation of the multidimensional matching distance

This section is devoted to provide an algorithm for computing an approximation of the multidimensional matching
distance Dmatch between two multidimensional size functions ℓ(X,~ϕ) and ℓ(Y,~ψ).

Before proceeding, let us recall the general ideas leading to its formulation.
By Definition 1.7 it follows that, in general, a direct computation of Dmatch(ℓ(X,~ϕ), ℓ(Y,~ψ)) is not possible, since we

should calculate the value d(~λ,~β)(ℓ(X,~ϕ), ℓ(Y,~ψ)) for an infinite number of pairs (~λ, ~β). On the other hand, as stressed in

Remark 1.8, if we choose a non-empty and finite subset A ⊆ Ladm2, and substitute sup(~λ,~β)∈Ladm2
with max(~l,~b)∈A

in Definition 1.7, we get an easily computable pseudo-distance, say D̃match(ℓ(X,~ϕ), ℓ(Y,~ψ)), to be used in concrete

applications.
If we think of D̃match(ℓ(X,~ϕ), ℓ(Y,~ψ)) as an approximation of Dmatch(ℓ(X,~ϕ), ℓ(Y,~ψ)), it is reasonable to guess that

the larger the set A ⊆ Ladm2 is , the smaller the difference between the two values can be. On the other hand, the
smaller the set A is, the faster the computation of D̃match is. In this context, we implement an algorithm in order to
find a set A representing a compromise between these two situations. Additionally, A is such that, given an arbitrary

real value ε > 0 as input tolerance, the output D̃match(ℓ(X,~ϕ), ℓ(Y,~ψ)) = max(~λ,~β)∈A d(~λ,~β)(ℓ(X,~ϕ), ℓ(Y,~ψ)) satisfies the

inequality |Dmatch(ℓ(X,~ϕ), ℓ(Y,~ψ))− D̃match(ℓ(X,~ϕ), ℓ(Y,~ψ))| ≤ ε.

Consider the size pairs (X, ~ϕ) and (Y, ~ψ), and assume X,Y homeomorphic, so that Dmatch(ℓ(X,~ϕ), ℓ(Y,~ψ)) < +∞.

The first step toward the formulation of our algorithm is to estimate the changing of d(~λ,~β)(ℓ(X,~ϕ), ℓ(Y,~ψ)), the pair

(~λ, ~β) varying in Ladm2, i.e. when moving from one leaf to another in the half-planes foliation of ∆+.

Let us start by observing that Ladm2 = {(~λ, ~β) = (λ1, λ2, b1, b2) ∈ R
2×R

2 : λ2 = 1−λ1, β2 = −β1, λ1 ∈ (0, 1)} =

{(a, 1− a, b,−b) ∈ R
2 × R

2 : a ∈ (0, 1)}. In what follows, for every ~λ = (a, 1− a) with a ∈ (0, 1), we shall denote by

µ(~λ) the value min{a, 1− a}.
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The next result allows us to avoid the study of d(~λ,~β)(ℓ(X,~ϕ), ℓ(Y,~ψ)) in a large part of Ladm2. Before stating it,

set C = max
{
‖~ϕ‖∞, ‖~ψ‖∞

}
, with ‖~ϕ‖∞ = maxx∈X maxi |ϕi(x)| and ‖~ψ‖∞ = maxy∈Y maxi |ψi(y)|, and consider

the set Ladm∗
2 = {(a, 1− a, b,−b) ∈ Ladm2 : |b| < C}.

Proposition 2.1. Let (~λ, ~β) ∈ Ladm2 \ Ladm
∗
2, with (~λ, ~β) = (a, 1− a, b,−b). Then it follows that

d(~λ,~b)(ℓ(X,~ϕ), ℓ(Y,~ψ)) =

{
µ(~λ)
a

· dmatch(ℓ(X,ϕ1), ℓ(Y,ψ1)), if b ≤ −C;
µ(~λ)
1−a · dmatch(ℓ(X,ϕ2), ℓ(Y,ψ2)), if b ≥ C.

Proof. It is sufficient to observe that b ≤ −C implies F ~ϕ

(~λ,~β)
(x) = ϕ1(x)−b

a
for every x ∈ X, and F

~ψ

(~λ,~β)
(y) = ψ1(y)−b

a

for every y ∈ Y , while b ≥ C implies F ~ϕ

(~λ,~β)
(x) = ϕ2(x)+b

1−a for every x ∈ X and F
~ψ

(~λ,~β)
(y) = ψ2(y)+b

1−a for every y ∈ Y .

From the definition of the 1-dimensional matching distance dmatch (see also [12, Proposition 2.10]) the claim easily
follows. �

Remark 2.2. The maximum value for d(~λ,~β)(ℓ(X,~ϕ), ℓ(Y,~ψ)) over the set {(~λ,~b) = (a, 1 − a, b,−b) ∈ Ladm2 : b ≤

−C} is assumed when a ≤ 1
2 , and it equals to dmatch(ℓ(X,ϕ1), ℓ(Y,ψ1)). Analogously, the maximum value for

d(~λ,~β)(ℓ(X,~ϕ), ℓ(Y,~ψ)) over {(
~λ, ~β) ∈ Ladm2 : b ≥ C} is assumed when a ≥ 1

2 , and it equals to dmatch(ℓ(X,ϕ2), ℓ(Y,ψ2)).

According to Proposition 2.1 and Remark 2.2, in order to know the values d(~λ,~β)(ℓ(X,~ϕ), ℓ(Y,~ψ)) when (~λ, ~β) ∈

Ladm2 \ Ladm∗
2, it is sufficient to consider just two suitable points of that region, e.g., the points of coordinates

( 12 ,
1
2 , C,−C) and ( 12 ,

1
2 ,−C,C). It only remains to study the changing of d(~λ,~β)(ℓ(X,~ϕ), ℓ(Y,~ψ)) over the set Ladm∗

2.

To this aim, we need the next result.

Proposition 2.3. Assume (~λ, ~β) ∈ Ladm∗
2 and (~λ′, ~β′) ∈ Ladm2, with ‖(~λ, ~β)− (~λ′, ~β′)‖∞ ≤ δ and δ ≤ 1

4 . Then it
follows that

∣∣∣d(~λ,~β)(ℓ(X,~ϕ), ℓ(Y,~ψ))− d(~λ′,~β′)(ℓ(X,~ϕ), ℓ(Y,~ψ))
∣∣∣ ≤ δ · (32C + 2).

Proof. Let (~λ, ~β) = (a, 1−a, b,−b) and (~λ′, ~β′) = (a′, 1−a′, b′,−b′). We start by observing that, from the definition of

dmatch (see also [12, Proposition 2.10]), we can write d(~λ,~β)(ℓ(X,~ϕ), ℓ(Y,~ψ)) = dmatch

(
ℓ
(X,µ(~λ )·F ~ϕ

(~λ,~β)
)
, ℓ

(Y,µ(~λ )·F
~ψ

(~λ,~β)
)

)

for every considered (~λ, ~β). Therefore it holds that
∣∣∣d(~λ,~β)(ℓ(X,~ϕ), ℓ(Y,~ψ))− d(~λ′,~β′)(ℓ(X,~ϕ), ℓ(Y,~ψ))

∣∣∣ =(2.1)

=

∣∣∣∣dmatch
(
ℓ
(X,µ(~λ )·F ~ϕ

(~λ,~β)
)
, ℓ

(Y,µ(~λ )·F
~ψ

(~λ,~β)
)

)
− dmatch

(
ℓ
(X,µ(~λ′ )·F ~ϕ

(~λ′,~β′)
)
, ℓ

(Y,µ(~λ′ )·F
~ψ

(~λ′,~β′)
)

)∣∣∣∣ ≤(2.2)

≤ dmatch

(
ℓ
(X,µ(~λ )·F ~ϕ

(~λ,~β)
)
, ℓ

(X,µ(~λ′ )·F ~ϕ
(~λ′,~β′)

)

)
+ dmatch

(
ℓ
(Y,µ(~λ )·F

~ψ

(~λ,~β)
)
, ℓ

(Y,µ(~λ )·F
~ψ

(~λ′,~β′)
)

)
≤(2.3)

≤ max
x∈X

∣∣∣µ(~λ ) · F ~ϕ

(~λ,~β)
(x)− µ(~λ′ ) · F ~ϕ

(~λ′,~β′)
(x)
∣∣∣+max

y∈Y

∣∣∣µ(~λ ) · F ~ψ

(~λ,~β)
(y)− µ(~λ′ ) · F

~ψ

(~λ′,~β′)
(y)
∣∣∣ =(2.4)

= max
x∈X

∣∣∣∣max

{
µ(~λ ) ·

ϕ1(x)− b

a
, µ(~λ ) ·

ϕ2(x) + b

1− a

}
−max

{
µ(~λ′ ) ·

ϕ1(x)− b′

a′
, µ(~λ′ ) ·

ϕ2(x) + b′

1− a′

}∣∣∣∣+(2.5)

+max
y∈Y

∣∣∣∣max

{
µ(~λ ) ·

ψ1(y)− b

a
, µ(~λ ) ·

ψ2(y) + b

1− a

}
−max

{
µ(~λ′ ) ·

ψ1(y)− b′

a′
, µ(~λ′ ) ·

ψ2(y) + b′

1− a′

}∣∣∣∣ ≤

≤ max
x∈X

max

{∣∣∣∣µ(~λ ) ·
ϕ1(x)− b

a
− µ(~λ′ ) ·

ϕ1(x)− b′

a′

∣∣∣∣ ,
∣∣∣∣µ(~λ ) ·

ϕ2(x) + b

1− a
− µ(~λ′ ) ·

ϕ2(x) + b′

1− a′

∣∣∣∣
}
+(2.6)

+max
y∈Y

max

{∣∣∣∣µ(~λ ) ·
ψ1(y)− b

a
− µ(~λ′ ) ·

ψ1(y)− b′

a′

∣∣∣∣ ,
∣∣∣∣µ(~λ ) ·

ψ2(y) + b

1− a
− µ(~λ′ ) ·

ψ2(y) + b′

1− a′

∣∣∣∣
}
,

where inequality (2.4) is a consequence of the Matching Stability Theorem 1.3, and inequality (2.6) comes from the
relation |max(u1, u2)−max(v1, v2)| ≤ max(|u1 − v1|, |u2 − v2|), for every u1, u2, v1, v2 ∈ R (see Appendix).



2-DIMENSIONAL MATCHING DISTANCE 7

Let us now distinguish three cases: a ≤ 1
4 , a ≥ 3

4 and 1
4 < a < 3

4 .

If a ≤ 1
4 , since δ ≤ 1

4 it follows that a′ ≤ 1
2 . Hence, µ(~λ) = a, µ(~λ′) = a′ and in the first part of inequality (2.6)

we have

max
x∈X

max

{∣∣∣∣µ(~λ ) ·
ϕ1(x)− b

a
− µ(~λ′ ) ·

ϕ1(x)− b′

a′

∣∣∣∣ ,
∣∣∣∣µ(~λ ) ·

ϕ2(x) + b

1− a
− µ(~λ′ ) ·

ϕ2(x) + b′

1− a′

∣∣∣∣
}

=(2.7)

= max
x∈X

max

{
|ϕ1(x)− b− ϕ1(x) + b′| ,

∣∣∣∣a ·
ϕ2(x) + b

1− a
− a′ ·

ϕ2(x) + b′

1− a′

∣∣∣∣
}

=(2.8)

= max

{
|b− b′| ,max

x∈X

∣∣∣∣a ·
ϕ2(x) + b

1− a
− a ·

ϕ2(x) + b′

1− a
+ a ·

ϕ2(x) + b′

1− a
− a′ ·

ϕ2(x) + b′

1− a′

∣∣∣∣
}

=(2.9)

= max

{
|b′ − b| ,max

x∈X

∣∣∣∣
a

1− a
· (b− b′) + (ϕ2(x) + b′) · (

a

1− a
−

a′

1− a′
)

∣∣∣∣
}

≤(2.10)

≤ max

{
|b′ − b| ,

a

1− a
· |b− b′|+max

x∈X
|ϕ2(x) + b′| ·

|a− a′|

(1− a)(1− a′)

}
≤(2.11)

≤ max

{
δ,
δ

3
+ 2C · δ ·

8

3

}
= max

{
δ,
δ

3
· (16C + 1)

}
,(2.12)

where the inequality in (2.12) holds since 1− a ≥ 3
4 e 1− a′ ≥ 1

2 .
Analogously, in the second part of inequality (2.6) we obtain

max
y∈Y

max

{∣∣∣∣µ(~λ ) ·
ψ1(y)− b

a
− µ(~λ′ ) ·

ψ1(y)− b′

a′

∣∣∣∣ ,
∣∣∣∣µ(~λ ) ·

ψ2(y) + b

1− a
− µ(~λ′ ) ·

ψ2(y) + b′

1− a′

∣∣∣∣
}

≤(2.13)

≤ max

{
δ,
δ

3
· (16C + 1)

}
,(2.14)

and hence, when a ≤ 1
4 and under the hypothesis δ ≤ 1

4 , it follows that

∣∣∣d(~λ,~β)(ℓ(X,~ϕ), ℓ(Y,~ψ))− d(~λ′,~β′)(ℓ(X,~ϕ), ℓ(Y,~ψ))
∣∣∣ ≤ 2max

{
δ,
δ

3
· (16C + 1)

}
.(2.15)

If a ≥ 3
4 , similar arguments lead to the inequality

∣∣∣d(~λ,~β)(ℓ(X,~ϕ), ℓ(Y,~ψ))− d(~λ′,~β′)(ℓ(X,~ϕ), ℓ(Y,~ψ))
∣∣∣ ≤ 2max

{
δ,
δ

3
· (16C + 1)

}
.(2.16)

It only remains to consider when 1
4 < a < 3

4 . In this case, in the first part of inequality (2.6) we have
∣∣∣∣µ(~λ ) ·

ϕ1(x)− b

a
− µ(~λ′ ) ·

ϕ1(x)− b′

a′

∣∣∣∣ =(2.17)

=

∣∣∣∣µ(~λ ) ·
ϕ1(x)− b

a
− µ(~λ′ ) ·

ϕ1(x)− b

a
+ µ(~λ′ ) ·

ϕ1(x)− b

a
+(2.18)

− µ(~λ′ ) ·
ϕ1(x)− b

a′
+ µ(~λ′ ) ·

ϕ1(x)− b

a′
− µ(~λ′ ) ·

ϕ1(x)− b′

a′

∣∣∣∣ =(2.19)

=

∣∣∣∣∣(µ(
~λ )− µ(~λ′ )) ·

ϕ1(x)− b

a
+ µ(~λ′ ) · (ϕ1(x)− b) · (

1

a
−

1

a′
) +

µ(~λ′ )

a′
· (b′ − b)

∣∣∣∣∣ ≤(2.20)

≤

∣∣∣∣(µ(~λ )− µ(~λ′ )) ·
ϕ1(x)− b

a

∣∣∣∣+
∣∣∣∣µ(~λ

′ ) · (ϕ1(x)− b) · (
1

a
−

1

a′
)

∣∣∣∣+
∣∣∣∣∣
µ(~λ′ )

a′
· (b′ − b)

∣∣∣∣∣ ≤(2.21)

≤ δ ·

(
|ϕ1(x)− b|

a
+
µ(~λ′ )

a · a′
|ϕ1(x)− b|+

µ(~λ′ )

a′

)
≤ δ ·

(
2|ϕ1(x)− b|

a
+ 1

)
≤ δ · (16C + 1),(2.22)

where the second inequality in (2.22) holds since µ(~λ′ )
α′

≤ 1. Similarly, in inequality (2.6) we also obtain
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∣∣∣∣µ(~λ ) ·
ϕ2(x) + b

1− a
− µ(~λ′ ) ·

ϕ2(x) + b′

1− a′

∣∣∣∣ ≤ δ · (16C + 1),(2.23)

and hence

max
x∈X

max

{∣∣∣∣µ(~λ ) ·
ϕ1(x)− b

a
− µ(~λ′ ) ·

ϕ1(x)− b′

a′

∣∣∣∣ ,
∣∣∣∣µ(~λ ) ·

ϕ2(x) + b

1− a
− µ(~λ′ ) ·

ϕ2(x) + b′

1− a′

∣∣∣∣
}

≤ δ · (16C + 1).

Similar reasonings allows us to estimate the second addend in inequality (2.6) leading to

max
y∈Y

max

{∣∣∣∣µ(~λ ) ·
ψ1(y)− b

a
− µ(~λ′ ) ·

ψ1(y)− b′

a′

∣∣∣∣ ,
∣∣∣∣µ(~λ ) ·

ψ2(y) + b

1− a
− µ(~λ′ ) ·

ψ2(y) + b′

1− a′

∣∣∣∣
}

≤ δ · (16C + 1).

therefore, when 1
4 < a < 3

4 , it holds that

∣∣∣d(~λ,~β)(ℓ(X,~ϕ), ℓ(Y,~ψ))− d(~λ′,~β′)(ℓ(X,~ϕ), ℓ(Y,~ψ))
∣∣∣ ≤ δ · (32C + 2).(2.24)

By comparing the bounds for the three cases a ≤ 1
4 , a ≥ 3

4 and 1
4 < a < 3

4 , we obtain 2max
{
δ, δ3 · (16C + 1)

}
≤

δ · (32C + 2) and hence the claim is proved. �

Remark 2.4. It can be proved that d(~λ,~β)(ℓ(X,~ϕ), ℓ(Y,~ψ)) ≤ 2C for every (~λ, ~β) ∈ Ladm2 (this is a trivial consequence

of [1, Thm. 4]), implying that the inequality |d(~λ,~β)(ℓ(X,~ϕ), ℓ(Y,~ψ)) − d(~λ′,~β′)(ℓ(X,~ϕ), ℓ(Y,~ψ))| ≤ 4C is always verified.

Since δ · (32C + 2) ≤ 4C ⇔ δ ≤ 4C
32C+2 −→

C→∞

1
8 , it follows that, in applications, Proposition 2.3 is significant only if

we assume such a restriction for δ.

The previous Proposition 2.1 and 2.3 can be merged together to obtain the following more general result.

Theorem 2.5. Assume (~λ, ~β), (~λ′, ~β′) ∈ Ladm2, with ‖(~λ, ~β)− (~λ′, ~β′)‖∞ ≤ δ and δ ≤ 1
4 . Then it follows that

∣∣∣d(~λ,~β)(ℓ(X,~ϕ), ℓ(Y,~ψ))− d(~λ′,~β′)(ℓ(X,~ϕ), ℓ(Y,~ψ))
∣∣∣ ≤ δ · (32C + 2).

2.1. Algorithm. The results proved in Proposition 2.1, Proposition 2.3 and Theorem 2.5 can be exploited in the
development of an algorithm able to compute an approximation of Dmatch(ℓ(X,~ϕ), ℓ(Y,~ψ)). More precisely, the idea

is to fix as input a tolerance ε, i.e. the maximum error we are disposed to accept in the computation, and to let

the algorithm run until the output D̃match(ℓ(X,~ϕ), ℓ(Y,~ψ)), representing an approximation of Dmatch(ℓ(X,~ϕ), ℓ(Y,~ψ)),

satisfies the inequality |Dmatch(ℓ(X,~ϕ), ℓ(Y,~ψ))− D̃match(ℓ(X,~ϕ), ℓ(Y,~ψ))| ≤ ε.

We now describe the algorithm in details.
First of all let us observe that the set Ladm2 = {(a, 1− a, b,−b) : a ∈ (0, 1)} can be identified with the subset on

R
2 given by {(a, b) : a ∈ (0, 1)} = (0, 1) × R. To be more precise, there exists a bijective correspondence between

Ladm∗
2 = {(a, 1− a, b,−b) ∈ Ladm2 : |b| < C} and the set (0, 1)× (−C,C), as well as between Ladm2 \ Ladm

∗
2 and

the set (0, 1)× R \ (0, 1)× (−C,C).
The algorithm works as follows.

(1) Fix an input tolerance ε > 0 and set δ = 1
8 (cf. Remark 2.4);

(2) For every i, j ∈ Z such that 0 ≤ i ≤ 1
2δ − 1, − 1

2δ ([C] + 1) ≤ j ≤ 1
2δ ([C] + 1), with [C] floor function at

C, set Pij = (uij , vij) = (δ(2i + 1), 2δj), and consider the covering of the set (0, 1) × (−C,C) given by
Q = {Qδ(Pij)}, where Qδ(Pij) = {P = (u, v) ∈ R

2 : ‖Pij − P‖∞ ≤ δ} (see Figure 3). Set P = {Pij};
(3) Consider two further points A and B in R

2, whose coordinates are ( 12 ,−(C + 1
2 )) and ( 12 , C + 1

2 ) respectively
(see once more Figure 3);

(4) For every Pij ∈ P, consider the associated linearly admissible pair (~λij , ~βij) = (uij , 1 − uij , vij ,−vij) and
compute the value DPij = d(~λij ,~βij)(ℓ(X,~ϕ), ℓ(Y,~ψ)). Analogously for A and B, obtaining DA and DB ;

(5) Compute D̄ = maxPij∈P∪{A,B}DPij . If δ · (32C + 2) < ε, set D̄ = D̃match(ℓ(X,~ϕ), ℓ(Y,~ψ)) and the algorithms

ends. Otherwise, delete all points Pij ∈ P such that D̄−DPij > δ · (32+C), and the associated Qδ(Pij) ∈ Q;
(6) Subdivide each square still in Q into 4 equal squares, substitute the points in C with the new square centers,

change δ with δ
2 and restart from step 4.
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C

−C

10

A

B

α

β

( 14 ,
i
2 ) ( 34 ,

i
2 )

Figure 3. The starting covering for the set (0, 1)× (−C,C) described in the algorithm at step 2.

3. Experiments

Figures 4,5,6,7,8 show some examples of the 2-dimensional matching distance between models taken from the
SHREC 2007 database [26]. The 2-dimensional measuring function is ~ϕ = (ϕ1, ϕ2), with ϕ1 the integral geodesic
distance [27] and ϕ2 the distance from the principal vector ~v defined in [1]. The values of ~ϕ are normalized so that
they range in the interval [0, 1]. This implies the constant C is equal to 1.

We fix an input error ǫ equal to 5% of the constant C, that is, ǫ = 0.050000. Six iterations are required for the
threshold t = δ · (32C + 2) to became less than ǫ.

Each plot in Figures 4,5,6,7,8 shows the values of the 2-dimensional matching distance outside and inside Ladm∗
2.

In the color coding, red corresponds to higher values, whereas blue corresponds to lower values.
If the computation were done using a single tiling strategy of Ladm∗

2, without the point cancellation procedure
introduced above, a total amount of 830072 of distances would be required. We show in the examples that the
number of distances actually computed is much lower, up to 3% of the original number.

It should be noted that, whereas the drop in the number of computations is evident when comparing objects
belonging to different categories (Figures 4,5,6), the improvement is less noticeable if same-class objects are compared
(Figures 7,8).

Appendix

Let us prove that (∗) |max(u1, u2)−max(v1, v2)| ≤ max(|u1−v1|, |u2−v2|). To this aim, we distinguish 6 different
cases.

(1) If u1 ≥ u2 and v1 ≥ v2 then inequality (∗) trivially follows;
(2) If u1 < u2 and v1 < v2 then inequality (∗) trivially follows;
(3) If u1 ≥ u2 and v1 < v2, with u1 ≥ v2, then it follows that u1 ≥ v2 > v1, hence |u1 − v2| < |a− v1|;
(4) If u1 ≥ u2 and v1 < v2, with u1 < v2, then it follows that v2 > u1 ≥ u2, hence |u1 − v2| < |u2 − v2|;
(5) If u1 < u2 and v1 ≥ v2, with v1 ≥ u2, then it follows that v1 ≥ u2 > u1, hence |u2 − v1| < |u1 − v1|;
(6) If u1 < u2 and v1 ≥ v2, with v1 < u2, then it follows that u2 > v1 ≥ v2, hence |u2 − v1| < |u2 − v2|.
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