
Progressive Web Apps: the Definite Approach to Cross-Platform Development?

Tim A. Majchrzak
University of Agder,
Kristiansand, Norway
Email: timam@uia.no

Andreas Biørn-Hansen, Tor-Morten Grønli
Faculty of Technology, Westerdals Oslo ACT,

Oslo, Norway
Email: {bioand;tmg}@westerdals.no

Abstract

Although development practices for apps have matured,
cross-platform development remains a prominent topic. Ty-
pically, apps should always support both Android and iOS
devices. They ought to run smoothly on various hardware,
and be compatible with a host of platform versions. Additio-
nally, device categories beyond smartphone and tablets have
emerged, which makes multi-platform support even trickier.
Truly developing an app once and serving the multitude
of possible targets remains an issue despite having cross-
platform frameworks that are acknowledged by practice
and research. The technology unifier remains to be found,
but Progressive Web Apps (PWA) might be a step towards
it. In this paper, we analyse the foundations of PWAs in
cross-platform development and scrutinize the status quo
of current possibilities. Based on our observations, we
investigate unified development, and discuss open questions.
We seek to stimulate interest and narrow the immense gap
that has arisen since industry started to embrace PWAs.

1. Introduction

Over 10 years have passed since the introduction of the
first iPhone [1]. In this time, the development methods
have matured (cf. [2], [3], [4], [5], [6]). Parallel, the basic
requirements of developing mobile apps can be said to have
become less complex and more complex at the same time.
On the one hand, the number of platforms with relevant
market share has shrunken [7], powerful cross-platform
development frameworks have emerged [8], and progress has
been made in many other regards. On the other hand, device
fragmentation remains a problem [8], [9], apps need to
support novel device categories such as wearables [8], [10],
and the technological progress is still rapid. The technology
for unified development has still not been identified [11].

The advent of cross-platform app development frame-
works have made it much easier to create apps for multiple
platforms. Despite reduced learning effort, typically lower
costs, and a quicker time-to-market [12], [13] cross-platform
approaches do not prevail in all cases. While there are natural
exceptions – such as graphic-intensive games, which ought
to be programmed with the native SDKS [14], [15] –, the

choice between native apps, cross-platform generated ones,
and Webapps can remain tricky [16], [8]. Although many
different attempts have been made with regard to how cross-
platform development frameworks should work, no techno-
logy is considered absolutely superior. Unsurprisingly, still
new frameworks arise [3] despite PhoneGap [17] (previously
a.k.a. Apache Cordova [18]) is widespread in industry.

Progressive Web Apps (PWAs) are a novel way to de-
velop, they promise to combine Web technologies’ ease
of development with the versatility of native apps [11].
This might be achieved without a (profound) performance
penalty [19] but with a dramatic decrease in app size [20],
[21]. Due to their novelty, scientific coverage is low [11].
Moreover, so far PWAs have been mainly evaluated in the
realm of Android [21], [11]. With this research paper, we
set out to narrow the gap between scientific assessment
and industry adoption1. In particular, we seek to understand
whether PWAs can become that unifying technology for
cross-platform app development, or in fact even a multi-
platform approach that overcomes the idiosyncrasies of
cross-platform development.

This paper makes several contributions. First, we compre-
hensively assess competing concepts for developing multi-
platform apps. Second, we scrutinize PWAs as a possible
technology to overcome shortcomings of existing cross-
platform development approaches. Third, we provide lessons
learned and name open questions for a research agenda.

The remainder is structured as follows. In Section 2 we
introduce the background of our work by shedding light on
Webapps and native apps, cross-platform development and
PWAs. We then discuss implication of unified development
in Section 3. In Section 4 we discuss our findings. Section 5
gives a conclusion and names our next steps.

2. Background

In the following, we sketch the background of our work.
First, we sketch native development and Webapps as base-

1. Please note that we have referenced several non-scientific works even
including videos. This is mandated for staying up to date with the latest
developments. We of course scrutinize such works with particular care. In
fact, the literature situation is part of the reason for several of the open
questions in Section 4; see specifically Section 4.2 on p. 7.

Proceedings of the 51st Hawaii International Conference on System Sciences | 2018

URI: http://hdl.handle.net/10125/50607
ISBN: 978-0-9981331-1-9
(CC BY-NC-ND 4.0)

Page 5735

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarSpace at University of Hawai'i at Manoa

https://core.ac.uk/display/143481552?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


line approaches. We then comprehensively describe cross-
platform app development and PWAs, for each investigating
foundation, characteristics, and current literature.

2.1. Baseline: Native Development and Webapps

The natural choice for developing apps is the native
software development kit (SDK). It usually is provided by
the vendor of the mobile platform [22], [23, p. 225]. The
SDK offers a development experience tailored to the plat-
form [24]: There are normally few programming languages
available. In the case of iOS, Objective-C and Swift can be
leveraged [23]. On Android, the recent addition of the Java-
superset language Kotlin was welcomed by the otherwise
Java-heavy developer community [25]. If developing for the
Windows platform, a so-called Universal Windows Platform
app, multiple languages can be used, including C++, C#,
Visual Basic and JavaScript [26]. Device features can be
accessed through the platform’s own application program-
ming interfaces (APIs) [27].

The graphical user interface (GUI) is composed of na-
tive interface elements [15]. Native look & feel and short
reaction times are direct consequences. Apps appear and
can be interacted with in the same way as platform-specific
apps respectively of the mobile operating system itself; the
performance is high at least for carefully designed apps [28].
Obviously, native development was the starting point for app
development when platforms were newly released.

Although features introduced to mobile platforms soon
find their way into all contemporary platforms if they are
considered beneficial, platforms remain incompatible [15],
[29]. The incompatibility has deep roots. Not only does
the GUI look different (when it follows the design guide-
lines [30], [31]) but the whole development experience is
diverging. Typically, the APIs are not designed similarly,
the programming languages impose a certain style, and the
ecosystems of the platform including tools and paradigms
differ [15]. As all of this makes it very expensive to
develop the same software for native apps from several plat-
forms [32], [33], cross-platform development frameworks
have become popular [34], [24]. The same difficulties that
humans face make also the creation of such a framework
complex, as will be elaborated in the following section.

Webapp by itself is a rather unclear term. We are not aware
of a consistent definition. In general, many applications
that are provided via the Web and that follow a client-
server model are considered Webapps; such applications
existed before the advent of the smartphone. In the mobile
computing literature Webapp typically denotes a mobile
Webapp. In this paper we only consider Webapps in the sense
of applications for mobile devices that have been built using
Web technology such as HTML, CSS and JavaScript.

The first Webapps, merely made use of the platforms’
built-in browsers. They lacked functionality such as being

placed in an smartphones app list and to be distributed using
the app stores [35]. Moreover, they had no or little access
to device-specific functionality [36], [27] and relied on a
generic Web appearance. While Webapps are still developed
with the same basic Web technology, the actual program-
ming is enriched by a huge variety of frameworks [37],
[3]. Moreover, possibilities and performance have been
improved. Due to their reliance on the browser, Webapps are
compatible on all platforms that run a sufficiently capable
browser [38]. However, as browsers differ in W3C HTML
and JavaScript specification implementation and compliance,
a Webapp does not inherently function as expected across all
browsers [39]. Also, disabling JavaScript is a possibility in
most modern browsers; Thus, effectively disabling the logic
layer and often the user interface layer of modern Webapps
results in apps rendering blank pages.

Before cross-platform app development became popular,
developers were confronted with choosing between native
apps and Webapps [15]. The decision advise has remained
the same for “extreme” cases, but shifted for “average”
apps (cf. e.g. [8]). Hardware-near, high performance apps
require native development [40]. Rather simple, form-based
apps are quickly developed as Webapps [15], [29]. With
HTML5 and modern JavaScript, better performance has been
achieved and a broader range of device features have become
available [39]. Frameworks – in particular for GUI and for
JavaScript – offer many additional features, e.g. Webapps
that mimic a native look & feel [3]. Consequently, Webapps
are popular [34], [29], [24].

Native development on the one side and Webapps on
the other side remain the benchmark for any contestants
(cf. [40]). This is true not only regarding cross-platform
development frameworks but also for any other development
technology, even if it is not specific to multi-platform
development. Therefore, possibilities, ramification, and the
quality of native apps and generic Webapps needs to be
weighted in when discussing unified development.

2.2. Cross-Platform App Development

Cross-platform app development approaches are not a
new emergence; however, technological possibilities have
changed over time. We will first introduce the concept
before describing the characteristics of developing in a cross-
platform way. Eventually, we highlight related literature.

2.2.1. Introduction. The quick proliferation of smartphones
(and, with some offset, tablets) is already a historic fact.
It also meant, that particularly in the early years before
2010, many different platforms competed. Although now
only two major platforms remain [41] , developing apps
for multiple platforms at a time is an economic necessity.
To reach as many users as possible, all platforms need to
be supported that have a sufficiently high user base at the

Page 5736



moment of development (respectively the forecasted user
base for the intended time of deployment). Developing native
apps means that the effort for developing these apps scales
almost linearly with the number of supported platforms [16].
Save for some organisational activities and the platform-
independent part of requirements engineering, all other soft-
ware development activities are required for each platform.
Even worse, skilled developers must be hired for each target
platform as quality problems are otherwise likely.

While HTML5 is not new anymore, Webapps in early
smartphone times did not perform as well as they do today.
In particular, a look & feel of a Web page instead of that of
an app, and inferior performance were reasons not to build
Webapps as an easy option for multi-platform support [42].
Therefore, possibilities for cross-platform app development
were sought. The development of cross-platform develop-
ment frameworks is active until today, although scientific
research has already proposed convincing technological pos-
sibilities and the industry has widely adopted frameworks.

2.2.2. Characteristics. There is one basic characteristic that
is shared by all cross-platform app development frameworks:
code is developed once while apps can be provided to several
platforms. Besides this, frameworks differ significantly in
basic approach and paradigm, and in scope. The basic
paradigmatic possibilities have been summarized in Figure 1.
Although the origin of this depiction reach back to 2012 [43,
p. 63], it still serves well for its purpose. In fact, only with
PWAs an extension might soon be necessary; the reasons
for this are discussed later in this paper.

Obviously, the initial choice is to use cross-platform
development, or not. From a high level point of view, this
leaves only native development when deciding against cross-
platform app development. When taking a closer look, the
options are a bit more blurred. PWAs might so far not have
been considered a cross-platform development approach,
although they by concept seek to support multiple platforms
from one code base (inherently being Web-based).

Cross-platform development can be divided into two main
paradigms: runtime environments and generative approa-
ches. With the latter, the ultimate aim is to provide a
native app for each supported platform. How this native
app has been generated from a single code base can be
further differentiated. Model-driven approaches (referred to
as MDSD in the figure: model-driven software development
[45]) rely on a platform-independent model from which apps
are generated. Typically, they employ a – usually textual
and, or possible alternatively, graphical – domain-specific
language (DSL) to describe an app. Transpilers take (usually
native) code written for one platform and transform it to
native code for another platform.

Approaches that do not generate apps rely on a runtime
environment. Instead of running code directly on a platform,
which requires the code to be native to that platform, the run-

time environment bridges between app and platform. There
is a number of ways to realize this paradigm technologically.
Webapps, which we already named a baseline approach, are
simply run in the platform-provided Web browser. Hybrid
apps typically rely on Web technology but provide a native
packaging. Traditionally, this has been beneficial e.g. with
regard to access to device-specific features but limited these
apps to a look & feel that at most approximated native apps.
Finally, apps based on a self-contained runtime are similar
to hybrids yet use native GUI elements.

For examples of approaches and more details regarding
the paradigms, please refer to [4], [44], [13].

2.2.3. Literature Coverage. The literature on cross-
platform app development is broad. Leaving out papers in
which cross-platform considerations are a side topic, there
are several particularly notable categories of papers. First,
papers present work on the creation or improvement of
a specific framework (e.g. [2], [46], [13]). Typically, the
frameworks represent one specific approach towards cross-
platform development or seek to advance the technologi-
cal possibilities into a particular direction. Second, papers
address one specific framework, often in a case study-
like fashion (e.g. [47], [48]). Such work typically seeks to
explore certain aspects of a framework or to assess its feasi-
bility in predefined contexts. Third, papers combine work
with several frameworks, usually including a comparison
(e.g. [3], [14], [49]), focusing on giving advice (e.g. [50]),
or looking at particularities (e.g. [51]). These works can
help with decision making and they may also contain such
contributions to theory that enable an understanding of
which approaches excel under which circumstances. Fourth,
there are meta studies, which make use of the first two
kinds of papers. Especially notable are studies that propose
categorisation and comparison frameworks. As part of such,
exemplary comparisons have been carried out. Therefore,
the fourth kind of papers provides the gateway to most other
relevant work.

A number of papers provide a comprehensive overview
of cross-platform technology and how existing frameworks
can be assessed. The most widely cited paper by Heitkötter
et al. is already from 2013 [52]. The authors propose an
evaluation framework. They have also exemplarily applied it
to several development approaches, including Webapps and
native apps as benchmarks. An extension of this original
idea has been presented in 2016 [8]. This work not only
provides a more extensive catalogue of evaluation criteria
but also tries to include weighted evaluation that cater for
novel device categories such as wearables. Several authors
have conducted work that takes similar aims [53], [54], [55],
[27], [56], [57]. All of these papers support a deepened un-
derstanding of cross-platform app development as a whole.

Page 5737



Mobile Webapps Hybrids Self-contained
runtime MDSD Transpiling Native,

platform-specific

Runtime
Environment

Generative
approaches

Cross-platform

App development

No native
elements

Native
packaging

Native
GUI

Compiled to
native SDK

Uses
native SDK

Figure 1. Categorization of Cross-Platform Approaches (adapted from [44], originally from [43, p. 63])

2.3. Progressive Web Apps

PWAs are new in concept, although they rely mostly
on existing technological artifacts and concepts. As in the
prior subsection, we introduce the idea, give details on
characteristics, and summarize related literature.

2.3.1. Introduction. The mobile Web is becoming ever
more capable of accessing and handling features previously
only available in native and cross-platform apps. With the
introduction of Progressive Web Apps (PWAs), regular Web
sites can to a larger extent than before act, feel and look as
any other installed app – so far particularly on an Android-
based mobile device [58]. This is enabled through a set of
new concepts and requirements, advocated by Google as
well-worth implementation efforts [11]. In short, a PWA
is any Web site implementing certain specific technical
features, which this chapter will further investigate. Such
a Web site can, in PWA-supported browsers, be added to
the home-screen of a user’s device and used offline. It looks
like a regular app although being run inside a stripped-down
Chrome browser, which hides all its interface artefacts.

2.3.2. Characteristics. There are certain characteristics that
define PWAs, and that differentiate them from regular Web
sites and native or cross-platform mobile apps. The main
differentiator between a regular Web site and a PWA is
the added functionality and User Experience (UX) the latter
provides [58]. Where a regular Web site requires the user to
open a browser, type in a URL and wait for all content to be
downloaded on every visit, effectively preventing an offline
experience, a PWA only requires these steps for the first
visit. After a home screen installation, all necessary static
files, including HTML, CSS, JavaScript, images and fonts
for the Web site, are now stored on the user’s phone, ready
to be used offline [59]. All dynamic data can be cached
for offline (or low-connectivity) use, and re-fetched when
needed, e.g. when new data is available and the phone is on
a decent network connection [59].

Where a regular Web site would be wrapped in a browser
(e.g. Chrome Android) with visible browser artefacts (such
as address bar and menus), a PWA will similarly run in a

browser instance, but without those artefacts [58]. Thus, a
PWA will look similar to a regular app. If a PWA is styled
correctly, following the design guidelines of each mobile
platform, telling apart a regular native or cross-platform app
and a PWA from the appearance would be challenging.

When comparing a PWA to a regular native or cross-
platform mobile app, one of the main characteristics and
benefits of the PWA is the minimal footprint it leaves on a
user’s phone [20], [21], [11]. Examples of this are provided
in Section 3.4 using the Twitter Lite and Indian ride-sharing
app OLA as cases. In either case, their PWA would be two
order of magnitude smaller than the comparable native apps
– without compromising functionality [20].

From a technical perspective, a Progressive Web App is
simply put a regular Web site with a JSON-based meta
data document (manifest) [60], an Application Shell and
a background script (Service Worker) written in JavaS-
cript [11]. The Application Shell is the minimal static GUI
and logic needed to render and display the application
without connection-dependant dynamic content, i.e. in an
offline setting [61]. This GUI and logic may include pieces
of the app such as routing and navigation logic and UI
elements [62]. Due to the Application Shell being avai-
lable offline and fetched from the app cache, it renders
immediately (measured as time-to-first-paint), making the
application accessible quicker than a non-PWA online-only
regular Web site [61]. Next, the Service Worker script
handles and proxies all network connectivity, caching logic
and background tasks, thus enabling the offline experience
a PWA can provide [63]. The Service Worker can decide
if new content should be fetched from a Web service, or
if any cached content is still relevant to the user, thus
avoid unnecessary network calls, or even to display cached
content in an offline setting. Additionally, the Web site
must be served over HTTPS [63] and implement responsive
design [64], i.e. work satisfactory across devices of different
screen sizes and resolutions [59].

From a developer perspective, multiple considerations
should be taken into account when developing a Progres-
sive Web App. As an example, Google advocates use of
the (experimental) PRPL pattern (abbreviation for Push –
Render – Pre-cache – Lazy-load, pronounced Purple). The

Page 5738



pattern builds on the idea that the Web is slow on mobile
devices, and that the time it takes for the application to
become interactive (measured as time-to-interactive) is of
utmost importance to optimize for. This is done through
techniques such as heavy caching of dynamic content, the
new HTTP/2 standard to smarter request and receive static
files from the Web server, the Application Shell, and smart
loading of content [62]. Moreover, Google has released a
developer-oriented PWA testing tool named Lighthouse [65].
This tool helps in testing PWA compliance of Web sites, thus
easing the developer experience of PWA development.

2.3.3. Literature Coverage. A lack of literature covering
Progressive Web Apps has already been identified by a
recent position paper [11], which brought the concept of
Progressive Web Apps to the academic communities. The
paper gives a holistic introduction to PWAs, as well as
some initial research findings and thoughts. Research was
based on three apps: one hybrid app, an interpreted app,
and a PWA. Some initial performance measurements were
conducted and the generated app sizes were compared.
This paper additionally presented a list of possible further
research areas and topics to be explored. While this paper
can be seen as a kind of shorter predecessor to our article, it
must be ascertained that to a large extent the current body of
knowledge is made up of literature published by developers,
practitioners, and the industry in general.

Practitioners and the industry continues to put efforts in
implementing PWA characteristics into their Web sites, as
discussed in detail in Section 3.4. Little progress within
academia can so far be recorded. The academic contributions
identified are few in number. Malavolta et al. [21] makes an
interesting contribution discussing energy efficiency of Pro-
gressive Web Apps, and the energy impact of Service Wor-
kers. Their research includes measuring energy consumption
using different devices and scenarios. For further research,
we propose drawing from the results of both [21] and Ciman
and Gaggi’ research [40] on energy consumption of cross-
platform app development frameworks and approaches.

Except from the previously discussed literature, little
else has been identified directly on the topic of PWAs
within academia. Outside of academia, in the fast-paced
world of JavaScript and the (mobile) Web, articles and
discussions on PWA proliferate. As discussed in Section 3.4,
the Google I/O 2017 conference featured seven PWA-related
talks, some highly technical, some rather business-related. In
2016, Google also hosted the first Progressive Web App Dev
Summit [66], as an effort to further advocate the concept to
developers and the industry. While practitioners’ enthusiasm
must of cause be weighted carefully as Google seems to rally
for PWAs, the spread of interest is nonetheless remarkable.

Multiple books on PWAs either have been published or
are in the process of being written, e.g. Hume’s early-access
book [67], a technical step-by-step textbook for building

PWAs. Published on O’Reilly also as an early-access book,
Ater [68] aims to teach various technical aspects of PWAs
from a mobile native point of view, suggesting he is Bringing
the Power of Native to the Browser.

The literature situation suggests numerous research pos-
sibilities, as discussed in Section 4.2. Quite notable is the
lack of discussion of PWA development in the realm of iOS,
owed to the current lack of support. While missing support
by Apple might be a major hindrance for the spread of
PWAs, practitioners began to question whether Apple can
retain its position [69].

2.4. Further Approaches

The boundaries between cross-platform apps, PWAs, and
even Webapps are blurry. This can be explained with the
lack of definitions and with a disjunctive distribution of some
technological aspects. Additionally, some approaches do not
serve multi-platform development as the primary goal but
still contribute to it. An extensive study of this phenomenon
is out of scope. Two approaches are noteworthy, though.

The concept of offline-enabling Web sites on mobile
phones is not new. For some time, the Application Cache
(AppCache) was the solution for achieving exactly that [70],
[71]. However, with the introduction of Service Workers, the
AppCache is in the process of being discontinued [72] in
Service Workers’ and thus PWA’s favour.

Another alternative approach is advocated by Micro-
soft [73], named Hosted Web Apps (HWA). The concept fits
in-between web apps and native apps, similar to Progressive
Web Apps. The main benefit of using HWA over PWA is its
tight integration with the Windows platform. This enables
features such as invoking native Windows platform APIs
from the HWA JavaScript codebase [73]. An HWA will
also run cross-Windows, including devices such as PCs,
Windows Phone devices and Xbox. [73] This is indeed an
interesting type of hybrid solution, as it blends platform API
calls into a web setting. This approach can seemingly be
compared to Cordova for hybrid mobile app development,
although limited to the Windows platform.

3. Unified Development

Based on an understanding of the background, we draw
the vision of unified mobile development. Therefore, we
first propose requirements for a unified approach before
looking how the transition from cross-platform frameworks
to PWA follow these. We then scrutinize the possibilities
and limitations of the available technology. Eventually, we
investigate into the status quo of PWA adoption.

3.1. Requirements

Requirements for unified development can be discussed
from two perspectives. First, requirements to design apps

Page 5739



in a multi-platform manner can be scrutinized, e.g. regar-
ding GUI and performance—the conceptual view. Second,
technical requirements can be addressed, e.g. regarding pre-
conditions and bridging elements—the technological view.

We deem the following requirements essential when se-
amlessly building apps for several platforms at a time:

• A user interface (UI) that can be built from the typical
elements, and that provides different layouts,

• the possibility to provide a control flow and various
forms of interaction in an app,

• a look that aligns with design and usability guidelines
for the respective platforms,

• the possibility to define data types and provide basic
create, retrieve, update, and delete, (CRUD) operations,
both on the device and in a client-server model,

• mapping of form fields to a data model, including the
validation of input and the possibility to persist data,

• means to react to input, events and state changes, and
• the possibility to access at least the most common

hardware features.
Moreover, a framework should have a steep learning

curve, support major platforms, and provide timely results.
As should be apparent from the discussion of PWAs, a
sufficient long-term feasibility is a strict requirement [8].

This assessment roughly follows the prerequisites for bu-
siness apps, as proposed by [13], [74]. It has been amended
with insights from the earlier discussed related work as well
as from our considerations presented in this article so far.

Several technological prerequisites can be identified for
the creation of apps that span several platforms. What we
propose again follows general suggestions from the specific
literature (particularly [8]) in conjunction with the thoughts
presented in this article:

• Adequate development support by a development envi-
ronment and tools, as well as good testability of apps,

• a sufficient degree of scalability,
• a near-native performance,
• a good level of maintainability and extensibility of apps,
• interfaces for business functionality, such as support of

backend systems, and
• at least a basic level of framework-integrated security.

3.2. From Cross-Platform Technology to PWAs

At the time of writing, certain technologies required for
Progressive Web Apps to work are still not completely (if
at all) implemented in some major browsers. According
to Is ServiceWorker Ready [75] per mid-2017, Chrome,
Firefox and Samsung Internet do all fully support the Service
Worker specification. Microsoft’s Edge, the successor of
Internet Explorer, states that the Service Worker specifica-
tion is currently being implemented. Regrettably, Apple’s
Safari browser does not implement the specification, but

it is listed as a feature under consideration [76]. However,
representatives from Apple are present at face-to-face W3C
specification meetings regarding Service Workers [77]. Thus,
hopefully Safari will at some point in the future implement
the specification, which would allow PWAs to function
correctly on iOS devices. Due to the current lack of Service
Worker support in Safari, no iOS devices are able to take
full advantage of PWAs, thus limiting them from becoming
a true cross-platform development approach or alternative.

It was previously speculated that Safari’s lack of Service
Worker support might be due to the impact PWAs can have
on the Apple App Store and the income it generates [11] (cf.
also [69]). If users can download and install apps through
their browsers without going through a general app store,
Apple’s app ecosystem may suffer.

PWAs enable cross-platform development outside of just
the mobile sphere. Google Chrome OS users will be able to
install PWAs on their machines, also greatly expanding the
ecosystem of the operating system [78]. The Windows 10
Store will crawl the Web for PWAs and list them in
their store, making PWA a first-class citizen of their app
ecosystem [78], [79]. As a side note, it will be interesting to
see whether or not Microsoft has a business plan for revenue
generation from PWAs marketed through their store.

3.3. Technological Prospects and Limitations

A substantial developer-oriented effort was presented du-
ring Google I/O 2017 [80], where Osmani showcased a
technical baseline for testing JavaScript frameworks against
PWA criteria. The baseline, named HNPWA [81], aims at
helping developers choose a JavaScript front-end framework
for building PWAs. Numerous frameworks are included in
the test, such as React, Preact, Svelte, Vue.js and Angu-
lar. All the tests’ code-bases are open-source, and tests
using new frameworks and approaches can be added to the
HNPWA Web site for others to learn from.

For PWAs, access to device and platform APIs is still con-
strained to those APIs supported by the users’ browsers. This
is one of the major limitations of the PWA approach when
compared to native or cross-platform development where all,
or most, open device APIs are exposed to the developer
through the native SDKs or similar abstractions. Somewhat
reassuring, the Google Chrome team added 215 new APIs
in the last year alone [20], so progress to bridge that gap
is undoubtedly improving. Nevertheless, with the inherent
future introduction of new mobile platform features, PWAs’
access to them is still limited until an HTML/JavaScript
specification has been formalized by W3C and (or at least)
is implemented by browser vendors. Fragmentation of plat-
forms, operating systems versions and browser- and device
capabilities do not help the Web move towards unification.

Interestingly, even concerning programming languages the
Web might see further fragmentation. An notable techno-

Page 5740



logy, slowly gaining traction in the industry, is WebAs-
sembly (wasm), a format and enabler for writing Web
applications using other languages than JavaScript. This may
open the porting of software, specifically of games, which
traditionally only ran as native desktop applications [82]. For
Webapps and PWAs, support for multiple languages might
introduce new developers to the platform, which could lead
to further adoption and proliferation of such apps.

3.4. Status Quo of PWA adoption

During Google’s developer conference, Google I/O 2017,
a number of Progressive Web Apps initiatives were presen-
ted both on-stage and as mentions. Large companies and key
players in the mobile-Web space have already started con-
verting their existing Web apps to PWAs with great success.
This includes the before mentioned Twitter and OLA, both
leading companies within their fields. The companies also
revealed statistics about app sizes and reported increased
usage after PWA adoption [20].

The native Twitter apps for Android and iOS are respecti-
vely > 23MiB and > 100MiB, while their PWA weighs in
at 0.6MiB (600KiBs) still providing most of the expected
features. They also see more than a million home-screen
launches daily, and found their PWA, Twitter Lite, to be of
high importance for emergent markets.[20]. Similarly, OLA,
India’s largest ride-hailing app, found their PWA to weigh
0.20MiB (200 KiBs), considerably smaller than their native
Android and iOS apps, respectively at 60MiB and 100MiB.
OLA categorizes their customers into tiers based on their
location, where tier 3 represents very low-connectivity areas
in India, and tier 1 represents areas with good or decent
connectivity. What OLA experienced was that in tier 3 areas,
a 68% increase of mobile traffic had been observed since
the launch of their PWA, and had a 30% higher conversion
rate than their native app. In tier 2 areas, the conversion rate
from their PWA was at the same rate as their native app.
This illustrates the business potential and importance of the
PWA for a company such as OLA that operates in different
kinds of areas, dealing with low-connectivity situations [20].

Other notable companies working on PWAs include For-
bes, Financial Times, Lyft, Expedia, AliExpress, Tinder,
Flipkart, and Housing.com. These companies and their pro-
ducts represents different niches and markets, illustrating
how PWAs can be a fit anywhere. Again, when mentioning
these names a component of advertisement must be kept in
mind; they notwithstanding illustrate notable spread.

Also during the conference, seven talks were directed
towards the development of- and enthusiasm for this possible
next generation of the mobile Web. PWAs were discussed in
the context of mobile User Experience (UX) [83], support
by technical frameworks [84] [80], performance testing [85]
and migration [86]. Google is obviously pushing PWAs as
an effort to improve the user experience of the mobile Web.

4. Discussion

In the following section, we sketch a vision of emergent
developments. We then elaborate open research questions,
aiming at a better understanding of which of them might be
answered soon and which might remain temporarily open or
even unresolved. Finally, we take steps towards a research
agenda for the unification of mobile app development.

4.1. Emergent Development

Mobile development, whether being native, cross-platform
or Web-based, moves fast with steady streams of new
technical frameworks, approaches and techniques. The result
is a fragmentation of developer communities, development
approaches, and thoughts on how apps should be developed.
In this section, we outline our balanced considerations on
where this type of development is going, focusing on two
main technologies and concepts.

First, with the introduction of Kotlin as a first-class
programming language on the Android platform, more deve-
lopers can arguably get into Android development. However,
additionally interesting is a new effort by Jetbrains, the
creators of Kotlin, named Kotlin/Native [87]. This LLVM-
based backend will aid developers in running Kotlin on non-
(J)VM platforms such as iOS. Thus, the Kotlin language
might be suitable for cross-platform development in the
near future, with default support on Android. The cross-
platform support will not be limited to Android and iOS;
platforms such as MacOS, Ubuntu and Raspberry Pi are
also said to be supported [88]. As Kotlin can also transpile
to JavaScript, similar to other solutions such as CoffeeScript
and TypeScript, developers can now use Kotlin to develop
software across multiple platforms.

Second, we are witnessing proliferation of mobile-first
technical frameworks and development approaches. Where
previous research often cite cross-platform app frameworks
such as PhoneGap, Titanium Appcelerator, DragonRad and
Rhodes [89], [90], [23], [12], a plethora of newer and more
technically updated frameworks have been released lately.
Although very recent papers cover frameworks such as React
Native, Ionic and Fuse [3], but other solutions including
NativeScript [91], Quasar [92] and Apache Weex [93] are
yet to be scrutinized at the same level as e.g. PhoneGap in
an academic context. As PWAs are increasing in popularity,
perhaps we will see another direction of such frameworks,
from development of native(-like) apps rather to target Web
without any native abstractions such as Cordova.

4.2. Open Questions: Towards a Research Agenda

We have taken an approach in this paper that combines
several methodological aspects: it joins a literature study,
a theory-contribution, and a position paper. While this

Page 5741



synthesis allowed us to answer many questions, answering
the underlying research question was only possible to some
degree. Consequently, open questions have risen.

PWA adoption might fall with a lack of iOS support.
Although there might be technological pressure on Apple, it
is very unlikely that PWAs will be a unifier if iOS-based
devices are not supported. Apple has shown in the past
that they can take very consequent positions if they are
not convinced of a technology, as demonstrated with Adobe
Flash [94].

Connected to this unclarity is the problem of predicting
industry adoption. The technological progress is still so rapid
that even educated estimates can easily turn wrong. Indi-
cators such as technological superiority or current market
power are not reliable, as has been demonstrated by the
history of cross-platform app development thus far. It also
remains to be seen if disruptive technological progress can
be made in the area of smartphones and tablets. A stronger
focus on voice control, virtual reality, augumented reality,
and even technology that still has a science fiction appeal
(such as neural interfaces) may be game changers – or not.

Wearables and other novel mobile devices likely will gain
even more momentum in their development – and market
presence. It is currently unclear how well PWAs are suited
for wearables. Even more questionable is whether they make
sense for Internet-of-Things (IoT) devices, which might
come without a graphical user interface. Future research
needs to explore this direction. In particular, it would be
important to learn about gaps that PWAs (and other cross-
platform approaches) pose regarding IoT.

Considering all the technological aspects, the profound
question is how well PWAs will do when the next techno-
logical steps come. The same question of course need to be
asked for any possibly unifying technology. For sketching
a research agenda, we believe that scientific research must
seek to keep pace with the developments. We must not
sacrifice rigour for this, and especially we must not engage
in speculation as would easily be possible as underlined with
the open questions we named. However, we deem work on
the cutting edge vital, if this work manages to build on the
increasingly solid base we have in the understanding of the
modern notion of mobile computing.

Therefore, we propose the following steps:
1) Extend the base of experimental work with PWAs, and

with other novel cross-platform frameworks.
2) Seek case-study-based work with a practical flavour.
3) If technological underpinnings have been fully under-

stood, conduct a large-scale quantitative study with
practitioners.

4) In the meantime, scrutinize the latest developments.
Moreover, we propose joining the activities from research

on mobile apps and that of IoT at yet-to-be-defined interfa-
ces. Both streams of research have much in common, and
much to contribute to each other.

5. Conclusion and Future Work

In this paper, we have presented work on several topics
from modern mobile computing. We have proposed a re-
search question: Can Progressive Web Apps (PWAs) be the
definite approach to cross-platform development? To answer
the question, we have introduced several technologies and
their underpinnings. Based on the background, we have
scrutinized PWAs regarding their possibilities in being an
unifying technology for mobile app development. Whether
we can assert that PWA fulfil many requirements for unified
multi-platform development already, is too early to say
and whether they will be able to replace existing cross-
platform development approaches. Moreover, other note-
worthy technologies are likely to be seen soon.

However, the massive interest by practitioners mandates
further research. At least, PWA can contribute to a richer
development experience, and – eventually – better apps. We
have therefore sketched future developments and suggested
a research agenda. We suggested a balanced approach of
experimental and qualitative work.

While we hope to encourage other researchers as well, our
interest in the topic undoubtedly has been sparked. We will
continue investigating, aiming at closing some of the tasks
we have set out in this paper. Our own work will not only
continue technologically. If the understanding has matured
further, we hope to be able to set a research agenda, based
on the milestones to be achieved until the definite approach
for cross-platform development has been found.

References

[1] M. Macedonia, “iPhones Target the Tech Elite,” Computer,
vol. 40, pp. 94–95, 2007.

[2] M. Usman, M. Z. Iqbal, and M. U. Khan, “A product-line
model-driven engineering approach for generating feature-
based mobile applications,” JSS, vol. 123, pp. 1 – 32, 2017.

[3] T. A. Majchrzak, A. Biørn-Hansen, and T.-M. Grønli, “Com-
prehensive analysis of innovative cross-platform app develop-
ment frameworks,” in Proc. 49th HICSS. IEEE CS, 2017.

[4] T. A. Majchrzak, J. C. Dageförde, J. Ernsting, C. Rieger, and
T. Reischmann, “How Cross-Platform Technology Can Facili-
tate Easier Creation of Business Apps,” in Apps Management
and E-Commerce Transactions in Real-Time, S. Rezaei, Ed.
IGI Global, 2016.

[5] J. C. Dageförde, T. Reischmann, T. A. Majchrzak, and
J. Ernsting, “Generating app product lines in a model-driven
cross-platform development approach,” in Proc. 49th HICSS.
IEEE CS, 2016, pp. 5803–5812.

[6] M. Ciman, O. Gaggi, and N. Gonzo, “Cross-platform mobile
development: A study on apps with animations,” in Proc. 29th
Annual ACM SAC. ACM, 2014, pp. 757–759.

[7] L. Goasduff and A. A. Forni, “Gartner says worldwide sales
of smartphones grew 7 percent in the fourth quarter of 2016,”
2017, http://www.gartner.com/newsroom/id/3609817.

[8] C. Rieger and T. A. Majchrzak, “Weighted evaluation fra-
mework for cross-platform app development approaches,” in
Proc. 9th EuroSymposium, ser. LNBIP, vol. 232. Springer,
2016, pp. 18–39.

Page 5742



[9] S. Evers, J. Ernsting, and T. A. Majchrzak, “Towards a
reference architecture for model-driven business apps,” in
Proc. 49th HICSS. IEEE CS, 2016, pp. 5731–5740.

[10] C. Rieger and T. A. Majchrzak, “Conquering the Mobile De-
vice Jungle: Towards a Taxonomy for App-Enabled Devices,”
in Proc. 13th WEBIST. SciTePress, 2017, pp. 332–339.

[11] A. Biørn-Hansen, T. A. Majchrzak, and T.-M. Grønli, “Pro-
gressive web apps: The possible web-native unifier for smo-
bile development,” in Proc. 13thWEBIST. SciTePress, 2017,
pp. 344–351.

[12] A. Ribeiro and A. R. da Silva, “Survey on cross-platforms
and languages for mobile apps,” in Proc. 8th QUATIC. IEEE
Computer Society, 2012, pp. 255–260.

[13] H. Heitkötter, T. A. Majchrzak, and H. Kuchen, “Cross-
platform model-driven development of mobile applications
with MD2,” in Proc. SAC ’13. ACM, 2013, pp. 526–533.

[14] M. Palmieri, I. Singh, and A. Cicchetti, “Comparison of cross-
platform mobile development tools,” in 16th ICIN, 2012, pp.
179–186.

[15] A. Charland and B. LeRoux, “Mobile application develop-
ment: Web vs. native,” Queueing Syst., vol. 9, no. 4, 2011.

[16] H. Heitkötter, S. Hanschke, and T. A. Majchrzak, “Evaluating
cross-platform development approaches for mobile applicati-
ons,” in LNBIP. Springer, 2013, vol. 140, pp. 120–138.

[17] “PhoneGap,” 2017, http://phonegap.com/.
[18] “Apache Cordova,” 2017, http://cordova.apache.org/.
[19] J. Archibald, “Instant loading: Building

offline-first progressive web apps,” 2016,
https://www.youtube.com/watch?v=cmGr0RszHc8.

[20] R. Roy-Chowdhury, “The mobile web: State of the union,”
2017, https://www.youtube.com/watch?v= ssDaecATCM.

[21] I. Malavolta, G. Procaccianti, P. Noorland, and P. Vukmirović,
“Assessing the impact of service workers on the energy effi-
ciency of progressive web apps,” in Proc. 4th MOBILESoft.
IEEE Press, 2017, pp. 35–45.

[22] N. Bermingham and M. Prendergast, “Bespoke mobile appli-
cation development,” in Handbook of Research on Mobile De-
vices and Applications in Higher Education Settings, L. Briz-
Ponce, J. A. Juanes-Méndez, and F. J. Garcı́a-Peñalvo, Eds.
IGI Global, 2016, ch. 10.

[23] M. Latif, Y. Lakhrissi, E. H. Nfaoui, and N. Es-Sbai, “Cross
platform approach for mobile application development: A
survey,” in Proc. IT4OD. IEEE, 2016, pp. 1–5.

[24] M. Ali and A. Mesbah, “Mining and characterizing hybrid
apps,” in Proc. Int. Workshop on App Market Analytics, ser.
WAMA 2016. ACM, 2016, pp. 50–56.

[25] M. Shafirov, “Kotlin on android. now official,” 2017,
https://blog.jetbrains.com/kotlin/2017/05/kotlin-on-android-
now-official/.

[26] M. LeBlanc, A. Koren, and M. Satran, “Choosing a
programming language,” 2017, https://docs.microsoft.com/en-
us/windows/uwp/porting/getting-started-choosing-a-
programming-language.

[27] S. Xanthopoulos and S. Xinogalos, “A comparative analysis
of cross-platform development approaches for mobile appli-
cations,” in Proc. 6th BCI. ACM, 2013, pp. 213–220.

[28] I. T. Mercado, N. Munaiah, and A. Meneely, “The impact of
cross-platform development approaches for mobile applicati-
ons from the user’s perspective,” in Proc. WAMA. ACM,
2016, pp. 43–49.

[29] I. Malavolta, S. Ruberto, T. Soru, and V. Terragni, “End users’
perception of hybrid mobile apps in the google play store,”
in Proc. IEEE MS 2016. IEEE, 2015, pp. 25–32.

[30] N. Mitrovic, C. Bobedy, and E. Menay, “A review of user
interface description languages for mobile applications,” in
Proc. 10th UBICOMM. IARIA, 2016, pp. 96–101.

[31] A. I. Wasserman, “Software engineering issues for mobile
application development,” in Proc. FSE/SDP, ser. FoSER ’10.
New York, NY, USA: ACM, 2010, pp. 397–400.

[32] L. Delia, N. Galdamez, P. Thomas, L. Corbalan, and P. Pe-
sado, “Multi-platform mobile application development analy-
sis,” in Proc. IEEE 9th RCIS, 2015, pp. 181–186.

[33] M. Willocx, J. Vossaert, and V. Naessens, “A quantitative
assessment of performance in mobile app development tools,”
in Proc. IEEE MS. IEEE, 2015, pp. 454–461.

[34] N. Viennot, E. Garcia, and J. Nieh, “A measurement study of
google play,” in Proc. ACM SIGMETRICS, vol. 42. ACM,
2014, pp. 221–233.

[35] R. Mullins, “Apple’s iphone open to software developers,”
2007, http://www.infoworld.com/article/2662919/.

[36] A. Holzinger, P. Treitler, and W. Slany, “Making apps useable
on multiple different mobile platforms: On interoperability for
business application development on smartphones,” in Proc.
Int. Conf. on ARES. Springer, 2012, pp. 176–189.

[37] H. Heitkötter, T. A. Majchrzak, B. Ruland, and T. Weber,
“Comparison of Mobile Web Frameworks,” in Revised Se-
lected Papers WEBIST 2013, ser. LNBIP, K. Krempels and
A. Stocker, Eds., vol. 189. Springer, 2014, pp. 119–137.

[38] A. Juntunen, E. Jalonen, and S. Luukkainen, “Html 5 in
mobile devices–drivers and restraints,” in Proc. 46th HICSS.
IEEE, 2013, pp. 1053–1062.

[39] M. Firtman, “Mobile HTML5 compatibility,”
https://mobilehtml5.org/.

[40] M. Ciman and O. Gaggi, “An empirical analysis of energy
consumption of cross-platform frameworks for mobile deve-
lopment,” Pervasive and Mobile Computing, 2016.

[41] Gartner, “Gartner – worldwide sales of smartphones,” 2017,
http://www.gartner.com/newsroom/id/3609817.

[42] T. A. Majchrzak and H. Heitkötter, “Status Quo and Best
Practices of App Development in Regional Companies,” in
Revised Selected Papers WEBIST 2013, ser. LNBIP, K. Krem-
pels and A. Stocker, Eds., vol. 189. Springer, 2014, pp.
189–206.

[43] H. Heitkötter, T. A. Majchrzak, U. Wolffgang, and H. Kuchen,
Business Apps: Grundlagen und Status quo, ser. Working
Papers. Förderkreis der Angewandten Informatik an der
WWU Münster e.V., 2012, no. 4.

[44] T. A. Majchrzak, J. Ernsting, and H. Kuchen, “Achieving
business practicability of model-driven cross-platform apps,”
OJIS, vol. 2, no. 2, pp. 3–14, 2015.

[45] T. Stahl, M. Voelter, and K. Czarnecki, Model-Driven Soft-
ware Development. Wiley, 2006.

[46] V. M. Ionescu, “Using cross platform development libraries.
telerik mobile,” in 2016 15th RoEduNet Conference: Networ-
king in Education and Research, 2016, pp. 1–6.

[47] LiTian, HuaichangDu, LongTang, and YeXu, “The discussion
of cross-platform mobile application based on phonegap,” in
4th ICSESS, 2013, pp. 652–655.

[48] B. R. Mahesh, M. B. Kumar, R. Manoharan, M. Somasunda-
ram, and S. P. Karthikeyan, “Portability of mobile applications
using phonegap: A case study,” in Proc. ICSEMA, 2012, pp.
1–6.

[49] J. Ohrt and V. Turau, “Cross-platform development tools for
smartphone applications,” Computer, vol. 45, no. 9, pp. 72–
79, 2012.

[50] S. Charkaoui, Z. Adraoui, and E. H. Benlahmar, “Cross-

Page 5743



platform mobile development approaches,” in Third CIST,
2014, pp. 188–191.

[51] M. Martinez and S. Lecomte, “Towards the quality impro-
vement of cross-platform mobile applications,” in Proc. 4th
MOBILESoft. IEEE Press, 2017, pp. 184–188.

[52] H. Heitkötter, S. Hanschke, and T. A. Majchrzak, “Evalu-
ating Cross-Platform Development Approaches for Mobile
Applications,” in Revised Selected Papers WEBIST 2012, ser.
LNBIP, vol. 140. Springer, 2013, pp. 120–138.

[53] T. F. Bernardes and M. Y. Miyake, “Cross-platform mobile
development approaches: A systematic review,” IEEE Latin
America Trans., vol. 14, no. 4, pp. 1892–1898, 2016.

[54] A. Hudli, S. Hudli, and R. Hudli, “An evaluation framework
for selection of mobile app development platform,” in Proc.
3rd MobileDeLi, 2015.

[55] S. Dhillon and Q. H. Mahmoud, “An evaluation framework
for cross-platform mobile application development tools,”
Software – Prac. and Exp., vol. 45, no. 10, pp. 1331–1357,
2015.

[56] A. Sommer and S. Krusche, “Evaluation of cross-platform
frameworks for mobile applications,” LNI, vol. P-215, 2013.

[57] I. Dalmasso, S. K. Datta, C. Bonnet, and N. Nikaein, “Survey,
comparison and evaluation of cross platform mobile applica-
tion development tools,” in Proc. 9th IWCMC, 2013.

[58] P. LePage, “Your first progressive web app,” 2017,
https://developers.google.com/web/fundamentals/getting-
started/codelabs/your-first-pwapp/.

[59] Google Developers, “Progressive web app checklist,”
2017, https://developers.google.com/web/progressive-web-
apps/checklist.

[60] M. Guant and P. Kinlan, “The web app manifest,” 2017,
https://developers.google.com/web/fundamentals/engage-and-
retain/web-app-manifest/.

[61] A. Osmani and M. Gaunt, “Instant loading web
apps with an application shell architecture,” 2017,
https://developers.google.com/web/updates/2015/11/app-
shell.

[62] A. Osmani, “The PRPL pattern,” 2017, https://developers.
google.com/web/fundamentals/performance/prpl-pattern/.

[63] M. Gaunt, “Service workers: an introduction,” 2017,
https://developers.google.com/web/fundamentals/getting-
started/primers/service-workers.

[64] M. Nebeling and M. C. Norrie, “Responsive design and
development: Methods, technologies and current issues,” in
Proc. ICWE. Springer, 2013, pp. 510–513.

[65] “Lighthouse,” 2017, https://developers.google.com/web/tools/
lighthouse/.

[66] Google, “Pwa dev summit 2016,” 2016,
https://events.withgoogle.com/progressive-web-app-dev-
summit/.

[67] D. A. Hume, Progressive Web Apps. Manning, 2017,
https://www.manning.com/books/progressive-web-apps.

[68] T. Ater, Building Progressive Web Apps: Bringing the Po-
wer of Native to the Browser. O’Reilly Media, 2017,
http://shop.oreilly.com/product/0636920052067.do.

[69] M. Asay, “Apple could lose billions on pro-
gressive web apps, but it has no choice,” 2017,
http://www.techrepublic.com/article/apple-could-lose-
billions-on-progressive-web-apps-but-it-has-no-choice/.

[70] T. A. Majchrzak and T. Hillmann, “Offline-Provisioning and
Synchronization of Content for Mobile Webapps,” in Proc.
11th WEBIST. SciTePress, 2015, pp. 601–612.

[71] S. J. Vaughan-Nichols, “Will HTML 5 restandardize the
web?” Computer, vol. 43, no. 4, pp. 13–15, 2010.

[72] Mozilla Developer Network, “Using the application
cache,” 2017, https://developer.mozilla.org/en-
US/docs/Web/HTML/Using the application cache.

[73] Microsoft, “Hosted web apps,”
https://developer.microsoft.com/en-
us/windows/bridges/hosted-web-apps.

[74] H. Heitkötter, H. Kuchen, and T. A. Majchrzak, “Extending
a Model-Driven Cross-Platform Development Approach for
Business Apps,” Science of Computer Programming (SCP),
vol. 97, Part 1, pp. 31–36, 2015.

[75] J. Archibald, “is Serviceworker ready?” 2017,
https://jakearchibald.github.io/isserviceworkerready/.

[76] “WebKit Feature Status: Service Workers,” 2017,
https://webkit.org/status//#specification-service-workers.

[77] S. István, “Serviceworker f2f – 03 apr 2017,”
2017, https://www.w3.org/2017/04/03-serviceworkers-
minutes.html.

[78] S. Birch and A. Russell, “Progressive web apps:
Great experiences everywhere,” USA, 2017,
https://www.youtube.com/watch?v=m-sCdS0sQO8.

[79] J. Rossi, “The progress of web apps
- microsoft edge dev blog,” 2016,
https://blogs.windows.com/msedgedev/2016/07/08/the-
progress-of-web-apps/.

[80] A. Osmani, “Production progressive web apps
with JavaScript frameworks,” USA, 2017,
https://www.youtube.com/watch?v=aCMbSyngXB4.

[81] “Hacker news readers as progressive web apps,” 2017,
https://www.hnpwa.com.

[82] Callahan and Dan, “Firefox 52: Introducing web assem-
bly. . . ,” 2017, https://hacks.mozilla.org/2017/03/firefox-52-
introducing-web-assembly-css-grid-and-the-grid-inspector/.

[83] O. Campbell-Moore, “Creating UX that “just feels
right” with progressive web apps,” USA, 2017,
https://www.youtube.com/watch?v=mmq-KVeO-uU.

[84] A. Fluin and S. Rickabaugh, “Great progressive
web app experiences with angular,” USA, 2017,
https://www.youtube.com/watch?v=C8KcW1Nj3Mw.

[85] B. Bidelman and E. Kenny, “Staying off the rocks: Using
lighthouse to build seaworthy progressive web apps,” USA,
2017, https://www.youtube.com/watch?v=NoRYn6gOtVo.

[86] J. Gasperowicz and E. Posnic, “WomenTechmakers.com—
A progressive web app migration,” USA, 2017,
https://www.youtube.com/watch?v=fyi7auD5MzU.

[87] “Jetbrains/kotlin-native,” 2017,
https://github.com/JetBrains/kotlin-native.

[88] A. Breslav, “Kotlin/Native tech pre-
view: Kotlin without a VM,” 2017,
https://blog.jetbrains.com/kotlin/2017/04/kotlinnative-tech-
preview-kotlin-without-a-vm/.

[89] P. Smutný, “Mobile development tools and cross-platform
solutions,” in Proc. 13th ICCC. IEEE, 2012, pp. 653–656.

[90] I. Malavolta, S. Ruberto, T. Soru, and V. Terragni, “Hybrid
mobile apps in the google play store: An exploratory inves-
tigation,” in Proc. 2nd MOBILESoft. IEEE Press, 2015, pp.
56–59.

[91] “Nativescript,” 2017, https://www.nativescript.org/.
[92] R. Stoenescu, “Quasar framework,” 2017, http://www.quasar-

framework.org/.
[93] “Weex,” 2017, https://weex.apache.org/.
[94] S. Jobs, “Thoughts on flash,” 2017,

https://www.apple.com/hotnews/thoughts-on-flash/.

Page 5744


