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Abstract

In cyber defense, integrated deception mechanisms
have been proposed as part of the system operation
to enhance security by planting fake resources. The
objective is to entice attackers and confuse them in
determining the legitimacy of those resources. Although
several strategies exist to implement deception in
a software system, developing and integrating such
solutions are primarily made in an ad-hoc fashion. This
hinders reuse and does not consider the operation life
cycle management. Additionally, support for adaptive
deception is not considered. To alleviate these problems,
we propose a framework based on software product lines
and aspect-oriented techniques to generate adaptive
deception-based defense strategies. We illustrate the
feasibility of our approach with an example from the web
applications domain, by integrating honeywords into an
authentication mechanism to mitigate offline password
cracking attacks.

1. Introduction

Modern software systems intrinsically operate over
a complex, hyper-connected eco-system comprising
a diverse range of third-party components, accentu-
ating the systems exposure to adversaries. Attackers
constantly evolve their tactics to bypass security mecha-
nisms and exploit zero-day vulnerabilities. This calls for
more advanced security techniques to actively engage
adversaries with customized responses and mitigation
strategies. Studies on evolutionary biology show that
deception plays a key role in the evolution of creatures,
representing an advantage over their competitors [1].
This idea has echoed in the virtual world where the use
of deception techniques for defense is currently a rele-
vant component of active defense [2]. Deception aims
at altering the perception of attackers by using negative
information (fictions) or deliberate actions in favor of
the defense [3].

Perhaps the most representative research area on

deception-based defense lies on honeypots [4]. A
honeypot is classified as a security resource designed
to entice attackers; its value lies in being compro-
mised. Traditionally, honeypots are built as confined
network endpoints, i.e., sandboxed systems (physical
or virtual) configured to appear vulnerable to adver-
saries but without any integration with real systems.
However, the threat landscape is very dynamic, and
deception mechanisms have evolved to be part of the
system operations, constituting multi-layer deception-
based defense [5]. Examples of integrated decep-
tion defense include deceptive password cracking and
leakage [6, 7], software diversity [8], and, more recently,
integrated honeypot operation [9].

Several strategies exist to implement deception in a
system [2]. A program or even the operating system can
be modified by hand to incorporate deceptive elements.
More systematically, deception is integrated by using
wrappers [10] on regular code and generalized by decep-
tion control policies that govern the level of suspicious-
ness, resources in the operating system/application,
actions applied to resources, and the deceptions that
should be applied. Coarse-grained approaches (e.g.,
honeypots and honeynets) use virtualization technolo-
gies to simulate real systems, requiring a significant
amount of configuration and tuning to look like a real
system [11]. Despite the advances in techniques to
implement these strategies, there is a lack of systematic
approaches that manage integrated deception life cycle,
especially at the application level. Such an approach is
important because the implementation of deception is
not a trivial task [12]. Some situations require the oper-
ation to adapt to events occurring in the system context
in aim of maintaining a plausible story. From the soft-
ware engineering perspective, implementing deception
and decoys adds to the concerns developers must deal
with. Thus, reuse and seamless integration of deception
into system components are key aspects towards a wider
adoption of such technologies.

This paper proposes an approach to enhance the
development process of self-managed integrated decep-
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tion operations. It uses software product line (SPL)
engineering, a well-known and widely-used technology
in industry, to express deception strategies in a system
[13, 14]. While deception can be applied in different
layers of computation, we focused our approach on the
application-level. It is at this level that a deception archi-
tecture can be best tuned to a specific software [15]. In
particular, our contributions are: (i) a reusable solution
based on SPL to produce multilevel deception defense,
(ii) an architectural pattern to manage the phases of
deception operations life cycle, (iii) a seamless integra-
tion of deception into system operations using aspect-
orientation, and (iv) an architecture to manage adapta-
tion on strategic and operational levels.

The remainder of this document is organized as
follows. Section 2 presents the fundamental concepts of
deception-based defense and SPL. Section 3 introduces
our framework and describes the process to integrate
deception mechanisms into a system based on SPL.
Section 4 presents an instantiation of our framework
using a general web application threat model. Finally,
Section 5 describes related work, and Section 6 draws
conclusions and suggests future work.

2. Background

2.1. Deception-based defense

The use of deception to enhance security in computer
systems is a significant component of active defense.
While traditional security mechanisms explicitly deny
unauthorized accesses to system resources and obfus-
cate sensitive data, deception aims at leading attackers
astray by drawing their attention to other pieces of decoy
data and components specially crafted to mislead them.
Typically, deception is not applied as a single mecha-
nism for software systems defense. Instead, it is used
orthogonally with techniques of denial and obfuscation,
which brings particular opportunities for defense [2].
For example, adversaries are manipulated to spend more
resources and time to accomplish tasks, which opens
the possibility of learning about the attackers’ modus
operandi rather than merely monitor, detect, and block
intrusions. Hence, deception techniques might enable
the detection of zero-day attacks while reducing false-
positives, a recurrent problem in traditional intrusion
detection systems.

A key aspect of any deception operation relies on
its ability to maintain a plausible story to adversaries.
If a decoy resource is easily identified by adversaries,
the operation will fail. Thus, the deception operation
should be tightly integrated with the real system oper-
ation [16]. To incorporate deception operations into a

system, both deception and system mechanisms must
work in tandem to cope with the overall security of an
application. The process of creating and operational-
izing deception mechanisms can be complex, depending
on how deception stories are related to each other, and
how operational failures influence the operation [3]. For
example, in a web application, decoy mechanisms can
be associated with cookies, session control, CAPTCHA
components, directories, passwords, etc. All of these
mechanisms might be part of multiple stories. Also,
solutions for problems that might occur during operation
must be anticipated. Examples include solutions when
the deception story is not received, or when the target
discovers the deception, the story is not interpreted as
intended, or the intended action is not taken.

Fig. 1 illustrates the general process of deception. It
is divided into four phases: Development, Deployment,
Target Engagement, and Termination.

Figure 1. Deception process, adapted from [3]

Development. Planning is an interactive process that
specifies the goals and objectives of the deception oper-
ation, the requirements and the target of the operation.
The planner also identifies and analyzes risks associ-
ated with the deception operation, identifies responses
for problems, and specifies the integration of the decep-
tion with other operations. During the Building process,
a deception story is constructed, and feedback channels
along with the termination plan are implemented. A
deception story represents how the attacker will interact
with the deception, which components will be placed
during the operation and how these components interact
with each other. Feedback channels provide the neces-
sary information to analyze the operation and decide to
continue or terminate. The termination plan specifies the
activities performed during the finalization of the opera-
tion, such as clean up decoy components and bogus data
from the system. Engagement settings determine how to
exploit target actions, i.e., how to respond when a target
engages the deception. Response to problems is delim-
ited during the Engagement settings phase.
Deployment. The deception story is presented to the
target in his observation field. At this point, the decep-
tion operation is out of the planner’s control until some
event (like a target interaction) suggests the operation is
required to evolve.
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Target Engagement. Engagement occurs when the
target receives the deception story, accepts it (consider
the story real), and, consequently, takes the intended
action(s). Exploiting targets response represents the
system functions performed when the target is deceived,
which includes continuing the operation as-is, termi-
nating the operation, or evolving it by returning to Plan-
ning.
Termination. Terminating includes the process of
cleaning-up resources and tracks, and controlling the
exposure of the operation.

2.2. Software product lines

SPL engineering refers to the methods, tools, and
techniques for creating and maintaining a platform of
common software systems from a shared set of software
assets [17]. Its primary motivation relies on the fact
that many parts of a software system share a common
set of domain characteristics, meaning that SPLs stem
from the need to facilitate mass customization of prod-
ucts. Instead of starting from scratch to produce a new
product, we identify and describe throughout the devel-
opment process where that products features may differ
from others. A feature is a characteristic of a product
that is visible to a stakeholder in some way [18].

A key aspect of SPL is managing the variabilities of
the product line. Specifying variabilities can be done
in several ways (from informal to formal approaches),
but in general, feature models [18] and the Common
Variability Language (CVL) [19] are popular choices.
Feature models are tree-like structures that hierarchi-
cally decompose features using mandatory, optional or
alternative refinements. CVL is a domain-independent
language to specify and resolve variability in any
(MOF)-based metamodel.

A typical SPL process comprises two phases:
domain engineering and application engineering.
Domain engineering models the domain concerns and
establishes the foundation for deriving individual prod-
ucts, the remit of application engineering. In domain
engineering, common features are intuitively identified
and then variabilities are specified. The outcome of the
domain engineering is a platform for a product line that
aggregates necessary software artifacts (requirements,
design, tests, etc.) that can be reused in other products.
In SPL, each model is a product. The application
engineering is the process responsible for generating
product line applications from the platform established
in the domain engineering. It exploits variabilities of
the product line and ensures the correct binding of
the variabilities according to the applications’ specific
needs.

3. SPL Framework for Adaptive
Deception-based Defense

Our goal is to develop an appropriate reuse mecha-
nism to develop multi-level deception defense, paying
particular attention to the variability of deception tactics
and their self-management. Fig. 2 presents the SPL
process to integrate deception-based defense, which is
compromised of three main phases: Domain Strategy
Engineering, Application-level Strategy Engineering,
and Weaving Process. To apply our process, devel-
opers only have to focus on the application-level strategy
engineering. More specifically, a particular application
threat model is selected and filtered with relevant threats
chosen to be handled. Based on these threats, a configu-
ration is derived automatically with the associated archi-
tecture. Finally, a weaving process containing compo-
sition rules adds deception capabilities to the system.
Each element of our approach is detailed next.

The Deception Tactics Analysis provides the specifi-
cation for a Deception Variability Model (DVM). Two
base models provide common features for a DVM:
the Deception Base Model providing base features
concerning any deception tactic, and the Self-Adaptive
Base Model providing base features concerning adapta-
tion. The Deception Base Model comprises abstract and
concrete features, as shown in Fig. 3.

Setup is an abstract feature encompassing all setup
procedures to execute the deception tactic. Configura-
tion includes Action Policy and Alerts. Action Policy
refers to features describing the actions performed when
a deception tactic is engaged, or when the deception
fails for some reason. Similarly, Alerts refers to alarms
that might be triggered when certain events occur, such
as an interaction with some deceptive element or a
relevant modification in the environment. Services
will be refined into concrete functional features, i.e.,
those features that will realize the deception tactic. In
our model, all deception tactics should be capable of
being managed (Management) by activating (Activa-
tion) and deactivating (Deactivation) them. Option-
ally, a tactic can be temporarily enabled (Enabling) or
disabled (Disabling), depending on the deception policy
applied in the system. The last feature is Termina-
tion, which is composed of the features Clean up (for
removing deception traces and control exposure of the
tactic, so that it can be reused in further opportunities)
and Reorganization (rearranging components to elimi-
nate deceptive capabilities).

The Self-Adaptive Base Model (Fig. 4) represents
a set of features that add self-adaptation capability to
the system. Note that this is an abstract model that can
be realized by different kinds of existing technologies
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Figure 2. SPL Process for Integrated Deception-based Defense

Activation

Deception	Base	Model

ServicesConfiguration Management TerminationSetup

DeactivationAction	Policy Alerts Clean	up ReorganizationEnabling Disabling

Abstract Concrete Optional Mandatory Or

Figure 3. Deception Base Model

(e.g. [20, 21]) or implemented specifically for an appli-
cation. Adaptation is achieved by three basic features,
inspired on MAPE-K loop [22]: Monitoring, Analysis,
and Reconfiguration. Monitoring collects, normalizes,
and correlates events occurring in the system or the
environment (context). It can be accomplished through
several techniques, using multiple channels to collect
data. Examples include event log verification, code
instrumentation, and external sensors. The analysis is
where a decision to adapt is made. It consists of three
steps: (i) aggregate and transform the systems state and
context data into meaningful data according to adap-
tation decision policies, (ii) analyze synthesized data
and rank eligible system configurations, based on vari-
ability and architectural models, (iii) decide on reconfig-
uring the system by updating architectural models with
the corresponding generation of reconfiguration scripts.
Finally, reconfiguration executes architectural modifi-
cations or parameter adjustment on the application to
reflect a new system state. It is also responsible for the
execution process, requiring some degree of access to
recovery procedures in case of failures during adapta-
tion.

The features of the Deception Variability Model are
automatically inherited from the base models (Decep-
tion Base Model and Self-Adaptive Base Model). In

Self-Adaptive	Base	Model

Monitoring Analysis Reconfiguration

Adaptation

Abstract Optional Mandatory

Figure 4. Self-Adaptive Base Model

the domain strategy engineering, a number of decep-
tion tactics can be available for a domain threat model.
Let DDT (d, dt) be a set of available domain deception
tactics in a particular domain d with a declared threat
model dt, and DVM a deception variability model,
DDT (d, dt) = (DVM1, DVM2, . . . , DVMn), we
define a DVMx = (DBM,ABM,Fx), where DBM
is a set of features related to the deception base model,
ABM is a set of features related to self-adaptive base
model, and Fx is a set of particular features of the decep-
tion tactic.

The next step is to map the variability model to
the components of the deception architecture, i.e., the
base model. This mapping is done by using bindings
that link the variation points of the variability model
to the UML design of the deception architecture model
(DAM). Fig. 5 presents a partial view (high-level,
conceptual) containing core components and depen-
dencies of the deception architecture model. Decep-
tion Tactic is the component that initializes the tactic
and communicates with other services and adaptation
components of the system. Specific services provided
by a tactic are extended from the D-Service component.
Other features in the model are straightly associated to
one single component in the architecture (e.g., Setup to
D-Setup, Action policy to D-Action Policy, D-Alerts,
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D-Management, and so on). Adaptation is supported,
as mentioned previously, by three core components:
Monitor, Analysis, and Reconfiguration. We omit inter-
faces and other specialized components due to space
constraints.

Figure 5. Deception architecture (excerpt)

3.1. Application-level Strategy Engineering

The Application-level Strategy Engineering (center
Fig. 2) generates a valid configuration (or customiza-
tion) of the variability model to add deception in a
system. To increase flexibility in creating distinct
configurations for a particular application, we consider
a simple hierarchical structure composed by deception
operation and strategies. An operation contains one
or more strategies, and a strategy is composed of one
or more tactics. Strategies own their specific compo-
sition rules, thus enabling a particular strategy (during
the bootstrap or during adaptation) automatically acti-
vating all of its tactics. Fig. 6 illustrates a configuration
based on strategies, where Deception Strategy 1 has two
mandatory tactics (1 and 2), and Deception Strategy 2
has a mandatory (3) and an optional one (4).

A process to identify potential deception tactics
is offered in [23]. Deception Strategy Configuration
(center Fig. 2) selects a proper configuration, i.e., the
tactics that will enhance the defense against the selected
threats. Once these features are selected, a Decep-
tion Strategy Configuration is automatically created
conforming to the DVM. Throughout the Deception
Strategy Resolution, the Deception Strategy Architec-
ture is automatically derived with components realizing
the tactics.

To illustrate these steps, consider, for example,
that a password cracking attack has been identified
in a domain threat model (see detailed example in
Section 4). During domain engineering, three decep-
tion tactics are included: Honeywords [6], Ersatz-
passwords [7], and honeyaccounts (fake accounts).
Honeywords and Ersatzpasswords are mutually exclu-

Deception	Operation	
Application	XYZ

Tactic	4

Deception	Strategy	1 Deception	Strategy	2

Tatic 2Tatic 1 Tactic	3

Abstract Concrete Optional Mandatory

Figure 6. Deception Strategies

sive tactics. This restriction must be expressed during
domain engineering. During the application-level
strategy engineering, a developer could choose to imple-
ment honeyaccounts and honeywords tactics and set
specific features according to the variability points. For
example, Enabling and Disabling features (Fig. 3)
could not be part of the honeywords tactic but acti-
vated for honeyaccounts. Therefore, distinct tactics can
be selected with different features to compose the final
architecture.

3.2. Weaving process

During the weaving process (bottom Fig. 2), the
Final Application Architecture is constructed based on
Weaving Rules that determine how to compose decep-
tion components into the System Architecture. Each
feature in our model results in one or more compo-
nents or interface/ports of components. Components
can be expressed as black box entities, or as aspects
[24], that will be composed to generate the final archi-
tecture. Weaving Rules determine which point of the
system deception elements will actuate, considering
common and specific features of a particular tactic.
Such a weaving process allows keeping deception tactic
concerns separated from system components, promoting
reuse and facilitating work distribution among the devel-
opers teams. Also, as deception can be injected into the
system dynamically, the system results more flexible.

4. Illustrative Example

This section illustrates the applicability of our
approach with a scenario from the web application
domain.

4.1. Domain Strategy Analysis

The pervasive use of web applications offering crit-
ical services opens a significant range of security threats.
We start by building (or selecting) a threat model for the
web application domain. There are many methodolo-
gies and tools to create and represent a threat model,
including agile methods and attack trees [25], misuse
case graphs [26], CORAS [27], or STRIDE [28]. We
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use attack trees as they allow identifying scenarios
uniquely, facilitating the matching process during appli-
cation engineering. To identify attack scenarios, we
use the OWASP attack catalog [29], a well-established
source of web-application security information.

Fig. 7 presents an attack tree snippet containing
three attackers goals: Reveal passwords, Cookie
exploitation, and Web parameter tampering. To reveal
passwords, attackers may perform Off-line password
cracking (1), or Unauthorized access exploitation (2), or
Online password exploitation (3), or Social exploitation
(4). Cookie exploitation can be done by Cookie theft
(1), Cookie poisoning (2), and Cross-Site cooking (3).
Finally, Web parameter tampering could be achieved
by Hidden form field manipulation (1), or Tamper with
URL parameters (2). In our illustrative scenario, we
will focus on three attacks: Off-line password cracking,
Cookie Poisoning, and Hidden Form field manipulation.

Goal: Reveal	passwords
1 Off-line	password	cracking (OR)
1.1 Stolen	password	hashes (AND)

1.1.1 Stolen	DB/Files (OR)
1.1.2 Compromised	endpoint

1.2 Password	guessing
1.2.1 Dictionary	attack (OR)
1.2.2 Brute	force (OR)
1.2.3 (pre-computed)	Rainbow	table	attack

2 Unauthorized	access	exploitation (OR)
3 Online	password	exploitation (OR)
3.1 Password	guessing (OR)

3.1.1 Dictionary	attack (OR)
3.1.2 Brute	force (OR)
3.1.3 (pre-computed)	Rainbow	table	attack

4 Social	exploitation
4.1 Shoulder	surfing (OR)
4.2 Phishing

Goal: Cookie	exploitation
1 Cookie	theft (OR)
2 Cookie	poisoning (OR)
3 Cross-site	cooking

Goal: Web	parameter	tampering
1 Hidden	form	field	manipulation (OR)
2 Tamper	with	URL	parameters

Figure 7. Attack Tree Snippet of Web Apps

During domain strategy analysis we can select or
build a tactic using different levels of abstraction. As
previously mentioned, we can use honeywords or ersatz-
passwords as a deception-base defense tactic for off-
line password cracking. Both tactics present different
features that would be enacted in consonance with the
application requirements during the application-level
strategy analysis. Cookie poisoning is a classical attack
where an attacker manipulates the value of a cookie to
exploit some vulnerability in the application. Similarly,
a hidden field can be shaped to catch some undesired
behavior from the application.

A deception variability model for these attacks is
shown in Fig. 8. The deception operation is composed

of four tactics: Password tactics (Honeywords and
Ersatzpasswords), Honeyaccounts, Honeyforms, and
Honeycookies. Each tactic contains features derived
from the Deception Base Model and the Self-Adaptive
base Model. Honeywords illustrates the basic features
(Setup, Configuration, Management, Services, Termina-
tion, and Adaptation). Basic features can be more or less
restrictive conforming to the tactics rules. For example,
Configuration is not a mandatory feature in the base
model, but it is compulsory for this particular implemen-
tation of honeywords. Honeyforms considers injecting
bogus hidden fields in a page. Similarly, Honeycookies
inserts false cookies in the application, and Honeyac-
counts creates fake user accounts in the system. Any
activity of modifying a hidden field, a cookie value or
use a honeyaccount (e.g., to login) indicates an abnormal
behavior that increases the level of alert in the system.

Password	tactics
Honeywords

Setup
Configuration
Management
Services
Termination
AdaptationErsatzpasswordsHoneyaccounts

Honeyforms
Honeycookies

17

6

10

5

3Web	Deception	
Operation

Abstract Concrete Optional Mandatory Alternative

Figure 8. DVM for Web App domain

In our example, we will detail honeywords because
they allow illustrating both basic and self-adaptive
features. Honeywords is a deception-based mechanism
proposed to detect the theft of a password repository.
For each user account ui, a list Wi of k sweetwords is
created where one password (the sugarword) is correct
and k − 1 passwords (the honeywords) are fake. Sweet-
words are generated by an algorithm Gen(k), which
output is the list Wi = (wi, 1, wi, 2, . . . wi, k) and an
index c(i) representing the correct password. Alterna-
tively, the procedure Gen allows an additional argu-
ment in the form of a user-supplied password pi. Thus,
Gen′(k, pi) guarantees that pi is a password within Wi,
i.e. pi = Wi,C(i). While a central server keeps all
hashed sweetwords (H(wi)), the index of the correct
password for each user is stored in an additional server,
the honeychecker. Honeychecker provides a simple
service interface that accepts check(i, j) and set(i, j)
commands to verify whether c(i) = j and set updates
c(i) have value j, respectively.

Adversaries who steal the password repository from
the central server and reverse the hashed passwords
should not be able to determine easily which one is
the correct password. Any attempt to authenticate in
the system with a honeyword triggers an event (e.g,
an alarm to the administrators). The authentication
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scheme proceeds as follows: the input password (H(p))
is checked (as usual) against the hashed sweetwords. If
the provided password does not match any sweetword,
the login fails. If it matches a sweetword, the central
server queries the honeychecker using a secure commu-
nication channel. If the checking finds the same index
(c(i) = j), the login process authenticates the user.
Otherwise, a honeyword is being used and, depending
on the system security policy various actions can occur:
an alert can be triggered, blocking the account for veri-
fication (for example), and a deception message can be
sent to the adversary (e.g., the system is currently under
maintenance).

A critical process in the honeyword solution is the
generation of the sweetwords (honeywords and sugar-
word). All sweetwords should have the same proba-
bility of being selected by an adversary (flatness). For
example, the sugarword L0b125 with associated honey-
words L0b122, L0b124 and L0b123, initially gives no
clue to an attacker about which is the correct password.
In general, honeywords generation methods are divided
into two categories: preserved legacy user interface (UI)
and modified user interface. Additional details about
honeywords generation methods (e.g., Chaffing by tail
tweaking, Chaffing by tail tweaking digits, Chaffing
with a password model, and Take a tail) are presented
in [6].

Honeywords provide four basic services (Honey-
word building, Flatness checker, Check password, and
Set password), as illustrated in Fig. 9. Honeyword
building is responsible for generating the honeywords,
while Flatness checker checks the level of flatness of the
password. Check password and Set password are basi-
cally proxies for honeychecker functions. We assume
the honeychecker is functional as an available external
component. At least one algorithm to build the honey-
words must be chosen (certain compositions are valid).
Thus the relation OR (Typo-safe, Though nut, Chaffing
by tweaking-digits, Chaffing by tail-tweaking, Password
model, Take a tail) holds. Setup is an optional abstract
feature; a concrete subfeature, for instance, would reset
all passwords to be changed in the next user access,
opening the opportunity to generate more honeywords.
This task is performed only once, during the setup of the
tactic.

Configuration considers Action Policy from the base
model, and adds the K-coefficient feature, which repre-
sents the number of honeywords to be created for each
user. We do not show the complete set of features in
Fig. 9 (some are collapsed showing only the number
of subfeatures), but we describe the key concepts of
the model as follows. Management assumes enabling
and disabling services as optional. Disabling is either

refined into a XOR relation, considering disabling the
tactic that monitors or removes monitoring capabilities.
Action Policy is refined into features that specify what
to do when the deception is engaged. This includes turn
the computer off (turning down the entire system), shift
the responses to a honeypot shifting (responses based
on a honeypot system), and perform some action on the
user account, such as password resetting and account
blocking. Of course, these solutions have pros and
cons that should be analyzed before activating them in
a system. Adaptation, in our practical example, was
left with basic features. However, subfeatures could be
created to facilitate the work of activating them during
applicationlevel strategy analysis. We do not show the
mapping between features and components. Neverthe-
less, this is done in conformance with the deception
architectural model presented in Fig. 5.

Web	Deception	Operation

Password	tactics

Honeywords HoneycookiesHoneyformsHoneyaccountsErsatzpassword

Setup Configuration Management Services Termination Adaptation
5 3

K-coefficient
Action	Policy

11

Alerts
3

Honeyword building
6 Flatness	checker

Check	password

Set	password

6

Abstract Concrete Optional Mandatory Alternative

Figure 9. Services feature of Honeywords

4.2. Application-level Strategy Analysis

The application-level strategy analysis is intended
to generate the final architecture of an application.
Consider, for example, that a web-based financial
system has been developed, and deception mechanisms
are deemed to enhance the security of the application.
The first step during this phase is to select the domain
features that satisfy the application requirements. To
generate a valid tactic configuration, the software archi-
tect/security engineering maps the application threat
model containing selected threats to the features (tactics)
of the DVM. The process compares specific threats with
domain threats to filter which deception tactics could be
selected.

After selecting the tactics that will be used in the
application, the strategies can be composed. If only one
strategy is necessary for the system, all selected tactics
will be part of this strategy. Otherwise, different compo-
sitions with their respective constraints can be consid-
ered. Fig. 10 illustrates a deception strategy configu-
ration for our illustrative financial system. Strategy 1
is compounded by honeywords and honeycookies, and
Strategy 2 contains honeywords, honeycookies, honey-
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forms, and honeyaccounts. Honeywords are mandatory
in both strategies, but honeycookies are optional only in
strategy 1.

Once the deception strategy is set, the model can be
refined with specific features for the application. In our
example, lets use Strategy 1 to exemplify the feature
refinement. The feature Alerts (from Configuration) can
be refined into Admin SMS, Admin email, and Event
log, representing alerts by SMS to administrators, alerts
by mail and event log entry, respectively. Also, adaptive
capabilities are required in honeywords since the pass-
word policy can change, what will demand the reconfig-
uration of algorithms used to generate the honeywords.
For example, if the policy changes to not allow consec-
utive digits or personal data (e.g., birth date) into pass-
words, the tactic adapts to switch a better algorithm to
keep flatness. In other circumstances, the system can
adapt to change k-coefficient in response to an emer-
gent need of increasing the entropy of the honeywords
(adding honeywords) or save space in the disk (reducing
honeywords). Monitoring is performed directly by
aspects that identify whether a password policy has
changed. Thus, a particular monitoring feature could be
created to represent this capability.

Web	Deception	Operation

Strategy	1

HoneycookiesHoneywords

Honeywords

Strategy	2

Honeycookies

Honeyforms

Honeyaccounts

Abstract Concrete Optional Mandatory Alternative

Figure 10. Deception Strategy Configuration

After configuring the deception strategies, Decep-
tion Strategy Architecture is derived in conformance
with the Deception Architecture Model. For those
features that are not part of the DVM, i.e., the refined
features, we apply a one-to-one transformation, where
the feature is translated into an aspect. Based on the
composition rules, the Deception Strategy Configura-
tion, Deception Strategy Architecture, and the System
Architecture are composed, forming the Final Applica-
tion Architecture. Fig. 11 illustrates the generated archi-
tecture. Due to space constraints, we omit the adaptation
components, ports and some interfaces from the model.
Also, we focus on Service, Management, and Adapta-
tion features to illustrate how the architecture is gener-
ated. The Honeyword tactic is the central component of
the architecture. It is modeled as an aspect responsible
for coordinating the services and the management of the
tactic. Also, this aspect crosscuts two system compo-

nents: Account Manager and Authentication.
Account manager is responsible for handling user

data, including passwords. Authentication is in charge
of the verification of credentials. D-Management
handles two types of services: basic and specific.
Enabling (IEnableTactic) and disabling operations
(IDisableTactic) are considered basic services as they
can be used regardless of the tactic being implemented.
Specific services are particular for the solution being
implemented. In the honeywords example, services
like checking and setting password indexes (ICheck-
Password and ISetPassword), checking password flat-
ness (IFlatnessChecker), and honeyword generation are
specific services. In our illustrative example, we instan-
tiate Chaffing by tail-tweaking and Type-Safe, and also
instantiate SMS Alert and Event Log components.

The Honeyword Adaptation component contains
high-level adaptation components, where Security
Policy Monitor is an aspect that crosscuts the system
component Security Policy to identify changes in pass-
word policies. Tactic Analysis is responsible for
analyzing changes in security policies, identifying a
plan from the available ones into the plan description
and selecting an appropriate one to be executed with
the assistance of the Plan Selector component. A plan
describes possible variations (structural or parametric)
that can be applied in the system.

5. Related work

Several approaches deal with the integration of
deception into security operations. A process to incor-
porate deception into security operations is proposed in
[30], and a goal-driven approach to specifying deception
tactics is proposed in [23]. The former presents a high-
level process to integrate deception operations, and the
later specifies strategies and tactics as features. Neither
of these approaches detail how to resolve the feature
model at architectural level. Our proposal addresses this
issue.

In [31], an aspect-oriented approach is used to
deploy honeytokens within a database management
system. The architectural design considers operations
and pointcuts in a single aspect that intercepts database
queries to generate, manage, detect and distribute
honeytokens. This work is focused on automating the
creation of honeytokens in databases. Our work incor-
porates deception mechanisms as functional compo-
nents of the application. In [10] is proposed an event-
based mechanism to detect abnormal behavior and a
generic architecture based on wrappers to implement
deception. In contrast, our approach proposes a SPL
perspective to the problem of integrating deception into
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Figure 11. Final Application Architecture (excerpt)

applications.
Other SPL approaches [32, 33] are employed for

traditional security mechanisms and frameworks are
proposed to build a security core asset repository
based on requirements security and Common Criteria
(ISO/IEC 15408) and the ISO/IEC 17799. Similarly,
[34] presents a design theory and artifacts to represent
and configure SPLs. This work is focused on varying
security and functionality from the requirements to the
SPL architecture. In [35], SPL and aspect-oriented
programming are suggested to close the gap between
the specification of a security policy and its deployment.
These works are based on SPL and involve security, but
they are not focused on deception-based solutions.

6. Conclusions and future work

We presented an SPL framework to create adaptive
deception-based defense integrated to applications. The
result is a repository of security core assets based on
deception containing the main features to manage the
operation life cycle, including initialization, termina-
tion, and adaptive capabilities. Following our approach,
deception capabilities are defined in terms of basic and
specific features that are mapped to a base architecture
model. Engineers focus on selecting a set of threats or
attack vectors to create a specific configuration repre-
senting a set of deception strategies for a system. Strate-
gies and tactics constitute a simple structure to group
mechanisms designed to trap adversaries. Basic features
provide support for the management of each tactic,
involving setup, monitoring, response policies, initial-
ization and termination procedures. We applied our

framework in the integration of Honeywords to illustrate
how a non-trivial deception-based solution can be incor-
porate into existing security mechanisms.

While our approach intends to promote reuse and
seamless integration of deception in a system, it does
not ensure that the system itself will be more secure.
Each tactic has specific goals and, as any other secu-
rity mechanism, may incur in additional vulnerabili-
ties that should be identified and managed as soon as
possible in the software development life cycle. It must
also be taken into consideration that the use of decep-
tion components may overload the system operation,
requiring careful analysis before deploying any of these
solutions. As part of our future work, the framework will
be evaluated using more domains and additional threat
models to reason about incurring trade-offs of incor-
porating deception into a system. Also, we intend to
propose the framework to facilitate the implementation
of honeypots and honeynets, which is a recurrent issue
in the literature.
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