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ABSTRACT 1 

Many studies have documented dramatic climatic and environmental changes that have 2 

affected Africa over different timescales. These studies often raise questions regarding the spatial 3 

extent and regional connectivity of changes inferred from observations, proxies, and/or derived 4 

from climate models. Objective regionalization offers a tool for addressing these questions. To 5 

demonstrate this potential, we present applications of hierarchical climate regionalizations of 6 

Africa using observations and GCM historical simulations and future projections. First, we 7 

regionalize Africa based on interannual precipitation variability using CHIRPS data for the period 8 

1981-2014. A number of data processing techniques and clustering algorithms are tested to ensure 9 

a robust definition of climate regions. These regionalization results highlight the seasonal and even 10 

month-to-month specificity of regional climate associations across the continent, emphasizing the 11 

need to consider time of year as well as research question when defining a coherent region for 12 

climate analysis. CHIRPS regions are then compared to those of five GCMs for the historic period, 13 

with a focus on boreal summer. Results show that some GCMs capture the climatic coherence of 14 

the Sahel and associated teleconnections in a manner that is similar to observations, while other 15 

models break the Sahel into uncorrelated subregions or produce a Sahel-like region of variability 16 

that is spatially displaced from observations. Finally, we examine shifts in climate regions under 17 

projected 21st century climate change for different GCMs and emissions pathways. We find a 18 

projected change in the coherence of the Sahel, in which the western and eastern Sahel become 19 

distinct regions with different teleconnections. This pattern is most pronounced in high emissions 20 

scenarios.  21 
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1. Introduction 22 

1.1 Climate Regionalization 23 

Climate regionalization divides a region into homogeneous subregions based on one or 24 

more climatic variables. It is a very important step in climate studies because it helps in identifying 25 

the drivers of climate variability specific to each region (e.g., Dezfuli and Nicholson 2013; 26 

Nicholson and Dezfuli 2013). Applying conventional geographic boundaries for climate studies is 27 

often problematic because climate conditions and sensitivities can vary widely within a single 28 

study area (e.g., a country, a river basin). Standard climate classification systems (e.g., Köppen 29 

Climate Classification) also have limitations: (i) they represent mean climatic conditions rather 30 

than temporal variability (e.g., interannual), (ii) they are not informative for identifying drivers of 31 

variability, and (iii) as prescribed classification systems, rather than tools, they specify which 32 

variables and variable relationships are employed in the classification, rather than allowing the 33 

investigator to define characteristics of interest. Climate regionalization provides a useful 34 

alternative method for defining regions when we want to: (i) unravel drivers of climate variability 35 

specific to different regions and seasons (e.g., Badr et al. 2014a), and explore potential changes in 36 

the future, (ii) understand the spatial distribution of climate sensitivities, or (iii) employ a flexible 37 

system to understand how spatial patterns of variability differ for different climate variables (e.g. 38 

air temperatures as opposed to precipitation). These features make climate regionalization 39 

particularly valuable for applications that rely on identifying areas of common variability in a 40 

parameter of interest; for example, managing a climatically diverse hydrologic unit in the context 41 

of climate variability or change, filling in data gaps in the historic climate record, or optimizing 42 

seasonal forecast systems. 43 
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Climate regionalization applies an objective single- or multi-variate statistical technique 44 

such as clustering (e.g., Burn 1989; Dezfuli 2011; Gong and Richman 1995; Isik and Singh 2008; 45 

Ramachandra Rao and Srinivas 2006). Different clustering techniques have been applied in the 46 

literature (Djomou et al. 2015; Herrmann and Mohr 2011; Janicot 1992; Mahe et al. 2001; 47 

Nicholson 1986; Ogallo 1989), which are sensitive to conceptual approach, clustering algorithm, 48 

data processing, and validation criteria. It is difficult to compare the regionalization results of 49 

previous studies due to the lack of software tools that are technically designed for climate studies 50 

and meet the preprocessing and postprocessing requirements. This has motivated us to develop an 51 

open-source R package (Badr et al. 2014b) for Hierarchical Climate Regionalization (called, 52 

“HiClimR”). Badr et al. (2015) describes the methodology and technical details of HiClimR. 53 

The criteria used to interpret and validate climate regionalization may vary depending on 54 

the study objectives. Here, our regionalization criteria are to find homogeneous regions that are 55 

geographically contiguous, provided that the minimum region size is reasonable with respect to 56 

the nature of the problem (i.e., it is consistent with general size constraints such as landscape 57 

structure, data coverage and density, and known climate phenomena), and that the total number of 58 

regions matches the inherent physical properties of interest (e.g., the number of regions for 59 

identifying large-scale driver variability is different from dividing a country or area into regions 60 

of coherent climate variability for national development). The optimum regionalization will 61 

always have to involve some subjective decisions (e.g., contiguity checks and geographical 62 

characteristics) since the problem is a combination of applications and statistics. However, the 63 

objective criteria aim to maximize intra-regional correlations (i.e., the average correlations 64 

between the region mean and all of its members) and minimize inter-regional correlations (i.e., the 65 

correlations between region means). 66 
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1.2 Variability of African Precipitation 67 

Africa is a continent of climate contrasts. The general spatial pattern of variability in mean 68 

annual precipitation is widely familiar: a humid equatorial zone that includes the Congo forest, 69 

transitional savannah zones as the tropics grade into the subtropics, subtropical deserts in the north 70 

(Sahara) and southern (Kalahari) portions of the continent, and mid-latitude influences at northern 71 

and southern extremities. Temporal precipitation variability in portions of Africa can be large and 72 

is widely reported, in large part because of the social and economic impacts that hydroclimatic 73 

extremes have had on the Sahel, the Horn of Africa, and several other regions. 74 

From a climate dynamics perspective, the spatial and temporal variability of precipitation 75 

present diverse challenges for process understanding, event prediction, and climate change 76 

projection, and the climate vulnerability of many communities across Africa makes the problem 77 

particularly urgent. In general, we understand variability to be a function of synoptic to mesoscale 78 

atmospheric phenomena, including migration of the Intertropical Convergence Zone (ITCZ) 79 

(Barry and Chorley 2009), the strength and location of atmospheric jets (e.g., the African Easterly 80 

Jet and the Tropical Equatorial Jet) (Flohn 1964), monsoon circulations in West and East Africa, 81 

and significant land-atmosphere interactions (Dickinson 1995), particularly in semi-arid zones. 82 

These phenomena, in turn, are influenced by the sea surface temperatures (SST) in neighboring 83 

oceans and by remote climate drivers that include the El Niño Southern Oscillation (ENSO), the 84 

South Asian Monsoon, the Indian Ocean Dipole, the Atlantic Multidecadal Oscillation (AMO) 85 

circulation, and many others. The relative influence of these dynamics and drivers varies in space 86 

and time, and even the sign of influence of important drivers like ENSO can flip from season to 87 

season or between subregions of a single country or river basin. This complexity can make it 88 
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difficult to characterize drivers of variability in a systematic way, or to track spatial changes in 89 

their influence over time. 90 

The purpose of this study is to identify regions within Africa that are coherent with respect 91 

to interannual precipitation variability. This exercise offers an example of how regionalization can 92 

be applied to characterize and study patterns of climate variability. It also provides a set of 93 

regionalization results that can be applied to future studies of African climate. The regionalization 94 

is performed using monthly precipitation estimates from observations and outputs from global 95 

climate models (GCMs). Importantly, though perhaps not surprisingly, we find that regionalization 96 

of Africa is a seasonally and even monthly specific problem. For this reason we define regions for 97 

each season separately, where the season is defined as a combination of months for which regions 98 

are spatially stable. We also find that regions differ when using different data sources (e.g., 99 

observations versus GCM). This paper presents the results of these seasonally and dataset-specific 100 

regionalizations and explores implications for understanding drivers of interannual precipitation 101 

variability and for projecting climate change using different GCMs. 102 

2. Data 103 

The Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) dataset 104 

version 2.0 (Funk et al. 2015) was used to represent the observed precipitation in the period 1981-105 

2014. The data are distributed on a 0.05° grid and a primary pentad temporal resolution with the 106 

availability of aggregates (dekadal and monthly) or disaggregates (daily). In this study, we used 107 

CHIRPS data for Africa at the monthly temporal resolution. The data were resampled to 0.25° 108 

resolution due to the computational and memory requirements for regionalization of the entire 109 

continent of Africa. In comparison with the observational datasets available, CHIRPS data 110 
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provides higher resolution, better station coverage over Africa, improved statistical approaches, 111 

and updated temporal coverage. 112 

Extended Reconstructed Sea Surface Temperature (ERSST) v4 (Huang et al. 2015; Liu et 113 

al. 2015) monthly data (2° × 2° grid resolution; 1854-present) were used to test the correlation 114 

patterns of each region’s mean timeseries with global SST. 115 

The outputs from five different GCMs (CCSM4, CNRM, GFDL, HadGEM2, and 116 

MIROC5) were used to demonstrate the effectiveness of regionalization in the evaluation of GCMs 117 

in terms of capturing the spatial patterns of precipitation variability and the evolution of regions in 118 

response to greenhouse gas concentration as represented by coherent regions of the four 119 

Representative Concentration Pathways (RCPs): RCPs, RCP2.6, RCP4.5, RCP6, and RCP8.5 120 

(Moss et al. 2010). 121 

3. Methods 122 

Climate regionalization was performed to divide Africa into smaller regions that are 123 

homogeneous with respect to interannual variability of precipitation for all months and 3-month 124 

running average seasons. The Hierarchical Climate Regionalization (HiClimR) R package (Badr 125 

et al. 2015) was used. The most appropriate clustering method was used for each case based on 126 

three main criteria: homogeneity, separability, and contiguity. The homogeneity criterion 127 

minimizes the within-region variability and is measured by the average correlation between the 128 

region mean and its members (intra-regional correlation). The separability criterion maximizes the 129 

differences between regions and is measured by the maximum correlation between the different 130 

means (inter-regional correlation). The contiguity criterion visually identifies the member of each 131 

region in geographical proximity not to have a region divided into distant subregions or members. 132 

The method that provides higher overall homogeneity, lower inter-regional correlations, and 133 
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contiguous regions is referred as “better,” even if the differences are small. In general, the different 134 

methods will likely generate similar regions with slightly different statistics besides the visual 135 

contiguity of the regions.  136 

We choose the method with better statistics and better contiguity. Specifically, results from 137 

two clustering methods are presented: Ward’s method  (Murtagh 1983; Ward Jr 1963), which 138 

minimizes the error sum of squares between all members within a region after merging, and 139 

Regional Linkage (Badr et al. 2015), which minimizes the inter-regional correlation between 140 

region means at each merging step. Ward’s method tends to generate well-proportioned regions 141 

with high homogeneity regardless the inter-regional correlations, while regional linkage 142 

emphasizes separation of systematically dissimilar regions. An added advantage of regional 143 

linkage is that separating systematically dissimilar records isolates noise in the dataset—i.e., 144 

stations or very small clusters with completely different variability that cannot be merged into any 145 

of the regions and are not correlated with other stations or clusters. The noisy stations or clusters 146 

can be the result of bad data or may represent a phenomenon at a different scale (e.g., local effect). 147 

For regionalization at continental scale, both forms of noise are undesirable as they are not 148 

representative of the broad regions that are being defined. The isolation of that noise can also help 149 

in the quality control of the data. 150 

Several preprocessing options in HiClimR have been utilized to find the “optimal” regions 151 

and to test the sensitivity of regionalization. Geographic masking was used to mask all stations 152 

outside the continent of Africa. Grid cells with near-zero precipitation variability and/or very low 153 

mean precipitation are masked out to avoid any negative impacts on the quality of regionalization. 154 

The final regions are generated from detrended and standardized data to account only for the 155 

interannual precipitation variability without any possible effects of the linear trend or precipitation 156 
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totals. The entire CHIRPS record available at the time of analysis (1981-2014) was used for all 157 

regionalizations. 158 

For GCM regionalization we focus on boreal Summer (July-September, JAS). We present 159 

only one season in order to make the results digestible, and we choose JAS because of its 160 

importance as the primary rainy season in the Sahel. Results are presented for the Historical 161 

simulations of five GCMs (CCSM4, CNRM, GFDL, HadGEM2, and MIROC5; 1960-1990). A 162 

unified time period of 30 years (1960-1990) was used for all GCMs; this period is used as a 163 

baseline to compare the historical and future simulations of GCMs such as the reports of 164 

Intergovernmental Panel on Climate Change (IPCC). The “Historical” simulations include historic 165 

observations of greenhouse gases and other external forcings but are fully coupled to the ocean 166 

and are not initialized from observations; as such climatological patterns and long-term trends are 167 

expected to match historical patterns but specific year-to-year and even decade-to-decade 168 

variability does not align with the observed climate record. 169 

The possible effects of greenhouse gas concentration on spatial patterns of interannual 170 

precipitation variability are examined by performing regionalization for the four Representative 171 

Concentration Pathways (RCPs: RCP2.6, RCP4.5, RCP6, and RCP8.5) simulated by CCSM4 172 

model for different 30-year periods within the 2006-2100 projection, and for the entire 2006-2100 173 

time period. Additionally, to compare between the regions generated from observations (1981-174 

2014) and CCSM4 using the same time period, we combined the CCSM4 historical simulation 175 

(which runs through 2005) with the RCP 4.5 projection (2006-forward) to create a 1981-2014 176 

CCSM4 record. The RCP 4.5 emissions are reasonably consistent with observation for this period, 177 

and the impact of emissions trajectory on climate response on such a short time scale is small 178 

relative to internal variability. CHIRPS data were regridded to match the coarse model resolution. 179 
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4. Results & Discussion 180 

4.1 Data Preprocessing 181 

HiClimR implements several features to facilitate spatio-temporal analysis applications, 182 

including data filtering with geographic masking and/or mean/variance thresholds, data 183 

preprocessing via detrending and standardization. These were applied as described below. 184 

4.1.1 Data Filtering 185 

Fig. 1 shows the effect of masking options on regionalization results for the interannual 186 

variability of precipitation over Africa in January using Ward’s clustering method, and Fig. 2 187 

shows the associated clustering dendrograms for: no masking (Fig. 1A), geographic masking of 188 

Africa (Fig. 1B), and masking with filtering to remove all noncontiguous subregions, including 189 

Northern Africa (Fig. 1C). Filtering in this application included excluding the stations above 10N, 190 

in order to focus on sub-Saharan Africa, and removing small spatially discontinuous regions, such 191 

as Ethiopia in the result shown in Fig. 1C. This filtering is additional to the automatic filtering 192 

techniques in HiClimR that remove stations with near-zero variance and/or very low mean defined 193 

by a mean threshold (the mean threshold is typically selected as a very small fraction of the average 194 

monthly total precipitation where reasonable changes in its value do not affect the regionalization 195 

results; for CHIRPS data, a mean threshold of 12 mm/month was selected). The geographic 196 

masking improves the results because it excludes the artifacts introduced by Europe and small 197 

islands around Africa while filtering cleans up the regions and increases overall homogeneity.  198 

Fig. 2 clarifies the regionalization quality in each case. The vertical axis represents the 199 

clustering height. The units of this axis depend on the clustering method, but the metric generally 200 

needs to be minimized to achieve maximum intra-regional homogeneity. For example, Region 4, 201 

which is mainly in Europe, has an artifact subregion in the border between Angola and Namibia  202 
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that disappears after geographic masking. For Ward’s clustering, the y-axis on the dendrogram is 203 

the sum of squared distances within all regions and is a measure of intra-regional variance. This is 204 

different from the regional-linkage method that minimizes the maximum inter-regional correlation 205 

between regions as a measure of region separation. To get the “optimal” number of regions for 206 

final regionalization, we need to minimize the inter-regional correlations (region separation) and 207 

maximize the intra-regional correlation (region homogeneity). Hence, we add a horizontal axis on 208 

the left of the dendrogram plots in Fig. 2 to show the maximum inter-regional correlation at each 209 

dendrogram cut that defines the number of regions. It is clear that the overall clustering height 210 

decreases when applying the geographic masking from Fig. 2A to Fig. 2B and further with filtering 211 

the data from Fig. 2B to Fig. 2C, which is consistent with the regionalization qualities in Fig. 1A-212 

C. 213 

We emphasize that our selection of geographic extent and masking procedure is specific to 214 

the objectives of this study—to provide a stable and informative regionalization of Africa at 215 

continental scale. Regionalization could just as easily be applied to a global domain, including 216 

land and ocean, in order to study global scale response to major modes of climate variability, for 217 

example. This would change the regionalization of Africa but might yield other insights on climate 218 

variability. 219 

4.1.2 Detrending and Standardization 220 

Fig. 3 shows the effects of data detrending and standardization on regionalization results 221 

for the interannual variability of precipitation over Africa in January using Ward’s clustering 222 

method. Fig. 4 shows the associated clustering dendrograms. We found that standardization had 223 

no visible effect on regionalization results in this month (not shown; this may be different when 224 

using a different data set or at another temporal scale, when there is large spatial variability in 225 
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precipitation magnitudes), while detrending affects regions that have strong similarities or 226 

differences in linear trends. In this application, detrending tends to shift the borders between 227 

regions without fundamentally altering the character of the map (Fig. 3). But these shifts are 228 

systematic: for example, regions 3 and 4 share a positive linear trend that tends to increase the 229 

correlation between regions if detrending is not applied. These regions also show the highest inter-230 

regional correlation in the analysis, so the maximum inter-regional correlation figures shown on 231 

the left side of Fig. 4 reflect higher, trend-influenced correlations between these regions in the raw 232 

data (0.58) and a lower correlation when data are detrended (0.48). Note that the region merging 233 

in Fig. 4 is based on Ward’s method, which minimizes the variance within regions. 234 

4.2 Dissimilarity Measures 235 

The dissimilarity measure—or the nature of the temporal dimension used to regionalize 236 

spatial data in HiClimR—is a crucial decision, and the choice depends on the specific application. 237 

For example, regions can be generated based on interannual, intraseasonal, or daily variability or 238 

on seasonal cycle. Fig. 5 shows 12 regions generated for precipitation over Africa using Ward’s 239 

clustering method based on the interannual variability (Annual Mean; left) and seasonality (Annual 240 

Cycle; right). It is clear that the differences in seasonality don’t always align with differences in 241 

interannual variability: regions based on seasonality tend to align zonally, following the seasonal 242 

migration of the intertropical convergence zone within tropical Africa, while those based on the 243 

annual mean show both zonal and meridional structure, reflecting differing influences of remote 244 

climate drivers. 245 

4.3 Monthly-Specific Regions 246 

Fig. 6 shows results of regionalization on interannual precipitation variability performed 247 

separately for each month of the year. This is an optimized version of regionalization that applies 248 
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masking, filtering, standardization and detrending, as described above. These options were 249 

selected for this application based on the sensitivity analysis described in Section 4.1. Ward’s 250 

method provided the best regionalization results in winter months (December-March) and very 251 

similar regions in May. However, it was sensitive to region size, which sometimes results in 252 

dividing a large but highly homogeneous region into two or more regions. In contrast, the regional 253 

linkage method is able to identify big homogenous regions like the Sahel in summer and to filter 254 

out noisy data. In winter months/seasons, the regions have relatively similar size and Ward’s 255 

method performs well: even though the method optimizes for intra-regional homogeneity rather 256 

than inter-regional separability, the correlation between regions was reasonably low, indicating the 257 

separation of regions was meaningful. In summer and most transitional months, however, regional 258 

linkage provides more climatically meaningful regions, while Ward’s tends to split regions based 259 

on size, producing multiple regions that have high inter-regional correlation. In May, both methods 260 

generated very similar regions (not shown) and Ward’s method was selected for the slightly better 261 

overall homogeneity. Note that the numbering of regions is arbitrary; the regionalization process 262 

simply distinguishes between regions based on dissimilarity measure, and the analyst must 263 

interpret association of regions across datasets or regionalization methods. 264 

It is clear that the spatial patterns of precipitation variability over Africa (as represented by 265 

homogeneous regions in Fig. 6) are specific to calendar month. This can be used as a guideline for 266 

researchers studying climate processes, as one would not want to average across months with 267 

significantly different regionalization patterns in the area of interest, just as one would not want to 268 

average across two poorly correlated regions in any given season. For example, for a large-scale 269 

study these results suggest that January and February can be treated as a coherent season, with 270 

only small changes in region boundaries in central Africa. Moving back to December or forward 271 
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to March, however, regions in southern Africa begin to split and shift relative to January-February 272 

in ways that merit attention before attempting to generalize across DJF or JFM in those areas. This 273 

could have implications for forecasting. 274 

Table 1 lists the average intra-regional correlations (between region mean and all members) 275 

for all regions and the maximum inter-regional between region means. The winter months 276 

(December-March) and May utilized Ward’s method and their rows are highlighted in bold font. 277 

All other months, especially the summer months (July-September) and months of complicated 278 

variability in transition between seasons utilize the regional linkage method and its ability to isolate 279 

noisy areas for removal. In other applications, where optimal quality control of the data is desired, 280 

statistically isolated regions (or weather stations) could be treated in a statistical or dynamical 281 

analysis to understand reasons for isolation and fill their gaps. The values of intra-regional 282 

correlations in Table 1 are affected by the very high resolution and continental scale (using coarser 283 

data would increase the overall homogeneity of the regions since larger grid cells are smoothed 284 

averages of the included finer grid cells), which indicates that each of the regions can be divided 285 

into smaller regions for finer scale applications such as hydrological analysis over one country or 286 

a smaller region of interest. However, the current results target the association of sub-continental 287 

regions with large-scale drivers of variability (teleconnections). The maximum inter-regional 288 

correlation indicates the correlation between the most similar regions in the regionalizations. All 289 

other regions have smaller or negative correlations between means. 290 

4.4 Historical vs Future (GCMs) 291 

Fig. 7 shows the regions of Africa based on interannual variability of summer (July-292 

September, JAS) precipitation using observations from CHIRPS (OBS; 1981-2014) and different 293 

GCM historical simulations (CCM4, CNRM, GFDL, HadGEM2, and MIROC5; 1960-1990). A 294 
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unified time period of 30 years (1960-1990) was used for all GCMs. To avoid regionalization 295 

sensitivity based on clustering approach, all models are treated similarly regarding the number of 296 

regions (cut-off level of the dendrogram), data thresholds (variance and mean thresholds for data 297 

filtering), and preprocessing options (e.g., detrending and standardization). The regional linkage 298 

method is appropriate for summer precipitation when using CHIRPS observations, the outputs 299 

from the two models that exhibit similar spatial variability to observations (CCSM4 and 300 

MIROC5), and CNRM. In contrast, Ward's method was relatively better for GFDL and HadGEM2 301 

as it provides slightly better overall homogeneity and contiguity, and none of the clustering 302 

methods or preprocessing options had a significant impact on the dominant patterns. The observed 303 

spatial patterns show the Sahel as one homogeneous region with strong agreement between the 304 

regions generated from observations: the Sahel region is homogeneous (intra-regional correlation 305 

= ~0.65), and independent from the other three regions.  It is found that CCSM4 and MIROC5 306 

have good skill in capturing the coherence of the Sahel precipitation signal in summer (strong 307 

signal of unique variability over the big green region that represents the Sahel, which cannot be 308 

divided into smaller subregions or the mean timeseries of subregions will be strongly correlated), 309 

while the other models miss this coherence and divide the Sahel into smaller regions with 310 

dissimilar interannual variability. CNRM generates random spatial patterns, GFDL simulates 311 

precipitation in summer shifted in the northwestern direction and HadGEM2 divides the Sahel 312 

region into eastern and western subregions. The observational analysis was repeated using CRU 313 

in place of CHIRPS; results were similar and are not shown. 314 

The robustness of Sahel region in Summer (JAS) was examined using regionalization of 315 

different observational data sources (CHIRPS, CRU, and GPCC) and a variety of homogeneity 316 

checks such as correlation patterns between the region mean and precipitation over Africa. All 317 
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data sources yield similar spatial patterns and identify the Sahel as a single coherent region. 318 

Increasing the number of clusters or changing the clustering algorithm divides Sahel into two or 319 

more “very similar” regions (i.e., the inter-regional correlations between the subregions are high 320 

meaning that we need to merge them into one region). 321 

Fig. 8 shows the regionalizations of Africa based on interannual variability of JAS 322 

precipitation in 1960-1990 for six different ensemble members of CCSM4. All ensemble members 323 

identify the Sahel and East Africa as homogeneous regions, consistent with the observations. The 324 

known West African dipole mode is also detected in all cases. The differences primarily appear in 325 

West Equatorial Africa, which has a strong intrinsic heterogeneity with respect to interannual 326 

variability (Balas et al. 2007; Dezfuli and Nicholson 2013). 327 

To compare between the regions generated from observations (1981-2014) and CCSM4 328 

using the same time period, we combine the CCSM4 historical simulation (which runs through 329 

2005) with the RCP 4.5 projection (2006-forward) to create a 1981-2014 CCSM4 record. The RCP 330 

4.5 emissions are reasonably consistent with observation for this period, and the impact of 331 

emissions trajectory on climate response on such a short time scale is small relative to internal 332 

variability. CHIRPS data were regridded to match the coarse model resolution. It is found the 333 

spatial patterns of interannual precipitation variability captured by CCSM4 in 1981-2014 (Fig. 9), 334 

especially over the Sahel, are very similar to the unified period (1960-1990) in Fig. 7. In the next 335 

sections, we focus on CCSM4 for the GCM and use the unified period to facilitate comparison 336 

with CHIRPS.  337 

Fig. 10 shows the correlation patterns of the four regions generated based on the interannual 338 

variability of JAS precipitation using CHIRPS observations with global ERSST for the mean 339 

timeseries of the region and Fig. 11 shows the correlations patterns from CCSM4 with its own 340 
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SST (both 1981-2014). Similarities and differences between observed regions and CCSM4 regions 341 

are strongly related to SST teleconnections. Region 3 of CCSM4, which is the largest difference 342 

between the observational and GCM-based regionalization, shows a positive correlation with the 343 

SSTs over the ENSO region. However, such an association does not exist for any of the 344 

observation-based regions; it appears to be a false ENSO teleconnection that exists only in the 345 

model. For region 1, which corresponds to the Sahel in both model and simulations, the correlation 346 

with North Atlantic SST (i.e., Atlantic Multidecadal Oscillation or AMO) is markedly different 347 

and even slightly reversed for CCSM4 (Fig. 11) relative to observations (Fig. 10). In addition, the 348 

model shows significant Region 1 correlations with Gulf of Guinea SSTs that are not seen in 349 

observations. Together these differences suggest that Sahel sensitivity to Atlantic Ocean variability 350 

is substantially different in CCSM4 than it is in observation. Region 2 of CCSM4 in Fig. 11, along 351 

the Guinean coast, shows weaker correlation with SSTs of adjacent waters than the observations. 352 

These agreements or disagreements between the regions of the observed and simulated 353 

precipitation raise many interesting questions about the underlying mechanisms and skills of the 354 

model dynamics and need further investigation. 355 

The regions do not respond to unique climate drivers, but they have different variability in 356 

response to a set of large-scale and local drivers. Regionalization helps in identifying regions with 357 

coherent variability that are different from each other’s. The climate drivers of a specific region 358 

can then be identified, which are greatly improved over the commonly used geographic boxes that 359 

could mix inhomogeneous regions and create unrealistic variability and associated drivers (e.g., 360 

the mean of an area defined by a box without performing regionalization to test its homogeneity 361 

may include different –or perhaps opposite– variability that can ruin the analysis). 362 

4.5 Climate Projections 363 



 17 

Fig. 12 shows the possible effect of greenhouse gas concentrations on spatial patterns of 364 

interannual precipitation variability as represented by coherent regions simulated by CCSM4 365 

model for the period 2006-2100 for each of the four Representative Concentration Pathways 366 

(RCPs: RCP2.6, RCP4.5, RCP6, and RCP8.5). In these simulations the Sahel falls into two 367 

regions: regions 1 and 2 in Fig. 12. As radiative forcing increases (RCP2.6 through RCP8.5), 368 

region 2 shrinks and region 1 grows: essentially, there is a shift from a coherent Sahel band that 369 

stretches almost across the continent (region 2 in RCP2.6) to two distinct eastern and western Sahel 370 

regions in higher emissions scenarios.  The changes in Equatorial West Africa and East Africa 371 

(regions 3 and 4) are small. We note that these 2006-2100 regionalization results average across 372 

variability in regions that is observed in shorter periods of analysis. The evolution of regions for 373 

the four climate projections examined at three 30-years different simulation periods (2010-2040, 374 

2040-2070, and 2070-2100) suggest that the spatial patterns vary throughout the 21st century, 375 

perhaps as a response to changes in global SST-rainfall relationships, but that there is a gradual 376 

trend towards a split between the eastern and western Sahel (not shown). 377 

Fig. 13 and Fig. 14, respectively, show the correlation patterns of CCSM4 JAS region 1 378 

(western Sahel) and region 2 (eastern Sahel) precipitation from all RCPs with the corresponding 379 

SST field for the entire simulation period (2006-2100). Teleconnections in low emissions scenarios 380 

(RCP2.6, RCP4.5) are, as expected, more similar to Sahel teleconnections in historical simulations. 381 

This is particularly evident for the eastern Sahel (region 2; Fig. 14), which approximately 382 

corresponds to the unified Sahel in historical simulations (Fig. 9).  For all emissions scenarios, 383 

region 1 shows weaker correlation with global SST patterns than region 2 does, but the strength of 384 

these connections increases as the region expands under higher emissions. Region 2 shows strong 385 
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correlations with the ENSO region and with the Indian Ocean under all RCPs, though the 386 

relationship is strongest for low emissions.  387 

Interestingly, the influence of tropical South Atlantic and Gulf of Guinea SSTs on both 388 

regions changes as a function of emissions, shifting from a positive correlation at low emissions 389 

to a neutral or negative correlation at high emissions. This suggests changing dynamical 390 

interactions between remote forcings like ENSO and the more local influence of SSTs in the 391 

neighboring Atlantic Ocean. It is also noteworthy that for region 2 there is an Atlantic Meridional 392 

Mode (AMM) type signal in the historical simulations and RCPs 2.6 and 4.5, but this signal 393 

disappears in RCP 8.5, where the cross-equatorial SST gradient is absent. This again points to 394 

changing relationships between the tropical Atlantic Ocean and Sahel precipitation. We do note 395 

that all results shown here are for a single GCM ensemble member, which is expected to impact 396 

results for shorter time scales and might also impact the details of these 2006-2100 results. 397 

5. Conclusions 398 

The different clustering methods available in HiClimR can be useful for different 399 

regionalization problems. Ward's method is sensitive to region size and tends to divide a large 400 

homogeneous region into multiple separate regions. In contrast, the regional linkage method can 401 

identify a big coherent region and filter out noisy data. For example, Ward's method was effective 402 

in winter months, when regions have relatively similar size, while regional linkage yielded cleanly 403 

separated and contiguous homogeneous regions in summer, when the interannual variability of 404 

Sahel precipitation is dominant. Regional linkage also provides more climatically relevant results 405 

in the transition seasons. 406 

In the historical observational record, the Sahel expands from West to East and dominates 407 

the interannual variability of African precipitation in summer. This is confirmed with the spatial 408 



 19 

correlation patterns of the region mean and precipitation over Africa using CHIRPS data. The 409 

overall homogeneity of the region is only moderately high, but it is spread across the region with 410 

highly significant correlation between any potentially identifiable subregions. This suggests that 411 

interannual variability is characterized by one dominant mode of variability for the entire region 412 

plus local modes of variability in the subregions. The winter months (December-March) are 413 

relatively stable in their regionalization, and with a few exceptions can be treated as a coherent 414 

season for climate analysis. As expected, the transitional months have complicated spatial 415 

variability. 416 

We tested the potential of climate regionalization for model intercomparision and 417 

assessment. CCSM4 and MIROC5 showed good skill in capturing the precipitation signal over the 418 

Sahel in summer, while the other models miss the spatial patterns by dividing the Sahel into smaller 419 

regions with dissimilar interannual variability. CNRM generates random spatial patterns, GFDL 420 

simulates Sahel-like precipitation variability in summer shifted to the northwest and HadGEM2 421 

divides the Sahel region into eastern and western subregions. This does not mean that models like 422 

CNRM, GFDL, or HadGEM2 are not useful for projecting climate change in Africa. On the 423 

contrary, the regionalization analysis presented in this paper might allow us to interpret these 424 

simulations properly for studies of climate process and projections of climate change impacts. If 425 

GFDL systematically shifts the “Sahel” climate pattern to the northwest, then analysis of Sahel 426 

sensitivity in this model should be performed with a corresponding shift. This opens the possibility 427 

of a more meaningful, regionalization-based multi-model ensemble of climate projections for the 428 

Sahel––or for any region in which models differ in the spatial representation of variability. In the 429 

long term, these studies can also inform model development to correct spatial biases and 430 

displacements in the representation of climate variability. 431 
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Table 1 Intra-regional and maximum inter-regional correlations for each month. 499 

MM 
Intra-regional Correlations (Rnn

1) 
Rmx

2 
R01 R02 R03 R04 R05 R06 R07 R08 R09 R10 R11 R12 

01 0.71 0.49 0.66 0.61 0.61        0.48 

02 0.72 0.51 0.68 0.64 0.53        0.43 

03 0.59 0.49 0.74 0.60 0.63 0.62       0.42 

04 0.57 0.72 0.66 0.67 0.73 0.87 0.70 0.74 0.57 0.72 0.67 0.73 0.49 

05 0.54 0.67 0.46 0.64 0.63 0.57 0.69      0.49 

06 0.54 0.46 0.50 0.57         0.35 

07 0.60 0.58 0.54 0.66         0.39 

08 0.58 0.61 0.62 0.60 0.59        0.42 

09 0.52 0.56 0.54 0.59 0.61        0.36 

10 0.69 0.67 0.64 0.68 0.56 0.82 0.72 0.64 0.73 0.70 0.80  0.51 

11 0.54 0.68 0.70 0.60 0.63 0.67 0.68 0.70     0.44 

12 0.58 0.47 0.73 0.57 0.67 0.68       0.33 

  500 

                                                
1 Rnn is the average intra-regional correlation for region number nn, between the region mean 
and all members within the region. 
2 Rmx is the maximum inter-regional correlation between region means. 
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 534 

Fig. 1 The effect of geographic masking and data filtering on the quality of regionalization: A) 535 

no masking, B) geographic masking of Africa, and C) geographic masking and data filtering.  536 
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 537 

Fig. 2 The effect of geographic masking and data filtering on the clustering dendrogram: A) no 538 

masking, B) geographic masking of Africa, and C) geographic masking and data filtering. 539 



 30 

 540 

Fig. 3 The effect of detrending and standardization on regionalization quality: A) raw data and 541 

B) detrended and standardized data.  542 
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 543 

Fig. 4 The effect of detrending and standardization on the clustering dendrogram: A) raw data 544 

and B) detrended and standardized data.  545 
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 546 

Fig. 5 Regionalization based on: A) interannual variability of annual totals of precipitation and   547 

B) annual cycle of precipitation over Africa using CHIRPS data v2.0 (1981-2014).  548 
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 549 

Fig. 6 Regionalization of Africa based on interannual variability of monthly precipitation.  550 
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 551 

Fig. 7 Regionalization of Africa based on interannual variability of Summer (JAS) precipitation 552 

using CHIRPS observations (1981-2014) and different GCMs (1960-1990).   553 
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 554 

Fig. 8 Regionalization of Africa based on interannual variability of JAS precipitation in 1960-555 

1990 for different ensemble members of CCSM4.  556 
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 557 

 558 

Fig. 9 Regionalization of Africa based on interannual variability of JAS precipitation in 1981-559 

2014 using regional-linkage method: A) CHIRPS and B) CCSM4.  560 
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 561 

Fig. 10 Correlation patterns of CHIRPS precipitation with global ERSST for the mean timeseries 562 

of the four regions of interannual variability of JAS precipitation at the period (1981-2014). All 563 

correlations are significant at 90% confidence level.  564 
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 565 

Fig. 11 Correlation patterns of CCSM4 precipitation with the model SST for the mean timeseries 566 

of the four regions of interannual variability of JAS precipitation at the period (1960-1990). All 567 

correlations are significant at 90% confidence level. 568 
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 569 

Fig. 12 Changes in the regions of JAS precipitation over Africa using regional-linkage method 570 

for different CCSM4 climate projections at the entire simulation period (2006-2100). 571 
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 572 

Fig. 13 Correlation patterns of CCSM4 JAS precipitation from the four RCPs with the 573 

corresponding SST for region 1 (Western Sahel in Fig. 12) at the period (2006-2100). All 574 

correlations are significant at 90% confidence level.  575 
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 576 

Fig. 14 Correlation patterns of CCSM4 JAS precipitation from the four RCPs with the 577 

corresponding SST for region 2 (Eastern Sahel in Fig. 12) at the period (2006-2100). All 578 

correlations are significant at 90% confidence level. 579 


