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Full-shell electroformed optics @MSFC
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State of art - full-shell optics

X-ray Optics - State of art 

◦ Full-shell: <5 arc sec FWHM; 10 to 15 
arc sec HPD

◦ A key factor that limits the angular 
resolution is Axial Figure Imperfections
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Imaging quality of X-ray optics can be significantly improved 

if the RMS height variations can be reduced



Concept of differential
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Use of physical vapor deposition to selectively deposit 

material on the mirror surface to smooth out figure 

imperfections
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Differential Deposition – proof of concept

5

•Proof of concept on smaller scale NIH optics

•Use of existing sputter deposition chambers

•Demonstrated improvement through metrology data 



Custom built vacuum chambers
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◦ Horizontal chamber for full shell optics – can accommodate upto 0.25m diameter, 0.6m length

◦ Vertical chamber for segmented and very large full-shell optics (0.5 m diameter)

◦ Computer controlled translation and rotation stages with encoders

◦ Matlab – GUI interface to control the stages



Metrology results
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X-ray test results -1
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Higher frequency- correction

• X-ray testing @stray light 
facility

• Off-focus CCD image –
measure of profile across 
the ring 

• 18 to 8 arc secs with one-
stage differential correction

Uncorrected region

Corrected regions

Intra-focus 
Image



X-ray test results -2
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Working towards 2nd

stage improvement 



Future work
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In-situ metrology - VLTP approach
Active slit approach

Optical 

Board

Laser

Reference Mirror

FT Lens

&

Detector

X-ray Optic

Vacuum Chamber

Design concept of active slit approach

Schematic of in-situ metrology. The path from the optical board to the test

surface passes into the vacuum chamber through an optical feed-through flange

to a penta-prism which directs the laser light to and from the test surface.

• Detailed stress analysis



Spin-off applications

NIST – Neutron microscope
◦ Prototype optics demonstrated 70 microns spatial 

resolution

◦ Goal – 10 microns spatial resolution (~1 arc sec)
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Contact image Prototype microscope imageNational Ignition Facility
◦ X-ray imaging is critical to the physical 

understanding of ICF implosions 

◦ Need for high-resolution 5microns (FWHM) 
spatial resolution (few arc secs) imaging optics 
for hard 10-25 keV x-rays



(Newly-Funded) Direct fabrication of full-shell X-ray optics
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Replication

Mandrel fabrication Electrolytic plating Shell Separation
Post replication 

correction

Direct Fabrication

Substrate fabrication
Electroless Plating
Diamond Turning

Figuring, 
Superpolishing

Post fabrication 
correction



Metal substrate
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Material Density 

(g/cm3)

CTE

(10-6 / K-1)

Elastic Modulus

GPa

Yield Strength

MPa

Fused Silica 2.2 0.5 72 48*

Beryllium 1.8 12 318 240

BeAL-162MET 2.1 24 69 276

AlSi 2.8 13.9 193 314

Duralcan F3S.30S

AlSi+SiC(30% by vol)

2.8 14.6 120 210

Mechanical Properties of Potential Mirror Substrate Materials

*Maximal achievable value. The ‘working’ value is typically much less and depends on the surface/subsurface condition.

Ideally, the mirror shell has low 
density, low coefficient of expansion 
(CTE), high modulus of elasticity and 
high yield strength. It should also be 
a material that is not too difficult to 
figure and polish. 
- Be + NiP (CATS-ISS telescope)
- BeAl +NiP
- AlSi + NiP



Zeeko polishing machine

Test polishing runs 

• 100mm dia NIP electroplated Al flat samples. 

• Initially diamond turned and then polished over small linear regions –
‘’trenches’’.

• The polishing parameters were varied from one trench to another and the wear 
function dependence on these parameters was determined. 
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Wear function characterization: 

Wear rate is proportional to 
 Velocity of bonnet - depends on 

 Spindle rotation
 Head attack angles

 Bonnet pressure - depends on 
 Internal pressure of bonnet
 Bonnet structural and mechanical properties

Parameter optimization
Bonnet pressure
Spindle speed
Tool Offset

Measured wear function



ZEEKO polishing – demonstration on existing mandrel
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Surface height error profile of the hyperbolic side of a NiP plated 

mandrel before (upper curve) and after (lower curve) polishing 

using a 40 mm bonnet.

before after

Figure error (St. Dev.) 500 nm 10.7 nm

Slope error (> 2 cm) (RMS) 6.32 arcsec 0.30 arcsec

Low frequency (> 7 cm) slope error (RMS)   2.66 arcsec 0.09 arcsec

Mid frequency (2-7 cm) slope error (RMS) 5.73 arcsec 0.29 arcsec

Mandrel > 5x better than any 
made with conventional 
polishing


