Cross-Referencing GLM and

 ISS-LIS with Ground-Based Lightning NetworksKatrina S. Virts NPP, NASA/MSFC
Richard J. Blakeslee NASAMSFC
Steven J. Goodman
NOAA/NESDIS GOES-R Program Office
William J. Koshak NASAMSFC

2017 AGU Fall Meeting

Geostationary Lightning Mapper on GOES-16

- Launched on November 19, 2016
- Test position: 89.5W
- Transitioning to GOES-East position: 75.2W
- Latest ground system update on November 28, 2017

Lightning Imaging Sensor on the International Space Station (ISS-LIS)

- Launched on February 19, 2017
- Low earth orbit (425 km)
- Field of view approx. $600 \mathrm{~km} \times 600 \mathrm{~km}$
- 54° inclination
- Provisional data available soon

Lightning clustering

- Events
- Single pixels that exceed background level during a single frame
- Groups
- Clusters of events within the same 2 ms frame and in adjacent pixels
- Flashes
- Clusters of groups that occur within 330 ms and 5.5 km (LIS) or 16.5 km (GLM)

Reference lightning networks

- Earth Networks Global Lightning Network (ENGLN)
- LF-HF lightning detection network
- Total lightning
- Includes WWLLN strokes
- Vaisala Global Lightning Dataset (GLD360)
- VLF lightning detection network
- Primarily ground flash location/time
- Match GLM and LIS group data to reference networks using spatial/temporal windows
- GLM: 4 ms, 75 km
- LIS: 100 ms, 50 km

LIS has sub-ms timing accuracy

LIS timing is stable...with a couple excursions

- Histograms of temporal offsets for each reference dataset during each 30-second interval of LIS orbit
- Plot peak of histogram

LIS geolocation

Star Tracker

TRMM-LIS statistics

GLM ground system data

GLM ground system data

GLM reprocessed data

- "Best" time and geolocation
- Available during ER-2 flights during field campaign
- Over 65 total hours from March 21 to May 17

Statistical overview

Systematic inward shift near limb

Lightning ellipsoid

- Current geolocation: assume GLM sees lightning at cloud top, approximated by a lightning ellipsoid with constant equatorial height $\left(e_{1}\right)=16 \mathrm{~km}$ and constant polar height $\left(p_{1}\right)=6 \mathrm{~km}$.
- Problem: near limb, GLM sees lightning from the side of the clouds
- Renavigate groups from (lat ${ }_{1}$, on $_{1}$) for $\left(\mathrm{e}_{1}, \mathrm{p}_{1}\right)$ to (lat 2, lon 2) for ($\mathrm{e}_{2}, \mathrm{p}_{2}$)
- Alternate lightning ellipsoids:
- Constant e_{2} and constant p_{2}, with a lower ellipsoid
- Variable e_{2} and constant p_{2}

$$
e_{2}=e_{2, \text { nadir }} \times \cos \left(\text { lon }_{1}-\text { lon }_{\text {nadir }}\right)
$$

Distance errors for current ellipsoid

Improvement for alternate ellipsoids

Constant $\mathrm{e}_{2}=13 \mathrm{~km}$
Constant $\mathrm{p}_{2}=4 \mathrm{~km}$

Variable $e_{2}=16 \mathrm{~km}$ at nadir
Constant $\mathrm{p}_{2}=5 \mathrm{~km}$

Conclusions

- LIS
- Peak distance offsets ~6 km
- Sub-ms timing
- Provisional data available by January 1, 2018
- GLM
- Peak distance offsets ~16 km for ground system data, ~3 km for reprocessed data
- Sub-ms timing after correction to origination time
- Potential adjustments to lightning ellipsoid to improve geolocation of groups near limb

Questions?

