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Systems capabilities on ISHM and autonomy have traditionally been addressed separately. 

This means that ISHM functions, such as anomaly detection, diagnostics, prognostics, and 

comprehensive system awareness have not been considered traditionally in the context of 

autonomy functions such as planning, scheduling, and mission execution. One key reason is 

that although they address systems capabilities, both ISHM and autonomy have traditionally 

individually been approached as independent strategies and models for analysis. Additionally, 

to some degree, a unified paradigm for ISHM and autonomy has been difficult to implement 

due to limitations of hardware and software. This paper explores a unified treatment of ISHM 

and autonomy in the context of distributed hierarchical autonomous operations. 

I. Nomenclature 

NASA = National Aeronautics and Space Administration 

SSC = Stennis Space Center 

JSC = Johnson Space Center 

NPAS = NASA Platform for Autonomous Systems 

iPAS = integrated Power Avionics Software 

ISHM = Integrated System Health Management 

BFA = Brute Force Autonomy 

TA = Thinking Autonomy 

DIaK = Data, Information, and Knowledge 

II. I. Introduction 

Throughout its evolution, ISHM has been migrating toward a more fitting role in the engineering of systems. Initially, 

even the development of new sensor technologies have been done aligned with ISHM. The ISHM community now 

addresses ISHM as a capability that integrates data, information, and knowledge which enables the implementation 

of ISHM functions that considers interactions among systems’ components and subsystems; as well as interactions 

among systems. These functions are primarily (1) anomaly detection (2) diagnostics, (3) prognostics, and (4) 

integrated awareness for the operator. However, it is difficult to identify a successful operational implementations of 

real-time on-board ISHM systems. Today, the closest example of an operational ISHM system could be seen in the 

Fault-Check capability of the Orion capsule, which is very good demonstration, however, it is merely the result of 

local FMEA rather than system wide analysis. Also, in this case, FMEA is implemented as a lookup table, where the 

“thinking” is done offline and the system simply applies results of analysis previously established off-line. 

Autonomy is often mentioned in the context of planetary robots and planetary spacecraft [1]. The main challenge 

in autonomy is to have a system that can select strategies to deal with unplanned events so that the system can 

accomplish the mission or exchange plans based on alternate results. It is true that there are systems that can apply 

autonomy strategies, but they do it by brute-force. This means that all events that the designers are able to consider 
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and corresponding strategies to deal with them have been specified. Therefore, in this approach, autonomy strategies 

have been applied offline and all the system (computer) does is match events with corresponding strategies. Brute-

force autonomy does not require a thinking system, but has profound limitations in coverage (misses cases), in 

adherence to foundational models, in re-use, and in the ability to evolve. 

This paper will address a theory and process to implement ISHM and autonomy by enabling a system to “think” 

in real-time, based on models that derive from foundational principles. It will also address the interaction between 

ISHM and autonomy. 

III. ISHM 

ISHM encompasses the following functionalities: (1) anomaly detection, (2) diagnostics, (3) prognostics, and (4) 

integrated awareness for the operator. Health management is not a new concept. The question is HOW it is done. It 

relies on people who operate the systems and those who support the systems. As technology advanced, the individuals 

doing ISHM were assisted by tools that made them more effective in achieving the functionalities at higher capability 

levels. What must be highlighted is that analyses based on models is the fundamental approach to implementing ISHM. 

The question is, if the analysis is integrated (as opposed to localized), and how it is achieved (the combination of 

operators and technologies).  

A capability that has been in use for a long time is the Health and Usage Monitoring System (HUMS) for 

helicopters. The HUMS was designed to monitor data from helicopter subsystems and processes it using a set of 

specialized algorithms.  The resulting anomaly indicators and original data are used by experts to infer if critical 

elements might be trending toward failure. In this system, knowledge and its integrated interpretation is primarily 

done by people. HUMS is commercially available for aircraft applications from Honeywell [2]. Another ISHM 

implementation is the Advanced Health Management System for the Space Shuttle Main Engine (SSME) [3]. The 

effort incorporated automated analysis of trending to predict if critical data streams might be approaching out-of-norm 

values. 

One way to describe how ISHM is done currently is by considering layers where activities to achieve ISHM is 

performed. Figure 1 shows how ISHM may be done in a rocket engine test stand or a spacecraft such as the 

International Space Station (ISS). At each layer; data, information, and knowledge (DIaK) is applied to achieve a 

degree of capability (functional capability level - FCL) to help manage the health of the system. The layers represent 

the resources of DIaK available for ISHM. Because knowledge is so crucial to achieve high FCL, and because 

knowledge normally resides in individuals, the lower layers include the most people and the most knowledge. If the 

spacecraft could accommodate a large number of people to operate it, people could do the job (analysis, conclusions, 

and operational decisions). But that is not the case, and most operators and support personnel are on Earth (on the 

ground) while the ISS is on orbit (in space). At the top layer (Layer 1) is the system itself with some automated 

capability to manage its health; generally detection of signal range/limit violations that activate alarms. At the next 

layer down (Layer 2) are the astronauts who can directly operate the station. They represent the local knowledge and 

have local data and information to manage the Station’s health. At the next layer down (Layer 3) are the individuals 

in the control room. Additional DIaK is accrued with the control room personnel, and issues can be resolved faster 

and better in support of the crew. Here, diverse knowledge is employed regarding each subsystem and their 

interactions. 

In this layered implementation of ISHM, strategies for analysis and use of models is done by expert personnel. In 

order to make the system capable of ISHM, these strategies and analyses must be embedded into the system 

(spacecraft/test stand) so that they may be accomplished without human intervention, or intervention from operators 

(astronauts/test engineers) as per desired concepts of operations (Con-Ops). The analyses and conclusions conducted 

by experts must move to the two upper layers, and preferably to the top layer (Layer 1), the system. When this happens, 

Layer 1 becomes a fully autonomous system. 

How on-board ISHM is implemented becomes the key issue. Typically, implementation is done by having a 

collection of algorithms that detect specific anomalies that are possible during specific regimes of operation. That is, 

the problem-space has been analyzed off-line by experts, and resulted in pre-defined solutions. The “thinking” has 

been done and defined off-line, and not by the system. The health management system simply applies the “thinking” 

done by experts off-line. The authors prescribe the “thinking” that must be done by the system. For this to happen, 

analysis and thought processes must be embedded rather than just by pre-conceived cases and their respective 

solutions. However, a fundamental element to apply “thinking” is to have a comprehensive knowledge model of the 

system. This is the approach that is used for development of a capability for “thinking” ISHM, as well as for “thinking” 

autonomy. NASA Platform for Autonomous Systems (NPAS), software platform, which encompasses integrated 



technologies to achieve hierarchical distributed autonomy, is the result of this innovative approach to ISHM. Evolution 

of concepts and technology development leading to NPAS is documented in references [4-8]. 

 

 

Figure 1. Layered ISHM capability. 

A. Anomaly Detection 

There are many strategies to detect anomalous behavior. One strategy is to define what nominal behavior is and 

assign anomaly to any behavior that is not nominal. Another strategy is to define what anomalous behavior is and 

identify it when it occurs. These strategies imply the use of models of processes that describe the operation of a system 

(nominal and anomalous processes). 

Since systems are designed and analyzed to perform specific functions, models describing nominal behavior of 

systems exist. Physics-based models for analysis are certainly at the core of any design and operation of a system. For 

this paper, the implementation of anomaly detection for a “thinking” system that is designed for commodity 

distribution is described. The capability is part of NPAS and is currently being deployed to make a Nitrogen 

distribution system autonomous. 

Using NPAS, a comprehensive knowledge-model of a system is created, a Knowledge Domain Model (KDM). 

Figure 2 shows a portion of a model for the nitrogen system. The foundations of the model is based on the schematics 

used to build the system. Every part in the schematics is modeled as an object, and then NPAS automatically generates 

connectivity as the model is built using a graphical interface. Then, once these parts of the software are in place, 

reasoning involving immediate connectivity among parts can be applied. For example, a type of valve is connected a 

type of pipe, or that a type of sensor is attached to a type of pipe. Additional relationships among parts are needed to 

augment analysis and reasoning capabilities. These relationships may be added manually or may be discovered by the 

system itself. Next, a process of discovery by NPAS is described which determines flow paths from sources to sinks 

(loads) so that physics-based models and analyses may be applied to perform anomaly detection or predictions. 

 



 

Figure 2. Life schematic encompassing the application knowledge model. 

B. Concepts and models for “thinking” flow systems 

Typically, flow analysis is performed on systems with pipes, tanks, valves, pumps, sensors, and other items. 

Therefore, an ISHM capability must “understand” these items in the context of the role they play in a flow system. 

Furthermore, flow systems must be identified in order to apply models and perform analysis while operational. 

NPAS uses the following process to identify flow systems: 

 Discover flow paths between sources and sinks - these are paths that are discovered dynamically as system 

configuration changes due to valve actuation, or to changes in other flow control elements in the flow path. 

 Apply process models along flow paths to identify inconsistencies - for example, absence of flow when the 

model suggests there should be flow. 

Figures 3 demonstrates how flow paths are defined as a concatenations of Flow-Sections to define Enabled-Flow-

Systems, and identification of Flow-Paths that show open valves (flow control elements) from source (tank) to sink 

(tank, atmosphere). Note that the discovery of Flow-Sections and Enabled-Flow-Systems is done once at initiation, 

and is updated only when the schematics change. The determination of Flow-Paths is dynamic and is done every time 

valve movements occur and at specified rates (Figure 4). 

Flow-Paths are then defined as ordered collections of elements (parts) that originate at source elements and end at 

sink elements (membership sequences). Then, since the system is always aware of all flow paths, a broad range of 

analyses is done persistently and comprehensively in all flow paths existing at any given time. The analyses is done 

using models that are consistent with the physics of the processes taking place. 

1. Apply flow models to flow-sections, enabled-flow-systems, or the entire flow path or to elements or portions therein 

Once the system recognizes the concepts above (flow-section, enabled-flow-system, flow-path), a wide range of 

models can be applied consistent with the configuration and processes taking place in the system. Below are some 

example models that show how typical operator strategies for analysis can be readily implemented. The reason is 

because the system is able to speak the language/concepts used by operators when applying models. 

Model: “Throughout each flow section there is one commodity, and some physical variables of the commodity, for 

example, temperature should be similar throughout the piping section.” Similar value set 1: T3, T4. This model enables 

comparing temperature measurements to increase or decrease belief in the sensors health. 

 

Model: “Flow rates along sections shared by all branches defining multiple flow paths are the same.” In Figure 5, F1 

provides flow measurement through V5 and V1, since these valves belong to all paths in this particular configuration. 

This is a model to transfer measurements from one part of the system to another for applying models in a piece-wise 

manner. In this case, it can be seen that F1 can be used to apply a model for flow through Valve V1. In this way, 

models of flow through valves are applied persistently and comprehensively for all valves where measurements can 

be transported to provide pressure drop and flow. 

 



 

Figure 3. Concepts describing Flow Section and Enabled Flow Subsystem. 

 

 

Figure 4. Concept of Flow Path. 

 

2. Concepts and models for “thinking” valve operations 

NPAS applies similar analysis to the operation of valves. For this situation, NPAS resolves the valve state by a 

given command and feedback from open and closed indicators. This is simply a state-machine with some 

enhancements that the platform enables. In addition to resolving the valve state, the software also generates events 

that describe the analysis justification associated with particular events, which can then be used to help diagnose 

possible causes of inconsistencies among the command and feedback indicators. 

3. Diagnostics 

Diagnostics is implemented based on failure modes and effects analysis (FMEA). Typically FMEA is somewhat 

generic when it refers to elements of a system (e.g. valves, pipes, and pumps). That is, a valve may fail-open, fail-

closed, fail-stuck in position, or leak. These failures are related to possible causes. A valve that fails stuck in position, 

could be due to the fact that the actuator has failed, or that an object is impeding its movement, or that the control 

signal can’t be changed. These are generic causes that apply to classes of valves and can be re-used. However, system-



wide FMEA is typically done by analysis off-line, where interdependencies among system elements are studied and 

cause-effect reasoning is done by experts, off-line. Conducting this type of analysis on-board, by a “thinking” system, 

is possible when the system understands and uses concepts and models that the experts use; similarly to as was 

described above, in the Anomaly Detection Section. This type of “thinking” enables employing diagnostics strategies 

that are generic and can be applied to a broad range of systems. 

 

 

Figure 5. Transfer of flow rate along flow paths. 

One typical and powerful diagnostics strategy pertains to channelization. Channelization consists of defining the 

path for distribution (flow) of commodities (fluid, electric, or other).  This is typically done manually by following 

paths from sources to sinks on schematic drawings. Therefore, automating channelization is paramount to defining 

system-wide FMEA on-board and for automatic diagnostics. In the Anomaly Detection Section, Enabled-Flow-

Systems provide channelization, and Flow-Paths are active channels of flow that are determined in real time. 

Given that the system knows all flow paths, flow models may be applied that encompass multiple systems (multiple 

elements in various systems) and anomaly events in FMEA graphical causal trees, which then may be used to assess 

and to generate diagnostics.  Several examples of this are provided next. 

 

 

Figure 6. Generic cause-effect graph that assigns suspicion to all members of a flow path whenever an 

inconsistency is determined. 

Model: “Check flow indicators and determine if they satisfy flow conditions.” This is a seemingly simple, but very 

powerful model to assess state (true, false, suspect) of events such health of an element (e.g. sensor, valve, or pump). 

The strength comes from the multiple ways to define “flow indicators.” Some examples are shown below: 

 Any flow sensor along a flow-path should not measure zero. If that happens, then all elements belonging to 

the flow path become suspect of failure. This is represented in a generic graphical causal tree with events as 

shown in Figure 6. This figure represents actual graphical code. Any time a flow sensor measures a value 

of about zero, the event Inconsistency-flow-sensor is set to TRUE. The graph determines that any member’s 

Faulty condition may be the cause, so, if multiple members exist, the Faulty event for each is set to 

SUSPECT. If only one member exists (not reasonable, since the flow system would have to be the flow 

sensor by itself), its Faulty event is set to TRUE. So, with this simple graph, the entire domain is analyzed, 

ascertaining evidence that some objects may be SUSPECT of being Faulty as a result of evidence 

indicating no-flow. 

 Any valve in the flow-path may be analyzed with a physics flow equation relating flow, pressure drop, and 

valve opening. If flow determination is reliable, then any inconsistencies lead to assessing anomaly events 

in valve sensors or command. These events form part of larger graphical causal trees where assessments 

from other models are inserted. 



 One procedure used to assess valve state is to determine how the command and feedback sensors relate. In 

the case of valves that may be commanded (CMD) to OPEN or CLOSE, which have an OPEN-

INDICATOR (OI) and a CLOSED-INDICATOR (CI); all combinations of CMD, OI, and CI are analyzed. 

Figure 7 shows a graphical causal tree for an event related to this procedure, and an additional event that 

tracks history of a valve following the command. 

o The event is Inconsistency-cmd-open-OI-open-CI-closed (valve commanded to open, the OI says 

it is OPEN and the CI says it is closed). The inconsistency may be caused by combinations of the 

three Faulty events and CMD-not-reaching-valve event as shown in the graph. So, a value of 

SUSPECT is assigned to combinations that reach the inconsistency event (3 blue arrows). If the 

additional event indicator-history-not-following-command becomes TRUE for the CI-sensor, then 

CI Faulty becomes TRUE, and is asserted as the cause for the valve-state inconsistency. So, the 

diagram enabled diagnosing that the CI-sensor is faulty and the conclusion that the valve is open is 

a correct one. 

 

 

Figure 7. Cause-effect graph for generic reasoning associated with valve anomaly analyses. 

There are, of course, a large number of models that may be applied, including strategies to detect leaks. Models may 

be applied “piece-wise” throughout the domain whenever conditions are appropriate; and additionally, appropriate 

conditions are established dynamically as needed. “Piece-wise” implies that the autonomous system chooses portions 

of the domain to conduct reasoning by evaluating constraints and availability of information. The purpose of this paper 

is not to cover all possible thinking strategies for ISHM, but to present the power of enabling a system to “think” and 

analyze based on concepts and models that it understands and discovers in the context of the application knowledge 

model being programmed. 

IV. Prognostics 

Prognostics can be treated as diagnostics in the context that an indicators of failures may be a prognostics indicator 

that can predict future failure, rather than assess that failure has occurred. Hence, prognostics, instead of diagnostics 

analyses strategies and models are used to determine events that indicate future anomalies. The directed graphical 

cause diagrams are created using prognostics events (future anomaly indicators) rather than diagnostics events (present 

anomaly indicators). Therefore, the treatment of anomaly detection and diagnostics described in previous sections also 

apply to prognostics indicators and prognostics analysis. 



V. Autonomy 

Interest in autonomy continues to steadily grow due to NASA’s plans for exploration beyond low Earth orbit. More 

recently, plans to establish Moon or Mars bases have highlighted requirements for autonomous space habitats 

(transport and settlement, i.e. Deep Space Transport and Deep Space Gateway), autonomous systems for ISRU, 

robotics and systems necessary for extra-planetary surface exploration and long term human survival. The goal for 

these missions is to have systems that can, as much as possible, function without human intervention; with the 

understanding that some shared-autonomy or assisted-autonomy will still be desired or required. 

A report by Carnegie Mellon University “Technology for Autonomous Space Systems (CMU-RI-TR-00-02, 

September 2002)” [9] presents a survey of the state of the art at that time. The report addresses underlying 

technologies, component technologies, and space systems. It indicates that “…the preponderance of systems in this 

survey were directly, albeit remotely, controlled,” not autonomously controlled. Although the report is from 2002, it 

describes autonomy content associated with many NASA projects that are currently operational, and others that are 

still in the planning phase. The report identified NASA Deep Space 1 (DS-1) as the first highly autonomous space 

mission (DS-1 included the Remote Agent planner that autonomously plans course corrections to achieve goals and 

deploys or enables science instruments at locations appropriate to the specified science targets)[1]. 

Autonomy has historically been implemented as “brute-force autonomy” (BFA), as opposed to “thinking autonomy” 

(TA). BFA attempts to consider all possible cases for decisions and applies strategies to generate solutions offline. 

The decisions for cases, and only those cases, are incorporated into the software, and the processor simply implements 

predetermined actions for a correctly predicted case. This method can never be comprehensive since there will 

inevitably be cases that are not apparent, imagined and/or just missed. BFA has limited reusability and potential for 

sustained evolution of autonomy, both are critical criteria required for the affordable development of autonomous 

software. BFA inherently limits the degree of functional autonomy while also significantly increasing the cost to 

develop and deploy autonomous systems. Thinking Autonomy (TA), in contrast, implies that the system is able to 

reason based on concepts and first principles, and applies these principles in real-time to models that support strategies 

for Integrated System Health Management (ISHM) and autonomous operations. The DS-1 Remote Agent (RA) 

implementation of autonomy is an example of how TA could be achieved, and employs a paradigm similar to that 

used for the development of the NASA Platform for Autonomous Systems (NPAS), created by NASA SSC. 

The future of “true” autonomous operations requires systems capable of independent reasoning so the need for 

persistent updates is eliminated, human oversight and errors are minimized, but rapid comprehension and action by 

operators is enhanced. Important developmental gaps include availability of advanced software platforms for 

intelligent applications; development of standards; formal methods for software validation and verification; ontology 

and language formulation to enable “thinking,” analysis, planning, and operations at high levels of abstraction; and to 

advance TRL of implementations to support NASA missions. 

NPAS is evolving to incorporate “thinking” autonomy. That is, the ability to create and execute plans that encompass 

autonomous operations addressing multiple missions, including sustainment of the system and achieving of 

exploration and science objectives. References describing implementation of autonomous operation using NPAS and 

preceding versions include [10-12]. The autonomous system must apply strategies that are materialized as plans and 

execution of plans change, and this must be accomplished on-board and in real-time. As with ISHM, it is key to 

develop an ontology and languages that describe concepts for operation. Ontology may be defined as a set of concepts 

and categories in a subject area or domain that shows their properties and the relations between them. For example, a 

fundamental concept in autonomy strategies is the concept of “redundancy.” The autonomous system should be aware 

of every “redundancy” case in the system at any given time. NPAS, for example, understands the following definition 

of redundant sensors: “2 or more sensors that measure the same parameter are redundant if they are connected to the 

same flow-section.” The reasoning is that the flow-section is filled with the same fluid at the same conditions 

throughout the flow-section. With this definition, NPAS autonomy navigates the system and discovers every case of 

redundancy, making it available for use in all strategies for planning. 

It is also critical to develop ontologies for every subsystem of a system (e.g. power, propulsion, and other subsystems 

of a habitat module), as well as for the overall vehicle/habitat manager that enables autonomous operations of the 

module. These considerations leads to the concept of a Hierarchical-Distributed Autonomy (HAD). NPAS is evolving 

in this direction, and has demonstrated basic implementation of HAD for an autonomous habitat module test article 

which involved integration of NPAS as a vehicle manager, and associated subsystems including power and avionics. 



VI. ISHM and Autonomy 

Previous sections have stated that ISHM and autonomy must be intelligent “thinking” capabilities embedded on-

board systems to operate in real-time. The question now becomes, how ISHM and autonomy are integrated with each 

other. Two functional interactions must be considered: (1) ISHM as a resource to assist autonomy, and (2) autonomy 

as a resource to assist ISHM. These functional interactions must also take place in the context of particular applications 

and particular missions that must be achieved by an application. Figure 8 depicts a conceptual software architecture 

that has guided the development of NPAS. 

In Figure 8, the ISHM and autonomy modules are generic. Each module has strategies related to the functional 

capabilities they provide. The left is a module that encompasses the knowledge domain model of a specific application 

(e.g. power system). This module includes tools (primarily graphical) to build the model. The right is where plans are 

created and executed. These are specific plans that define missions to be executed by the application. The module 

includes tools to create and execute sequences encompassed by missions. 

An explanation of interaction among modules follows. The application domain module provides comprehensive 

information about every element of the application, including for example, specifications, relationships, and 

operational constraints. The ISHM module implements the capabilities described in the ISHM Section and updates 

the domain model with health and availability information. The ISHM module also generates relationships among 

model elements that are useful to autonomy strategies residing in the Autonomy Module. These could be, for example, 

collections of elements that are redundant, or that can be used interchangeable; or the sets of alternate paths for flow 

from a source to a sink. The Autonomous Operations Module inquires the Application Domain Model for availability 

of elements (resources) needed in a plan, or inhibits assessment of health during certain operations within a sequence. 

 

 

Figure 8. Software Architecture integrating ISHM and Autonomy implemented using NPAS. 

The conversation that must happen among modules in the context of autonomous operations requires an ontology 

and language. NPAS is laying the foundation for this concept, however, this embodiment requires acceptance and 

development by the autonomous community as standards so that systematic evolution and interoperability of 

autonomous systems may be possible. 

VII. Integrated Awareness 

Integrated awareness is about user interfaces that enable the user and developer a comprehensive understanding of 

the operation of a system. For autonomous systems, awareness interfaces are most important for developers and 

trouble shooters. The reason behind this statement is because autonomy should require only minimal intervention from 



users. This concept is an area that requires substantial research and development. NPAS has been used to develop user 

interfaces for 3 networked autonomous systems. Primary consideration has been given to show in any system 

information that relates to interaction with other systems, at a degree of fidelity that is consistent with concepts of 

operations. For instance, the NPAS vehicle Manager that was developed for integration testing in a habitat test article 

shows a real-time representation of plans scheduled and being executed by each subsystem of the vehicle. Figure 9 

shows the user interfaces for a vehicle manager that was developed. These displays were built in the context of 

implementation of hierarchical distributed autonomy for a space habitat module. The NPAS system was demonstrated 

at the Integrated Power Avionics and Software (iPAS) Laboratory at NASA Johnson Space Center in October 2017. 

 

 

Figure 9. Graphical User Interface of a Vehicle Manager as the member of highest hierarchy of an 

autonomous space habitat module. 

VIII. Conclusions and Recommendations 

This paper provides concepts, methodologies, and technologies used in implementation of intelligent autonomy. 

The emphasis for an intelligent autonomous system is to be associated with the development of “thinking” autonomy 

as opposed to “brute-force” autonomy. “Thinking” systems require comprehensive domain knowledge models, 

because comprehensive information and knowledge is needed for analysis required to address a broad range of 

strategies, and for utilizing a multitude of physics-based models (or other models describing behavior). The paradigm 

for “thinking” autonomy is being applied by NASA Stennis Space Center with the development of NASA Platform 

for Autonomous Systems (NPAS) by. NPAS is architected to evolve and incorporate additional capabilities to 

increment “thinking autonomy.” The knowledge models created in NPAS are System Modeling Language (SysML) 

complete and beyond [13]; these are life models and not merely describing a design, but used in real-time operations. 

There are key gaps that limit the advancement of the area of ISHM and autonomy. These include insufficient 

development of ontologies and languages to enable thinking and reasoning with knowledge models; the lack in most 

traditional software platforms of tools for creation and management of knowledge models, inference engines, real-

time operations, and network enabled interactions; and the lack of standardized concepts of operations consistent with 

ontologies and languages for autonomy. 
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