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Problem
• Identify	safety	events	in	flight	operational	data
• Unsupervised	anomaly	detection
• SME	review	of	anomalies
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Unsupervised	anomaly	detection
• Lack	of	definition	of	‘safety’	incident
• One-class	SVM	based	anomaly	detection

4

x1

x2

x1

x2

Θ

+S. Das, B. Matthews, A. Srivastava, N Oza. 2010. Multiple kernel learning for heterogeneous anomaly detection: algorithm and aviation safety 
case study. In Proceedings of the 16th ACM SIGKDD (KDD '10). 47-56. 



State	of	the	art
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Proposed	approach
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Active	learning	framework
Features
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ASK-the-Expert	tool:	architecture
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Annotator	component
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Coordinator	component
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Multiple	kernel	support	vector	machine
• Multiple	kernel	2	class	SVM:	classifying	between	operationally	

significant	(OS)	and	uninteresting	(NOS)	flights

• 2-class	SVM	objective:	

• Decision	function:
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Rationale	feature	construction

• How	to	set	weights:			 ,…,
𝑠. 𝑡. 𝜂𝑚 >=0	&	∑𝜂𝑚�� = 1

• Simple	MKL	algorithm
–Modified	objective	function	
– Alternates	between	optimizing	classifier	margin	
and	weights	of	kernels
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Rationale	feature	construction

• Decision	tree	induction
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Data

altitude

Vertical	
separation

Horizontal	separation

ORIGINAL	FEATURES
• Latitude
• Longitude
• Altitude
• Ground	speed
• Horizontal	separation
• Vertical	separation
• Aircraft	size
• Turn-to-final	(TTF)	parameters:

• Maximum	overshoot
• Speed	at	TTF
• Distance	at	TTF
• Angle	at	TTF
• Altitude	difference	at	TTF

• Nearest	neighboring	(NN)	flight	info:
• NN	flight	on	same	runway
• NN	flight	on	parallel	runway
• NN	flight	part	of	the	same	flow

Runway



Rationale	features

“Loss	of	separation”
• Horizontal	separation	<	3	miles	AND	

Vertical	separation	<	1000	ft AND	nearest	
neighboring	flight	is	not	on	parallel	runways	
and	not	part	of	the	same	flow

“Large	overshoot”
• Maximum	overshoot	is	greater	than	a	

threshold	based	on	values	of	flights	with	
positive	labels

“Unusual	flight	path”
• Overall	deviation	from	expected	(average)	

trajectory	of	all	landing	flights	on	that	
runway
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Experimental	setup

• Data	set:	30	NM	airspace	around	Denver	
International	Airport	for	Aug	2014
– Training	set:	~2400	flights
– Statistical	anomalies:	153
– OS	flights:	24

• 2	fold	cross	validation	with	10	random	
bootstraps	for	each	fold
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Performance	analysis
• Metrics:	precision@5	and	precision@10
• Most-likely	positive	strategy

Learning	curves	for	different	active	learning	strategies	
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Performance	analysis

75%	savings	in	labeling	effort

Learning	curves	for	most	likely	positive	strategy	with	and	without	rationales
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Performance	analysis

Comparison	of	number	of	labeled	flights	required	by	various	strategies	to	
achieve	a	target	performance	measure.	‘n/a’	represents	that	the	target	

performance	cannot	be	achieved	by	a	method	even	with	45	labeled	flights.
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Performance	benefits

• Generalization
– Two	different	test	data	sets:	July	2014	and	July	2015
– Average	improvement	in	precision@5:	~30%
– Average	improvement	in	precision	@10:	~65%

• Review	time
– Up	to	75%	reduction	in	review	time	for	same	target	
performance
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Summary

• Goal:	to	reduce	SME	review	time	of	statistical	
anomalies	identified	using	unsupervised	anomaly	
detection

• Use	active	learning	with	rationales	to	learn	2-
class	classifier	to	distinguish	between	
operationally	significant	and	uninteresting	
anomalies

• Classifier	generalizes	to	other	data	sets	from	the	
same	domain

• Up	to	75%	reduction	in	SME	review	time
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Thank	You
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