

ASK-the-Expert: Active learning based knowledge discovery using the expert

Kamalika Das

Data Science Group NASA Ames Research Center

ML Workshop, August 2017

Roadmap

- Problem description
- State-of-the-art
- Proposed framework
- Tool description
- Algorithms
- Performance analysis
- Summary

Problem

- Identify safety events in flight operational data
- Unsupervised anomaly detection
- SME review of anomalies

Narsa

Unsupervised anomaly detection

- Lack of definition of 'safety' incident
- One-class SVM based anomaly detection

⁺S. Das, B. Matthews, A. Srivastava, N Oza. 2010. Multiple kernel learning for heterogeneous anomaly detection: algorithm and aviation safety case study. In Proceedings of the 16th ACM SIGKDD (KDD '10). 47-56.

State of the art

Proposed approach

Active learning with rationales framework

Active learning framework

ASK-the-Expert tool: architecture

Annotator component

≪ Flight UAL1435	8 💌						
Anomal	/ Label						
05 -							
Rationale Features							
Overshoot Greater Than 1000	OS Loss Of Separation						
Total Deviation on Final							
Add Selected>	< Remove selected						
Rationale Notes							
Vertical separation down to 1.4NM. Bad turn to final. Last minute	line up to adjacent runway.						
Flight Path Plot (opens in the browser) 🔻							
20.0 -	AND						
17.5 -							
15.0 -							
€ ^{12.5}							
Ē 10.0 -							
₩ > 7.5 -	TO NERRARIAN FREAT						
3.0	TXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX						
2.5 - Reference flights							
0.0 - Flight UAL1435							
30 25 20 Miles to	15 10 5 Ó Touchdown (NM)						
	OK Cancel						

Coordinator component

Multiple kernel support vector machine

• Multiple kernel 2 class SVM: classifying between operationally significant (OS) and uninteresting (NOS) flights

• 2-class SVM objective:

$$\min_{\boldsymbol{\alpha}} D(\boldsymbol{\alpha}) = \frac{1}{2} \sum_{i,j} \alpha_i \, \alpha_j \, \Phi(\boldsymbol{x}_i) \cdot \Phi(\boldsymbol{x}_j) - \sum_i y_i \, \alpha_i \quad \text{s.t.} \quad \begin{cases} \sum_i \alpha_i = 0 \\ 0 \le y_i \, \alpha_i \le C \end{cases}$$

• Decision function: $f(x) = \sum_{i} \alpha_i K(x_i, x) + b$

Rationale feature construction

• How to set weights: $\eta_1, \eta_2, ..., \eta_n$

$$K_{\eta} = \sum_{m=1}^{P} \eta_{m} k_{m} \left(x_{i}^{m}, x_{j}^{m} \right) \qquad s.t. \eta_{m} \ge 0 \& \sum \eta_{m} = 1$$

- Simple MKL algorithm
 - Modified objective function
 - Alternates between optimizing classifier margin and weights of kernels

Rationale feature construction

Decision tree induction

Data

- Latitude
- Longitude
- Altitude
- Ground speed
- Horizontal separation
- Vertical separation
- Aircraft size
- Turn-to-final (TTF) parameters:
 - Maximum overshoot
 - Speed at TTF
 - Distance at TTF
 - Angle at TTF
 - Altitude difference at TTF
- Nearest neighboring (NN) flight info:
 - NN flight on same runway
 - NN flight on parallel runway
 - NN flight part of the same flow

Runway

Rationale features

"Loss of separation"

 Horizontal separation < 3 miles AND Vertical separation < 1000 ft AND nearest neighboring flight is not on parallel runways and not part of the same flow

Horizontal separation<3 miles

"Large overshoot"

 Maximum overshoot is greater than a threshold based on values of flights with positive labels

"Unusual flight path"

 Overall deviation from expected (average) trajectory of all landing flights on that runway

Vertical separation<1000 ft

Experimental setup

- Data set: 30 NM airspace around Denver International Airport for Aug 2014
 - Training set: ~2400 flights
 - Statistical anomalies: 153
 - OS flights: 24
- 2 fold cross validation with 10 random bootstraps for each fold

Performance analysis

- Metrics: precision@5 and precision@10
- Most-likely positive strategy $\mathbf{x}^* = \underset{\mathbf{x} \in \mathcal{U}}{\operatorname{arg\,max}} P_{\theta}(\hat{\mathbf{y}}^+ | \mathbf{x})$

Learning curves for different active learning strategies

Performance analysis

Learning curves for most likely positive strategy with and without rationales

Performance analysis

	Target precision@5					Target precision@10						
Method	0.5	0.6	0.7	0.8	0.9	1.0	0.50	0.55	0.60	0.65	0.70	0.75
RND	6	25	n/a	n/a	n/a	n/a	12	18	33	n/a	n/a	n/a
MKAD-Sampling	4	6	n/a	n/a	n/a	n/a	4	6	13	n/a	n/a	n/a
MLP	5	10	16	32	n/a	n/a	8	12	15	16	23	34
MLP_w/Rationales	2	2	2	8	10	29	2	5	7	11	19	29

Comparison of number of labeled flights required by various strategies to achieve a target performance measure. 'n/a' represents that the target performance cannot be achieved by a method even with 45 labeled flights.

Performance benefits

- Generalization
 - Two different test data sets: July 2014 and July 2015
 - Average improvement in precision@5: ~30%
 - Average improvement in precision @10: ~65%
- Review time
 - Up to 75% reduction in review time for same target performance

Summary

- Goal: to reduce SME review time of statistical anomalies identified using unsupervised anomaly detection
- Use active learning with rationales to learn 2class classifier to distinguish between operationally significant and uninteresting anomalies
- Classifier generalizes to other data sets from the same domain
- Up to 75% reduction in SME review time

Acknowledgement

 This work is supported by Center Innovation Fund (CIF) 2017 award

• Team:

- Nikunj Oza, NASA Ames Research Center
- Bryan Matthews, SGT Inc.
- Illya Avrekh, SGT Inc.
- Manali Sharma, PhD Student, Illinois Institute of Technology
- Sayeri Lala, Undergraduate Student, Massachusetts Institute of Technology

Thank You