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Problem

* |dentify safety events in flight operational data
* Unsupervised anomaly detection
 SME review of anomalies

Unsupervised
anomaly
detection

Statistical flight anomalies



Unsupervised anomaly

* Lack of definition of ‘safety’ incident
* One-class SVM based anomaly detection

*S. Das, B. Matthews, A. Srivastava, N Oza. 2010. Multiple kernel learning for heterogeneous anomaly detection: algorithm and aviation safety 4
case study. In Proceedings of the 16th ACM SIGKDD (KDD '10). 47-56.
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Active learning fram

Statistical anomalies flight: x*  Label: y* rationale
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ASK-the-Expert tool: arc
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Annotator com
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Coordinator com

Ingest annotations from
SME

Use text mining based
mapping from annotations to

features / \
* Latent dirichlet allocation Automated feature Classifier learning
(LDA) construction

¢ Neural networks

Discretization of time series

! (SAX) :
Learn WEIghtS of most Decision tree induction Support Vector Machine
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2-class multiple kernel

Simple MKL

10



Multiple kernel support vectc

 Multiple kernel 2 class SVM: classifying between operationally
significant (OS) and uninteresting (NOS) flights
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* Decision function: f(z) =) aK(zi,z)+b
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Rationale feature const

* How to set weights: n, n,,...,n,
P
Kn=znmkm(x§”»x7) S 61y >=0 & X1, = 1
m=1

e Simple MKL algorithm

— Modified objective function

— Alternates between optimizing classifier margin
and weights of kernels
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Rationale feature co

e Decision tree induction

SpeedOflntercept <= -1 .3967 /

gini = 0.0624 < MaximumOvershoot <= 3.7731
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Data

ORIGINAL FEATURES

* Latitude w
* Longitude

* Altitude

* Ground speed

Horizontal separation
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Rationale featu

= =&

“Loss of separation” Vertical separatipn<1000 ft

* Horizontal separation < 3 miles AND _v
Vertical separation < 1000 ft AND nearest Horizontal separation<3 miles
neighboring flight is not on parallel runways
and not part of the same flow

Deviation from

”La rge OverShOOt” expected path

* Maximum overshoot is greater than a ®e
threshold based on values of flights with » o |
positive labels ory

trajectory = ‘o

“Unusual flight path”

* Overall deviation from expected (average) @ccccccccccess ??-F“Tl'"“ cos®’
trajectory of all landing flights on that @ Begin Point
runway | | ‘ XLanding Point




Experimental setu

* Data set: 30 NM airspace around Denver
International Airport for Aug 2014
— Training set: ~2400 flights
— Statistical anomalies: 153
— OS flights: 24

e 2 fold cross validation with 10 random
bootstraps for each fold
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Performance anal

* Metrics: precision@5 and precision@10
* Most-likely positive strategy x* = arg max P (3" [x)
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Performance anal

Target precision@5 Target precision@10
Method 0.5/0.6/0.7({0.8/0.9|1.0|0.50|0.55|0.60|0.65|0.70| 0.75
RND 6 |25 |n/a|n/a|n/a|n/a|12 18 |33 |n/a |[n/a |n/a
MKAD-Sampling |4 |6 |[n/afn/a|n/a|n/a|4 6 13 |n/a |n/a |[n/a
MLP 5 (10 |16 |32 |n/a|n/a|8 12 15 16 [23 | |34
MLP_w/Rationales |2 |2 [2 |8 10 |29 (2 5 7d 11 19 | 29

Comparison of number of labeled flights required by various strategies to
achieve a target performance measure. ‘n/a’ represents that the target
performance cannot be achieved by a method even with 45 labeled flights.
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Performance benef

* Generalization
— Two different test data sets: July 2014 and July 2015
— Average improvement in precision@5: ~30%
— Average improvement in precision @10: “65%

* Review time

— Up to 75% reduction in review time for same target
performance

20



Summary

Goal: to reduce SME review time of statistical
anomalies identified using unsupervised anomaly
detection

Use active learning with rationales to learn 2-
class classifier to distinguish between
operationally significant and uninteresting
anomalies

Classifier generalizes to other data sets from the
same domain

Up to 75% reduction in SME review time
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