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Abstract: Occupational exposure to bioaerosols resulting from handling of flour dust and raw 

materials in bakeries is associated with health problems. The emergence of azole-resistant fungal 

species in the environment is thought to be related with the use of azole fungicides in cereal crops 

and prevention of postharvest spoilage. As raw materials used in bakeries are commonly exposed to 

azoles, we investigated the mycobiota and azole-resistant fungi prevalence in this occupational 

environment. Ten Portuguese bakeries were assessed through electrostatic dust cloth (EDC, n = 27), 

settled dust (n = 7), and raw material (n = 26) samples. Samples were inoculated in malt extract  

agar (2%) (MEA) with chloramphenicol (0.05 g/L) and in dichloran glycerol (DG18), and onto 

Saboraud screening media supplemented with 4 mg/L itraconazole, 1 mg/L voriconazole, or  

0.5 mg/L posaconazole, and incubated for 3–5 days at 27 °C. Except for one out of the ten analyzed 

bakeries, Cladosporium sp., Penicillium sp., and Aspergillus sp. were the most prevalent fungi 

identified. Aspergillus sp. and Mucorales order were identified in raw materials with both media, 

whereas Penicillium sp. was identified in DG18 only. Azole-resistant species were identified in the 

environment (EDC) and, to a lower extent, in raw materials, including Aspergillus sp. and Mucorales. 

The presence of azole-resistant fungal species in bakeries represents an occupational risk for workers. 

This study proposes complementary sampling methods for the evaluation of occupational exposure 
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to mycobiota, and highlights the importance of studying the prevalence of azole-resistant strains in 

specific occupational environments. 

Keywords: azole-resistance; occupational exposure; bakeries; fungi; Aspergillus; Mucorales 

 

1. Introduction 

Handling of flour dust and raw materials in the food industry can be associated with health 

problems as raw materials may be associated with allergen sensitization and fungal colonization [1–6]. 

Several reports on the relation between fungi levels in diverse occupational environments and health 

effects [7–15] corroborate that fungi are potential occupational health hazards that should be taken 

into account in risk assessment strategies in occupational settings, including bakeries.  

Exposure to flour dust and related bioaerosols in the bakery industry is described to occur 

mainly during grinding, sifting and mixing operations [16]. When mixing occurs, abundant organic 

dust particles originating from flour dust disperse into the air and are suspended for a long time 

before deposited on the floor due to gravitational sedimentation. Consequently, high spreading of 

fungi and their spores and metabolites, such as volatile organic compounds and mycotoxins, will also 

probably be suspended [17].  

Raw materials used in bakeries consists of finely milled cereal or grains (e.g., wheat, rye, barley, 

oats, rice, malt, carob, corn) and additional non-cereal ingredients (e.g., enzymes, antioxidants, 

flavorings and spices, baker’s yeast, sugar powder) that are used for dough improvement [16]. Some 

of these raw materials are ideal microbial growth substrates and can generate elevated levels of 

bioaerosols [18,19]. The genus Aspergillus, including A. fumigatus, is ubiquitous in nature and one 

of the most prevalent in crops and cereals such as corn, wheat, barley, oat, rice, and sorghum [20]. 

Aspergillus disease affects a broad patient population, from patients with asthma to 

immunocompromised patients [21]. Invasive fungal diseases, such as aspergillosis, are still a life-

threatening complication for immunocompromised patients [22]. Azole drugs are critical in long-term 

therapy for chronic pulmonary aspergillosis, as they are the only anti-Aspergillus agents orally available. 

This class includes itraconazole (available for clinical use since 1997), voriconazole (since 2002), 

posaconazole (since 2006), and, most recently, isavuconazole [23,24]. However, azole resistance has 

been increasingly reported in both clinical and environmental Aspergillus strains [25–29]. 

It is currently discussed whether azole-resistance in environmental strains of A. fumigatus can 

be caused by fungal selection pressure exerted by agricultural triazole fungicide use, such as in crop 

protection [30], due to the structure similarity of clinical triazoles with triazole fungicides. Azole-

resistance mechanisms are increasingly being studied and identified for Aspergillus sp., threatening 

the role of the azole class in the management of fungal diseases [31,32,33]. Improved diagnosis and 

application of fungi-active prophylaxis has led to a reduced incidence of disease due to Aspergillus 

genus. On the other hand, previously rare infectious fungal agents such as Fusarium sp. and 

Mucorales order are on the rise [34,35,36]. In this scenario, increasing resistance to the limited 

arsenal of antifungal drugs is a serious concern, especially for Aspergillus and Mucorales infections, 

for which the therapeutic options have become limited, currently restricted to azoles, echinocandins, 

polyenes, and flucytosine [37,38,39]. 
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Until now, no data regarding exposure to bioaerosols nor azole-resistance distribution in 

bakeries have been reported for Portugal, and this omission has delayed the application of preventive 

measures for the protection of workers health. Therefore, the aim of this study was to assess fungal 

contamination in ten bakeries in Portugal and to determine the prevalence of azole-resistant fungal 

species in this occupational setting.  

2. Materials and Method 

This study was conducted between May 2016 and June 2017 in 10 Portuguese bakeries located 

in the Lisbon district and is part of an enlarged exploratory study with financial support from the 

Portuguese Authority for Working Conditions aiming to characterize occupational exposure to fungi 

and particles on Portuguese bakeries. While being part of a larger study in which additional 

environmental characterization was carried out, this paper presents the preliminary results regarding 

environmental samples collected by passive methods in which azole-resistance monitoring was 

performed. 

2.1. Bakeries characteristics 

Most bakeries were organized in three different areas: Production—where kneading machines 

and ovens were located and where dough shaping was performed; Raw material warehouse—where 

workers collected the raw materials for dough preparation for several times during process;  

Store—where final product was sold (bread or pastry). In one bakery with no store a distinct area 

was characterized: Expedition—where distribution of final product for other units occurs. One 

bakery was dedicated to pastry. The sampling sites and collection periods for each bakery were 

determined based on the high amount of time spent by workers on those places or dislocation 

frequency during their occupational activity. In these settings environmental samples (settled dust 

and electrostatic dust cloth) and several raw materials were collected for the assessment of fungal 

burden and screening of azole resistance.  

2.2. Environmental and raw material samples 

In total, 34 environmental samples and 26 raw material samples were collected and analysed by 

culture-based methods (Table 1).  

One settled dust sample in each bakery unit (7/10) was collected, by collecting the floor dust 

into a sterilized bag. After sampling, 4.4 g of the collected floor settled dust were weighted and 

extracted with 40 mL of distilled water for 20 minutes at 200 rpm, as previously described [40–43].  

Another approach was used to collect bioaerosols using electrostatic dust cloths (EDCs). This 

collection device is increasingly being used because it is electrostatic, inexpensive, easy to obtain, 

and effective at collecting dust [44,45]. EDCs employ electric fibers which have revealed to increase 

allergen particle retention [46]. As such, 2–3 EDC samples were collected in each evaluated bakery 

at distinct working areas, in a total of 27 EDC samples. Each EDC had a surface exposure area of 

0.0209 m (19 × 11 cm). The EDCs were placed at a minimum 0.93 m above floor level, and dust was 

allowed to settle for, at least, 15 days. Each EDC was weighted after sampling and the mean of  
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10 EDCs weighted before sampling was subtracted. Dust from EDC cloths was extracted with 20 mL 

0.9% NaCl with 0.05% Tween80™ by orbital shaking (250 rpm, 60 minutes, at room temperature [40]. 

Table 1. Type and number of samples collected in ten bakeries. 

Bakery Settled dust EDC Raw material 

1 NA 2 NA 

2 NA 3 NA 

3 1 2 NA 

4 1 2 7 

5 1 3 5 

6 1 3 5 

7 1 3 4 

8 1 3 4 

9 1 3 NA 

10 NA 3 NA 

 n = 7 n = 27 n = 26 

NA: not applicable. 

Twenty six samples of bread/pastry raw material, including different types of flour, sugar and/or 

spices, were collected (4 to 7 samples per unit) from half of the bakeries evaluated in this study (5 

out of 10 units) and prepared as follows: 4.4 g of raw material was weighted and washed with 40 mL 

of distilled water for 20 minutes at 200 rpm [40–43].  

2.3. Culture-based methods and screening of azole-resistance 

The fungal burden was determined in environmental and raw material samples through the 

inoculation of 150 µL of the wash suspension on 2% malt extract agar (MEA) supplemented with 

chloramphenicol (0.05%) and dichloran glycerol (DG18). DG18 was used due to its ability to restrict 

the colony size of fast-growing genera [47], allowing a more complete characterization of fungal 

growth in complex matrices such as environmental and substrate samples. The prevalence of azole-

resistance was determined in all the collected samples using azole-supplemented media by seeding 

150 µL of the wash suspension on Saboraud agar supplemented with 4 mg/L itraconazole, 1 mg/L 

voriconazole, or 0.5 mg/L posaconazole, according to the EUCAST guidelines [48]. All of the 

collected samples were incubated at 27 °C for 5–7 days, in order to allow the growth of all fungal 

species present in the samples. 

2.4. Fungal contamination characterization 

After laboratory processing and incubation of the collected samples, quantitative (colony-

forming units: CFU/m
2
 and CFU/g) and qualitative results were obtained, with identification of the 

isolated fungal species or genera. When overgrowth was observed in EDC (>500 CFU) colony count 

was determined as follows: CFU/(3.14 × area) × dilution factor. In the other samples (settled dust 

and raw materials), 500 CFU/g was considered as previous applied [41,42,43]. For species 

identification, microscopic mounts were performed using tease mount or Scotch tape mount and 
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lactophenol cotton blue mount procedures. Morphological identification was achieved through macro 

and microscopic characteristics as noted by De Hoog et al. [49]. 

2.5. Data analysis  

The data analysis was performed using univariate descriptive statistics using frequency (n; %), 

median and graphical representations appropriate to the nature of the data.  

3. Results 

Seven different fungal species were detected in EDC samples from all analyzed bakery  

units (Figure 1). Considering MEA and DG18 combined (Table 2), Chrysonilia sitophila was the 

predominant species (79.3%), followed by Penicillium sp. (12.1%) and Cladosporium sp. (7.8%). In 

addition, Aspergillus sp. (0.8%) and Paecilomyces sp. (0.1%) were also isolated. Among Aspergillus 

genera, four different species were isolated belonging to three different sections, namely,  

Candidi (0.5%), Circumdati (0.2%) and Restricti (0.1%) (Table 3). Regarding fungal load 

distribution among work areas (Table 3), higher fungal counts (CFU/m
2
) were determined either in 

store/expedition (units nº 5, 6, 8 and 9), production (units nº 3, 4 and 7), or warehouse/packing  

areas (units nº 1, 2 and 10), with Penicillium sp. and Cladosporium sp. being the most prevalent 

species, with one exception (unit nº 10, presenting countless CFU/m
2
 of Chrysonilia sitophila at all 

sampling sites). No fungal growth was detected in settled dust samples. 

Table 2. Fungal distribution in EDC and raw material samples (fungal count for MEA 

and DG18 combined). 

Fungal species EDC (CFU/m
2 
EDC) 

(n; %) 

Fungal species Raw material (CFU/g) 

(n; %) 

Chrysonilia sitophila 74,642; 79.3 Penicillium sp. 14; 63.6 

Penicillium sp. 11,346; 12.1 Aspergillus sp. 6; 27.3 

Cladosporium sp. 7,315; 7.8 Mucorales order 2; 9.1 

Aspergillus sp. 746; 0.8   

Paecilomyces sp. 100; 0.1   

CFU were calculated as follows: (n) = (CFU in MEA + CFU in DG18); (%) = (CFU in MEA + CFU in 

DG18)/(total CFU in MEA + total CFU in DG18) × 100 

Of note, ten different azole-resistant species were identified in 56% (15/27) of the EDC samples 

from 8 out of 10 assessed bakeries. The most prevalent azole-resistant species were Chrysonilia 

sitophila (49,761 CFU/m
2
 EDC; 64.8%) and Rhizopus sp. (Mucorales order) (24,930 CFU/m

2
 EDC; 

32.5%), both species not susceptible to 1 mg/L voriconazole, followed by four other azole-resistant 

species with fungal counts above 100 CFU/m
2
 EDC, namely, Cladosporium sp., Penicillium sp., 

Chrysosporium sp., and Aureobasidium sp., and four other species with lower fungal counts, 

including Aspergillus section Circumdati, (Table 4). 
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Table 3. Fungal distribution in different work areas assessed by EDC. 

Bakery Work site MEA (CFU/m
2
 EDC) Fungal species DG18 (CFU/m

2
 EDC) Fungal species 

1 Warehouse 50 Aspergillus section Circumdati 6,419 Penicillium sp., Cladosporium sp. 

Production 199 Aspergillus section Candidi 0  

2 Production 0  0  

Packing 100 Aspergillus section Circumdati 1,841 Penicillium sp., Cladosporium sp. 

Store 0  0  

3 Warehouse 0  0  

Production 0  50 Penicillium sp. 

4 Warehouse 0  0  

Production 0  199 Penicillium sp., Cladosporium sp. 

5 Production  0  0  

Warehouse 0  0  

Store 199 Penicillium sp. 100 Penicillium sp., Paecilomyces sp. 

6 Warehouse  0  100 Penicillium sp., Aspergillus section Restricti 

Production 0  0  

Store 0  149 Aspergillus section Candidi, Cladosporium 

7 Production  199 Penicillium sp., Paecilomyces sp. 448 Penicillium sp. 

Warehouse 100 Penicillium sp., Cladosporium sp. 199 Penicillium sp. 

Store 0  100 Penicillium sp. 

8 Production  0  50 Penicillium sp. 

Warehouse 0  50 Penicillium sp. 

Store 3,135 Penicillium sp., Aspergillus section Restricti 2,936 Cladosporium sp. 

9 Production  249 Penicillium sp., Cladosporium sp. 299 Penicillium sp. 

Warehouse 199 Cladosporium sp., Aspergillus section Candidi 0  

Store 1,939 Penicillium sp. 0  

10 Production  24,881 Chrysonilia sitophila 100 Penicillium sp. 

Warehouse 24,881 Chrysonilia sitophila 348 Penicillium sp., Cladosporium sp. 

Store 24,881 Chrysonilia sitophila 299 Penicillium sp., Aspergillus section Candidi 
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Figure 1. Fungal load in EDC after inoculation onto MEA and DG18 media. 

Table 4. Azole-resistant fungal species distribution after EDC inoculation onto azole-

supplemented Saboraud media. 

 EDC (CFU/m
2
 EDC) (n; %) 

Fungal species 4 mg/L ITC 1 mg/L VRC 0.05 mg/L PSC Total 

Chrysonilia sitophila 0; 0 49,761; 65.8 0; 0 49,761; 64.8 

Rhizopus sp. 0; 0 24,930; 33.0 0; 0 24,930; 32.5 

Cladosporium sp. 498; 71.4 249; 0.3 249; 55.6 995; 1.3 

Penicillium sp. 100; 14.3 398; 0.5 149; 33.3 647; 0.8 

Chrysosporium sp. 0; 0 100; 0.1 50; 11.1 149; 0.2 

Aureobasidium sp. 50; 7.1 50; 0.1 0; 0 100; 0.1 

Aspergillus section Circumdati 0; 0 50; 0.1 0; 0 50; 0.1 

Paecilomyces sp. 50; 7.1 0; 0 0; 0 50; 0.1 

Chrysonilia sp. 0; 0 50; 0.1 0; 0 50; 0.1 

Alternaria sp. 0; 0 50; 0.1 0; 0 50; 0.1 

ITC, itraconazole; VRC, voriconazole; PSC, posaconazole; N, number of species isolates; %, number of 

species isolates per total of resistant isolates. 
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Regarding raw material samples, six different groups of fungal species were isolated (Figure 2). 

Considering MEA and DG18 combined (Table 2), Penicillium sp. was the most prevalent  

genera (63.6%), followed by Aspergillus sp. (27.3%) and Mucorales group (9.1%). This fungal 

contamination was present in 27% (7/26) of the raw material samples collected in four of the five 

assessed bakeries (Table 5). Among Aspergillus genera, four different species were isolated 

belonging to the sections Versicolores (18.2%), Candidi (4.5%) and Circumdati (4.5%). Among 

Mucorales, the isolated species were Mucor sp. (4.5%), and Syncephalastrum racemosum (4.5%). 

Two azole-resistant fungal species were identified in two distinct raw materials, namely 

Chrysosporium sp. (1 CFU/g) not susceptible to 4 mg/L itraconazole, and Mucor sp. (1 CFU/g) not 

susceptible to 1 mg/L voriconazole (Table 6). No azole-resistant Aspergillus species were identified 

in raw material samples.  

Table 5. Fungal distribution in raw materials (n = 26) collected at five bakeries (CFU/g). 

Raw material 

ID* (Code) 

MEA 

(CFU/g) 

Fungal species DG18 

(CFU/g) 

Fungal species 

4A 0  0  

4B 0  0  

4C 0  0  

4D 1 Aspergillus section Versicolores 0  

4E 0  0  

4F 0  0  

4G 0  0  

5E 0  0  

5B 0  0  

5G 1 Aspergillus section Versicolores 0  

5C 0  0  

5F 3 Aspergillus section Versicolores, 

Mucor sp. 

1 Penicillium sp. 

6H 0  0  

6I 0  13 Penicillium sp. 

6J 0  0  

6K 0  1 Syncephalastrum racemosum 

6L 0  1 Aspergillus section Candidi 

7M 0  0  

7N 0  1 Aspergillus section Circumdati 

7O 0  0  

7P 0  0  

8B 0  0  

8F 0  0  

8Q 0  0  

8G 0  0  

8E 0  0  

* Code ―Number, letter‖ refers to ―Bakery unit, raw material type‖. 
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Figure 2. Fungal load in raw material after inoculation onto MEA and DG18 media. 

Table 6. Azole-resistant fungal species distribution after raw material inoculation onto 

azole-supplemented Saboraud media. 

 Raw material (CFU/g) (n; %) 

Fungal species 4 mg/L ITC 1 mg/L VRC 0.05 mg/L PSC Total 

Chrysosporium sp. 1; 100   1; 50 

Mucor sp.  1; 100  1; 50 

ITC, itraconazole; VRC, voriconazole; PSC, posaconazole. 

4. Discussion 

This is the first study in Portugal determining the fungal load and prevalence of antifungal-

resistant species in bakeries. Overall, with the exception of Chrysonilia sitophila for one bakery, the 

most prevalent fungi isolated in both media were Cladosporium sp. and Penicillium sp.. Other 

species with recognized toxigenic potential belonging to the genus Aspergillus were also isolated 

both in the environment and in raw materials. 

Exposure to bioaerosols in bakeries may potentially place workers at higher health risk, since 

exposure to high levels of flour dust potentiates the exposure to airborne microorganisms, which may 

reach infectious levels within a confined space more readily [3,7,16]. In our study, the highest fungal 

load was found in the production area (1,793 CFU/m
2
 EDC, in MEA and DG18), followed by the 

warehouse (1,052 CFU/m
2
 EDC, in MEA and DG18) and the store/packing area (957 CFU/m

2
 EDC, 

in MEA and DG18). Previous studies identified being near the kneading machines during ingredients 

mixing as the task with higher values for the smallest particles [15,16]. One possible explanation for 
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this might be related with the use of open machines for mixing without localized exhaustion [15], 

which is of most importance when, as was the case in the present study, none of the workers used 

respiratory protection devices. 

In the assessment of EDC fungal contamination, different results were obtained using different 

culture media regarding both fungal load and mycobiota diversity. As an example, the isolates from 

Chrysonilia sitophila were only identified on MEA media. This is due to the ability of DG18 to 

restrict the colony size of fast-growing genera, such as Chrysonilia sitophila, allowing a different and 

a more complete characterization of fungal contamination. Noteworthy, the use of both media 

allowed to identify toxigenic genus Penicillium and Aspergillus (sections Candidi, Circumdati and 

Versicolores) in the analyzed samples, unveiling a common scenario of potential co-exposure to 

more than one risk factor—mycobiota and mycotoxins (e.g., aflatoxin) in the baking industry. 

Concerning the azole-resistance prevalence in the assessed bakeries, eleven different azole-

resistant species, including isolates identified as Aspergillus sp. and Mucor sp., were detected in the 

environment and in raw materials. Of note, the number of azole-resistant isolates belonging to the 

genus Aspergillus may be underestimated, in general and in our study, due to the dominance of other 

genera in the azole-supplemented media with faster growth rates [50]. Aspergillus growth restriction 

can be circumvented by using higher incubation temperatures, as most Aspergilli are highly 

thermotolerant. However, since the evaluation of occupational exposure aims to characterize the 

complete bioburden, not only Aspergillus genera, conventional incubation temperatures were used. 

The identification of Mucor sp. in raw materials is also of concern because invasive fungal diseases 

due to Mucorales are increasing [34,35,36]. Belonging to the order Mucorales, Mucor is one of the 

most commonly identified human pathogenic genera in Europe [51]. Mucorales are not susceptible to 

voriconazole, the first-line antifungal drug for invasive aspergillosis. The dominant and fast growth 

of these species in voriconazole screening media may hinder the presence of Aspergillus and other 

species [52].  

Although most isolates were not susceptible to 1 mg/L voriconazole only, in four EDC from 

distinct bakery units three other genus (Penicillium sp., Cladosporium sp., Aureobasidium sp.) were 

identified as not susceptible to more than one azole. Azole-resistant Penicillium and Cladosporium 

spp. were previously reported in clinical isolates for itraconazole and voriconazole [53]. High MICs 

of voriconazole and isavuconazole were also reported in vitro for Aureobasidium pullulans in both 

clinical and environmental isolates [54]. Intrinsic resistance to available antifungals reported in some 

fungi such as Fusarium, Rhizopus, Rhizomucor and Scedosporium spp. has been pointed out as a 

major issue by Alhanout and colleagues [55]. However, little is known regarding intrinsic azole-

resistance of Penicillium sp., Cladosporium sp., and Aureobasidium sp. In fact, data on intrinsic 

resistance to azoles are still very limited for non-A. fumigatus fungal species. One known example is 

the intrinsic resistance of Aspergillus section Terrei to itraconazole [56]. The fact that overall 

reported MIC-distributions include only a limited number of clinical isolates for most non-A. section 

Fumigati species compared to A. section Fumigati hinders our ability to distinguish in vitro 

susceptibility at species level. Therefore, molecular identification remains important to gain more 

insight into the efficacy of antifungal agents [55]. 

The presence of toxigenic species and azole-resistant species indicates that preventive and 

protective measures should be implemented to protect both workers’ and consumers’ health. For 

instance, most of the Aspergillus species from the section Versicolores are able to produce 

sterigmatocystin [57], reported as tumorigenic after oral, intraperitoneal, subcutaneous and/or dermal 
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administration in animals [58]. Also Aspergillus section Circumdati, and Penicillium species can 

produce ochratoxin A, an hazard for human health due to its carcinogenic, nephrotoxic, hepatotoxic, 

immunotoxic, and teratogenic effects in animals [59]. One possible measure to reduce fungal burden 

in this setting would be the use of cleaning products containing fungicides. However, several 

antifungal substances used as pesticides have been described as potential inducers of azole resistance 

in environmental Aspergillus section Fumigati species. This is due to the fact that fungicides present 

similar structures to the molecules of clinical azoles [60,61]. Therefore, it is important to characterize 

the setting in relation to the prevalence of antifungal resistant species in order to determine which 

specific biocidals can be used [39,62].  

While the emergence of drug-resistant bacteria such as methicillin-resistant Staphylococcus 

aureus and extensively drug-resistant Mycobacterium tuberculosis are already under surveillance 

policies, it was not until recently that the global problem of antifungal resistance has been recognized 

as an issue [39]. The increasing occurrence of cryptic species, often drug resistant, as well as of 

emerging species that are resistant to all antifungal classes [63] illustrates the importance of 

molecular biology techniques in association with culture-based methodologies [64] for the 

assessment of occupational exposure to mycobiota [65,66,67], as well as for the correct identification 

of Aspergillus species of the section Fumigati [68]. This study also corroborates the importance of 

passive methods (EDC, settled dust and raw material) to complement the exposure assessment. The 

use of EDC adds information regarding the cumulative presence of bioaerosols in the environment (as 

they are placed at 1.5 m height and stay in place for 15 days), needing, however, an integrated analysis 

from the obtained data. It should be pointed out that the main advantage from passive methods is that 

they can collect contamination from a larger period of time (weeks to several months), whereas air 

samples can only reflect the load from a shorter period of time (mostly minutes) [69]. Further 

molecular analyses will be performed in future studies to Aspergillus isolates to support a wider project 

aiming to characterize the prevalence and distribution of Aspergillus genera and Mucorales order in 

different Portuguese occupational environments. 

Global warming is increasing the prevalence of crop fungal pathogens, and may also increase 

the prevalence of fungal disease in humans as fungi adapt to survive in warmer temperatures [70]. It 

is, therefore, of the outmost importance to perform surveillance studies both in clinical settings and 

in the environment, including the characterization of azole-resistance prevalence in specific 

environment compartments (water, soil) and in occupational settings where high fungal load and 

azole pressure might be expected [67,71,72]. International and collaborative efforts are required to 

understand how resistance develops in the environment to allow effective measures to be 

implemented aimed at retaining the use of azoles both for food production and human medicine. 

5. Conclusion 

In conclusion, azole-resistant fungal species were detected in Portuguese bakeries. Fungal 

species resistant to different azoles have been isolated both in environmental samples and in raw 

materials, including Aspergillus sp. and Mucorales. In a context of global azole resistance emerging 

as a threat to clinical success in the treatment of fungal infections, our results can help in improving 

prevention. This study provides some approaches to complement conventional exposure assessment 

process, particularly in highly contaminated occupational settings, with additional sampling (EDC) 
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and screening methods. In order to improve the assessment of occupational exposure to mycobiota 

and antifungal resistance, both culture-based and molecular methods should be used. 
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