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“We live in an island surrounded by a sea of ignorance.  

As our island of knowledge grows, so does the shore of our ignorance.”  

John Archibald Wheeler (1992) 
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“Ser poeta é ser mais alto, é ser maior 

Do que os homens! Morder como quem beija! 

É ser mendigo e dar como quem seja 

Rei do Reino de Aquém e de Além Dor! 

É ter de mil desejos o splendor 

E não saber sequer que se deseja! 

É ter cá dentro um astro que flameja, 

É ter garras e asas de condor! 

É ter fome, é ter sede de Infinito! 

Por elmo, as manhãs de oiro e de cetim... 

É condensar o mundo num só grito! 

E é amar-te, assim perdidamente... 

É seres alma, e sangue, e vida em mim 

E dizê-lo cantando a toda a gente!” 

 

Florbela Espanca (1923)  
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ABSTRACT  

Biofilms, accumulated microorganisms and extracellular compounds on a surface, are 

able to thrive in all environments. Biofilm presence in the food industry can cause 

negative effects, being associated to lower industrial operational efficiencies, as well as 

microbial contamination of the final product. There are many strategies that attempt to 

control biofilm proliferation, however, no control strategy is completely effective. Thus, 

the development of new and more effective treatments and improving of the 

conventional strategies is in demand. In an effort to overcome biofilm resistance new 

compounds must be discovered and their antimicrobial properties assessed. 

Additionally, the association between different chemical agents could potentiate their 

singular antimicrobial efficacy.  

The main objective of this study was to develop biofilm control strategies and to 

understand the biofilm behavior to these conditions. Therefore a selection of factors 

associated with biofilm resistance were studied. Bacillus cereus and Pseudomonas 

fluorescens are common contaminants in the food industry and were selected as 

microbial models. Several antimicrobial agents were screened using a colony biofilm 

test. These consisted as biofilms developed in as colonies in the top of polycarbonate 

membranes. The efficacy of selected agents with putative antimicrobial quenching 

substances was studied using respirometry. The killing and removal efficacy of 

treatments with antimicrobial agents was assessed using 96-well microtiter plates. To 

mimic close-to-practice conditions, biofilms were developed in a flow cell system and 

characterized. Control strategies potentiating current antimicrobial agents, and new 

agents were performed using biofilms developed in the referred bioreactors. 

The diffusion of ethanol, isopropanol, sodium hypochlorite, chlorine dioxide, 

hydrogen peroxide, bezalkonium chloride (BAC), benzyldimethyldodecylammonium 

chloride (BDMDAC), cetyltrimethylammonium bromide (CTAB), ciprofloxacin, 

erythromycin, streptomycin and tetracycline was assessed on colony biofilms. 

Ciprofloxacin, streptomycin, BAC and CTAB were selected to assess their biofilm control 

efficacy. These products had distinct abilities to diffuse through the biofilms (high 

diffusion – BAC and ciprofloxacin; low diffusion – CTAB and streptomycin). It was 

concluded that the diffusion ability of antimicrobial agents is not directly correlated with 

biofilm killing and removal efficacy. BAC and CTAB were selected for the following 

studies due use in industrial cleaning and disinfection practices. 

Known constituents of the extracellular polymeric matrix of biofilms (alginate and 

humic acids), and selected disinfection-interfering agents from the European Standard 

EN – 1276 (bovine serum albumin and yeast extract) were used to challenge the 

antimicrobial efficacy of the selected quaternary ammonium compounds as soiling 
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agents. The minimum bactericidal concentration of the chemicals was assessed. The 

interfering agents simulated “clean” soiling conditions. Within the range of 

concentrations tested the interfering substances mildly reduced the action of the 

antimicrobial agents. Humic acids were able not only of reducing the antimicrobials 

efficacy, but also to increase P. fluorescens respiratory activity. It was shown that humic 

acids should be considered as a potential interfering agent when developing cleaning 

and disinfection solutions, due to its strong interaction with the quaternary ammonium 

compounds tested.  

The biofilms grown in the flow cell system at varying linear flow velocities (applied 

in food industry) showed different characteristics. The biofilms developed at the lowest 

linear flow velocity (u = 0.1 m.s-1) differed by being thicker and more hydrated than the 

biofilms developed at the two higher linear flow velocities (u = 0.4 m.s-1 and  

u = 0.8 m.s-1). These biofilms were more compact, with higher bacterial cell numbers 

and more exopolymeric substances (proteins and polysaccharides). In spite of these 

differences, the dry biofilm mass per area was similar, as well as the expression of the 

major outer membrane proteins from the biofilm cells. The biofilms developed at higher 

linear flow velocities were selected for further studies of control strategies, due to 

higher resistance characteristics (cells and exopolymeric substances). 

Halogen-based products are recognized for their relevant antimicrobial properties. 

Thus, selected halogen-based products (CTAB, 3-bromopropionyl chloride -BrCl, 3-

bromopropionic acid -BrOH and sodium hypochlorite -SH) were used in order to 

understand their antimicrobial activity against both planktonic and biofilm cells of  

P. fluorescens. The mode of action of these products is cell membrane disruption, 

causing leakage of essential cellular constituents. The results demonstrate comparable 

effects of BrCl and BrOH to those of sodium hypochlorite that makes them a potential 

alternative to sodium hypochlorite. However, CTAB was the most efficient agent. 

The addition of enzymes as an aid to biofilm control treatments, applied alone or 

in combination with BAC and CTAB, had the ability to kill and remove the biofilms 

developed in microtiter plates and in the flow cell system. The combination enzyme-

biocides was synergistic on biofilm control. The treatments allowed both long term 

effects (additional biofilm removal and colony forming units reduction were observed 

in the hours following the treatments), as well as biofilm regrowth.  

The presented studies in this thesis clearly underline the importance to study 

biofilm control strategies under representative conditions for practice, being stress 

conditions determinants of different biofilm responses. Biofilm control should be a 

multifactorial approach due to the many features that biofilms have that provides them 

an increased protection. It is, therefore, necessary to incessantly find new control 

strategies because microorganisms will adapt and find new ways to overcome the 

biofilm control treatments. 
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SUMÁRIO  

Os biofilmes, acumulação de microrganismos e de substâncias exopoliméricas numa 

superfície, são capazes de prosperar em todos os ambientes. A sua presença na 

indústria alimentar pode causar efeitos negativos, devido à redução de eficiência de 

processos industriais, assim como a contaminação do produto final. Há muitas 

estratégias para controlar a proliferação de biofilmes, no entanto, nenhuma é 

totalmente eficaz. Deste modo, é necessário otimizar os tratamentos convencionais e 

também descobrir tratamentos novos e eficazes. Novos compostos devem ser 

procurados e estudados, para que superem a resistência dos biofilmes. Adicionalmente, a 

associação entre diferentes agentes químicos pode também potenciar a sua eficácia 

antimicrobiana. 

O objetivo principal deste estudo foi desenvolver e otimizar estratégias para o 

controlo de biofilmes. Para tal, fatores relacionados com a resistência dos biofilmes 

foram estudados. Bacillus cereus e Pseudomonas fluorescens são duas bactérias 

responsáveis por contaminações na indústria alimentar, e por isso foram selecionadas 

como modelos microbianos representativos. Vários agentes antimicrobianos foram 

rastreados com um teste com biofilmes em colónia. A eficácia dos agentes selecionados 

com possíveis substâncias interferentes foi estudada usando respirometria. A morte e 

a remoção dos biofilmes foi avaliada recorrendo a placas de microtitulação de 96 poços. 

Para simular condições reais, foram desenvolvidos e caracterizados biofilmes em células 

de fluxo. Este sistema serviu para testar estratégias de controlo de biofilmes como a 

potenciação de agentes antimicrobianos, assim como o desenvolvimento de novos 

agentes.  

A difusão de etanol, isopropanol, hipoclorito de sódio, dióxido de cloro, peróxido 

de hidrogénio, cloreto de benzalcónio (BAC), cloreto benzilldimetildodecilamónio 

(BDMDAC), brometo de cetiltrimetilamónio (CTAB), ciprofloxacina, eritromicina, 

tetraciclina e estreptomicina foi avaliada nos biofilmes em colónia. Destes agentes, 

foram selecionados a ciprofloxacina, a estreptomicina, o BAC e o CTAB para avaliar a 

sua eficácia na morte e remoção de biofilmes. Estes produtos difundiam de forma 

distinta através dos biofilmes (alta difusão - BAC e ciprofloxacina, baixa de difusão - 

CTAB e estreptomicina). Concluiu-se que a capacidade de difusão de agentes 

antibacterianos não está diretamente correlacionada com a sua capacidade para matar 

ou remover. No entanto, BAC e CTAB foram selecionados para estudos adicionais, 

devido ao seu uso corrente em práticas de limpeza e desinfeção. 

Componentes da matriz extracelular dos biofilmes (alginato e ácidos húmicos) e 

agentes interferentes da desinfeção selecionados da Norma Europeia EN-1276 (1997) 

albumina de soro bovino e extrato de levedura) foram usadas, em condições “limpas”, para 

desafiar a eficácia antimicrobiana dos compostos quaternários de amónio selecionados. A 
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concentração mínima bactericida dos compostos foi aferida neste estudo. Dentro da 

gama de concentrações testada, as substâncias interferentes reduziram levemente a ação 

dos agentes antimicrobianos. Os ácidos húmicos foram capazes não só de reduzir a eficácia 

dos agentes antimicrobianos, mas também de aumentar a atividade respiratória de P. 

fluorescens. Foi mostrado que estes devem ser considerados como um agente 

potencialmente interferente aquando do desenvolvimento de soluções de limpeza e 

desinfeção, devido à sua forte interação com os compostos testados.  

Os biofilmes desenvolvidos nas células de fluxo apresentaram características 

diferentes de acordo com a velocidade do fluxo (semelhantes às aplicadas na industria 

alimentar) à qual foram desenvolvidos. Os biofilmes formados a uma velocidade de fluxo 

mais baixa (u = 0.1 m.s-1) apresentaram-se mais espessos e hidratados do que os biofilmes 

desenvolvidos às duas velocidades de fluxo mais elevadas (u = 0.4 m.s-1 e u = 0.8 m.s-1). 

Estes eram mais compactos, com mais células e substâncias exopoliméricas (proteínas 

e polissacarídeos). Apesar destas diferenças, a massa de biofilme seco por unidade de 

área foi semelhante, bem como a expressão das proteínas principais da membrana 

externa das células. Os biofilmes desenvolvidos às velocidades de fluxo mais elevadas 

apresentaram maiores densidades celulares e substancias exopoliméricas, razão pela 

qual foram selecionados para estudos de estratégias de controlo subsequentes. 

Produtos à base de halogénio são reconhecidos pelas suas propriedades 

antimicrobianas. Portanto, os produtos à base de halogéneo selecionados (CTAB, 

cloreto de 3-bromopropionilo – BrOH, ácido 3-bromopropiónico – BrCl, e hipoclorito de 

sódio) foram utilizados com o intuito de compreender a sua atividade tanto contra 

células planctónicas como em biofilmes de P. fluorescens. O modo de ação destes 

produtos caracterizou-se essencialmente pelo rompimento das membranas celulares e 

a libertação de constituintes celulares essenciais. Os resultados demonstram que os 

efeitos de BrCl e BrOH são comparáveis aos do hipoclorito de sódio, o que lhes confere 

potencial como substitutos do último. Mas, CTAB foi o agente mais eficaz.  

A adição de enzimas é, quando aplicada isoladamente e combinadas com BAC e 

CTAB, capaz de matar e remover os biofilmes formados nas placas de poliestireno e nas 

células de fluxo. Após os tratamentos foi possível verificar efeitos de longo prazo na 

redução da massa do biofilme e das células formadoras de colónias, no entanto, foi 

também observada uma eventual recuperação destes mesmos parâmetros.  

Os estudos apresentados nesta tese enfatizam que o estudo de estratégias para o 

controlo de biofilmes deve ser feitos em condições representativas da prática, sendo 

que o comportamento dos biofilmes é determinado pelas condições de stress a que é 

sujeito. O controlo dos biofilmes deve ser realizado através de uma abordagem 

multifatorial, devido aos muitos recursos que estes dispõem para a sua proteção. É 

necessário desenvolver incessantemente novas estratégias de controlo, pois os 

microrganismos vão sempre encontrar novos métodos para superar os tratamentos.  
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1.1 RELEVANCE AND MOTIVATION  

It is a natural tendency of microorganisms to attach to surfaces, multiply and produce 

extracellular polymeric substances (EPS), originating biofilms. Biofilm existence can 

represent a beneficial or a detrimental factor, affecting many areas, from the 

biomedical to the industrial [1, 2]. 

In food industry, process conditions are ideal for biofilm proliferation. Biofilm 

formation is very common in industrial settings, even when manufacturers apply 

comprehensive contingency plans. The EPS produced by bacteria in biofilms protects 

microorganisms from control strategies by hindering diffusion of antimicrobial agents 

and promoting antimicrobial quenching effects due to chemical reactions with the 

antimicrobial agents [3].  

Flemming [4] described EPS as very complex and dynamic. Its exact functions of 

EPS are not yet clear e.g. because of the extreme heterogeneity. The EPS matrix is an 

intricate network that provides sufficient mechanical stability to maintain spatial 

arrangement for embedded-bacteria. It consists of various organic substances such as 

polysaccharides, proteins, nucleic acids and lipids [5]. This composition is affected by 

the environmental conditions under which biofilms are formed, and its arrangement is 

affected by the hydrodynamic stress [6, 7].  

Disinfection procedures are commonly designed based on experiments carried out 

with planktonic bacterial cell cultures [8]. But, such tests do not mimic the biofilm and 

environmental conditions on surfaces in industrial processes. Actually, the European 

Standard EN-1276 (1997) [9], used as reference for the development of disinfection 

strategies for food, industrial, domestic and institutional areas, only provides a short list 

of potential interfering chemical substances to be considered when optimizing/ 

developing a disinfection process. Nevertheless, the conventional explanations for 

biofilm resistance and recalcitrance against current control strategies are based on the 

effects of the presence of a heterogeneous EPS matrix on transport limitations and 

chemical interactions with antimicrobial agents [3, 10, 11]. 

Knowledge of EPS is needed to develop effective biofilm control strategies. This 

knowledge can help overcome biofilm resistance. The treatment of biofilms with 

enzymes to weaken the EPS structure may enhance the effectiveness of other 

antimicrobial agents. Enzymes can degrade the EPS barrier and therefore increase the 

diffusivity of the chemical agents [12]. Moreover, due to the recognized antimicrobial 
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resistance problem it is of importance to search and identify new and more effective 

antimicrobial agents and develop new control strategies [13]. 

Despite the definite importance of biofilms in microbial life style and their effects 

on human beings, the present knowledge about their structure, composition and 

behavior is still limited. Therefore there is a need to better understand biofilm 

resistance, by the identification of parameters linked with it, so that control strategies 

can be developed and optimized. Bioresist is a project financed by national funds 

through the Portuguese Foundation for Science and Technology (FCT) and MCTES 

(PIDDAC) and co-financed by the European fund of Regional Development (FEDER) 

through COMPETE – Operational Programme for Competitiveness Factors (POFC), with 

the reference PTDC/EBB-EBI/105085/2008. This project studied the influence of biofilm 

phenotype on its resilience and resistance. This PhD thesis was developed within the 

scope of this project.  

1.2 MAIN OBJECTIVES 

There are still no biofilm control strategies providing sustainable results in terms of 

inactivation, removal and prevention of biofilm regrowth events [14]. Development of 

approaches to control unwanted biofilms requires detailed knowledge about the 

biofilms [15]. It is necessary to develop strategies to control biofilms native of food 

industry, and simultaneously identify the resistance mechanisms associated with 

control strategies. Thus, the main objective of this study is to provide a contribution for 

the development of biofilm control strategies. Moreover, the outcomes of this thesis 

provide insight into how biofilms are affected by the food industry process 

hydrodynamics and how the biofilm phenotype is linked with its resistance. 

1.3 THESIS ORGANIZATION  

This thesis is essentially divided in eight chapters: 

 

Chapter 1 describes the relevance and motivation, the objectives, and the work 

structure presented throughout this thesis are exposed.  
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Chapter 2 provides a review of the aspects of microbial resistance, and control 

strategies currently/recently applied, with particular emphasis on biofilms. It is the 

state of the art of major aspects related with the topic of this thesis.  

Chapter 3 presents a study of the diffusivity of twelve biocides and antibiotics (ethanol, 

isopropanol, sodium hypochlorite, chlorine dioxide, hydrogen peroxide, BAC, 

BDMDAC, CTAB, ciprofloxacin, erythromycin, streptomycin and tetracycline) through 

Bacillus cereus and Pseudomonas fluorescens biofilms. BAC and CTAB were selected to 

be used in further experiments, taking into account their ability to diffuse through the 

biofilms and to inactivate the embedded cells. 

In chapter 4, the influence of alginic acid, bovine serum albumin, yeast extract, and 

humic acids as interfering substances on the antimicrobial action of selected 

antimicrobial agents was assessed on planktonic P. fluorescens and B. cereus. 

Chapter 5 presents the characteristics of P. fluorescens biofilms developed in a flow cell 

system. Three distinct linear flow velocities were used (u = 0.1, 0.4 and 0.8 m.s-1). The 

biofilms demonstrating the highest complexity (cell numbers and EPS content) were 

selected for further studies. 

In chapter 6 halogen-based chemicals, BrCl, BrOH, sodium hypochlorite and CTAB were 

tested on their potential to control P. fluorescens planktonic cells and biofilms. The 

effects caused by the exposure to the chemicals were studied in order to understand 

different aspects of the antimicrobial mode of action of these chemicals. 

Chapter 7 presents a biofilm control strategy using enzymes (β-glucanase, protease, 

lipase, and α-amylase) and biocides (BAC and CTAB). Different types of treatment were 

tested, as an environmentally friendly method. The action of these treatments against 

planktonic cells was also assessed in order to understand the antimicrobial action of 

the enzymes and the interaction with the selected biocides. 

In chapter 8, the main achievements of this thesis are exposed. Regards about follow 

up research are provided as well. 
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This thesis is structured as a paper dissertation, consisting of a number of scientific 

articles. The chapters on the experimental work are presented in the way they have 

been submitted and/or published upon acceptance. Some repetitions are consequently 

unavoidable amongst individual chapters. 
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2.1 BIOFILMS  

Biofilm formation was reported early in fossil records [1]. The first recorded life forms 

on earth are biofilms, dated approximately 3.5 billion years ago. They have faced 

fluctuating and harsh conditions of primitive earth, such as extreme temperatures and 

ultraviolet light exposure [1]. Nowadays, biofilms can be found in the widest range of 

environments, on extremes of cold and hot temperatures, high pressures, high alkalinity 

or acidity, and even radioactivity [2]. There are also reports where biofilms were found 

in improbable environments such as a disinfectant solution [2, 3]. 

In 1684, Leeuwenhoek described in a report to the Royal Society of London 

“animalcules” that were found in plaque scraped from his teeth [4]. Later in 1940 

Heukelekian and Heller stated in the Journal of Bacteriology that bacteria develop with 

bacterial slime or as colonies attached to surfaces [4]. In 1943, Zobell observed and 

described fundamental characteristics of attached microbial communities [4]. In 1975, 

the word “aufwuchs” (in German), meaning growth was the first conceptual term used 

to describe biofilms, however, it was later discarded by implying to be situated “around 

plants”. Studies associated with biofilms started to have more attention in 1978, were 

the description of sessile communities was first described and termed by the group of 

Bill Costerton. The group described them as microorganisms with the ability to adhere 

to wet surfaces in ecosystems of fresh water [5]. Characklis and Marshall described 

biofilms as a community of microorganisms, either single or multi species, being 

anchored to a surface and entrapped in organic polymers excreted by them [6]. It is 

now commonly agreed that bacteria have a natural capability to attach irreversibly to 

surfaces, to multiply, and to embed themselves in a slimy matrix, establishing biofilms. 

The biofilm population is enclosed in a matrix adhered to each other, to a substratum 

or to an interface [7]. Although the population could be constituted by other organisms 

besides bacteria [8], single bacterial biofilms are often found in industry and in medicine 

[9]. Later on, Stoodley et al. distinguished some characteristics denominating these 

structures as we currently know them, they include the association with a surface, a 

high population density, and the presence of exopolymeric substances (EPS), which is 

the ”glue” that holds biofilms together [8]. Yet, it is not uncommon to find biofilms 

lacking one of these characteristics due to the environmental characteristics to which 

the bacteria are exposed [10-13]. 
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BIOFILM FORMATION  

Biofilm formation is a complex process that involves several stages [8]. Planktonic cells 

passing along a “conditioned” surface are deposited. The persistent microorganisms 

that remain on the surface bind irreversibly, and start to grow, multiplying and 

producing signaling molecules, as well as EPS [8, 14]. As the biofilm matures, an 

equilibrium between accumulation and erosion takes place. The biofilm could erode by 

dispersing (cells) or by sloughing (biofilm pieces) phenomena. After this stage the 

planktonic cells return to the beginning of their cycle on different locations [15-18].  

The properties of the adhesion surface, and the surface of the bacteria, as well as 

their stage of growth, are determining factors for biofilm formation [19]. A suitable 

nutrient concentration, an optimum pH, and an appropriate hydrodynamic force 

exerted on the cells, provide favorable characteristics for attracting microorganisms to 

be adsorbed to the surfaces [20]. The genetic information of cells in biofilms is fairly 

different from their planktonic counterparts, this change is thought to be triggered 

when cells adhere to surfaces [21]. In some cases, the development of appendages such 

as flagella, fimbriae and pili help in biofilm formation [22]. 

The hydrodynamic conditions and adjacent environment contribute to biofilm 

formation [19, 23]. They affect the matrix structure, quantity and composition [13, 24]. 

The way how biofilms develop, the transfer of mass, the biofilm density and the 

conversion of substrate are all dependent on these parameters [25]. Biofilms developed 

under laminar regimes are different from the ones generated in a turbulent regime, as 

the access to deeper layers is made by an open structure to ease mass transfer [26, 27]. 

The shear stress exerted on the biofilms by the passing fluid determines their shape due 

to the erosion it causes. As new layers are formed, the force of the passing fluid 

dislodges the top layers. In contrast, when the biofilms attain a certain growth size, 

some of them are able to secrete surfactants with the ability to alter their internal 

properties [24].  

The adhesion of microorganisms to surfaces, forming biofilms, represents an 

ecological advantage and is a prevalent form of survival in hostile environments. In fact, 

it is estimated that 99% of bacteria live in biofilms [4].  
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2.2 THE IMPACT OF BIOFILM FORMATION  

Biofilms are able to thrive everywhere. The ability of biofilms to develop in nature or in 

engineered porous media could be used as an advantage on man-made processes [4]. 

When biofilms are used this way, they are called beneficial biofilms. For example, when 

planktonic cells are used in a reactor, their residence time is the same as the fluid flow 

time, however, if cells are in a biofilm, their residence time is as long as the time the 

biofilm is attached to a surface within the reactor [23]. Biofilms have been be used for 

environmental applications that include the degradation of organic substances, 

denitrification of waste or removal of phosphate and heavy metals [28, 29]. They have 

been employed as bio-control agents in the rhizosphere of plants, particularly against 

infections caused by fungi or bacteria. Biofilms formed by some microorganisms are 

able to produce antifungal and antibacterial substances, which provide protection to 

plants susceptible to phytopathogenic microorganisms. This has been a field of science 

with plenty of interest, since it enables the exploitation of new physiologically active 

products [30]. 

Conversely, biofilms could cause serious operation and management costs 

depending on where they appear. When biofilms appear in food industry they are highly 

unappreciated because they may contain pathogens and spoilage microorganisms, 

which constitute a risk to humans when contaminated and spoiled products are 

consumed. Typically, the emergence of biofilms is a result of an ineffective cleaning 

plan, increasing production costs due to production downtime. In other areas, such as 

the clinical area, biofilms are able to develop in medical devices, implants, venous or 

urinary catheters, resulting in an increased risk of infection [31]. In clinical settings 

biofilms have a higher importance due to their risk of causing infections, which could 

turn chronic [32]. Notwithstanding, environmental biofilms could contain pathogens as 

well. Foodborne diseases affect 48 million people in the United States of America each 

year. In this group, 2612 people did not survive infections related with microbial 

development, being estimated that 65% of all microbial diseases are a consequence of 

biofilm development [33-35]. Food poisoning has associated costs, according to  

Brooks and Flint these are difficult to estimate, however it was possible to make an 

estimative of approximately $90 million for New Zeeland, which is a country with only 

4.5 million people [36]. It was also estimated that 25% of the total food produced is lost 
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due to microbial activity, in spite of the diverse methods employed for food 

preservation, good manufacturing, quality control and hygienic measures [37].  

Earlier in this chapter it was said that the characteristics of biofilms differ according 

to the environmental conditions under which they were formed, i.e. temperature, pH, 

type of nutrients available, and type of bacteria. It is also known that the type of 

microorganisms that forms biofilms is different according to the location where the 

biofilms were found. Dairy industries commonly have biofilms composed by 

Pseudomonas fluorescens, Escherichia coli, Shigella spp., Staphylococcus aureus and 

Bacillus cereus. Shrimp factories normally have P. fluorescens and P. putida as biofilm 

colonizers. In fish factories it is common to find biofilms composed by 

Enterobacteriaceae and Serratia liquefaciens. In caviar plants, biofilms of Neisseriaceae 

spp., Pseudomonas spp., Vibrio spp. and Listeria spp. were reported [38, 39]. 

Pseudomonas spp., Klebsiella spp., Legionella spp., Helicobacter spp., Campylobacter 

spp. and Escherichia coli were found in drinking water networks [2]. Pseudomonas spp. 

are ubiquitous in food industry environments and have been reported to be found in 

drains, and produce such as vegetables, meat and dairy products [40]. Bacillus spp. are 

found throughout dairy processing plants, accumulating on joints and pipelines of the 

equipment [40]. Both are able to form biofilms. 

When these bacteria accumulate, they can cause other consequences besides 

product spoilage or infections. Biofilms are able to cause detrimental effects on many 

systems. Consequences are material corrosion and biodegradation, causing 

contamination of the raw or processed products in food processing plants. In cooling 

water towers and heat exchangers they cause energy loss due to increased fluid friction 

and resistance to heat transfer. In drinking water distribution systems, an increase in 

suspended solids and coliform contamination has been observed, in addition to pipe 

corrosion and pressure drop [2]. In paper manufacturing, the quality of the product is 

reduced. In ship hulls biofouling development increases drag and consequently energy 

loss as in reverse osmosis membranes, where the reduced permeability and material 

degradation are felt [41-43]. 

Industrial settings, particularly food processing plants, provide favorable 

environmental conditions, i.e. hydrodynamics and nutrients abundance, for biofilm 

proliferation (Figure 2.1). Biofilm contaminations are dangerous due to their mode of 

life which includes partial sloughing or detachment. Once on the fluid stream these 

could proliferate into other locations of the production line, restarting the process all 
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over again [8]. This ease of proliferation results in both economic and public health 

consequences, therefore, efforts have been directed for efficient industrial equipment 

design and the development of effective disinfectants [45, 46].  

 

 
 

Figure 2.1 Microbial contaminations in food industry (adapted from [44]).  

2.3 THE EXOPOLYMERIC MATRIX  

The most recognized characteristic of biofilms is the EPS matrix, which provides 

favorable conditions to its inhabitants to thrive in the most diversified surroundings. 

Figure 2.2 is a micrograph of P. fluorescens biofilm developed in a flow cell system, the 

substance coating the cells is a dehydrated EPS matrix, as suggested in the work of 

Flemming et al. [2]. 

Biofilm characteristics such as porosity, tortuosity, density, water content, charge, 

sorption properties, hydrophobicity and mechanical stability are determined by 

environmental conditions [2]. Biofilm structure and spatial heterogeneity are essential 

to various biofilm processes such as convective and diffusional transport of oxygen and 

nutrients into the biofilms [47]. Biofilm heterogeneity is defined as a non-uniform 

structural, chemical and physical distribution within the biofilm [47]. 

The functions of the exopolymeric matrix are diverse, however, not all functions 

are fully understood [48]. Some of these are described in Table 2.1. One of the functions 

of EPS is to contribute to the mechanical stability of the biofilms, enabling them to 

Chemical contaminants 

Process water 

Nutrients 

 

Biological contaminants 

Pathogenic or spoilage 
organisms 

Contaminants in raw material 
Biofilm detachment 

 

Environmental conditions 

Processing time 
Retention time 
Temperature 

pH 
 

  Product 
contamination 

 

Product 
spoilage 

 

Blockage of 
process lines 

Product 

Biofilm 
formation 

 

Microbial growth 



14  Chapter 2 

_________________________________________________________________________________  

 

withstand shear forces, dehydration or chemical attacks [49, 50]. EPS protects the 

embedded cells from UV light, radiation, pH changes, osmotic shock, or drying [51]. 

Furthermore, the matrix reinforces biofilm attachment to the substratum and stabilizes 

it, thereby reducing its susceptibility to sloughing by hydrodynamic shear stress [52, 53].  

 

 

Figure 2.2 P. fluorescens biofilms developed for 7 days at a Re of 4000. Air dehydrated 
in a desiccator for two days, the thin layer covering the cells is believed to be 
EPS. 

 

EPS are an intricate network formed essentially by polysaccharides and proteins 

[54]. The matrix differs according the microbial producer. In addition, between genus 

the matrix is likely to differ either in chemical composition or in terms of physical 

characteristics [51]. The composition of the matrix may also contain glycoproteins, 

lipoproteins, phospholipids, teichoic acids, nucleic acids and a variety of humic 

substances [22, 24, 55]. Any particles passing by the biofilm may be incorporated into it 

[56], therefore it is also possible to find mineral crystals, silt particles, milk residues as 

calcium phosphate and, sometimes, blood components or dirt [57]. EPS is able to retain 

water, the reason why biofilms are highly hydrated [2]. In fact, biofilms are composed 

essentially by water, as up to 97% of biofilm volume and mass is water  

[13, 58]. EPS composition is determined by the environmental conditions to which the 
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biofilm microorganisms are exposed [19, 55]. EPS are excreted by the cells, but also 

derive from natural cell lysis or hydrolytic activities [59]. Life in biofilms facilitates gene 

transfer and the retention of extracellular enzymes, that are useful to degrade 

biodegradable matter (lysed cells), that serve as nutrients for the living bacteria [60].  

 
Table 2.1 Functions of EPS in bacterial biofilms. (Adapted from [2, 5, 51, 60, 61].)  

Component function EPS components involved Relevance for biofilm organism 

Aggregation of 
bacterial cells, 
formation of flocks 
and biofilms 

Polysaccharides, proteins, 
DNA 

Bridging between cells, immobilization of 
bacterial populations, basis for 
development of high cell densities; cell 
communication; biofouling and corrosion  

Cell–cell recognition Polysaccharides, proteins, 
DNA 

Symbiotic relation with animals and 
plants; possible pathogenic processes  

Retention of water Hydrophilic 
polysaccharides/proteins  

Maintenance of highly hydrated 
microenvironment organisms, 
desiccation tolerance in water-deficient 
environments 

Protective barrier Polysaccharides, proteins Resistance to nonspecific and specific 
host defenses during infection, tolerance 
to various antimicrobial agents (e.g., 
disinfectants, antibiotics); protection 
against some grazers 

Sorption of organic 
compounds 

Charged or hydrophobic 
polysaccharides and proteins 

Accumulation of nutrients from the 
environment; sorption of endogenous 
compounds 

Sorption of inorganic 
ions 

Charged polysaccharides and 
proteins, including inorganic 
substituents such as 
phosphate and sulphate 

Promotion of polysaccharide gel 
formation; ion exchange; mineral 
formation; accumulation of toxic metal 
ions (detoxification) 

Enzymatic activity Proteins Digestion of exogenous macromolecules 
for nutrient acquisition; degradation of 
structural EPS allowing release of cells  

Accumulation, stabilization and retention 
of secreted enzymes on polysaccharides  

Nutrient source Potentially all EPS 
components 

Source of C, N and P compounds for 
utilization by biofilm community 

Genetic information DNA Horizontal gene transfer between biofilm 
cells 

 

The resistance mechanism provided by the EPS is further reviewed in the next 

subsection.  
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2.4 RESISTANCE 

The survival of the fittest is a biological principle applicable to all living beings, and 

although different organisms have developed their own survival mechanisms, all have 

one common factor that relates survival with the ability to adapt to constant changes 

in the environment. Microorganisms are particularly adaptable to environmental 

changes because of their high reproduction rates, which allows them to transfer survival 

characteristics to future generations in short periods of time [62]. When exposed to a 

harmful and/or stressful environment, bacteria will do all within their power to survive 

[63]. External stresses, such as environmental conditions, have different effects on 

different organisms, leading to natural responses like inhibition and/or inactivation of 

the cells. For instance, a deviation in the environmental conditions could result in 

reduced growth rates [64]. When bacteria are exposed to sub-lethal levels of biocides, 

and only minor cell damage is caused, a more resistant population could derive, with 

consequences that may include changes in the global phenotype of the community [63]. 

Resistance mechanisms are the means that living organisms have to respond to 

continuously changing environment in order to survive [65]. Resistance is the 

description of the relative insusceptibility, viability or multiplication of a microorganism 

to a certain chemical treatment under certain conditions. It may be temporary or 

permanent and relates either to the first generation of organisms or to the next [66]. 

Thus, there are three documented types of resistance: (1) inherent resistance, also 

termed natural or intrinsic to the microorganism, (2) adaptive resistance, due to the 

occurrence of a mutation, by continuous exposure to certain environments, and finally 

(3) acquired resistance which occurs through the acquisition of mobile genetic elements 

(plasmids) [67-69]. An example of intrinsic resistance is the difference between Gram 

positive and Gram negative cells. The main differences are in the outer cell layers. Gram 

positive cells present a large peptidoglycan layer after the phospholipidic membrane, 

where proteins and porins are located, while Gram negative have, from the inside to 

the outside, a smaller peptidoglycan layer followed by periplasm, an outer 

phospholipidic membrane and lipopolysaccharides, which gives the cells a hydrophobic 

character. Gram positive outer membrane works as a permeability barrier [70]. This cell 

wall is composed essentially by peptidoglycans and teichoic acids. Gram negative outer 

hydrophobic membrane limits the entry of the most diverse chemicals by working as an 

exclusion barrier [71]. Gram negative bacteria embedded in biofilms are known to have 
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a higher ratio of unsaturated to saturated fatty acids, a typical profile of resistant 

bacteria [72]. Their morphology limits the concentration of biocide to the 

corresponding targets [67]. The adapted resistance could be due to the continuous use 

of disinfectants, to which the embedded bacteria gain resistance as a consequence of 

the repetitive use of these chemical agents [54]. Similarly, microorganisms may acquire 

resistance to some antimicrobial agents through exposure to other agents of the same 

type, which is called cross-resistance [73]. A documented case of acquired resistance, 

provided by plasmids, is the horizontal transference of resistance to antibiotics from 

Lactobacillus plantarum to Enterococcus faecalis [74].  

Changes at the phenotypic level, i.e. by forming biofilms as a response to the 

environmental conditions, is also a form of resistance [75]. As mentioned on the 

previous section, the proliferation of biofilms in industrial settings, especially in food 

industry, can result in serious operation and maintenance costs [36]. Their eradication 

is proved to be difficult as biofilm cells are known to be highly resistant to antimicrobial 

agents. Defense mechanisms against antimicrobial agents are frequently reported in 

literature [76-89]. The study of the resistance mechanisms to antimicrobial agents 

gradually unravels the mysteries of the biofilm tenacious nature and recalcitrance to 

control [90]. A deeper understanding of biofilm resistance mechanisms is required in 

order to develop new and more effective biofilm control strategies. Some resistance 

mechanisms are described in the following sections.  

 

BIOFILM RESISTANCE  

There are several characteristics that underlie the increased resistance of bacterial 

films, though some resistance mechanisms are shared with their planktonic 

counterparts. Nonetheless, adhered cells have a phenotype that confers them an 

increased resistance to antibiotics and biocides, when compared with suspended cells 

[67, 72, 91, 92].  

Figure 2.3 exhibits several biofilm defence mechanisms differentiating them from 

their planktonic counterparts, such as specific resistance genes, restricted growth rates, 

the existence of persister cells, quorum sensing communication, stress response 

regulons, and the impervious EPS [93]. Cells in biofilms can be 10-1000 times more 

resistant to antimicrobial agents than their planktonic counterparts [94]. For instance, 
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control of biofilm cells of S. aureus requires 600 times more sodium hypochlorite than 

their planktonic equivalents [17]. 

 
Figure 2.3 Biofilm resistance diversity to antimicrobial agents: (1) genetic expression of 

certain resistance genes, (2) restricted growth rates; level of metabolic activity 
within the biofilm; the existence of persisters, (3) mass transfer limitations,  
(4) quorum sensing and (5) multidrug efflux pumps. (Adapted from [95].)  
 

CELL HETEROGENEITY  

Cell heterogeneity is frequent within biofilms. It is common to find cells at different 

physiological states. In a given population, genetic and phenotypic diversity is triggered 

by the surrounding conditions [96]. Parameters such as space, nutrients, and age could 

contribute to the increased resistance of biofilms. 

The unavailability of space can be a factor for resistance. The exopolymeric matrix 

can be hindering cell division in mature biofilms. The cells prefer to produce EPS than 

new cells, aging the population and increasing mass transfer limitations [97]. Bacteria 

have different degrees of resistance according to their state. Resistance increased as 

both Burkholderia cepacia planktonic and biofilm cultures approached the stationary 

phase [98]. Additionally, P. fluorescens cells are known to produce an exopolysaccharide 

lyase, which is triggered by the stress of feeling constrained. This enzyme degrades the 
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matrix with the purpose of obtaining nutrients from it and, also to free cells from the 

biofilm so that they can colonize other favorable locations [99]. 

In a high cell density population such inside biofilms [100], mass transfer might be 

hindered by cell packing [81]. Higher cell numbers promote horizontal gene transfer of 

resistance features [101]. The selection of resistant mutants by exposure to sub-lethal 

concentrations of antimicrobial agents is higher in highly populated biofilms [102]. The 

different microenvironments and depletion of nutrients and oxygen in the interior of 

biofilms can alter the metabolic activity of the cells [94, 103]. The activity is high at the 

surface and stratified going to to the interior, reaching its lowest levels in deeper layers. 

As cells are buried in the biofilms and the supply of nutrients and oxygen starts to be 

scarce, the cells go into a slow growing or dormant state [95, 104]. The antimicrobial 

agents that target the disruption of microbial processes are more effective, against 

rapidly growing cells [105]. When acting on slow growers or dormants, the activity of 

these antimicrobials is antagonized. In a biofilm, only pockets of this type of 

microorganism are found, however, some of these cells can be found with at least some 

degree of cellular activity [1]. Nonetheless, this mechanism is usually observed by an 

increase of resistance [106]. 

 

MASS TRANFER LIMITATIONS  

The resistance mechanism is more evident in biofilms due to the presence of EPS. Both 

structure and composition dictate its susceptibility to antimicrobial agents. The biofilm 

constituents may act as an adsorbent or reactant, thus chemically interacting and 

impairing diffusion and, its structure (porosity and tortuosity) may physically reduce 

mass transport [30, 107-110]. 

The way how biofilms develop has influence on its degree of resistance: in a 

biofilm, which environmental conditions make it to be very porous, with large channels, 

the transport of substrates/nutrients would be easier than in a more compact one, with 

tight pores [111]. The carbon and nitrogen availability, pH and temperature, all 

influence EPS composition and, therefore, the resistance of biofilms can vary, by 

developing zones with different densities and consequentially different mass transfer 

parameters [28, 112]. The EPS matrix has sorption capacity for heavy metals, organic 

substances, and particles, including nanoparticles, all of which can be caught and 

accumulated within the biofilms [60].  
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The polyanionic nature of the bacterial EPS may be responsible for binding the 

antimicrobial agents before they have the opportunity to reach the cells [94, 113, 114]. 

Similarly, cells in biofilms are able to interact with the antimicrobial agents, wasting 

them, so that less quantities are available to reach the under layers of the biofilm [115]. 

This way, it is not only the matrix, but also other biofilm components that are able to 

hinder transport. Many examples are found to this reaction – diffusion phenomenon. 

Davison et al. observed retardation of a QAC by the exopolymeric matrix [116]. The 

work of Ciofu et al. demonstrated the increased resistance of mucoid biofilms.  

P. aeruginosa that overproduces EPS showed to be up to 1000 times more resistant to 

tobramycin than the normal EPS producers, in spite of similar planktonic MICs [117]. 

However, the selectivity of the biofilms might be related with the nature of the drugs. 

A study by Anderl et al. showed that the chlorine ions and the antibiotic ciprofloxacin 

were able to penetrate Klebsiella pneumonia biofilms, however ampicillin was retarded 

by the biofilm components [114]. Furthermore, biofilm composition may be a factor, as 

another group of investigators found that active chlorine ions were reacting with 

organic matter at the surface of P. aeruginosa biofilms faster than they could diffuse 

into deeper layers [118]. As a resistance mechanism, EPS works as barrier, hindering 

penetration, however, the bacterial matrix could not fully inhibit penetration of the 

antimicrobial agents, but instead it provides sufficient time for the induction of resistive 

mechanisms to respond to the attack [119].  

 

SPECIFIC RESISTANCE GENES 

The adaptation of planktonic cells to different conditions may promote changes at their 

genomic level [16]. These changes are the grounds for their specific adaptive response, 

i.e. to change into biofilms [120]. Biofilm formation is regulated by many genes, 

including some that are exclusive to biofilm growers [121, 122]. Mutations occur with 

more frequency in biofilm embedded cells than in the planktonic state, as seen on  

P. aeruginosa cells where mutations occur 105 times more when cell are in biofilms 

[123]. In an effort to control P. fluorescens cells with ethylenediamine tetraacetic acid 

(EDTA) and a QAC, Langsrud and Sundheim found that the cells developed resistance to 

these chemicals [124].  

The contact with sub-lethal concentrations of antibiotics could be the cause for 

the adaptation of the outer structure of bacteria [115]. It was found that P. stutzeri had 
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resistance to QACs, triclosan and antibiotics, after developing resistance to 

chlorhexidine, probably through the alteration of the cell envelope [125]. The resistance 

to several agents might be encoded into the cell genome, stress activates these genes, 

deploying an active response [115].  

In addition, plasmids were proven to be transferred inside biofilms. Kanamycin 

resistance genes were transferred from a donor population to other cells within the 

same biofilm, when this was exposed to sub-lethal concentrations of this antibiotic 

[126]. 

 

QUORUM SENSING  

Quorum sensing (QS) is the term used to describe cell-to-cell signaling or intracellular 

signaling in bacteria. Small hormone-like signaling molecules termed auto-inducers are 

produced, released and detected by the bacterial populations. High bacterial 

populations inside the biofilms facilitate communication by signaling molecules  

[2, 60, 97]. The detection of a threshold concentration of these molecules triggers the 

expression or repression of genes, enabling bacteria in the biofilm to act as a 

multicellular organism [24, 95].  

Many cell regulatory systems are governed by QS, i.e. several physiological 

processes such as formation, aggregation and dispersal of biofilms [127]. Deterioration 

of food by enzymatic activity is also regulated by QS [128]. Cellular repair and defense 

is also mediated by QS. The production of the enzymes catalase and superoxide 

dismutase is regulated by QS [95]. These enzymes play a role in defense by neutralizing 

toxic compounds [115]. Catalase breaks down hydrogen peroxide into water and 

molecular oxygen, and superoxide dismutase promotes the degradation of superoxide 

radicals [95]. P. aeruginosa biofilms presented higher catalase expression when 

exposed to sub-lethal concentrations of hydrogen peroxide to biofilm cells, however 

lethal to planktonic [129]. The exposure of biofilms to antimicrobials may trigger EPS 

production as a defense mechanism to that stressful situation [130].  

 

MULTIDRUG EFFLUX PUMPS 

Porins are proteins forming channels that allow the transport of specific molecules 

across the bacterial membrane [131]. These membranes could suffer structural 
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alterations to act as a resistance mechanism to some antimicrobial agents [132]. This 

system is ingenious enough to select what goes out the cell, leaving the agents outside 

where the low permeability of the cells does not allow reentry, thus reducing the 

accumulation inside the cell and increasing the concentration needed to inhibit the 

bacteria [132]. The overproduction of efflux pumps has been reported as a biofilm 

resistance mechanism [133]. QS may be involved in the protection against antimicrobial 

agents, by increasing the production of these molecular pumps, with the intend to expel 

drugs from the cells [95]. This is a well-known resistance mechanism [95]. Multidrug 

efflux systems are usual on Gram-negative bacteria [134, 135].  

 

PERSISTER CELLS  

The indication of persister cells is the latest biofilm insusceptibility explanation [136]. 

Nonetheless, the first time persisters were mentioned was in 1944 by Bigger [137]. The 

surviving cells from the incomplete inactivation of Staphylococcus spp. with penicillin 

were able to regrow into a population with apparent penicillin susceptibility [137]. 

Recurring infection occurrences revived the interest into persister cells [138]. Small 

subpopulations of bacteria within the biofilms may differentiate into persisters [4, 136]. 

These cells, present in all bacterial cultures [48], are essentially invulnerable to lethal 

concentrations of antimicrobial agents [96, 139]. When exposed to antimicrobial 

agents, persisters neither grow nor die [140]. Nonetheless, when the drug is removed 

these bacteria give rise to a normal bacterial colony [95]. Typically, bacterial cells are 

persisters against antibiotics, however, there is a study where the disinfection of  

P. fluorescens biofilm embedded cells, treated with a multi-target biocide (ortho-

phthalaldehyde), resulted in ineffective killing due to the differentiation of some of 

these cells into persisters [141]. The way how cells differentiate into persisters is not 

well known [142]. Persisters are not believed to be mutants [143], but instead they 

produce a toxin, RelE, that ceases bacterial activities, inducing an inactive state [95]. 

The formation of these cells could be considered as a method of adaptation to respond 

to environmental alterations, and could follow two ways: in the first, the population 

continues to grow, exhausting substrata risking extinction, and in the second, they 

simply suppress their functions waiting for favorable conditions [30]. 
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The resistance mechanisms mentioned before, might explain biofilm persistence and 

resistance to control [8]. The resistance of biofilms is defined as a multifactorial 

mechanism and it is not universal, varying between different microorganisms [24]. 

2.5 BIOFILM CONTROL  

Biofilms are a frequent source of infections and industrial process problems [105]. Many 

studies have been performed in order to control biofilms in food industry. Some 

strategies are already common practice in industry [144].  

 

PREVENTION  

Biofilms are difficult to eradicate, thus prevention of its occurrence is commonly 

implemented in food industry. Biofilms are considered heterogeneous in time and 

space, therefore research moved towards the study of biofilm mechanisms, covering 

many fields of science in order to characterize the processes governing biofilms [96].  

Contamination is normally caused by biofilm development due to ineffective or 

complete lack of cleaning. Organic molecules are able to deposit in all types of surfaces, 

including the water used for manufacturing, conditioning the surfaces and providing 

favorable conditions for microbial growth [144]. The physical characteristics of the 

substratum has influence on initial attachment. To prevent bacterial attachment to 

surfaces, surface active substances are used. Surfactants provide uniform wetting of 

surfaces, reducing the surface tension of water by adsorbing at the liquid-gas interface 

and reducing the interfacial tension between the layers [24]. Additionally, the intricate 

process lines of industrial plants have critical points where built up of fouling is 

expected. These include gaskets, dead ends, joints, valves, corners, cracks, or crevices 

[57, 145]. Rational equipment design helps reduce the risk of microbial development by 

minimizing laminar product flow, reducing static product and facilitating cleaning and 

disinfection processes, with the aim of reducing attachment [22]. However, a specific 

design could be impractical or simply not implemented [40]. 

To prevent contamination, the materials that constitute the plant should be 

carefully selected [57]. Good hygienic properties must be attained, either by the 

material properties or by material modification to render them antimicrobial or to 

reduce attachment [146, 147]. However, the application of coatings on industrial 
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surfaces could be restricted by toxicity or infeasibility by increased costs [22]. The most 

common materials used in food plants are stainless steel, grades 304 and 316, for their 

chemical and mechanical stability at the diversified food processing temperatures, ease 

of cleaning and resistance to corrosion [148]. The AISI 316 stainless steel shares the 

same characteristics with the AISI 304 grade with the addition of a higher tolerance to 

corrosion, given by the inclusion of molybdenum. Usually, corrosion could be caused by 

food, detergents or disinfectants [22]. Polyvinylchloride is a material that is not 

commonly used in food industry due to its increased risk of contamination, resultant 

from its deterioration over time [44]. Stainless steel may be a better option because it 

is more resistant to mechanical stresses like grinding, brushing, and electrolytic or 

mechanical cleaning. For that reason, in a cleaning and disinfection plan, it is of major 

importance to gather the maximum information about the system, together with flow 

diagrams (information about volume, residence time, cycle time, half-life time, etc.) to 

satisfy the sanitation regulations [57]. 

The risk of biofilm formation is increased in events such as intermittent operation, 

unattended risk areas (i.e. filters), inconsistent raw water composition, lack of cleaning 

after failures, and poor access to surfaces existing in the plant [149]. The risk can be 

lessened by the exclusion of light, use of short piping systems, inert and smooth 

materials, good air circulation, working at low temperatures, in fairly dry conditions, 

and general quality control [149]. 

The early detection of biofilms is also used as a prompt response to outbreaks 

[150]. There are currently many methods in the market. The conventional methods, 

such as the count of total viable cells, microscopy and spectroscopy techniques, 

impedance measurement and ATP analysis are broadly used [149, 151]. Pereira et al. 

reviews the principles behind each method and the importance of monitoring in the 

beverage and food industry [152]. 

Another strategy commonly used in food industry is the preconditioning of 

surfaces to reduce/inhibit bacterial attachment [93]. For instance, biosurfactants are 

known to have properties that prevent microbial attachment [153]. On the other hand, 

functionalized materials, or compounds that could be blended into the material 

surfaces have been reported in literature, the repulsion between the surfaces and the 

bacteria also have been reported to be effective in biofilm prevention [93]. Araújo et al. 

studied coated spacers used in reverse osmosis membranes with different antimicrobial 

coatings, as copper, silver, gold and Polydopamine, plus a spacer infused with Triclosan. 
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The objective was to prevent biofilm development, but this was instead only delayed in 

time. Only the first layers of biofilms were killed, leaving a conditioning film that was 

probably used for recolonization [154]. 

The frequency of cleaning is another strategy. The more often the food contact 

surfaces are cleaned, the lesser the risk of microbial attachment [22]. The process of 

irreversible attachment occurs so swiftly, that carefully determining the suitable 

cleaning frequency becomes extremely important to avoid accumulation of microbial 

and organic residues, influencing hygienic conditions as well as nutrient availability [22]. 

A thorough cleaning and disinfection process should occur several times a day on the 

surfaces that contact directly with the product, in regular intervals varying from 4 to 24 

hours [148, 155].  

 

CLEANING AND DISINFECTION  

In all industries, particularly in the food industry, the proliferation of microorganisms is 

very common, even when manufacturers take all the “by-the-book” contingency plans. 

Therefore, biofilms occurrence is common, leading to a need for their control using 

cleaning and disinfection techniques. The aim of microbial control is the elimination or 

reduction of microorganisms and their activity to acceptable levels, as well as the 

prevention and control of the formation of biological deposits on process equipment 

[44]. Therefore, programs are established to control microbial proliferation: two 

examples are the Good Manufacturing Practice (GMP) and the Hazard Analysis and 

Critical Control Points (HACCP) plans [39]. HACCP is presented in Codex Alimentarius 

(CAC/RCP1- 1969- revision 2003), that was the basis for the Food Hygene directive by 

the European Eunion [156]. An example of this is to include all surfaces and vectors, 

such as the air or personnel that may disperse contaminations from areas such as the 

floor or walls. They too should be cleaned and disinfected [93].  

Biofilm control in food plants normally includes a process called Clean-in-Place 

(CIP), which consists in cleaning of the plant without dismantling or opening the 

equipment. During CIP, alternated cycles of detergent and disinfectant solutions run 

throughout the plant with  water rinses, with increased hydrodynamics (high turbulence 

and flow velocities) [145]. This method typically uses caustic acids, surfactants, biocides 

and, sometimes, includes enzymes [19, 145, 155, 157].  
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The selection of a good cleaning and disinfection regime should be based in some 

principles to be efficient. It is of utmost importance that the nature and age of 

biofouling is known [158], as well as characteristics like location, type of microorganisms 

(bacteria, spores, yeasts, molds or protozoa) or biological entities (prions, viruses) [159]. 

The characteristics of the surface to be cleaned are also relevant, because of side-

effects of cleaning on equipment materials (i.e. some cleaning agents can be corrosive) 

[57]. The total number of target cells should be taken into account since high initial 

numbers of bacteria may result in some persistent cells, which could result in biofilm 

regrowth [63]. In cases where the concentration of the disinfectant is limited, the 

bactericidal effect may be reduced in the presence of high numbers of bacteria. Also, 

the growth phase of bacteria will influence their susceptibility to disinfectants. It is 

known that bacteria in the exponential phase of growth are more sensitive to 

disinfectants than in the stationary phase [160]. Biofilm cells are more resistant to 

biocides as a result of their physiological heterogeneity and the presence of EPS, which 

hinders the diffusion of biocides into the cells [161]. Cleaning is important because, in 

general, disinfectants have poor diffusion and are not able to kill all the embedded cells 

[93]. To clean biofilms, methods such as the use of alkali-based and acid cleaning, 

scrubbing and brushing are used. However, when bases or acids are used, the 

environmental conditions have to be thoroughly defined, otherwise its efficacy is 

reduced [22]. Although biofilm removal can occur naturally by intrinsic processes, 

mechanical removal by human action is a common strategy in food industry, though, 

very expensive because of the need to open the process machinery [162]. Breaking up 

and removing the deposits on surfaces is of major importance in food industry [148]. 

The incomplete removal could lead to reattachment and consequent biofilm regrowth 

[155]. The right choice of disinfectants, single or in combination, point for biocide 

injection, concentration, temperature, exposure time and hydrodynamics should be 

carefully optimized for each system. The disinfectant should be kept at a concentration 

equal or superior to the minimum inhibitory concentration for the period of time 

defined as ideal for disinfection [44, 163]. All these parameters must be taken into 

account when designing a disinfection plan. 

Additionally, in order to achieve long lasting stable results, follow up actions are 

required, such as monitoring the presence of microorganisms and the formation of 

deposits on surfaces [42].  
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BIOCIDES 

The European Standard of 24 April 1998 (CE/8/98), defines biocidal products as active 

substances, or preparations containing one or more active substances, presented to the 

user in their final form, whose function is to destroy, stop the growth, render harmless, 

avoid or control, by any means, the action of pathogenic organisms, by biological or 

chemical processes. The use of biocides in biofilm control is well accepted and very 

common [14]. Although biocides are used for the reduction of the number of 

microorganisms, their simple use does not necessarily reduce the biofilm formation 

rate. It is essential to use biocides correctly, because their incorrect application is 

expensive and could lead to unwanted results [164].  

The major groups of disinfectants used in the food industry are divided according 

to their mode of action, (1) oxidizing agents e.g. chlorine-based disinfectants, ozone, 

and hydrogen peroxide, (2) iodophores (iodine based disinfectants), (3) surface active 

compounds like QACs and (4) weak acids [22, 40]. However, current methods of 

disinfection include the application of other chemical compounds like alcohols, 

aldehydes, anilides, biguanides, bis-phenols, diamidines, halophenols, and heavy metal 

derivatives [165].  

Most biocides kill bacteria by targeting the cytoplasmic membrane, resulting in 

membrane damage such as disruption, dissipation of the proton motive force and 

inhibition of membrane associated enzyme activity [70].  

Each bacterial strain reacts differently to each chemical compound, either by its 

phenotypic characteristics (e.g. properties of the cell wall) or due to resistance 

mechanisms (coded by its genotype or induced). Thus, it is fundamental that upon 

biocide selection, an evaluation of the efficacy against the dominant microorganisms 

on the system is performed. Only after having information about the nature of the 

microbial population to treat it is possible to determine the relation between the 

minimum inhibitory concentration and the contact period of a biocide to a given 

contaminant [167].  

Table 2.2 provides information on the mechanisms of action, typical targets, 

resulting effects and examples of biocides. 
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Table 2.2 Mechanisms of interaction of several biocides according to their cellular targets and 
antimicrobial actions (adapted from [163]). 

Cellular targets Antimicrobial action Interaction Mechanisms   Examples 

Chemical reactions 

Thiol containing cytoplasmic 
and membrane bound 
enzymes e.g. 
dehydrogenases 

Metabolic inhibition  Oxidation of thiol groups 
(predominantly)  

Isothiazolinone 
Organomercury 
Salts of heavy metals 
Hypochlorite 

Biomolecules (e.g. proteins, 
RNA, DNA) with amino, 
imino, amide, carboxyl and 
thiol groups (nucleophilic) 

Inhibition of cellular 
metabolism and 
replication. 
Possible cell wall 
damage  

General alkylation 
reactions 

Glutaraldehyde 
Formaldehyde 
Chloroacetamide  

Amino groups in proteins  Metabolic inhibition; 
lysis 

Halogenation Hypochlorite  
Chlorine-releasing 
agents 

Enzyme and protein thiol 
groups 

Metabolic inhibition Free radical oxidation (e.g. 
hydroxyl radicals) 

Hydrogen peroxide 
Peracetic acid 

Divalent cation-mediated 
outer membrane integrity; 
principal target region Gram 
negative cell wall; metal 
ion-requiring enzyme 
processes 

Release of cellular 
contents; high 
susceptibility to stress; 
metabolic inhibition. 

Chelation of metal ions  EDTA 
Oxine  

Intercalation between DNA 
base pairs 

Damage in replication  Intercalation  Aminoacridines  

Ionic interactions 

Cytoplasmic membrane 
integrity; membrane-bound 
enzyme environment and 
function 

Leakage; respiratory 
inhibition; intracellular 
coagulation 

Electrostatic interaction 
with phospholipids  

QACs 
Clorhexidine 
Polyhexamethilene 
Biguanides 

Physical interactions 

Transmembrane pH 
gradient;  
membrane integrity 

Leakage; disruption of 
transport, respiratory 
and energy coupling 
processes 

Penetration/partition into 
phospholipid bilayer; 
possible displacement of 
phospholipid molecules; 
intra membrane molecular 
cycling 

Phenols 
Weak acids 
Parabens 
Tetrachlorosalisylanilide 
Phenoxyethanol 
2-phenylethanol 

Membrane integrity Leakage  Solution of phospholipids  Aliphatic alcohols  

Cytoplasmic membrane 
integrity;  
membrane-bound enzyme 
environment and function 

Leakage, 
uncoupling of energy 
processes; lysis  

Membrane-protein 
solubilization  

Anionic surfactants 
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MECHANISMS OF ANTIMICROBIAL ACTION 

A classical approach which is used to determine the mechanism of action of a biocide 

establishes a correlation between the minimum inhibitory concentration and the 

resulting biochemical and physiological changes in the organism [163]. An antimicrobial 

effect can be defined as an interaction between an active substance and specific targets 

in the microbial cell. In target approach, the active ingredients contact with a variety of 

cellular structures (cell wall, cytoplasmic membrane, membrane enzymes, cytoplasm, 

and genetic material). Experiments conducted to compare different strains revealed 

that Gram negative bacteria, which have the supplementary protection of the cell wall, 

are more resistant to the bactericidal effects than Gram positive bacteria [168-170]. The 

antimicrobial agents cross the cell wall through pores. This penetration, according to 

Paulus, is dependent on the size, charge and lipophilic properties of molecules [71]. If a 

substance is soluble in water and its molecular weight is around 600 Da, there is a 

greater probability of passing through the channel formed by the porin. It is also 

possible that the antimicrobial agent penetrates the cell wall after causing its 

destabilization and disintegration. Finally, the biocide reaches the cytoplasmic 

membrane as the primary site of action. Depending on the action spectrum, these 

substances could be designated as biostatics (if they only inhibit the microorganism 

growth or multiplication) or as biocides (if they are able to kill the microorganisms) [71].  

The process of transporting the biocide to the cell surface, adsorption, diffusion, 

penetration and interaction with the target cell component is not instantaneous and 

the duration can be different according to the biocide. The differences depend on the 

action mode, including the chemical composition and physicochemical properties of the 

biocidal agent [163]. Biocidal compounds belong to different chemical classes. 

Biocides could cause a series of self-destructive events in microorganisms, 

resulting from sub-lethal/lethal damage to cell death. Typical damage caused by 

biocidal compounds involves the disruption of the transmembrane proton motive force, 

leading to an uncoupling of oxidative phosphorylation and inhibition of active transport 

across the membrane inhibition of respiration or catabolic/anabolic reactions; 

disruption of replication; loss of membrane integrity resulting in leakage of essential 

intracellular constituents such as potassium cation, inorganic phosphate, pentoses, 

nucleotides and nucleosides, and proteins; lysis and coagulation of intracellular material 

http://en.wiktionary.org/wiki/growth
http://en.wiktionary.org/wiki/multiplication
http://en.wiktionary.org/wiki/kill
http://en.wiktionary.org/wiki/organism
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[163]. Figure 2.4 shows the antimicrobial mode of action of biocide on diverse types of 

microorganisms. 

 

 
Figure 2.4 Antimicrobial mode of action of biocides (adapted from [164]). CRAs – chlorine 

removal agents; QACs – quaternary ammonium compounds.  

 

FACTORS AFFECTING BIOCIDE ACTION  

Cleaning is often inefficient in the removal of biofilms. Bactericidal activity is influenced 

by the surrounding media, but a correct cleaning plan is also very important. The main 

environmental factors that could influence the activity of a biocide are pH, water 

hardness, presence of additives and temperature [164]. Biocide concentration, 

exposure time, presence of organic compounds and type of microorganisms are key 

factors of the antimicrobial action as well. Many biocides have an optimum pH range of 

activity. For example, glutaraldehyde and cationic biocides such as chlorhexidine and 
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QACs are most active at alkaline pH, whereas hypochlorites and phenolics are more 

potent at acid pH. Additives, as corrosion inhibitors or conditioning agents may also 

influence and even reduce or inactivate activity. The activity of biocides against Gram 

negative organisms may be enhanced by permeabilizers that increase cell permeability. 

Russell reported that EDTA chelates divalent cations from the outer membrane, 

especially on P. aeruginosa [63]. Activity can also be increased by a combination of 

biocides. In general, the efficacy of disinfectants increases with temperature [66]. When 

disinfection occurs at low temperatures, the use of higher concentrations of biocides or 

prolongation of the contact time may increase effectiveness [160]. The antibacterial 

activity of biocides is determined by their chemical reactivity to certain organic groups. 

Biocides do not react independently with fixed groups or groups of the cell surface. 

Oxidizing biocides react with any oxidizing organic group, not only with living cells. In 

food industries, deficient cleaning may not eliminate contaminating substances, such 

as carbohydrates, fat, proteins, calcium phosphate, blood residues or dirt [57]. These 

contaminants may have a high impact on the cleaning and disinfection steps. This 

happens because the antimicrobial activity of chemical compounds may be reduced in 

the presence of organic material, through reaction/neutralization [94, 171].  

The effect of disinfectants is concentration dependent. Generally, a user-

concentration is given by the manufacturer based on simple laboratory tests that 

typically measure the efficacy in suspension and without additives, which may not be 

efficient to kill attached microorganisms [171]. In a practical disinfecting setting, the 

disinfectant may be diluted due to residual water left after the cleaning process. In 

order to avoid dilution, the equipment design should prevent, and thus facilitate, 

running of water off the surfaces instead of its accumulation. Furthermore, surfaces 

should be allowed to get reasonably dry before disinfection [160]. Biocides such as 

phenolics or alcohols typically lose their potency with dilution, whereas QACs, 

chlorhexidine, glutaraldehyde, ortho-pthalaldehyde retain much of their potency [63]. 

Nonetheless, the conventional protocols used for CIP have been unsatisfactory for 

biofilm control [172].  

Resistance is a survival mechanism that will continuously morph, ensuring 

prevalence of the species. It will be necessary to find new antimicrobials and new ways 

to employ them to overcome bacterial resistance [173].  
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2.6 INNOVATIVE STRATEGIES FOR BIOFILM CONTROL 

Many new developments have been made in order to overcome resistance, some of 

these have already been put into practice in food industry. 

In an effort to replace chemical disinfectants, alternative physical treatments have 

been studied. Lately, the use of plasma radiation has been a theme in vogue. Ionizing 

radiation consists in atmospheric plasma, that is generated using high voltage 

discharges, to produce reactive oxygen species that kill microorganisms [22]. Another 

method combining the action of a photosensitizer, a non-toxic dye, with visible light and 

oxygen, is already used in food industry as a decontamination method. This procedure 

causes DNA damage and the destruction of cellular membranes and organelles, 

resulting in the leakage of cellular content [120]. In a paper by Buchovec et al. this 

method was able to remove up to 3 logs L. monocytogenes biofilms [174]. 

Ultrasonication is another technique used for control. It has been used in various food 

industry processes such as freezing, cutting, drying, softening, bleaching, sterilization, 

and extraction [144]. This process is able to generate shock waves with the ability to 

dislodge biofilms [175]. Besides the agitation, the ultrasounds are able to create small 

vacuum bubbles that generate high temperatures when collapsed [176]. It is used as a 

biofilm control strategy, already proven effective in cleaning the water in cooling towers 

[177] and drinking water, without the generation of disinfection by-products [178].  

Ultraviolet radiation (UV) has been employed in many systems, including the 

treatment of municipal waters. Ultraviolet light is thought to be absorbed by the cells, 

disrupting some processes such as replication [179]. Contrary to what would be 

expected, the disinfection using ultraviolet to control biofilms present in water 

distribution systems resulted in no significant biofilm reduction after the treatment, due 

to the presence of other interfering substances in those systems [180, 181]. 

Nonetheless, UV radiation was told to be very effective eliminating planktonic and 

sessile bacteria on another paper [182]. 

Electric fields cause a bioelectric effect that is reflected on the increase of cell 

permeability [183] and, it is typically used to increase the intake of a drug into bacterial 

cells [93]. Racyte et al. studied the effect of electric fields in combination with activated 

carbon for disinfection of different types of bacteria in a fluidized bed electrode system 

[184]. They found this system more effective against Gram positive than Gram negative 

bacteria.  
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Nanoparticles were employed as a suitable biofilm control strategy. Biofilm 

formation may be inhibited in the presence of nanoparticles. In a study by  

Kalishwaralal et al., biofilm formation of P aeruginosa and S. epidermidis was repressed 

up to 95% using silver nanoparticles [185]. Moreover, nanoparticles have been used to 

carry disinfection agents [186]. They are a promising antimicrobial strategy, because of 

their high surface area to volume ratio they are thought to increase efficiency [187]. 

Ferreira et al. immobilized a QAC in nanoparticles. In a 1 hour disinfection process 

utilizing these reusable nanoparticles, approximately 90% of a P. fluorescens biofilm was 

killed.  

The biofilm matrix is mainly composed of polysaccharides and proteins. The latest 

studies show the potential of matrix degrading enzymes on biofilm control by the 

disruption of the matrix components [120]. Enzymes hydrolyze the exopolimeric matrix 

in which the bacteria are embedded. Formulations that contain enzymes are optimized 

so that there is compatibility with low temperatures. They are efficient time-wise, 

reducing the cleaning and disinfection time [24]. Moreover, they can work in mild pH, 

temperature and high ionic strength without affecting, for instance, the membranes 

used for water filtration, which are easily damaged by many chemical classes. Enzymes 

were already used to control biofilms and were found to be enhancers of the action of 

antimicrobial agents [10, 161, 188]. Nevertheless, enzymes are substrate specific [24], 

and the efficacy of the method is dependent on the right use and right combination of 

enzymes, being often suggested the characterization of EPS before the enzymatic 

treatments [59]. 

The evolution of resistance [189], the possible failure of antimicrobial agents [79], 

and the formation of harmful byproducts [190] translate into the need for new 

antimicrobial agents [191]. These should be effective against the bacterial 

contamination [192]. However, as legislation restricts the use of toxic biocides, eco-

friendly strategies represent a new approach for biofilm control [193, 194]. For 

instance, chlorine could react with organic matter, resulting in cancer-forming 

compounds that might enter the food chain [190]. Consequently, the exploitation of 

“green” biocides, from plant sources has been on course [192]. Valeriano et al. 

identified the antimicrobial properties of peppermint and lemongrass essential oils 

against biofilm formation of S. enterica [195]. Rhodiola crenulata (arctic root), 

Epimedium brevicornum (rowdy lamb herb), and Polygonum cuspidatum (Japanese 

knotweed) extracts also showed anti-biofilm properties against Propionibacterium 
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acnes, reducing the biofilms 64.8%, 98.5%, and 99.2%, respectively [196]. Also  

Melia dubia (bead tree) bark extracts reduced E. coli formation and swarming by 84% 

and 75% [197]. Ferulic, gallic and salicylic acids, considered to be phenolic compounds, 

were tested against different bacterial biofilms with favorable control results [191, 198]. 

Chitosan, a polysaccharide, exhibited anti-biofilm properties against S. mutans. This 

compound was able to reduce biofilms by approximately 95% [199]. It was also tested 

againts L. monocytogenes, B. cereus, S. aureus, S. enterica, and P. fluorescens. The 

biofilms developed by these bacteria were reduced from a maximum of 6 logs  

(L. monocytogens) to a minimum of 1 log (S. aureus) [200].  

QS interference is an alternative approach to biofilm control by targeting the 

signaling molecules that control various cell processes, including biofilm formation 

[127]. QS is a biochemical approach to a direct control of the rate and extent of biofilm 

development, as opposed to cleaning and disinfection techniques [201]. QS inhibitors 

impair the communication signals between cells in the biofilms [93]. One of the most 

potent QS quenchers are the halogenated compounds secreted by the red algae Delisea 

pulchra [202]. Other QS inhibitor substances are brominated furanones. Although the 

mode of action of these drugs is not yet fully understood, it is thought that it inhibits QS 

[203]. A biofilm treated with these chemicals is thought to have a higher susceptibility 

to disinfectants [24]. The strategy is to take advantage of the quorum signals used for 

biofilm regulatory mechanism [204]. In general, the study of which molecules regulate 

QS in food industry, to find corresponding inhibitors, could increase food safety and 

product shelf life [128]. The QS signaling molecules could be detected using biosensors 

[128]. Then, providing the inhibiting signals, or manipulating their mechanisms 

convincing bacteria not to form biofilms or triggering dispersal, biofilms could be 

controlled. For instance, P. aeruginosa produces rhamnolipid biosurfactants to detach 

from surfaces [205]. Inducing this bacteria to produce higher amounts of this chemical 

could result in effective control [204]. 

Phages are very simple, and the most abundant organisms on earth. They are 

viruses that infect bacteria, and like viruses they are only able to replicate inside their 

host [206]. Phages have known to be applied, initially in the early 20th century, to treat 

bacterial infections in Eastern Europe [144]. There are phages with extreme specificity 

and others which specificity is broader [206]. Treatments with phages showed potential 

to inhibit biofilm formation. As they are not chemical-based, their use eliminates the 

risk of surface corrosion, and due to their high specificity and non-toxicity they are good 
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candidates as therapy for biofilm infections in living hosts [144]. The co-existence of 

phages and bacteria is known in biofilms, which is one of the reasons why the 

combination of phages with disinfectants and polysaccharide depolymerases was 

suggested to be a novel control strategy [207]. Moreover, phages can be engineered to 

express biofilm degrading enzymes [208]. The use of phages as biofilm control resulted 

in a removal of 99.997% of bacteria [208]. The only drawback of the usage of phages is 

that their use for biofilm control might select resistant bacteria [36]. 

New strategies have been boosted by environmental restrictions. The combination 

of two or more strategies could control biofilms synergistically, approaching the 

problem in multiple fronts could be another alternative to overcome the persistence of 

biofilms [144, 209]. This technique is referred to as hurdle technology and it is widely 

used across industries. Any combination is valid as long as it is effective and abides to 

the current law. The right combination of hurdles should prevent, reduce or completely 

eliminate biofilms [144]. Therefore by combining different chemicals should broaden 

their antimicrobial spectrum, if they are able to work synergistically [210]. For example, 

treatments with ultrasounds in combination with enzymes and ozone were effective 

against established biofilms [22]. To prevent clinical infections in the operating block, 

surgical blades have been coated with a mixture of silver nanoparticles and lysozyme, 

effectively reducing infections by many clinical pathogens. [211]. Oulahal-Lagsir et al. 

reported the combination of an ultrasonic technique with a chelating agents (EDTA) to 

be effective in the removal of E. coli biofilms [212].  

REFERENCES  

[1] Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: from the natural environmental to 
infectious diseases. Nature Reviews in Microbiology, 2004. 2:95-108. 

[2] Flemming H-C, Biofilms, in Encyclopedia of Life Sciences (ELS). 2008, John Wiley & Sons, Ltd: 
Chichester. 

[3] Simões M, Simões LC, Vieira MJ. Species association increases biofilm resistance to chemical and 
mechanical treatments. Water Research, 2009. 43(1):229-237. 

[4] Paraje MG, Antimicrobial resistance in biofilms, in Science against microbial pathogens: 
communicating current research and technological advances, M.-V. A, Editor. 2011, Formatex: 
Badajoz, Spain. p. 826-834. 

[5] Costerton J, Geesey G, Cheng K. How bacteria stick. Scientific American, 1978. 238(1):86-95. 

[6] Characklis W, Marshall K. Biofilms: a basis for an interdisciplinary approach. Biofilms, 1990:3-15. 

[7] Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappinscott HM. Microbial Biofilms. 
Annual Review of Microbiology, 1995. 49:711-745. 



36  Chapter 2 

_________________________________________________________________________________  

 

[8] Stoodley P, Boyle JD, DeBeer D, Lappin-Scotta HM. Evolving perspectives of biofilm structure. 
Biofouling, 1999. 14(1):75-90. 

[9] Oulahal‐Lagsir N, Martial‐Gros A, Bonneau M, Blum LJ. “Escherichia coli‐milk” biofilm removal 
from stainless steel surfaces: Synergism between ultrasonic waves and enzymes. Biofouling, 
2003. 19(3):159-168. 

[10] Andersson S, Dalhammar G, Land C, Kuttuva Rajarao G. Characterization of extracellular 
polymeric substances from denitrifying organism Comamonas denitrificans. Applied Microbiology 
and Biotechnology, 2009. 82(3):535-543. 

[11] Gao BY, Zhu XB, Xu CH, Yue QY, Li WW, Wei JC. Influence of extracellular polymeric substances 
on microbial activity and cell hydrophobicity in biofilms. Journal of Chemical Technology and 
Biotechnology, 2008. 83(3):227-232. 

[12] Liu Y, Tay J-H. The essential role of hydrodynamic shear force in the formation of biofilm and 
granular sludge. Water Research, 2002. 36(7):1653-1665. 

[13] Sutherland I. The biofilm matrix - an immobilized but dynamic microbial environment. Trends in 
Microbiology, 2001. 9(5):222-227. 

[14] Donlan R, Costerton J. Biofilms: Survival mechanisms of clinically relevant microorganisms. 
Clinical Microbiology Reviews, 2002. 15(2):167-193. 

[15] Sauer K, Camper AK, Ehrlich GD, Costerton JW, Davies DG. Pseudomonas aeruginosa displays 
multiple phenotypes during development as a biofilm. Journal of Bacteriology, 2002. 
184(4):1140-1154. 

[16] Stoodley P, Sauer K, Davies D, Costerton JW. Biofilms as complex differentiated communities. 
Annual Reviews in Microbiology, 2002. 56(1):187-209. 

[17] Davies D. Understanding biofilm resistance to antibacterial agents. Nature Reviews in Drug 
Discovery 2003. 2:114-122. 

[18] Teodósio JS, Silva FC, Moreira JMR, Simões M, Melo LF, Alves MA, Mergulhão FJ. Flow cells as 
quasi-ideal systems for biofouling simulation of industrial piping systems. Biofouling, 2013. 
29(8):953-966. 

[19] Shi X, Zhu X. Biofilm formation and food safety in food industries. Trends in Food Science & 
Technology, 2009. 20(9):407-413. 

[20] Simões M, Simões LC, Vieira MJ. Physiology and behavior of Pseudomonas fluorescens single and 
dual strain biofilms under diverse hydrodynamics stresses. International Journal of Food 
Microbiology, 2008. 128(2):309-316. 

[21] Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM. Microbial biofilms. 
Annual Reviews in Microbiology, 1995. 49(1):711-745. 

[22] van Houdt R, Michiels CW. Biofilm formation and the food industry, a focus on the bacterial outer 
surface. Journal of Applied Microbiology, 2010. 109(4):1117-1131. 

[23] Bottero S, Storck T, Heimovaara TJ, van Loosdrecht MCM, Enzien MV, Picioreanu C. Biofilm 
development and the dynamics of preferential flow paths in porous media. Biofouling, 2013. 
29(9):1069-1086. 

[24] Anand S, Singh D, Avadhanula M, Marka S. Development and control of bacterial biofilms on dairy 
processing membranes. Comprehensive Reviews in Food Science and Food Safety, 2014. 13(1):18-
33. 

[25] Wäsche S, Horn H, Hempel DC. Influence of growth conditions on biofilm development and mass 
transfer at the bulk/biofilm interface. Water Research, 2002. 36(19):4775-4784. 

[26] Beyenal H, Lewandowski Z. Internal and external mass transfer in biofilms grown at various flow 
velocities. Biotechnology Progress, 2002. 18(1):55-61. 



Introduction 37 
_________________________________________________________________________________ 

 

[27] Vieira MJ, Melo LF. Intrinsic kinetics of biofilms formed under turbulent flow and low substrate 
concentrations. Bioprocess and Biosystems Engineering, 1999. 20(4):369-375. 

[28] Czaczyk K, Myszka K. Biosynthesis of extracellular polymeric substances (EPS) and its role in 
microbial biofilm formation. Polish Journal of Environmental Studies, 2007. 16(6):799-806. 

[29] Ivanovic I, Leiknes T. The biofilm membrane bioreactor (BF-MBR)—a review. Desalination and 
Water Treatment, 2012. 37(1-3):288-295. 

[30] Nikolaev Y, Plakunov V. Biofilm - “City of microbes” or an analogue of multicellular organisms? 
Microbiology, 2007. 76(2):125-138. 

[31] Meyer B. Approaches to prevention, removal and killing of biofilms. International 
Biodeterioration & Biodegradation, 2003. 51(4):249-253. 

[32] Dooley JSG, Roberts TA. Control of vegetative micro-organisms in foods. British Medical Bulletin, 
2000. 56(1):142-157. 

[33] Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson M-A, Roy SL, Jones JL, Griffin PM. 
Foodborne illness acquired in the United States-major pathogens. Emerging infectious diseases, 
2011. 17(1). 

[34] Potera C. Microbiology - Forging a link between biofilms and disease. Science, 1999. 
283(5409):1837. 

[35] Wolcott R, Costerton JW, Raoult D, Cutler SJ. The polymicrobial nature of biofilm infection. 
Clinical Microbiology and Infection, 2013. 19(2):107-112. 

[36] Brooks JD, Flint SH. Biofilms in the food industry: problems and potential solutions. International 
Journal of Food Science & Technology, 2008. 43(12):2163-2176. 

[37] Endersen L, O'Mahony J, Hill C, Ross RP, McAuliffe O, Coffey A. Phage therapy in the food industry. 
Annual Review of Food Science and Technology, 2014. 5:327-349. 

[38] Simões M, Pereira M, Vieira M. Validation of respirometry as a short-term method to assess the 
efficacy of biocides. Biofouling, 2005. 21(1):9-17. 

[39] Sharma M, Anand SK. Biofilms evaluation as an essential component of HACCP for food/dairy 
processing industry - a case. Food Control, 2001. 13(6-7):469-477. 

[40] Chmielewski RAN, Frank JF. Biofilm formation and control in food processing facilities. 
Comprehensive Reviews in Food Science and Food Safety, 2003. 2(1):22-32. 

[41] Srinivasan R, Stewart PS, Griebe T, Chen, . Biofilm parameters influencing biocide efficacy. 
Biotechnology and Bioengineering, 1995. 46:553–560. 

[42] Kumar CG, Anand SK. Significance of microbial biofilms in food industry: a review. International 
Journal of Food Microbiology, 1998. 42(1-2):9-27. 

[43] Bryers JD. Understanding and controlling detrimental bioreactor biofilms. Trends in 
Biotechnology, 1991. 9(12):422-426. 

[44] Maukonen J, Mättö J, Wirtanen G, Raaska L, Mattila-Sandholm T, Saarela M. Methodologies for 
the characterization of microbes in industrial environments: a review. Journal of Industrial 
Microbiology & Biotechnology, 2003. 30(6):327-356. 

[45] Jahid IK, Ha SD. A review of microbial biofilms of produce: Future challenge to food safety. Food 
Science and Biotechnology, 2012. 21(2):299-316. 

[46] Gomes LC, Moreira JMR, Miranda JM, Simões M, Melo LF, Mergulhão FJ. Macroscale versus 
microscale methods for physiological analysis of biofilms formed in 96-well microtiter plates. 
Journal of Microbiological Methods, 2013. 95(3):342-349. 

[47] Beyenal H, Lewandowski Z, Harkin G. Quantifying biofilm structure: facts and fiction. Biofouling, 
2004. 20(1):1-23. 



38  Chapter 2 

_________________________________________________________________________________  

 

[48] Karatan E, Watnick P. Signals, regulatory networks, and materials that build and break bacterial 
biofilms. Microbiology and Molecular Biology Reviews, 2009. 73(2):310-347. 

[49]  Molobela IP. Proteolytic and amyolytic enzymes for bacterial biofilm control. 2010, University of 
Pretoria: South Africa. 

[50] Flemming H. The EPS matrix: The "house of biofilm cells". Journal of Bacteriology, 2007. 
189(22):7945-7947. 

[51] Smirnova T, Didenko L, Azizbekyan R, Romanova Y. Structural and functional characteristics of 
bacterial biofilms. Microbiology, 2010. 79(4):413-423. 

[52] Bryers J. Biofilms and the technological implications of microbial cell-adhesion. Colloids and 
Surfaces B-Biointerfaces, 1994. 2(1-3):9-23. 

[53] Bryers J, Mixed Population Biofilms, in Biofilms - Science and Technology, T.R.B. L. F. Melo, M. 
Fletcher, B. Capdeville, Editor. 1992. p. 277-289. 

[54] Bridier A, Briandet R, Thomas V, Dubois-Brissonnet F. Resistance of bacterial biofilms to 
disinfectants: a review. Biofouling, 2011. 27(9):1017-1032. 

[55] Donlan RM. Biofilms: microbial life on surfaces. Emerging Infectious Diseases 2002. 8(9): 881–
890. 

[56] Simões M, Simões LC, Vieira MJ. A review of current and emergent biofilm control strategies. 
LWT - Food Science and Technology, 2010. 43(4):573-583. 

[57] Decreto-Lei no 306/2007 de 27 de Agosto, relativo ao controlo da qualidade da água destinada 
ao consumo humano. 

[58] García López LA, Veiga MC, Nogueira R, Aparicio A, Melo LF. A technique using a membrane flow 
cell to determine average mass transfer coefficients and tortuosity factors in biofilms. Water 
Science and Technology, 2003. 47(5):61-67. 

[59] Ras M, Lefebvre D, Derlon N, Paul E, Girbal-Neuhauser E. Extracellular polymeric substances 
diversity of biofilms grown under contrasted environmental conditions. Water Research, 2011. 
45(4):1529-1538. 

[60] Flemming HC. The perfect slime. Colloids and Surfaces B-Biointerfaces, 2011. 86(2):251-259. 

[61] Wingender J, Neu TR, Flemming H-C, What are bacterial extracellular polymeric substances?, in 
Microbial extracellular polymeric substances. 1999, Springer. p. 1-19. 

[62] Babu MM, Aravind L. Adaptive evolution by optimizing expression levels in different 
environments. Trends in Microbiology, 2006. 14(1):11-14. 

[63] Russell AD. Biocide use and antibiotic resistance: the relevance of laboratory findings to clinical 
and environmental situations. The Lancet Infectious Diseases, 2003. 3(12):794-803. 

[64] Gilbert P, Collier PJ, Brown M. Influence of growth rate on susceptibility to antimicrobial agents: 
biofilms, cell cycle, dormancy, and stringent response. Antimicrobial Agents and Chemotherapy, 
1990. 34(10):1865. 

[65] Gilbert P, Allison DG, McBain AJ. Biofilms in vitro and in vivo: do singular mechanisms imply cross-
resistance? Journal of Applied Microbiology, 2002. 92:98s-110s. 

[66] Russell A. Similarities and differences in the responses of microorganisms to biocides. Journal of 
Antimicrobial Chemotherapy, 2003. 52:750-763. 

[67] Russell A. Bacterial resistance to disinfectants: present knowledge and future problems. Journal 
of Hospital Infection, 1999. 43(SUPPL. 1). 

[68] Machado I, Graca J, Sousa AM, Lopes SP, Pereira MO. Effect of antimicrobial residues on early 
adhesion and biofilm formation by wild-type and benzalkonium chloride-adapted Pseudomonas 
aeruginosa. Biofouling, 2011. 27(10):1151-9. 



Introduction 39 
_________________________________________________________________________________ 

 

[69] Pogiatzis T, Vassiliadis V, Mergulhão F, Wilson D. When to clean, how to clean: Biofilms. in 
International Conference of heat exchanger fouling and cleaning 2013. Budapest, Hungary. 

[70] Maillard J. Bacterial target sites for biocide action. Journal of Applied Microbiology, 2002. 92:16s-
27s. 

[71] Paulus W, Relationship between chemical structure and activity or mode of action of micro 
biocides, in Directory of microbicides for the protection of materials - A Handbook, W. Paulus, 
Editor. 1993, Kluwer Academic Publishers: Dordrecht, The Netherlands. p. 787. 

[72] Cloete T. Resistance mechanisms of bacteria to antimicrobial compounds. International 
Biodeterioration & Biodegradation, 2003. 51(4):277-282. 

[73] Chapman J. Biocide resistance mechanisms. International Biodeterioration & Biodegradation, 
2003. 51(2):133-138. 

[74] Jacobsen L, Wilcks A, Hammer K, Huys G, Gevers D, Andersen SR. Horizontal transfer of tet(M) 
and erm(B) resistance plasmids from food strains of Lactobacillus plantarum to Enterococcus 
faecalis JH2-2 in the gastrointestinal tract of gnotobiotic rats. FEMS Microbiology Ecology, 2007. 
59(1):158-166. 

[75] Stewart PS. Mechanisms of antibiotic resistance in bacterial biofilms. International Journal of 
Medical Microbiology, 2002. 292(2):107-113. 

[76] Zhang L, Mah TF. Involvement of a novel efflux system in biofilm-specific resistance to antibiotics. 
Journal of Bacteriology, 2008. 190(13):4447-4452. 

[77] Sundheim G, Langsrud S, Heir E, Holck AL. Bacterial resistance to disinfectants containing 
quaternary ammonium compounds. International Biodeterioration & Biodegradation, 1998. 
41(3-4):235-239. 

[78] Spratt BG. Resistance to antibiotics mediated by target alterations. Science, 1994. 264(5157):388-
396. 

[79] Simões M, Pereira M, Machado I, Simões L, Vieira M. Comparative antibacterial potential of 
selected aldehyde-based biocides and surfactants against planktonic Pseudomonas fluorescens. 
Journal of Industrial Microbiology & Biotechnology, 2006. 33(9):741-749. 

[80] Shahverdi AR, Fakhimi A, Shahverdi HR, Minaian S. Synthesis and effect of silver nanoparticles on 
the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia 
coli. Nanomedicine: Nanotechnology, Biology and Medicine, 2007. 3(2):168-171. 

[81] Shafahi M, Vafai K. Synthesis of biofilm resistance characteristics against antibiotics. International 
Journal of Heat and Mass Transfer, 2010. 53(15-16):2943-2950. 

[82] Russell AD. Bacterial adaptation and resistance to antiseptics, disinfectants and preservatives is 
not a new phenomenon. Journal of Hospital Infection, 2004. 57(2):97-104. 

[83] Nakata K, Tsuchido T, Matsumura Y. Antimicrobial cationic surfactant, cetyltrimethylammonium 
bromide, induces superoxide stress in Escherichia coli cells. Journal of Applied Microbiology, 
2010. 110:568-579. 

[84] Gilbert P, McBain AJ. Potential impact of increased use of biocides in consumer products on 
prevalence of antibiotic resistance. Clinical Microbiology Reviews, 2003. 16(2):189-208. 

[85] Beumer R, Bloomfield S, Exner M, Fara G, Nath K, Scott E. Microbial resistance and biocides - a 
review and consensus statement. 2000, International Scientific Forum on Home Hygiene. 

[86] Sakagami Y, Yokoyama H, Nishimura H, Ose Y, Tashima T. Mechanism of resistance to 
benzalkonium chloride by Pseudomonas aeruginosa in applied and environmental microbiology. 
Jounal of Applied Microbiology, 1989. 55(8):2036–2040. 

[87] Simões M, Simões LC, Pereira MO, Vieira MJ. Sodium dodecyl sulfate allows the persistence and 
recovery of biofilms of Pseudomonas fluorescens formed under different hydrodynamic 
conditions. Biofouling, 2008. 24(1):35-44. 



40  Chapter 2 

_________________________________________________________________________________  

 

[88] Simões M, Pereira MO, Vieira MJ. Effect of mechanical stress on biofilms challenged by different 
chemicals. Water Research, 2005. 39(20):5142-5152. 

[89] Diehl MA, Chapman JS. Association of the biocide 5-chloro-2-methyl-isothiazol-3-one with 
Pseudomonas aeruginosa and Pseudomonas fluorescens. International Biodeterioration and 
Biodegradation, 1999. 44(4):191-199. 

[90] Simões M, Pereira M, Sillankorva S, Azeredo J, Vieira M. The effect of hydrodynamic conditions 
on the phenotype of Pseudomonas fluorescens biofilms. Biofouling, 2007. 23(3-4):249-58. 

[91] Davies DG, Geesey GG. Regulation of the alginate biosynthesis gene algC in Pseudomonas 
aeruginosa during biofilm development in continuous culture. Applied and Environmental 
Microbiology, 1995. 61(3):860-867. 

[92] Costerton J. Introduction to biofilm. International Journal of Antimicrobial Agents, 1999. 11(3-
4):217-221. 

[93] Cappitelli F, Polo A, Villa F. Biofilm formation in food processing environments is still poorly 
understood and controlled. Food Engineering Reviews, 2014. 6(1):29-42. 

[94] Mah T, O'Toole G. Mechanisms of biofilm resistance to antimicrobial agents. Trends in 
Microbiology, 2001. 9(1):34-39. 

[95] Harrison J, Turner R, Marques L, Ceri H. A new understanding of these microbial communities is 
driving a revolution that may transform the science of microbiology. Am Sci, 2005. 93(6):508-
515. 

[96] Stewart PS, Franklin MJ. Physiological heterogeneity in biofilms. Nature Reviews in Microbiology, 
2008. 6(3):199-210. 

[97] Watnick P, Kolter R. Biofilm, city of microbes. Jounal of Bacteriology, 2000. 182(10):2675-2679. 

[98] Desai M, Buhler T, Weller PH, Brown MRW. Increasing resistance of planktonic and biofilm 
cultures of Burkholderia cepacia to ciprofloxacin and ceftazidime during exponential growth. 
Journal of Antimicrobial Chemotherapy, 1998. 42(2):153-160. 

[99] Allison DG, Ruiz B, SanJose C, Jaspe A, Gilbert P. Extracellular products as mediators of the 
formation and detachment of Pseudomonas fluorescens biofilms. FEMS Microbiology Letters, 
1998. 167(2):179-184. 

[100] Stewart P. Diffusion in biofilms. Journal of Bacteriology, 2003. 185(5):1485-1491. 

[101] Davey ME, O'Toole GA. Microbial biofilms: from ecology to molecular genetics. Microbiology and 
Molecular Biology Reviews, 2000. 64(4):847-867. 

[102] Schulte S, Wingender J, Flemming H-C, Efficacy of biocides against biofilms, in Directory of 
Microbicides for the Protection of Materials, W. Paulus, Editor. 2005, Springer Netherlands. p. 93-
120. 

[103] Bester E, Kroukamp O, Wolfaardt GM, Boonzaaier L, Liss SN. Metabolic differentiation in biofilms 
as indicated by carbon dioxide production rates. Applied and Environmental Microbiology, 2010. 
76(4):1189-1197. 

[104] Brown MR, Allison DG, Gilbert P. Resistance of bacterial biofilms to antibiotics a growth-rate 
related effect? Journal of Antimicrobial Chemotherapy, 1988. 22(6):777-780. 

[105] Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent 
infections. Science 1999. 284(5418):1318-22. 

[106] Evans DJ, Allison DG, Brown MRW, Gilbert P. Susceptibility of Pseudomonas aeruginosa and 
Escherichia coli biofilms towards ciprofloxacin - effect of specific growth-rate. Journal of 
Antimicrobial Chemotherapy, 1991. 27(2):177-184. 

[107] Stewart P, Grab L, Diemer J. Analysis of biocide transport limitation in an artificial biofilm system. 
Journal of Applied Microbiology, 1998. 85(3):495-500. 



Introduction 41 
_________________________________________________________________________________ 

 

[108] Russell A, Furr J, Maillard J. Microbial susceptibility and resistance to biocides. American Society 
for Microbiology News, 1997. 63(9):481-487. 

[109] Flemming H, Wingender J. The biofilm matrix. Nature Reviews in Microbiology, 2010. 8(9):623-
633. 

[110] Costerton JW, Lewandowski Z, deBeer D, Caldwell D, Korber D, James G. Biofilms, the customized 
microniche. Journal of Bacteriology, 1994. 176(8):2137-2142. 

[111] Melo L. Biofilm physical structure, internal diffusivity and tortuosity. Water Science and 
Technology, 2005. 52(7):77-84. 

[112] Sandt C, Barbeau J, Gagnon MA, Lafleur M. Role of the ammonium group in the diffusion of 
quaternary ammonium compounds in Streptococcus mutans biofilms. Journal of Antimicrobial 
Chemotherapy, 2007. 60(6):1281-1287. 

[113] Singh R, Ray P, Das A, Sharma M. Penetration of antibiotics through Staphylococcus aureus and 
Staphylococcus epidermidis biofilms. Journal of Antimicrobial Chemotherapy, 2010. 65:1955-
1958. 

[114] Anderl J, Franklin M, Stewart P. Role of antibiotic penetration limitation in Klebsiella pneumoniae 
biofilm resistance to ampicillin and ciprofloxacin. Journal of Antimicrobial Chemotherapy, 2000. 
44(7):1818-1824. 

[115] McDonnell G, Russell A. Antiseptics and disinfectants: activity, action, and resistance. Clinical 
Microbiology Reviews, 1999. 12(1):147-179. 

[116] Davison WM, Pitts B, Stewart PS. Spatial and temporal patterns of biocide action against 
Staphylococcus epidermidis biofilms. Antimicrobial Agents and Chemotherapy, 2010. 54(7):2920-
2927. 

[117] Ciofu O, Mandsberg LF, Wang H, Høiby N. Phenotypes selected during chronic lung infection in 
cystic fibrosis patients: implications for the treatment of Pseudomonas aeruginosa biofilm 
infections. FEMS Immunology & Medical Microbiology, 2012. 65(2):215-225. 

[118] Chen X, Stewart PS. Chlorine penetration into artificial biofilm is limited by a reaction−diffusion 
interaction. Environmental Science and Technology, 1996. 30(6):2078-2083. 

[119] Jefferson KK, Goldmann DA, Pier GB. Use of confocal microscopy to analyze the rate of 
vancomycin penetration through Staphylococcus aureus biofilms. Antimicrobial Agents and 
Chemotherapy, 2005. 49(6):2467-2473. 

[120] Taraszkiewicz A, Fila G, Grinholc M, Nakonieczna J. Innovative strategies to overcome biofilm 
resistance. BioMed Research International, 2013. 2013(1): 1-13.  

[121] Szczuka E, Urbańska K, Pietryka M, Kaznowski A. Biofilm density and detection of biofilm-
producing genes in methicillin-resistant Staphylococcus aureus strains. Folia Microbiologica, 
2013. 58(1):47-52. 

[122] Yadav MK, Kwon SK, Cho CG, Park SW, Chae SW, Song JJ. Gene expression profile of early in vitro 
biofilms of Streptococcus pneumoniae. Microbiology and immunology, 2012. 56(9):621-629. 

[123] Driffield K, Miller K, Bostock J, O'neill A, Chopra I. Increased mutability of Pseudomonas 
aeruginosa in biofilms. Journal of Antimicrobial Chemotherapy, 2008. 61(5):1053-1056. 

[124] Langsrud S, Sundheim G. Factors contributing to the survival of poultry associated Pseudomonas 
spp. exposed to a quaternary ammonium compound. Journal of Applied Microbiology, 1997. 
82(6):705-712. 

[125] Russell A, Tattawasart U, Maillard J-Y, Furr J. Possible link between bacterial resistance and use 
of antibiotics and biocides. Antimicrobial agents and chemotherapy, 1998. 42(8):2151-2151. 

[126] Ma H, Bryers JD. Non-invasive determination of conjugative transfer of plasmids bearing 
antibiotic-resistance genes in biofilm-bound bacteria: effects of substrate loading and antibiotic 
selection. Applied Microbiology and Biotechnology, 2013. 97(1):317-328. 



42  Chapter 2 

_________________________________________________________________________________  

 

[127] Smith JL, Fratamico PM, Novak JS. Quorum sensing: a primer for food microbiologists. Journal of 
Food Protection®, 2004. 67(5):1053-1070. 

[128] Bai AJ, Rai VR. Bacterial quorum sensing and food industry. Comprehensive Reviews in Food 
Science and Food Safety, 2011. 10(3):183-193. 

[129] Szomolay B, Klapper I, Dockery J, Stewart PS. Adaptive responses to antimicrobial agents in 
biofilms. Environmental Microbiology, 2005. 7(8):1186-1191. 

[130] Bagge N, Hentzer M, Andersen JB, Ciofu O, Givskov M, Høiby N. Dynamics and spatial distribution 
of β-lactamase expression in Pseudomonas aeruginosa biofilms. Antimicrobial Agents and 
Chemotherapy, 2004. 48(4):1168-1174. 

[131] Wong K, Ma J, Rothnie A, Biggin PC, Kerr ID. Towards understanding promiscuity in multidrug 
efflux pumps. Trends in Biochemical Sciences, 2014. 39(1):8-16. 

[132] Vila J, Martí S, Sánchez-Céspedes J. Porins, efflux pumps and multidrug resistance in 
Acinetobacter baumannii. Journal of Antimicrobial Chemotherapy, 2007. 59(6):1210-1215. 

[133] Fernández L, Hancock RE. Adaptive and mutational resistance: role of porins and efflux pumps in 
drug resistance. Clinical Microbiology Reviews, 2012. 25(4):661-681. 

[134] Poole K. Multidrug efflux pumps and antimicrobial resistance in Pseudomonas aeruginosa and 
related organisms. Journal of Molecular Microbiology and Biotechnology, 2001. 3(2):255-263. 

[135] Poole K. Efflux-mediated multiresistance in Gram-negative bacteria. Clinical Microbiology and 
Infection, 2004. 10(1):12-26. 

[136] Lewis K. Persister cells, dormancy and infectious disease. Nature Reviews in Microbiology, 2007. 
5(1):48-56. 

[137] Bigger JW. Treatment of Staphylococcal infections with penicillin by intermittent sterilisation. The 
Lancet, 1944. 244(6320):497-500. 

[138] Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S. Bacterial persistence as a phenotypic switch. 
Science, 2004. 305(5690):1622-1625. 

[139] José Miguel Sahuquillo Arce, Fernanda Yarad Auad, Cabezas AH, Biofilms: a biological 
antimicrobial resistance system, in Microbial pathogens and strategies for combating them: 
science, technology and education A. Méndez-Vilas, Editor. 2013, Formatex Research Center: 
Badajoz, Spain. p. 61-67. 

[140] Keren I, Shah D, Spoering A, Kaldalu N, Lewis K. Specialized persister cells and the mechanism of 
multidrug tolerance in Escherichia coli. Journal of Bacteriology, 2004. 186(24):8172-8180. 

[141] Simões LC, Lemos M, Pereira AM, Abreu AC, Saavedra MJ, Simões M. Persister cells in a biofilm 
treated with a biocide. Biofouling, 2011. 27(4):403-411. 

[142] Gefen O, Balaban NQ. The importance of being persistent: heterogeneity of bacterial populations 
under antibiotic stress. FEMS microbiology reviews, 2009. 33(4):704-717. 

[143] Lewis K. Riddle of biofilm resistance. Antimicrobial Agents and Chemotherapy, 2001. 45(4):999-
1007. 

[144] Srey S, Jahid IK, Ha SD. Biofilm formation in food industries: A food safety concern. Food Control, 
2013. 31(2):572-585. 

[145] Bremer PJ, Fillery S, McQuillan AJ. Laboratory scale Clean-In-Place (CIP) studies on the 
effectiveness of different caustic and acid wash steps on the removal of dairy biofilms. 
International Journal of Food Microbiology, 2006. 106(3):254-262. 

[146] Araújo PA, Kruithof JC, van Loosdrecht MCM, Vrouwenvelder JS. The potential of standard and 
modified feed spacers for biofouling control. Journal of Membrane Science, 2012. 403–404(0):58-
70. 



Introduction 43 
_________________________________________________________________________________ 

 

[147] Miller DJ, Araújo PA, Correia PB, Ramsey MM, Kruithof JC, van Loosdrecht MCM, Freeman BD, 
Paul DR, Whiteley M, Vrouwenvelder JS. Short-term adhesion and long-term biofouling testing of 
polydopamine and poly(ethylene glycol) surface modifications of membranes and feed spacers 
for biofouling control. Water Research, 2012. 46(12):3737-3753. 

[148] Zottola EA, Sasahara KC. Microbial biofilms in the food processing industry—Should they be a 
concern? International Journal of Food Microbiology, 1994. 23(2):125-148. 

[149] Verran J. Biofouling in food processing: biofilm or biotransfer potential? Food and Bioproducts 
Processing, 2002. 80(4):292-298. 

[150] Vrouwenvelder JS, van Loosdrecht MCM, Kruithof JC. Early warning of biofouling in spiral wound 
nanofiltration and reverse osmosis membranes. Desalination, 2011. 265(1–3):206-212. 

[151] Strathmann M, Mittenzwey K-H, Sinn G, Papadakis W, Flemming H-C. Simultaneous monitoring 
of biofilm growth, microbial activity, and inorganic deposits on surfaces with an in situ, online, 
real-time, non-destructive, optical sensor. Biofouling, 2013. 29(5):573-583. 

[152] Pereira A, Melo, L. F., Fratamico, P. M., Annous, B. A., & Gunther, N. W. , Monitoring of biofilms 
in the food and beverage industries, in Biofilms in the food and beverage industries, P.M. 
Fratamico, Annous, B. A., & Guenther, N. W. , Editor. 2009, Elsevier. p. 131-151. 

[153] Nitschke M, Costa S. Biosurfactants in food industry. Trends in Food Science & Technology, 2007. 
18(5):252-259. 

[154] P. A. Araújo, D. J. Miller, P. B. Correia, M. C. M. van Loosdrecht, J. C. Kruithof, B. D. Freeman, D. 
R. Paul, Vrouwenvelder JS. Impact of feed spacer and membrane modification by hydrophilic, 
bactericidal and biocidal coating on biofouling control. Desalination, 2012. 295(0):1-10. 

[155] Gibson H, Taylor J, Hall K, Holah J. Effectiveness of cleaning techniques used in the food industry 
in terms of the removal of bacterial biofilms. Journal of Applied Microbiology, 1999. 87(1):41-48. 

[156] World Health Organization, and Codex Alimentarius Commission. Codex Alimentarius, 
2013. FAO/WHO. 

[157] Otzen D. Protein-surfactant interactions: a tale of many states. Biochimica et Biophysica Acta - 
Proteins & Proteomics, 2011. 1814(5):562-591. 

[158] Anwar H, Strap JL. Changing characteristics of aging biofilms. International Biodeterioration & 
Biodegradation, 1992. 30(2-3):177-186. 

[159] Russell AD, McDonnell G. Concentration: a major factor in studying biocidal action. Journal of 
Hospital Infection, 2000. 44(1):1-3. 

[160] Møretrø T, Heir E, Nesse LL, Vestby LK, Langsrud S. Control of Salmonella in food related 
environments by chemical disinfection. Food Research International, 2012. 45(2):532-544. 

[161] Ganeshnarayan K, Shah SM, Libera MR, Santostefano A, Kaplan JB. Poly-N-Acetylglucosamine 
matrix polysaccharide impedes fluid convection and transport of the cationic surfactant 
cetylpyridinium chloride through bacterial biofilms. Applied and Environmental Microbiology, 
2009. 75(5):1308-1314. 

[162] Araújo PA, Lemos M, Mergulhão F, Melo L, Simões M, Antimicrobial resistance in biofilms to 
disinfectants, in Science against microbial pathogens: communicating current research and 
technological advances, A. Méndez-Vilas, Editor. 2011, Formatex: Badajoz, Spain. p. 826-834. 

[163] Denyer S, Stewart G. Mechanisms of action of disinfectants. International Biodeterioration & 
Biodegradation, 1998. 41(3-4):261-268. 

[164] Cloete TE, Jacobs L, Brözel VS. The chemical control of biofouling in industrial water systems. 
Biodegradation, 1998. 9:23-27. 

[165] MacDonald R, Santa M, Brözel V. The response of a bacterial biofilm community in a simulated 
industrial cooling water system to treatment with an anionic dispersant. Journal of Applied 
Microbiology 2000. 89(2):225-235. 



44  Chapter 2 

_________________________________________________________________________________  

 

[166] Ferreira C, Pereira A, Pereira M, Melo L, Simões M. Physiological changes induced by the 
quaternary ammonium compound benzyldimethyldodecylammonium chloride on Pseudomonas 
fluorescens. Journal of Antimicrobial Chemotherapy, 2011. 66(5):1036-1043. 

[167] Brözel VS, Cloete TE. Resistance of bacteria from cooling waters to bactericides. Journal of 
Industrial Microbiology Biotechnology, 1991. 8(4):273-276. 

[168] Sykes RB, Bonner DP, Bush K, Georgopapadakou NH. Azthreonam (SQ 26,776), a synthetic 
monobactam specifically active against aerobic gram-negative bacteria. Antimicrobial Agents and 
Chemotherapy, 1982. 21(1):85-92. 

[169] Neu HC, Aswapokee N, Aswapokee P, Fu KP. HR 756, a new cephalosporin active against gram-
positive and gram-negative aerobic and anaerobic bacteria. Antimicrobial Agents and 
Chemotherapy 1979. 15(2):273-81. 

[170] Dahl TA, Midden WR, Hartman PE. Comparison of killing of gram-negative and gram-positive 
bacteria by pure singlet oxygen. Journal of Bacteriology, 1989. 171(4):2188-94. 

[171] Møretrø T, Vestby LK, Nesse LL, Storheim SE, Kotlarz K, Langsrud S. Evaluation of efficacy of 
disinfectants against Salmonella from the feed industry. Journal Applied Microbiology, 2009. 
106(3):1005-12. 

[172] Lequette Y, Boels G, Clarisse M, Faille C. Using enzymes to remove biofilms of bacterial isolates 
sampled in the food-industry. Biofouling, 2010. 26(4):421-431. 

[173] Cortés M, Bonilla J, Sinisterra R, Biofilm formation, control and novel strategies for erradication, 
in Science against microbial pathogens: communicating current research and technological 
advances, M.-V. A, Editor. 2011, Formatex: Badajoz, Spain. p. 826-834. 

[174] Buchovec I, Paskeviciute E, Luksiene Z. Photosensitization-based inactivation of food pathogen 
Listeria monocytogenes in vitro and on the surface of packaging material. Journal of 
Photochemistry and Photobiology B: Biology, 2010. 99(1):9-14. 

[175] Agarwal A, Jern Ng W, Liu Y. Removal of biofilms by intermittent low-intensity ultrasonication 
triggered bursting of microbubbles. Biofouling, 2014;(ahead-of-print):1-7. 

[176] Qian Z, Sagers RD, Pitt WG. The effect of ultrasonic frequency upon enhanced killing of P. 
aeruginosa biofilms. Annals of Biomedical Engineering, 1997. 25(1):69-76. 

[177] Broekman S, Pohlmann O, Beardwood E, de Meulenaer EC. Ultrasonic treatment for 
microbiological control of water systems. Ultrasonics Sonochemistry, 2010. 17(6):1041-1048. 

[178] Simões LC, Simões M. Biofilms in drinking water: problems and solutions. RSC Advances, 2013. 
3(8):2520-2533. 

[179] Bolton JR, Linden KG. Standardization of methods for fluence (UV dose) determination in bench-
scale UV experiments. Journal of Environmental Engineering, 2003. 129(3):209-215. 

[180] Pozos N, Scow K, Wuertz S, Darby J. UV disinfection in a model distribution system:: biofilm 
growth and microbial community. Water Research, 2004. 38(13):3083-3091. 

[181] Långmark J, Storey MV, Ashbolt NJ, Stenström T-A. The effects of UV disinfection on distribution 
pipe biofilm growth and pathogen incidence within the greater Stockholm area, Sweden. Water 
Research, 2007. 41(15):3327-3336. 

[182] Bukhari Z, Hargy TM, Bolton JR, Dussert B, Clancy JL. Medium-pressure UV for oocyst inactivation. 
Journal-American Water Works Association, 2000. 91(3):86-94. 

[183] Racyte J, Sharabati J-A-D, Paulitsch-Fuchs AH, Yntema DR, Mayer MJ, Bruning H, Rijnaarts HH. 
Combining fluidized activated carbon with weak alternating electric fields for disinfection. 
Carbon, 2011. 49(15):5321-5328. 



Introduction 45 
_________________________________________________________________________________ 

 

[184] Racyte J, Bernard S, Paulitsch-Fuchs AH, Yntema DR, Bruning H, Rijnaarts HH. Alternating electric 
fields combined with activated carbon for disinfection of Gram negative and Gram positive 
bacteria in fluidized bed electrode system. Water Research, 2013. 47(16):6395-6405. 

[185] Kalishwaralal K, BarathManiKanth S, Pandian SRK, Deepak V, Gurunathan S. Silver nanoparticles 
impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis. 
Colloids and Surfaces B: Biointerfaces, 2010. 79(2):340-344. 

[186] Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnology 
Advances, 2009. 27(1):76-83. 

[187] Kim JS, Kuk E, Yu KN, Kim J-H, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang C-Y. Antimicrobial 
effects of silver nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 2007. 
3(1):95-101. 

[188] Molobela IP, Cloete TE, Beukes M. Protease and amylase enzymes for biofilm removal and 
degradation of extracellular polymeric substances (EPS) produced by Pseudomonas fluorescens 
bacteria. African Journal of Microbiology Research, 2010. 4(14):1515-1524. 

[189] Livermore DM. Fourteen years in resistance. International Journal of Antimicrobial Agents, 2012. 
39(4):283-294. 

[190] Grant D, Bott T. Biocide Dosing Strategies for Biofilm Control. Heat Transfer Engineering, 2005. 
26(1):44-50. 

[191] Lemos M, Borges A, Teodósio J, Araújo PA, Mergulhão F, Melo L, Simões M. The effects of ferulic 
and salicylic acids on Bacillus cereus and Pseudomonas fluorescens single- and dual-species 
biofilms. International Biodeterioration & Biodegradation, 2014. 86(Part A):42–51. 

[192] Simões M, Bennett RN, Rosa EAS. Understanding antimicrobial activities of phytochemicals 
against multidrug resistant bacteria and biofilms. Natural Product Reports, 2009. 26(6):746-757. 

[193] Johnston MD, Lambert RJW, Hanlon GW, Denyer SP. A rapid method for assessing the suitability 
of quenching agents for individual biocides as well as combinations. Journal of Applied 
Microbiology, 2002. 92(4):784-789. 

[194] Verhoef R, Schols HA, Blanco A, Siika-aho M, Ratto M, Buchert J, Lenon G, Voragen AGJ. Sugar 
composition and FT-IR analysis of exopolysaccharides produced by microbial isolates from paper 
mill slime deposits. Biotechnology and Bioengineering, 2005. 91(1):91-105. 

[195] Valeriano C, De Oliveira TLC, De Carvalho SM, Cardoso MdG, Alves E, Piccoli RH. The sanitizing 
action of essential oil-based solutions against Salmonella enterica serotype Enteritidis S64 biofilm 
formation on AISI 304 stainless steel. Food Control, 2012. 25(2):673-677. 

[196] Coenye T, Brackman G, Rigole P, De Witte E, Honraet K, Rossel B, Nelis HJ. Eradication of 
Propionibacterium acnes biofilms by plant extracts and putative identification of icariin, 
resveratrol and salidroside as active compounds. Phytomedicine, 2012. 19(5):409-412. 

[197] Ravichandiran V, Shanmugam K, Anupama K, Thomas S, Princy A. Structure-based virtual 
screening for plant-derived SdiA-selective ligands as potential antivirulent agents against 
uropathogenic Escherichia coli. European Journal of Medicinal Chemistry, 2012. 48:200-205. 

[198] Borges A, Saavedra M, Simões M. The activity of ferulic and gallic acids in biofilm prevention and 
control of pathogenic bacteria. Biofouling, 2012. 28(7):755-67. 

[199] de Paz LEC, Resin A, Howard KA, Sutherland DS, Wejse PL. Antimicrobial effect of chitosan 
nanoparticles on Streptococcus mutans biofilms. Applied and Environmental Microbiology, 2011. 
77(11):3892-3895. 

[200] Orgaz B, Lobete MM, Puga CH, San Jose C. Effectiveness of chitosan against mature biofilms 
formed by food related bacteria. International Journal of Molecular Sciences, 2011. 12(1):817-
828. 



46  Chapter 2 

_________________________________________________________________________________  

 

[201] Kim S, Lee S, Hong S, Oh Y, Kweon J, Kim T. Biofouling of reverse osmosis membranes: microbial 
quorum sensing and fouling propensity. Desalination, 2009. 247(1):303-315. 

[202] Dong Y-H, Wang L-H, Zhang L-H. Quorum-quenching microbial infections: mechanisms and 
implications. Philosophical Transactions of the Royal Society B: biological Sciences, 2007. 
362(1483):1201-1211. 

[203] Vestby LK, Johannesen KCS, Witsø IL, Habimana O, Scheie AA, Urdahl AM, Benneche T, Langsrud 
S, Nesse LL. Synthetic brominated furanone F202 prevents biofilm formation by potentially 
human pathogenic Escherichia coli O103:H2 and Salmonella ser. Agona on abiotic surfaces. 
Journal of Applied Microbiology, 2014. 116(2):258-268. 

[204] Boyle KE, Heilmann S, van Ditmarsch D, Xavier JB. Exploiting social evolution in biofilms. Current 
Opinion in Microbiology, 2013. 16(2):207-212. 

[205] Xavier JB, Picioreanu C, Rani SA, van Loosdrecht MCM, Stewart PS. Biofilm-control strategies 
based on enzymatic disruption of the extracellular polymeric substance matrix - a modelling 
study. Microbiology-SGM, 2005. 151:3817-3832. 

[206] Azeredo J, Sutherland IW. The use of phages for the removal of infectious biofilms. Current 
Pharmaceutical Biotechnology, 2008. 9(4):261-266. 

[207] Tait K, Skillman L, Sutherland I. The efficacy of bacteriophage as a method of biofilm eradication. 
Biofouling, 2002. 18(4):305-311. 

[208] Lu TK, Collins JJ. Dispersing biofilms with engineered enzymatic bacteriophage Proceedings of the 
National Academy of Sciences, 2007. 104(27):11197-11202. 

[209] Flemming H, Ridgway H, Biofilm control: conventional and alternative approaches, in Springer 
Series on Biofilms. 2009, Springer Berlin Heidelberg. p. 103-117. 

[210] Lambert RJW, Johnston MD, Hanlon GW, Denyer SP. Theory of antimicrobial combinations: 
biocide mixtures - synergy or addition? Journal of Applied Microbiology, 2003. 94(4):747-759. 

[211] Bang SH, Jang A, Yoon J, Kim P, Kim JS, Kim Y-H, Min J. Evaluation of whole lysosomal enzymes 
directly immobilized on titanium (IV) oxide used in the development of antimicrobial agents. 
Enzyme and Microbial Technology, 2011. 49(3):260-265. 

[212] Oulahal N, Martial-Gros A, Bonneau M, Blum L. Combined effect of chelating agents and 
ultrasound on biofilm removal from stainless steel surfaces. Application to'Escherichia coli milk' 
and'Staphylococcus aureus milk' biofilms. Biofilms, 2004. 1(1):65-73. 

 

 



 

 

 

CHAPTER 3 
DIFFUSION OF ANTIMICROBIAL AGENTS 
THROUGH BIOFILMS  
 

 
 
This chapter is published as: 

Araújo PA, Mergulhão F, Melo L, Simões M. 2014. The ability of an antimicrobial agent to penetrate a biofilm 

is not correlated with its killing or removal efficiency. Biofouling 30 (6): 677-683. DOI: 

10.1080/08927014.2014.904294    



48  Chapter 3 
_________________________________________________________________________________ 

 

ABSTRACT 

The penetration ability of twelve antimicrobial agents was determined against biofilms 

of B. cereus and P. fluorescens using a colony biofilm assay. These antimicrobial agents 

included antibiotics and biocides. The surfactants benzalkonium chloride (BAC) and 

cetyltrimethyl ammonium bromide (CTAB), and the antibiotics ciprofloxacin and 

streptomycin raised interest due to their distinct activities. Erythromycin and CTAB were 

retarded by the presence of biofilms, conversely to ciprofloxacin and BAC (no 

retardation due to presence of biofilms). The removal and killing efficacies of these four 

selected agents was additionally evaluated against biofilms formed in microtiter plates. 

The most efficient biocide was CTAB, which enabled a higher killing of both bacterial 

biofilms. Ciprofloxacin was the best antibiotic although none of the selected 

antimicrobial agents promoted total biofilm removal and/or killing. Comparative analysis 

of the results obtained with colony biofilms and microtiter plate biofilms show that 

although extracellular polymeric substances and the biofilm structure are considered a 

determining factor in biofilm resistance, the ability of an antimicrobial agent to 

penetrate a biofilm is not correlated with its killing or removal efficiency. Also, the results 

reinforce the role of an appropriate antimicrobial selection as a key step in the design of 

disinfection processes for biofilm control.   
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3.1 INTRODUCTION 

A biofilm is commonly defined as a microbial community with cells irreversibly attached 

to a substratum or attached to each other, and embedded in a matrix of extracellular 

polymeric substances (EPS) [1]. EPS protects bacteria from environmental adversities 

[2]. In all industries, especially in the food industry, the proliferation of microorganisms 

is very common even when manufacturers diligently follow all contingency plans [3]. The 

main objective of microbial control is to eliminate or reduce the numbers of 

microorganisms to acceptable levels, as well as to prevent and control the formation of 

biological deposits attached to the process equipment surfaces [4]. Currently, there is 

no control strategy capable of entirely eradicating biofilms [5]. At the same time, there 

is a need to continuously find new strategies to manage antimicrobial resistance [6, 7]. 

Resistance is the ability that microorganisms have to withstand antimicrobial 

treatments. Russell [8] and Chapman [9] documented three types of resistance: intrinsic 

resistance, e.g. Gram negative lipopolysaccharide layer [10]; acquired resistance, e.g. 

manipulated resistance mediated via plasmids; and adaptive resistance, e.g. exposure 

to sub-lethal concentrations of an antimicrobial agent that selects for mutation, 

conferring resistance to that agent or others of the same type (cross-resistance). The 

way how microorganisms develop resistance is not well understood. Biofilm formation, 

a case of adaptive resistance is considered a microbial survival strategy, enabling them 

to be 10-1000 fold more resistant to antimicrobial agents than their free-floating 

equivalents [11-13]. Antimicrobial resistance is multi-factorial and usually does not 

depend only on one specific mechanism [14, 15]. When biofilms are exposed to 

antimicrobial agents, they present specific survival strategies. In comparison with their 

planktonic counterparts, biofilm cells are physiologically distinct by having specific 

resistance genes that express protective factors such as multi-drug efflux pumps, stress 

response regulons and different cell physiognomies [16]. Moreover, they often present 

decreased respiration and growth/replication rates, despite having higher cell densities. 

Embedded cells are capable to communicate through quorum sensing, and the 

existence of persister cells enables them to survive [17]. Biofilm cells are protected by 

the EPS they produce. The functions of EPS are enabling the biofilm to withstand shear 

forces, dehydration and chemical attacks [18]. EPS enhances robustness and survival of 

the biofilm microorganisms on a substratum by serving as a chemically reactive 

diffusional transport barrier slowing down the penetration of antimicrobial agents. 
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Furthermore, this matrix reinforces the biofilm attachment to the substratum and 

promotes its mechanical stability [19, 20]. Moreover, it is where the convective and 

diffusional transport to the biofilm of oxygen, nutrients, and other substances takes 

place [21]. EPS composition and architecture has influence on how oxygen, nutrients 

and cell excreted products are transported [22]. The biofilm constituents may act as an 

adsorbent or reactant, thus chemically impairing diffusion, and its structure (porosity 

and tortuosity) may physically reduce transport [23-28]. 

In order to plan a disinfection procedure it is important to select a suitable 

antimicrobial agent with an appropriate effectiveness against the contaminants [5, 29]. 

The objective of this study was to understand the role of biofilms on the effectiveness 

of antimicrobial agents, with a specific focus on the selection of suitable chemical 

compounds capable of passing the EPS barrier, killing and removing the biofilm 

embedded cells of B. cereus and P. fluorescens. These bacteria are ubiquitous in 

industrial systems causing numerous process and end product quality problems [30, 31]. 

The production of extracellular enzymes by these bacteria results in food spoilage  

[30, 32, 33]. Moreover, they can represent a significant proportion of the contaminant 

biofilm microflora of dairy plants [34-37]. 

3.2 MATERIALS AND METHODS 

MICROORGANISMS AND CULTURE CONDITIONS 

The bacteria used in this work were P. fluorescens ATCC 13525T and a B. cereus strain 

isolated from a disinfectant solution and identified by 16S rRNA gene sequencing [31]. 

Bacterial growth conditions were 30 ± 3 ºC and pH 7, with glucose as the main 

carbon source. Culture medium consisted of 5 g L-1 glucose, 2.5 g L-1 peptone and 1.25 g 

L-1 yeast extract, in phosphate buffer (pH 7, 25 mM) [38]. All the culture medium 

products were purchased to Merck (VWR, Carnaxide, Portugal). Bacterial suspensions 

were prepared by gently removing a small portion of bacteria from solid medium, and 

diluting it in a 1 L flask (Duran, VWR, Carnaxide, Portugal) containing 250 mL of sterile 

culture medium. This bacterial suspension was incubated overnight (16 h) at the given 

temperature, with agitation (120 rpm). After the growth period, the suspension was 

washed with phosphate buffer in two consecutive steps of centrifugation (3999 g,  

10 min) in an Eppendorf centrifuge 5810R (Göttingen, Germany), and resuspended in 
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phosphate buffer (20 mM), in order to obtain a final bacterial concentration of  

1 × 109 cells mL-1. 

 

ANTIMICROBIALS 

The twelve antimicrobials used throughout the experiments (Table 3.2) were 

cetyltrimethyl ammonium bromide (CTAB), benzalkonium chloride (BAC), sodium 

hypochlorite, ethanol, hydrogen peroxide, streptomycin, and tetracycline that were 

obtained from Sigma-Aldrich (Sintra, Portugal). Benzyl dimethyl dodecyl ammonium 

chloride (BDMDAC) was obtained from Merck (VWR, Carnaxide, Portugal). Ciprofloxacin 

was acquired from Fluka (Sintra, Portugal). Chlorine dioxide was obtained from 

TwinOxide® (Salmon & Cia. Lda, Lisbon, Portugal) and, isopropanol and erythromycin 

were purchased from AppliChem (VWR, Carnaxide, Portugal). When possible, the 

compounds were used as they are commonly sold (♥). Some amounts of antimicrobial 

were previously optimized to obtain a detectable inhibition halo (♣), and others were 

used at the reported minimum inhibitory concentrations (MIC) (♦) [39, 40].  

 

COLONY BIOFILM FORMATION AND PENETRATION TESTS 

Colony biofilms were developed according to the method of Anderl et al. [41] and Singh 

et al. [42]. Biofilms were grown in sterile Mueller-Hinton agar plates (24 h, 30 ± 3 oC). A 

volume of 40 µL of cell suspension of B. cereus or P. fluorescens was placed on a 13 mm 

polycarbonate membrane, pore size 0.2 µm (Merk, Millipore, Carnaxide, Portugal) 

originating colony biofilms. Afterwards, the membranes with biofilms were transferred 

to a fresh plate containing the same growth medium, seeded with Staphylococcus 

aureus CECT 976 at a McFarland standard of 0.5 [41, 42]. Another polycarbonate 

membrane was placed on the top of the biofilm so that the sterile discs (Biochemica, 

VWR, Carnaxide, Portugal) were not in direct contact with the biofilms (Figure 3.1). The 

antimicrobial discs were impregnated with a 15 µL drop containing the different 

antimicrobials used, providing the amount per disc described in Table 3.2. The negative 

controls contained a 15 µL drop of sterile distilled water and the positive controls were 

obtained in the absence of biofilm.  
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Figure 3.1 Array of polycarbonate membranes and biofilms for the study of the diffusion of 
antimicrobial agents through biofilms (adapted from Anderl et al. [41] and Singh et 
al.[42]). 

 

The plates were incubated for 24 h at 30 ± 3 oC before the assessment of the 

inhibition halos. The positive controls were taken as 100% penetration and used to 

calculate the penetration rates when biofilms were present.  

 

BIOFILM FORMATION IN MICROTITER PLATES 

Biofilms were developed according to the modified microtiter plate test proposed by 

Stepanović et al. [43]. For each bacterium, at least 16 wells of a sterile 96-wells flat-

bottomed polystyrene tissue culture plate with a lid (Orange Scientific, Braine-l'Alleud, 

Belgium) were filled with 200 µL of bacterial suspension at a density of 1 × 109 cells mL-

1. The negative controls were wells containing culture medium without bacterial cells. 

The plates were incubated for 24 h at 30 ± 3 ºC without agitation. 

 

BIOFILM CHARACTERIZATION 

Biofilms of B. cereus and P. fluorescens grown were removed from the polycarbonate 

membranes or from the microtiter plates using a stainless steel scraper and, afterwards 

resuspended in 10 mL of buffer solution (2 mM Na3PO4, 2 mM NaH2PO4, 9 mM NaCl and 

1 mM KCl, pH 7) and homogenized by vortexing (Heidolph, model Reax top, Schwabach, 

Germany) for 30 s with 100% power input, according to the method described by [31]. 

The homogenized biofilm suspensions were then characterized in terms of cell density, 

total and extracellular proteins and polysaccharides. Thickness was measured for the 

colony biofilms using a digital micrometer (VS-30H, Mitsubishi Kasei Corporation, 

Nagoya, Japan). Cell densities were assessed in terms of colony forming units (CFU) on 

Antimicrobial agent 

Biofilm 

Mueller-Hinton media 
seeded with S. aureus 

13 mm polycarbonate 
membranes 

Sterile disc 
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Plate Count Agar (PCA) (Merck, VWR, Carnaxide, Portugal), according to Simões et al. 

[44]. The biofilm suspensions were diluted to the adequate cellular concentration in 

buffer solution. A volume of 30 µL of the diluted suspension was transferred onto PCA 

plates. Colony enumeration was carried out after 48 h at 27 ºC. 

To assess the total and extracellular proteins and polysaccharides, the method 

described by Simões et al. [45] was used. Biofilm extracellular proteins and 

polysaccharides were extracted using Dowex resin [46]. Dowex® resin Marathon® C 

sodium form, 20-50 mesh (Sigma, Sintra, Portugal) was added to the biofilm 

suspensions. The extraction took place at 400 rpm and 4 oC for 4 h. The extracellular 

components (present in the supernatant) were separated from the cells via 

centrifugation (3777g, 5 min). The total (before extraction) and extracellular biofilm 

proteins were determined using the Lowry et al. modified kit (Sigma, Sintra, Portugal), 

with bovine serum albumin as standard. The procedure is essentially the Lowry method 

[47] as modified by Peterson [48]. The total and extracellular polysaccharides were 

quantified through the phenol-sulphuric acid method of Dubois et al. [49], using glucose 

as standard. 

 

BIOFILM CONTROL IN MICROTITER PLATES 

To ascertain the adequacy of antimicrobial penetration results to develop biofilm control 

strategies, 24 h aged biofilms formed in 96-well microtiter plates were exposed to 

selected antimicrobial agents. Biofilms were exposed for 1 h at 30 ± 3 ºC, without 

agitation, similarly to the colony biofilms. After antimicrobial exposure, the biofilms were 

analysed in terms of biomass and viability and the results are presented as percentage 

of biofilm reduction and killing. 

 

BIOMASS AND VIABILITY QUANTIFICATION 

The biomass was quantified using crystal violet (Merck VWR, Carnaxide, Portugal) 

staining, according to Simões et al. [50]. The bacterial biofilms in the 96-wells plates were 

fixed with 250 µL of 98% methanol (Vaz Pereira, Porto, Portugal) per well for 15 min. 

Afterwards, the plates were emptied and left to dry. Then, the fixed bacteria were 

stained for 5 min with 200 µL of crystal violet per well. Excess stain was rinsed off by 

placing the plate under running tap water. After the plates were air dried, the dye bound 
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to the adherent cells was resolubilized with 200 µL of 33% (v/v) glacial acetic acid (Merck, 

VWR, Carnaxide, Portugal) per well. The absorbance was measured at 570 nm using a 

microplate reader (Spectramax M2e, Molecular Devices, Inc., Sunnyvale, USA). All tests 

were performed in three independent experiments with triplicates. 

Biofilm removal was given by equation 1: 

100% 



C

WC

OD

ODOD
BR   (eq. 3.1) 

where %BR is the percentage of biofilm removal and OD is the optical density, ODC is the 

OD570nm value for biofilms not exposed to antimicrobial agents and ODW is the OD570nm 

value for biofilm exposed to the selected chemicals. 

The modified alamar blue (Sigma-Aldrich, Sintra, Portugal) microtiter plate assay 

was applied to determine the bacterial viability of the cells as reported by Borges et al. 

[51]. For the staining procedure, fresh culture medium (190 µL) was added to the plates. 

To each well 10 µL of alamar blue (400 mM) indicator solution were added. Plates were 

incubated for 20 min in darkness at room temperature. Fluorescence was measured at 

the wave lengths λexcitation = 570 nm and λemission = 590 nm with the same microplate 

reader. The percentage of biofilm killing was given by equation 2: 

100% 



C

WC

FI

FIFI
BI   (eq. 3.2) 

where %BI is the percentage of biofilm killing, FIC is the fluorescence intensity of biofilms 

not exposed to antimicrobial agents and FIW is the fluorescence intensity value for 

biofilms exposed to the selected chemicals.  

 

STATISTICAL ANALYSIS 

For each parameter tested, the average and the standard deviation were calculated. The 

statistical significance of the results was evaluated using the t-test (confidence level of 

95%) with the statistical program IBM SPSS Statistics software (Armonk, NY, USA), 

version 20.0, to determine whether the differences between the controls and the 

antimicrobial tests could be considered significant. 
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3.3 RESULTS AND DISCUSSION 

In order to ascertain possible factors involved in biofilm resistance/susceptibility to the 

selected antimicrobials, B. cereus and P. fluorescens biofilms were characterized in terms 

of their biovolume, CFU, total and matrix proteins and polysaccharides (Table 3.1).  

 

Table 3.1 Characterization of B. cereus and P. fluorescens grown as colonies and as microtiter 
plate biofilms. 

  B. cereus   P. fluorescens 

  Colony 
Microtiter 

plate    Colony 
Microtiter 

plate  
Biovolume 
/(cm3) 

0.019 ± 0.002  
  

 0.018 ± 0.001 
   

Log CFU/cm2 7.41 ± 0.52 7.20 ± 0.69  8.11 ± 0.13 8.89 ± 0.34 

Matrix proteins/ 
(µg/cm2) 

13.8 ± 1.5 16.7 ± 0.15  20.7 ± 0.78 15.2 ± 0.37 

Total proteins/ 
(µg/cm2) 

49.6 ± 2.3 26.3 ± 0.04  32.2 ± 2.7 27.1 ± 0.02 

Matrix 
polysaccharides/ 
(µg/cm2) 

20.4 ± 2.6 20.4 ± 0.09  7.17 ± 0.56 17.4 ± 3.0 

Total 
polysaccharides/ 
(µg/cm2) 

29.8 ± 3.1 26.2 ± 0.06   11.3 ± 0.19 23.6 ± 2.0 

 

Colony biofilms of B. cereus covered approximately 5.5 ± 0.69 mm of the 

membrane whilst those of P. fluorescens covered 6.3 ± 0.44 mm. B. cereus biofilms were 

thicker than those of P. fluorescens (P < 0.05). The cell density of P. fluorescens biofilms 

(8.11 ± 0.13 CFU cm-2) was significantly higher than for B. cereus (7.20 ± 0.69 CFU cm-2) 

(P < 0.05). B. cereus biofilms had higher amounts of extracellular polysaccharides and 

lower extracellular proteins content in comparison to those found in the P. fluorescens 

biofilm matrix (P < 0.05). The resulting biofilms presented larger diameters, similar 

thickness values, and lower cell numbers than those used in the studies of Singh et al. 

[42] with S. epidermis. However, different growth conditions were used, particularly the 

growth period. Singh et al. [42] used 48 h old biofilms while the biofilms used in this 

study were 24 h old. 
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DIFFUSION OF ANTIMICROBIAL AGENTS THROUGH BIOFILMS  

When antimicrobial agents were applied to the biofilms, inhibition halos were produced 

in the S. aureus culture underneath. The size of the halos was indicative of the ability of 

antimicrobial agents to penetrate the biofilms. The same characteristic is related to the 

antimicrobial potency of each antimicrobial agent against the S. aureus culture, i.e. a 

larger inhibition halo was indicative of a more powerful antimicrobial agent, in terms of 

penetration (Table 3.3). 

In the diffusion test apparatus, ciprofloxacin and tetracycline were the 

antimicrobial agents that produced the largest halos (about 22 mm) after passing 

through the biofilms of B. cereus and P. fluorescens. This behavior was closely followed 

by BAC and BDMDAC (19 mm halos) for both types of biofilms. Erythromycin and ethanol 

were able to penetrate both biofilms (halos of about 13 mm were obtained). 

Isopropanol, sodium hypochlorite, chlorine dioxide and streptomycin produced 

inhibition halos of 5 mm. Hydrogen peroxide and CTAB caused insignificant inhibition 

halos (P > 0.05). In terms of antimicrobial retardation, values comprised between 5% 

and 20% were observed for ethanol, BDMDAC and tetracycline for both biofilms, and 

erythromycin for B. cereus biofilms. Erythromycin was retarded approximately 30% by 

P. fluorescens biofilms. The same percentage was only obtained with B. cereus biofilms 

treated with chlorine dioxide. P. fluorescens biofilms retarded streptomycin diffusion by 

40% and isopropanol and chlorine dioxide by 50%. Isopropanol was retarded more than 

70% by B. cereus biofilms. Total antimicrobial retardation (100%) was achieved with 

hydrogen peroxide and CTAB by both biofilms (for CTAB see Figure 3.2), and 

streptomycin by B. cereus biofilms. The statistical analyses showed that the retardation 

of hydrogen peroxide, BDMDAC, CTAB, streptomycin and tetracycline was significant for 

both biofilms (P < 0.05). B. cereus biofilms with isopropanol and erythromycin, and  

P. fluorescens biofilms with ethanol and chlorine dioxide also had significant effects on 

chemical retardation (P < 0.05). These results show that the presence of a biofilm 

markedly affected the diffusion of some antimicrobial agents. Biofilms have intrinsic 

resistance to antimicrobial agents. Amongst those resistance mechanisms, mass transfer 

limitations through biofilms is of utmost importance [52]. For the effective inactivation 

of bacteria in the deeper layers of the biofilms it is essential that the antimicrobial agent 

diffuses through the biofilm. In some cases, when biofilms are thick, cells can be in a 

dormant/low metabolic active state in the deeper layer. Those cells can show a 
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remarkable resistance to antimicrobials [16, 21]. Moreover, EPS protects the cells 

against an antimicrobial attack by hindering diffusion through the biofilms. The biofilm 

matrix is known to have the ability to bind to antimicrobial agents [53]. Anderl et al. [41] 

suggested that the diffusion of antimicrobial agents might be delayed because the 

biofilm has the ability to chemically react with them, resulting in their inactivation. Thus, 

less antimicrobial molecules are left to interact with the deeper layers of the biofilms.  

 

Table 3.2 Antimicrobial agents and respective mass used for the biofilm colony tested. Inhibition 
halos (mm) of S. aureus due to antimicrobials in the presence of B. cereus and P. 
fluorescens biofilms. Percentage retardation caused by the presence of B. cereus and P. 
fluorescens biofilms. The average ± SD is presented 

Antimicrobials 

 B. cereus   P. fluorescens 

 
Mass/ 
(µg)  

Inhibition halos/ 
(mm) 

Retardation/ 
(%) 

  
Inhibition halos/ 

(mm) 
Retardation/ 

(%) 

Alcohols   

Ethanol♥ 8242 12 ± 1.3 12 ± 7.0  13 ± 0.96 9.3 ± 2.5 

Isopropanol♥ 11700 2.3 ± 0.47 70 ± 8.8  4.3 ± 2.1 52 ± 22 

Oxidising               

Sodium 

hypochlorite♣ 
543 (Cl) 4.6 ± 0.50 5.0 ± 0.45  4.7 ± 0.10 1.9 ± 3.1 

Chlorine 

dioxide♥ 
74 (Cl) 5.3 ± 0.84 32 ± 12  3.0 ± 0.71 47 ± 13 

Hydrogen 

peroxide♥ 
500 0.0 ± 0.0 100 ± 0.0  0.0 ± 0.0 100 ± 0.0 

Surfactants 

BAC♣ 350 18 ± 1.3 0.11 ± 0.07  18 ± 0.25 0.0 ± 0.0 

BDMDAC♣ 350 19 ± 0.25 15 ± 1.1  19 ± 0.10 13 ± 0.54 

CTAB♣ 350 0.0 ± 0.0 100 ± 0.0  0.0 ± 0.0 99 ± 1.6 

Antibiotics 

Ciprofloxacin♦ 5 20 ± 1.0 0.0 ± 0.0  24 ± 0.50 0.0 ± 0.0 

Erythromycin♦ 15 14 ± 0.05 14 ± 0.32  12 ± 0.50 28 ± 3.1 

Streptomycin♦ 10 0.0 ± 0.0 100 ± 0.0  3.4 ± 0.05 40 ± 0.89 

Tetracycline♦ 30 22 ± 0.94 6.9 ± 3.9  24 ± 0.47 12 ± 1.8 

♥ Commonly available/standard concentration; ♣ optimized concentration; ♦ MIC; Cl means 

chlorine 
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Figure 3.2 Inhibition halos on S. aureus using three antimicrobial agents. Condition 1 corresponds 
to the control where no biofilm is present and condition 2 represents the tests with 
biofilms. Both condition are duplicated in the same plate. The conditions tested were: 
(a) BAC test in the presence of a P. fluorescens biofilm, showing that this compound is 
not retarded; (b) ciprofloxacin in the presence of a B. cereus biofilm, showing that this 
compound is not retarded, also that the inhibition halos are large taking into 
consideration the small amount used (5 µg); and (c) CTAB in the presence of a B. cereus 
biofilm, showing that there is antimicrobial activity in 1, however, the compound was 
totally retarded by the presence of the biofilm (no halos were observed).  

 

Christensen et al. [54] reported that the presence of alginate, a common EPS, 

caused mass transport limitations. Singh et al. [42] refers that the biofilm phenotype 

provides antimicrobial resistance. These authors indicated the existence of spatial 

heterogeneity in the biofilm structure as a possible explanation for the poor diffusion of 

antimicrobial agents into biofilms. Diffusion in biofilms may be affected by charge 

interactions between the matrix and the antimicrobial agents, by increasing the distance 

between the antimicrobial and the bacteria, by size exclusion, and by the viscosity of the 

matrix [55]. It has also been suggested that it is not the quantity of matrix that exclusively 

causes resistance, but its polyanionic nature that hinders the antimicrobial agents [55]. 

For instance, the polysaccharides can hinder antimicrobial action due to their charge 

and hydrophobic properties [21, 56]. In fact, the penetration of positively charged 

hydrophilic drugs is known to be delayed by the EPS matrix [56].  

In this study, retardation percentages often differed between the types of biofilm 

(Table 3.2). Isopropanol, sodium hypochlorite and streptomycin diffused differently 

through the biofilms of both species. The highest retardation rates, over 70%, occurred 

for B. cereus biofilms. In fact, the distinct retardation rates are probably due to the 

distinct biofilm characteristics, particularly the type of EPS produced by each bacterium 

[57]. In addition, the amount of polysaccharides and proteins produced by both types of 
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bacteria is different. The high retardation rates observed for B. cereus biofilms might be 

related to the high proteins content present (Table 3.2). As many antimicrobial agents 

target protein-like structures [10], these might be adsorbed before penetrating the 

biofilm. 

The function of antimicrobial agents is to extinguish or to discontinue the growth 

of an organism by biological or chemical processes [3]. The mode of action of 

antimicrobial agents may be another important factor contributing to mass transfer 

limitations through biofilms. Ethanol and isopropanol are membrane disruptors. These 

chemicals act by penetrating into the cells through the hydrocarbon part of the 

phospholipid bilayer, causing rapid release of intracellular components [15]. Even 

though a higher mass of isopropanol than ethanol was used, isopropanol retardation 

was higher, because it is slightly more reactive than ethanol against bacteria [10]. 

Chlorine based agents are the most broadly used disinfectants [10]. These chemicals are 

highly active oxidizing agents destroying the cellular activity of proteins. Sodium 

hypochlorite was slightly hindered (less than 5%) by the presence of a biofilm. In fact, 

oxidizing agents react strongly with cell constituents such as amino, carboxyl, sulfhydryl 

and hydroxyl groups in bacterial proteins as well as nucleic acids [10]. Hydrogen peroxide 

damages ribosomes which are responsible for the translation of RNA into a peptide 

chain, being also able to react with other cell constituents [15]. This compound has 

oxidative potential, producing hydroxyl free radicals that target lipids, proteins and DNA 

[10]. Peroxides are more active against Gram-positive bacteria than Gram-negative 

bacteria [10]. However, the ability of both bacteria to produce catalase or other 

peroxidases may increase tolerance to this compound [58, 59]. Quaternary ammonium 

compounds (QACs) are classified according to the ionic physiognomies of their 

hydrophilic group as anionic, cationic, non-ionic and zwitterionic [60]. The mechanism 

of action of cationic surfactants (BAC, BDMDAC and CTAB) is the same as the general 

mechanism of QACs. The hydrophilic headgroup of QACs is adsorbed to the cell wall and 

reacts with the cytoplasmic membrane, allowing the release of intracellular constituents 

[61-63]. The strong affinity of CTAB for proteins and lipid components of the membrane 

suggests that this QAC is spent before it reaches the under-layers of the biofilm [64]. 

Cationic surfactants are also known to bind to DNA and DNA-protein mixtures [65]. 

Fluoroquinolones such as ciprofloxacin are generally not hindered by the EPS of the 

matrix [14, 55]. This was also found in the present study. The penetration of 

aminoglycosides (streptomycin) is known to be delayed by P. aeruginosa biofilms [15]. 
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Streptomycin was, in this case, 40% retarded by P. fluorescens biofilms and 100% when 

applied to B. cereus biofilms. This antibiotic acts by binding to prokaryotic ribosomes and 

has shown affinity for other nucleic acid targets [66]. Erythromycin, a macrolide, has the 

same mechanism of action as streptomycin. The antimicrobial mode of action of 

tetracycline is by binding to ribosomes [67]. In this study, lower retardation rates were 

expected, since a higher mass of this compound was used (Table 3.2). However, it seems 

that this antibiotic is strongly affected by the biofilms. 

 

BIOFILM ACTIVITY SCREENING  

The presence of inhibition halos on the S. aureus culture is indicative of the penetration 

efficacy of the antimicrobial agents through the biofilms. In fact, this assay does not 

allow the distinction between biofilm penetration and antimicrobial potency. Taking into 

account the results obtained with the antimicrobial retardation tests, selected 

antimicrobials agents were used in order to ascertain the reliability of the results 

obtained with the colony biofilm system. Therefore, biofilms of B. cereus and  

P. fluorescens were formed in microtiter plates. The effects of BAC, CTAB, ciprofloxacin 

and streptomycin were assessed on biofilm removal and killing. These antibiotics and 

biocides were those with the highest and lowest retardation values. The tests were 

performed using 96-well microtiter plates. This bioreactor permits the assessment of the 

biofilm killing and removal rates by the selected antimicrobial agents using a large 

number of replicates [68, 69]. The biofilms developed in the 96-well microtiter plates 

were characterized in terms of their cell density, total and matrix polysaccharides and 

protein content (Table 3.2). The cell densities of B. cereus and P. fluorescens biofilms 

formed in the microtiter plates were similar to those of colony biofilms (P > 0.05). Colony 

biofilms had a higher amount of total proteins in comparison to those formed in 

microtiter plates, for both biofilms (P < 0.05). B. cereus biofilms had similar 

polysaccharide content in either biofilms formed as colony and microtiter plates  

(P > 0.05), while the polysaccharides in P. fluorescens biofilms were lower in the colony 

system (P > 0.05)  

Table 3.3 depicts the killing and removal percentages with the selected 

antimicrobial agents for the biofilms formed in the microtiter plates. For B. cereus 

biofilms, removal was similar with ciprofloxacin and streptomycin (12-14%). Their killing 

efficiency was statistically similar (P > 0.05), even if streptomycin was the most efficient 
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antibiotic (40 vs 36%). The killing percentages of B. cereus biofilms caused by both QACs 

were approximately 50% and its removal was also similar (around 15%). P. fluorescens 

biofilms were equally removed (17-23%) and killed (about 15%) by both antibiotics. The 

same biofilm was easier to be killed by CTAB (26%) rather than by BAC (15%). The 

removal of P. fluorescens was similar to what was verified for B. cereus biofilms (about 

15%). The removal and killing was significantly different between antibiotics and 

biocides (P < 0.05), which suggests that QACs are more efficient in biofilm killing than 

antibiotics. In general, biocides are known to perform better in the killing of biofilms, 

apparently due to their multi-target mode of action [70]. Between B. cereus and  

P. fluorescens biofilms, the removal was statistically similar in all cases (P > 0.05).  

B. cereus killing was higher for both QACs and antibiotics when compared to  

P. fluorescens (P < 0.05). This bacterium, as a Gram negative, is known to have higher 

tolerance to biocides [71], which is commonly explained by hindrances in penetration 

due to the presence of the outer membrane [15]. Between BAC and CTAB the killing 

percentages were not significant (P > 0.05).  

 

Table 3.3 Percentage killing and removal of B. cereus and P. fluorescens biofilms. The average ± 
SD is presented. 

  B cereus   P. fluorescens 

  Killing / (%) Removal / (%)   Killing / (%) Removal / (%) 

BAC 46.6 ± 13 15.3 ± 2.7  15.5 ± 7.5 13.8 ± 5.4 

CTAB 51.8 ± 10 15.8 ± 1.3  26.5 ± 6.9 16.0 ± 2.4 

Ciprofloxacin 36.2 ± 8.3 11.8 ± 3.7  13.5 ± 2.7 22.7 ± 8.5 
Streptomycin 40.0 ± 5.9 14.3 ± 3.5   15.3 ± 7.0 16.6 ± 1.3 

 

The resistance of a biofilm is a very complex phenomenon. EPS plays an important 

role on antimicrobial interaction and mass transfer limitations; albeit, other phenomena 

can contribute to biofilm resistance [17, 72-74]. An antimicrobial agent that efficiently 

penetrates a biofilm does not necessarily kill the embedded cells. This means that the 

high penetration ability of some antimicrobial agents is not directly related with their 

efficiency, as proposed by the comparison between the results obtained with colony 

biofilms and those formed in the microtiter plates.  
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3.4 CONCLUSIONS 

This study uses two simple biofilm formation systems (biofilm colonies and microtiter 

plates) to provide insights into the role played by a biofilm in the interaction with 

antimicrobial agents. The systems used formed biofilms with similar characteristics in 

terms of CFU, proteins and polysaccharides. The overall results demonstrate that the 

selection of a suitable antimicrobial agent, able to penetrate a biofilm and kill the 

bacteria, is of utmost importance when developing disinfection plans. At the same time, 

a diffusion test by itself does not provide enough information on the biofilm control 

efficiency of an antimicrobial agent. This reinforces the fact that antimicrobial resistance 

in biofilms is a multifactorial problem and transport limitations, although part of the 

problem, should not be implicated alone. Moreover, the assessment of biofilm killing 

and removal is important for the selection of an appropriate control strategy. Biofilm 

killing and removal are distinct phenomena. 
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ABSTRACT  

Standard cleaning processes may not remove all the soiling typically found in food 

industry, such as carbohydrates, fats, or proteins. Contaminants have a high impact in 

disinfection as their presence may reduce the activity of disinfectants. The influence of 

alginic acid, bovine serum albumin, yeast extract, and humic acids was assessed on the 

antimicrobial activities of benzalkonium chloride and cetyltrimethyl ammonium 

bromide against Bacillus cereus vegetative cells and Pseudomonas fluorescens. The 

bacteria (single and consortium) were exposed to surfactants (single and combined) in 

the absence and presence of potential disinfection interfering substances. The 

antimicrobial effects of the surfactants were assessed based on the bacterial respiratory 

activity measured by oxygen uptake rate due to glucose oxidation. The tested 

surfactants were efficient against both bacteria (single and consortium) with minimum 

bactericidal concentrations ranging from 3 to 35 mg.L−1. The strongest effect was 

caused by humic acids that severely quenched antimicrobial action, increasing the 

minimum bactericidal concentration of the surfactants on P. fluorescens and the 

consortium. The inclusion of the other interfering substances resulted in mild 

interferences in the antibacterial activity. This study clearly demonstrates that humic 

acids should be considered as an antimicrobial interfering substance in the 

development of disinfection strategies.  
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4.1 INTRODUCTION 

In order to prevent and control microbial proliferation in industrial settings, cleaning 

and disinfection plans are applied on a regular basis [1, 2]. In food processing plants, 

the control of microbial contamination generally involves clean-in-place (CIP) 

procedures which consist of running alternated cycles of detergent and disinfectant 

solutions with water rinses in high turbulence regimes through the plant and pipeline 

circuits without dismantling or opening the equipment [2-5]. 

Biocides are currently used in industrial processes as the most significant 

countermeasure to control microbial growth and proliferation [6]. Industry moved 

progressively towards the use of surfactants that are less toxic and more biodegradable 

[7]. Surfactants are classified according to the ionic physiognomies of their hydrophilic 

group as anionic, cationic, nonionic, and zwitterionic [6, 8]. Quaternary ammonium 

compounds (QACs) are cationic surfactants that are commonly used because of their 

hard-surface cleaning, odor removal and antimicrobial properties [9]. Besides killing 

bacteria, the chemical nature of QACs can cause modifications on the properties of 

abiotic surfaces, decreasing their tension and therefore preventing attachment of 

microorganisms [7]. The antimicrobial mode of action of cationic surfactants is 

proposed by some authors as a sequence of events: attraction by the negatively 

charged cell surface; adsorption to the cell wall through the hydrophobic headgroup; 

reaction with the lipids and proteins that compose the cytoplasmic membrane; and cell 

penetration and interaction with intracellular constituents [10, 11]. Thus, QACs damage 

the outer layers of bacteria [9], thereby promoting the release of intracellular 

constituents [12]. 

Antimicrobial efficacy tests require planning of an adequate strategy and should 

include all the parameters found in real settings [13]. Aspects such as the proper contact 

time under known water hardness and conditions of high or low soil content should be 

considered [14]. For an effective cleaning and disinfection plan, the choice of the 

disinfectant must follow specific criteria such as compatibility with the surfaces to be 

disinfected, economic constraints, safety in the workplace, toxicological safety, and 

biological degradability [15]. It should, most of all, target the type of bacteria and the 

type of soiling [16]. In fact, disinfectants can be seriously affected by the presence of 

organic matter [17]. 
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Interfering substances have been studied in the last years and included in cleaning 

and disinfection plans regulated by the authorities such as the European Standard EN-

1276 (1997) [18]. There are already some reports on the effects of interfering 

substances in disinfection. However, most of these studies only address the effects of 

bovine serum albumin (BSA) and water hardness [9, 14, 15, 19-21]. Aal et al. [15] 

evaluated the bactericidal activity of disinfectants referred in the German Veterinary 

Society guidelines as references for testing disinfectants used in dairy and food 

industries. In order to simulate the conditions found in practice, they used low fat milk 

as an organic load and reported the significance in choosing an appropriate disinfectant 

since the inclusion of a challenging substance (organic material) is important to assess 

the proper bactericidal activity. Bessems [14] demonstrated that a QAC tested on three 

microorganisms (Pseudomonas aeruginosa, Staphylococcus aureus, and Candida 

albicans) had a similar killing rate in the absence of interfering substances and after the 

inclusion of 17 dH water hardness, a strong reduction of the killing activity was found 

for the Gram-negative bacteria. However, the same behavior was not verified for the 

other two microorganisms. Jonõ et al. [19] assessed the effect of dried yeast and human 

serum on the activity of benzalkonium chloride and concluded that the bactericidal 

activity of the QAC was inhibited by solutions of both interfering substances. The 

inhibition by yeast extract was more pronounced than the inhibition by human serum. 

This work provides information on the influence of potential interfering 

substances (bovine serum albumin - BSA, alginate - ALG, yeast extract - YE, and humic 

acids - HA) on the antimicrobial activity of two QACs (benzalkonium chloride and 

cetyltrimethyl ammonium bromide) against Bacillus cereus and Pseudomonas 

fluorescens, as they are two major contaminants in the food industry, particularly the 

dairy industry, and are a known cause of produce spoilage and foodborne illnesses  

[2, 22-26]. Some of the interfering substances used throughout the experiments are 

proposed in the European Standard EN-1276 (1997) [18] as potential interfering agents 

in disinfection while the others are extracellular polymeric substances (EPS) from the 

biofilm matrix that have an important role in antimicrobial resistance [27]. 
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4.2 MATERIALS AND METHODS 

MICROORGANISMS AND CULTURE CONDITIONS 

The bacteria used in this work were Pseudomonas fluorescens ATCC 13525T and a 

Bacillus cereus strain, isolated from a disinfectant solution and identified by 16S rRNA 

gene sequencing [28]. 

Bacterial strains were grown at a temperature of 30 ± 3 oC and pH 7, with glucose 

as the main carbon source. Culture medium consisted of 5 g.L−1 glucose, 2.5 g.L−1 

peptone, and 1.25 g.L−1 yeast extract in phosphate buffer (PB) (pH 7, 0.025 M) [29]. A 

bacterial suspension was prepared by inoculation of a single colony grown on solid 

medium into a 1 L flask containing 250 mL of sterile nutrient medium. This bacterial 

suspension was incubated overnight at the given temperature with agitation (120 rpm). 

 

QACS AND INTERFERING AGENTS 

The QACs used throughout the experiments were benzalkonium chloride (BAC) and 

cetyltrimethyl ammonium bromide (CTAB) (Sigma, Portugal) (Figure 4.1). Preliminary 

studies with a concentration range between 0 and 5000 mg.L−1 were initially made. In 

order to ascertain the behaviour of bacteria to the QAC, the selected concentrations for 

further studies were 3, 5, 10, 20, and 35 mg.L−1. The QACs were used individually and in 

combination (both chemicals were combined in equal volumes and concentrations). 

The interfering substances used throughout the experiments were alginic acid 

sodium salt -ALG (Sigma, Portugal), bovine serum albumin - BSA (Sigma, Portugal), 

humic acids -HA (Acros organics, Fisher Chemical, Portugal), and yeast extract - YE 

(Merck, Portugal). 

 

 
Figure 4.1 Chemical structures of benzalkonium chloride (A) and cetyltrimethyl ammonium 

bromide (B). 
 

A B 
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DISINFECTION PROCEDURE 

After the growth period, the suspensions were centrifuged (3999 g, 5 minutes), washed 

two times, and resuspended in PB to a final cell density of approximately 1 × 109 cells. 

mL−1. In the case of the consortium, both bacterial suspensions were washed two times 

resuspended in PB to a final cell density of approximately 1 × 109 cells.mL−1, and 

combined in equal volumes to obtain the same cell concentrations of the single species 

tests. Afterwards, all bacterial suspensions were exposed to several concentrations of 

QAC for a period of 30 minutes [30]. The effects of the chemicals were evaluated by the 

assessment of the oxygen uptake rate due to glucose oxidation, according to Simões et 

al. [30]. 

To investigate the influence of interfering substances on the antimicrobial efficacy, 

the same procedure was followed with the addition of 300 mg.L−1 of BSA, ALG, YE, or 

HA to the bacterial suspension, simulating low concentrations of interfering substances 

according to the European Standard EN-1276 (1997) [18]. Three independent 

experiments, each with duplicate samples, were performed for each condition tested. 

 

QACS NEUTRALIZATION 

A neutralization process was performed after the disinfection procedure. The 

methodology was performed according to Johnston et al. [31] for a period of 10 

minutes. BAC and CTAB were chemically neutralized by a sterile solution of (w/v)  

0.1% peptone, 0.5% Tween 80, 0.1% sodium thiosulphate, and 0.07% lecithin dissolved 

in PB. All the chemicals were obtained from Sigma (Portugal). Control experiments were 

performed to ascertain the effects of the 10-minute exposure to the neutralization 

solution, and no effects were detected on the respiratory activity of B. cereus and  

P. fluorescens. After the neutralization step, the bacterial suspensions were centrifuged 

(3999 g, 5 min) and resuspended in the same volume of PB. 

 

RESPIRATORY ACTIVITY ASSESSMENT 

The respiratory activity was ascertained by measuring oxygen uptake rates in a 

biological oxygen monitor (Yellow Springs Instruments 5300A). Simões et al. [30] 

demonstrated that this procedure is more adequate and rapid than the assessment of 
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colony forming units to characterize the antimicrobial activity of biocides against 

heterotrophic aerobic bacteria [21]. Samples were placed in the temperature-

controlled vessel of the biological oxygen monitor (T= 25 ± 1 oC) each containing a 

dissolved oxygen probe connected to a dissolved oxygen meter. Before measuring, the 

samples were aerated for 10 minutes to ensure oxygen saturation ([O2] = 8.6 mg.L−1). 

The vessel was closed, and the decrease of oxygen concentration was monitored over 

time. The initial linear decrease corresponds to the endogenous respiration rate. To 

determine the oxygen uptake due to substrate oxidation, 12.5 µL of a 5 g.L−1 glucose 

solution was added to each vessel. The slope of the initial linear decrease in dissolved 

oxygen, after glucose injection, corresponds to the total respiration rate. The difference 

between these two rates is the oxygen uptake rate due to glucose oxidation [9]. 

The inactivation was calculated using metabolic activities according to the 
following equation: 

100
m

)m(m
onInactivati

c

tc 


%      (eq. 4.1) 

where mc is the metabolic activity of the control experiments (without antimicrobial 

exposure) and mt is the metabolic activity of the bacterial solutions exposed to the 

antimicrobial. If % inactivation > 0 there was inactivation of the microorganisms 

whereas if % inactivation < 0 there was metabolic potentiation. The MBC for each 

situation was determined as the lowest concentration of QAC or QAC combination 

where no respiratory activity was detected [31]. 

 

STATISTICAL ANALYSIS 

For each parameter tested the average and the standard deviation were calculated. The 

statistical significance of the results was evaluated using the Wilcoxon test (confidence 

level ≥ 95%), and for the MBC the independent t-test was used to investigate whether 

the differences between the resulting experimental values could be considered 

significant. 
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4.3 RESULTS 

The antibacterial activity of BAC, CTAB, and their combination was investigated in the 

absence and in the presence of four selected interfering substances. 

In the absence of interfering substances BAC caused the inactivation of B. cereus 

at 10 mg.L−1, P. fluorescens at 35 mg.L−1, and the consortium at 20 mg.L−1. CTAB at  

20 mg.L−1 completely inactivated B. cereus and at 35 mg.L−1 inactivated the total 

population of P. fluorescens and the consortium. The combination of both QACs was 

synergistic in the inactivation of B. cereus (total inactivation with 3 mg.L−1) and 

indifferent for P. fluorescens (35 mg.L−1) and the bacterial consortium (35 mg.L−1). The 

inclusion of the selected interfering substances influenced the antimicrobial activity of 

the QACs to some extent (Figures 4.2-4.4). The inactivation of B. cereus (Figure 4.1) was 

not affected by the presence of any interfering substances (P > 0.05), except with HA. 

This interfering substance decreased the antimicrobial efficacy of BAC and the 

combination of QACs. The antimicrobial action of the QACs against P. fluorescens 

(Figure 4.3) was not significantly influenced by the presence of most potential 

interfering substances (P > 0.05), except for HA where interference was observed  

(P < 0.05). The antimicrobial activity of the QACs against the bacterial consortium 

(Figure 4.3) was affected by the presence of interfering substances. ALG and HA 

reduced significantly the activity of BAC (P < 0.05). HA reduced significantly the activity 

of CTAB at higher concentrations (P < 0.05). BSA and YE resulted in a significant 

reduction of the activity of the combination of QACs (P < 0.05). 

Linear correlations were determined to assess the relationship between QAC 

concentrations and the inactivation data. The effect of increasing QAC concentration 

on bacterial inactivation shows that there are strong linear correlations (R > 0.850) for 

the control assays, with the exception of B. cereus (this bacterium was inactivated with 

low QAC concentrations). When interfering substances were added, the correlations 

decreased. The most extreme cases are the treatments with CTAB to P. fluorescens with 

ALG as an interfering substance (R = 0.771) and the bacterial consortium in the presence 

of YE (R = 0.738). Likewise, this decrease of linear correlation factors was found for  

P. fluorescens and for the consortium exposed to HA where the lowest correlation factor 

was 0.153, which was obtained for P. fluorescens treated with CTAB. 
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Figure 4.2 Inactivation of B. cereus by BAC (a), CTAB (b), and QAC combination (c), where solid 
white box is the control (no interfering substances), light grey box corresponds to BSA, 
grey box, is ALG dark grey box YE, and black box HA. ∗ means no inactivation. Average 
values ± standard deviation for at least three replicates are illustrated. 
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Figure 4.3 Inactivation of P. fluorescens by BAC (a), CTAB (b), and QAC combination (c), where 
solid white box is the control (no interfering substances), light grey box corresponds to 
BSA, grey box is ALG, dark grey box is YE, and black box is HA. ∗ means no inactivation. 
Values below zero are indication that the metabolic activity increased in comparison 
with the control experiment. Average values ± standard deviation for at least three 
replicates are illustrated. 
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Figure 4.4 Inactivation of the bacterial consortium by BAC (a), CTAB (b), and QAC combination 
(c), where solid white box is the control (no interfering substances), light grey box 
corresponds to BSA, grey box is ALG, dark grey box is YE, and black box is HA. ∗ means 
no inactivation. Values below zero are indication that the metabolic activity increased 
in comparison with the control experiment. Average values ± standard deviation for at 
least three replicates are illustrated. 
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The results also demonstrate the occurrence of metabolic potentiation 

(inactivation below 0 %). This phenomenon only happened when the QACs were used 

on P. fluorescens and the bacterial consortium in the presence of YE and HA. The most 

significant cases of oxygen uptake rate increase were verified for P. fluorescens exposed 

to BAC (5 to 35 mg.L−1) and CTAB (3 to 35 mg.L−1) in the presence of HA and combination 

of QACs (3 to 10 mg.L−1) in the presence of YE. A similar metabolic behavior was found 

for the bacterial consortium exposed to BAC (3 to 35 mg.L−1) and CTAB (5 and 10 mg.L−1) 

for HA and QAC combination (3 to 20 mg.L−1) with YE. 

The MBC values for the different conditions tested (single and combined QACs, in 

the absence and presence of potential disinfection interfering substances) are shown in 

Table 4.1. 

 

Table 4.1 Minimum bactericidal concentration for P. fluorescens, B. cereus and the consortium 
with and without interfering substances. 

MBC (mg.L-1) 

  BAC CTAB QAC combination 

Control 

B. cereus 10 20 3 

P. fluorescens 35 35 35 

Consortium 20 35 35 

BSA 

B. cereus 10 20 5 

P. fluorescens 35 20 35 

Consortium 20 35 >35 

ALG 

B. cereus 5 5 5 

P. fluorescens 35 35 35 

Consortium >35 35 20 

YE 

B. cereus 20 3 5 

P. fluorescens 35 35 >35 

Consortium 35 >35 >35 

HA 

B. cereus 35 5 20 

P. fluorescens >35 >35 >35 

Consortium >35 >35 >35 
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The presence of BSA increased the MBC of the combination of QACs for B. cereus 

(3 to 5 mg.L−1) and the consortium. ALG increased the MBC of BAC for the consortium 

(20 to over 35 mg.L−1) and QACs combination (3 to 5 mg.L−1) for B. cereus. YE increased 

the MBC of BAC for B. cereus (10 to 20 mg.L−1) and QAC combination (3 to 5 mg.L−1).  

P. fluorescens MBC increased with the inclusion of YE with the combination of QACs. 

The MBC values for the consortium of cells increased in the presence of YE (BAC - 20 to 

35 mg.L−1, CTAB - 35 to over 35 mg.L−1, and QAC combination - 35 to over 35 mg.L−1). 

HA increased the MBC for all the scenarios, except of CTAB when applied to B. cereus 

(in this situation the MBC was reduced). The MBC was reduced in other situations such 

as, for B. cereus, in the presence of ALG when using BAC and CTAB (10 to 5 mg.L−1 and 

20 to 5 mg.L−1, respectively) and in the presence of YE when using CTAB (20 to 3 mg.L−1). 

P. fluorescens inactivation by CTAB was reduced by BSA (35 to 20 mg.L−1). ALG also 

reduced the antimicrobial activity of the combination of QACs against the bacterial 

consortium (35 to 20 mg.L−1). 

4.4 DISCUSSION 

In disinfection practices, the environmental characteristics can influence the 

antimicrobial activity of biocides [32]. It is assumed that the organic material can 

potentially interfere with the antimicrobial agents by chemical and/or ionic interactions 

[15, 33]. Therefore, it is necessary to know the role of each potential interfering 

substance in the antimicrobial activity in order to develop effective disinfection 

strategies. The interfering substances tested are commonly found as residuals in the 

food industry (from food products and from microbial contaminants, biofilms) [18, 27]. 

In this study, higher inactivation rates were verified for B. cereus in comparison to 

P. fluorescens at the same QAC concentration. The inactivation profiles of the cell 

consortium are similar to P. fluorescens. In fact, when B. cereus and P. fluorescens are 

combined in a 1:1 bacterial suspension, it is expected that the first is more affected than 

the second. B. cereus is more susceptible due to the fact that it is a Gram positive 

bacterium that lacks an outer membrane, which typically provides increased protection 

to Gram negative bacteria. This fact is corroborated by previous reports which stated 

that Gram positive bacteria are more susceptible to cationic surfactants than Gram 

negative bacteria [34, 35]. 
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BSA was already studied as an interfering substance in disinfection practices  

[9, 14, 19-21, 36]. The negative effect of BSA on the action of biocides against  

P. fluorescens was demonstrated by Simões et al. [9, 21]. P. fluorescens treatment with 

CTAB with the addition of 3 g.L−1 of BSA resulted in a 10-fold increase on the MBC of 

this QAC [9, 21]. In the present study, low BSA concentrations decreased the 

antimicrobial activity of the QACs. The efficacy of the combination of QACs against  

B. cereus and the cell consortium was also reduced. This effect of BSA as an 

antimicrobial quencher is apparently due to the strong ability of QACs to react with 

proteins [21]. Proteins can precipitate in the form of their anions. In this way, the 

negative-charged protein ions will cling to the positively charged molecules of the 

cationic compounds [37]. CTAB is a biocide that targets the membrane and has a strong 

affinity for proteins [21]. BAC is composed of a positively charged hydrophobic 

headgroup which clings to opposite charged surfaces [8, 37]. Jonõ et al. [19] studied the 

effect of the alkyl chain of BAC binding to BSA and dried yeast. Their conclusions were 

that BAC is often inactivated by organic matter, either by adsorption to the bacterial 

surface or by adsorption to the organic matter in general. These authors also suggested 

that the reduction in the activity of BAC was probably related to more than one physical 

property of the compounds like the chain length (longer chains result in more 

adsorption to the bacterial surface). 

ALG is a common constituent of the extracellular polymeric substances of the 

biofilm matrix [38-40]. A function frequently attributed to EPS is their general protective 

effect on biofilm microorganisms against adverse conditions. The EPS matrix delays or 

prevents antimicrobials from reaching target microorganisms within the biofilm by 

diffusion limitation and/or chemical interaction with the extracellular proteins and 

polysaccharides [32, 41]. In this study, ALG either potentiated or hindered the 

antimicrobial activity of the selected QACs. The presence of this interfering substance 

was not obvious on the inactivation of P. fluorescens. On the other hand, the 

inactivation of B. cereus by BAC and CTAB and the consortium by the combination of 

QACs was easier in the presence of this interfering substance. The bacterial consortium 

treatments with BAC and B. cereus with the combination of QACs were hampered by 

the presence of ALG. Davies et al. [42, 43] found that the production of ALG was 

triggered by membrane perturbation induced by ethanol stress, nitrogen limitation, 

attachment to surfaces, or even high oxygen tension. This substance is suggested as one 

of the main biofilm resistance vectors either by reacting with the antimicrobials or by 
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hindering antimicrobials diffusion to the cells [44].The antimicrobial interference 

caused by ALG is apparently due to electrostatic interactions between the anionic ALG 

and the cationic-selected QACs [45]. 

The presence of YE as interfering substance resulted in three different outcomes 

on the antimicrobial activity of the QACs: (1) no effect/indifference, (2) the respiratory 

activity reduced, and (3) the respiratory activity potentiated. This interfering substance 

worked mainly as a hinderer of the antimicrobial activity by increasing the MBC of  

B. cereus in all cases except for CTAB, of P. fluorescens with the combination of QACs, 

and of the consortium of cells with CTAB and the combination of QACs. These results 

are in accordance with the available studies. YE is listed in the European Standard EN-

1276 (1997) as an interfering substance native to the brewery industry [18]. The 

constituents of YE are very similar to the components of the bacterial cells, thus, it is 

expected that the antimicrobial agents that target the bacterial cells are also drawn to 

YE. In a similar study by Jonõ et al. [19] it was shown that the presence of dried yeast 

decreased the biocidal effectiveness of BAC. 

Humic substances are found ubiquitously in the environment and can be found in 

the biofilm matrix [2, 46]. HA reduced the antimicrobial activity of the QACs in most of 

the cases, although in some cases it promoted the respiratory activity (potentiation). 

The presence of these compounds had the strongest effect compared to the remaining 

interfering substances. Like ALG, HA are known to be a part of the EPS composition [47]. 

Atay et al. [8] studied the sorption mechanisms of anionic and cationic surfactants to 

natural soils concluding that the dominant sorption mechanism of surfactants to clay is 

cation exchange. Ishiguro et al. [48] reported that cationic surfactants bind strongly to 

humic substances. Koopal et al. [49] also verified the formation of complexes HA-

cationic surfactant. These observations are consistent with the present results. 

Respiratory activity potentiation was verified with the addition of HA to  

P. fluorescens, and YE to the bacterial consortium. It is known that HA participates in 

cellular metabolism processes such as growth, respiration, photosynthesis, and 

nitrogen fixation [50]. On the other hand, HA were proposed to replace synthetic 

surfactants such as SDS, Tween 80, and Triton X-100 in industrial applications such as 

textile dying or washing [51]. It is therefore possible that the inclusion of humic 

substances in a solution of QACs may interfere with the chemical characteristics of the 

solution. The resultant mixture, with an apparent reduced antimicrobial efficacy, seems 

to potentiate the respiratory activity of the bacteria, particularly of P. fluorescens. As 
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QACs are membrane active agents, their use at sub-lethal concentrations could improve 

membrane permeability and consequently the nutrient influx, without compromising 

the bacterial viability. Also, there is the hypothesis that the potentially interfering 

agents could be used as nutrients. In fact, it was found that the growth rates of 

anaerobic and aerobic microorganisms increased when humic substances were added, 

which stimulated enzyme activity [52, 53]. In a similar way, YE is a nitrogen source 

widely used as a component of growth media [54]. HA are likely to be used for growth 

in the same way as YE, these might be broken down to smaller molecules that can be 

used by cells as a carbon [55] or nitrogen sources [51]. 

The antimicrobial activity of the tested QACs was enhanced in some cases, where 

the interfering substances were present. This is an unexpected result due to the 

recognized and observed potential of ALG, BSA, HA, and YE to interfere with 

disinfection. This effect is probably due to the low concentration of interfering 

substances tested that caused both respiratory activity reduction and potentiation. 

Cases of antimicrobial enhancement are widely known. Ethylenediamine tetraacetate 

(EDTA) was reported as early as 1965 to increase the biocidal effects of BAC and 

chlorhexidine diacetate on Pseudomonas aeruginosa [56]. Sagoo et al. [57] reported 

that chitosan (a polysaccharide) potentiated the antimicrobial action of sodium 

benzoate on spoilage yeasts. In dairy plants, disinfection is potentiated by prewashes 

with alkali or enzyme-based cleaning agents [58]. The antimicrobial potentiation of the 

QACs occurred in some cases. Most of these cases were observed for B. cereus (four 

occurrences), one was observed for P. fluorescens, and another one was observed for 

the consortium of cells. The MBC was improved by more than 50% in the cases of  

B. cereus and less than 30% for P. fluorescens and the consortium of cells. To our 

knowledge there are no reported cases of antimicrobial agents potentiation by BSA, YE, 

or ALG. Concerning the effects of HA, these molecules are reported to have detergent 

properties [51]. Although the exact chemical structure of HA has not yet been 

determined, HA could be chemically similar to the tested QACs, presenting a positive 

hydrophilic head and a hydrophobic tail. With this structure HA could act as detergents 

in conditions such as those observed in the treatment of B. cereus with CTAB [51]. 

The present work shows that increasing QACs concentrations lead to an increase 

in antimicrobial effectiveness. This is valid mainly when the QACs were applied in the 

absence of interfering substances. This means that disinfection was concentration 

dependent, as found for most of the antimicrobial chemicals [59]. However, the linear 
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dependency of inactivation versus concentration is not verified for most of the tests 

where interfering substances were added. This result evidences that the mathematical 

modelling of disinfection strategies requires a case-to-case analysis when interfering 

substances are present. 

4.5 CONCLUSIONS 

The overall results demonstrate that a disinfection process in the presence of the 

selected interfering substances can reduce the effectiveness of BAC, CTAB, and their 

combination. The bacteria were inactivated equally by all QACs, although in the absence 

of interfering substances CTAB was the most efficient solution. P. fluorescens was the 

bacterium with the highest resistance to inactivation, followed by the bacterial 

consortium. The tested interfering substances, referred in the European Standard 

EN1276 (BSA and YE), and known EPS constituents related with biofilm resistance (ALG) 

resulted in mild interferences on the activity of the QACs. HA were the interfering 

substance that resulted in the most severe effect by reducing the activity of QACs, 

causing, in some circumstances, significant respiratory activity potentiation. This 

interfering substance should, therefore, be considered when developing disinfection 

protocols. 
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ABSTRACT 

The characteristics of Pseudomonas fluorescens biofilms formed under three different 

linear flow velocities (u = 0.1, 0.4 and 0.8 m.s-1) were studied. A flow cell reactor system 

was used to form biofilms. These biofilms were characterized in terms of thickness, 

morphological structure, mass, cell density, outer membrane proteins expression, and 

matrix and total proteins and polysaccharide content. The external mass transfer 

coefficients were also calculated. 

Biofilms developed at the higher velocities (u = 0.4 and 0.8 m.s-1) had similar 

characteristics, but different from those developed at the lower flow rate. High flow 

velocities formed thinner biofilms with higher cell densities, and higher contents of 

matrix proteins and polysaccharides. The external mass transfer coefficients suggest 

mass transfer limitations from the bulk fluid for the lowest velocity. Scanning electron 

microscopy images show cell-surface and cell-cell attachment structures appearing 

more frequently in biofilms formed at the two higher velocities. No major differences 

were found in the outer membrane proteins expression of biofilm cells, regardless of 

the linear flow velocity under which they were formed. The overall results show the 

effect of the hydrodynamic conditions under which biofilms were formed on selected 

macromolecular characteristics, demonstrating that higher flow velocities originate 

more complex and dense biofilms. However, cellular aspects as the outer membrane 

proteins expression are not affected by the flow velocity. 

Understanding biofilm formation and corresponding characteristics allows the 

manipulation of hydrodynamic conditions as a control parameter in the improvement 

of biofilm control strategies in many engineered systems.  
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5.1 INTRODUCTION 

Bacterial attachment to surfaces and the consequent biofilm formation is a well-

recognized phenomenon in diverse areas such as the food and biomedical fields [1-3]. 

Especially in food industry, bacterial spoilage is a major concern with both economic 

and public health consequences. Therefore, efforts must be directed for efficient 

industrial equipment design and the development of effective cleaning and disinfection 

strategies [1, 4, 5].  

Biofilms can be described as dense microbial communities associated to surfaces, 

which are highly hydrated clusters of bacterial cells surrounded by a matrix of 

extracellular polymeric substances (EPS) [6-8]. EPS, a result of bacterial secretion, cell 

lysis and hydrolysis, are constituted by biopolymers such as polysaccharides, proteins, 

extracellular DNA and lipids. These substances are responsible for the protection of 

bacteria from environmental stress, dehydration and chemical exposure and mediate 

bacterial adhesion to surfaces [6, 9-11]. In addition, EPS are essential for biofilm stability 

and architecture since their composition, structure and properties influences oxygen 

penetration and substrate absorption and transport [9]. Moreover, the biofilm 

structure depends on the microbial constituents and environmental factors like 

composition, pH and temperature of the contact fluid, surface properties and 

hydrodynamic conditions [12-14]. 

The hydrodynamic effects can induce a detachment force as a consequence of gas 

or liquid flow and particle-particle collision [10, 15]. Therefore, shear force has been 

considered a pivotal factor in biofilm formation, since it leads to equilibrium between 

biofilm thickness and density resulting in a steady state structure. Several authors found 

that higher shear force caused thinner and denser biofilms [10, 14, 16, 17]. Considering 

that the biofilm structure is influenced by the existing hydrodynamic conditions, the 

latter also influences the efficacy of substrate diffusion and the ecological selection 

within the biofilm [10, 14, 16, 18]. In fact, the three-dimensional biofilm structure has a 

physical impact on internal mass diffusivity, since it is dependent on the biofilm density 

[19] and tortuosity [20]. On one hand, substrate diffusion through biofilms could be 

enhanced by high turbulence which tends to produce thinner biofilms, but on the other 

hand it could be reduced by a shear-compacted biofilm structure [10]. A consequence 

of the hydrodynamic conditions is also the overproduction of EPS under high shear 

stress [10]. Thus, the diffusivity of a substance into the biofilm would be a result of 
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internal and external mass transfer effects [10]. In addition, the overproduction of EPS, 

especially polysaccharides, is useful in initial cell adhesion [10, 21]. Understanding the 

relationship between biofilm structure and function and also the factors that physically 

shape biofilms is important to the use and control of biofilms in industrial and 

biomedical fields [14, 22]. This study provides insights on macromolecular aspects of 

biofilms formed under three different linear flow velocities.  

5.2 MATERIALS AND METHODS  

MICROORGANISM AND CULTURE CONDITIONS 

The bacterium used in this work was Pseudomonas fluorescens ATCC 13525T. This 

bacterium is ubiquitous in industrial settings and has a high ability to form biofilms [23]. 

This strain was grown at 30 ± 3 oC, pH 7, with glucose as the main carbon source. Culture 

media consisted in 5 g.L-1 glucose, 2.5 g.L-1 peptone and 1.25 g.L-1 yeast extract, in 

phosphate buffer (PB), pH 7, 25 mM [24]. Bacterial suspensions were prepared by gently 

removing a small portion of bacteria from solid medium (agar at 10%), and diluting it in 

a 1 L flask containing 250 mL of sterile nutrient medium. This bacterial suspension was 

incubated overnight (16 h) with agitation (120 rpm). All medium components were 

purchased from Merck (VWR, Portugal). 

 

BIOFILM FORMATION IN A FLOW CELL SYSTEM 

The flow cell system used consisted of a 3.5 L recirculating bioreactor, two vertical 

perspex flow cells operating in parallel, one 0.5 L bioreactor, one peristaltic and two 

centrifuge pumps (Figure 5.1). The cross-section of the flow cells is semi-circular with 

diameter (d) of 2 cm. P. fluorescens was used to inoculate the smaller bioreactor 

(Bioreactor I), containing the culture medium defined previously, that operated 

continuously, dripping into the larger bioreactor (Bioreactor II) at a flow rate of  

10 mL.h-1. This larger bioreactor was fed with a medium that consisted of 0.05 g.L-1 

glucose, 0.025 g.L-1 peptone, and 0.0125 g.L-1 yeast extract in PB (pH 7, 25 mM), at a 

flow rate of 0.833 L.h-1. The dilution rate applied ensured that biofilm formation 

predominated over planktonic growth [25]. The flow cells were designed so that 

stainless steel coupons (1 × 2 cm) could be glued into structures to be inserted in 

specific slots of the flow cells. The coupons were fitted flush with the rest of the surface. 
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In this way, biofilm sampling was facilitated. The bacterial suspension from the larger 

bioreactor was allowed to recirculate in the flow cells, in order to form biofilms on the 

stainless steel (AISI 316) coupons at linear flow velocities (u) of 0.1, 0.4 and 0.8 m.s-1. 

 
 
Figure 5.1 Depiction of the flow cell system used to develop biofilms at different linear flow 

velocities.  
 

The linear velocity was calculated as a function of the duct design, using the 

hydraulic equivalent diameter (Dh) and the flow rate (Q): 

𝐷ℎ = 4 ×
𝑓𝑙𝑜𝑤 𝑎𝑟𝑒𝑎

𝑤𝑒𝑡 𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟
    (eq. 5.1) 

For the semicircular duct [26]: 

𝐷ℎ = 4 ×
𝜋×𝑑2

8
𝜋𝑑

2
+𝑑

   (eq. 5.2) 

where d is the semicircular duct diameter. The linear flow velocity was calculated as: 

 2
4

hD

Q
u







   (eq. 5.3)  

where u is the linear flow velocity (m.s-1), Q is the flow rate (m3.s-1) and Dh is the 

hydraulic equivalent diameter (m). Biofilms were allowed to grow for 7 days to ensure 
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steady-state cell density and mass [27]. Two parallel similar flow cells were used 

simultaneously. Reynolds numbers were 1000 (u = 0.1 m.s-1), 4000 (u = 0.4 m.s-1) and 

8000 (u = 0.8 m.s-1). 

 

BIOFILM SAMPLING AND ANALYSIS 

The biofilms of P. fluorescens were characterized in terms of mass, thickness, cell 

density, total and extracellular proteins and polysaccharides. 

The coupons were removed from the flow cell reactor and their thickness was 

immediately assessed, using a needle connected to a digital micrometer (VS-30H, 

Mitsubishi Kasei Corporation), as decribed by Teodósio et al. [28]. 

Afterwards, the biofilms that covered the coupons were completely scraped off, 

using a sterile scalpel and resuspended in extraction buffer (EB) (2 mM Na3PO4.12H2O, 

2 mM Na2HPO4.H2O, 9 mM NaCl and 1 mM KCl) to assess biofilm mass, cell density, total 

and extracellular proteins and polysaccharides. 

The dry biofilm mass accumulated on the slides was assessed by the determination 

of the total volatile solids (TVS) of the homogenised biofilm suspensions according to 

the Standard Methods (American Public Health Association [APHA], American Water 

Works Association [AWWA], Water Pollution Control Federation [WPCF]), method 

number 2540 A–D [29]. According to this method the TVS assessed at 550 ± 5 oC in a 

furnace (Lenton thermal designs) for 2 h are equivalent to the amount of biological mass 

(cells and EPS). The dry biofilm mass accumulated was expressed in terms of biofilm 

mass per slide surface area (mg.cm-2). 

The biofilm number of cultivable cells was assessed in terms of colony forming 

units (CFU) in Plate Count Agar (Merck, Portugal), according to Ferreira et al. [30].  

Biofilm extracellular proteins and polysaccharides were extracted from the cells 

suspension in EB using a Dowex Marathon® resin, C sodium form, 20-50 mesh (Sigma, 

Portugal), using the method described by Frølund et al. [31]. The extraction of proteins 

and polysaccharides took place at 4°C for 4 h, at 400 rpm. The extracellular components 

(present in the supernatant) were separated from the cells via centrifugation (3999 g, 

5 min). The total (biofilm suspension before EPS extraction) and extracellular biofilm 

proteins were determined using the Lowry modified method (Sigma), with bovine 

serum albumin as standard. The procedure is essentially the Lowry et al. [32] method 

as modified by Peterson [33]. The total (biofilm suspension before EPS extraction) and 
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extracellular polysaccharides were quantified through the phenol-sulphuric acid 

method of Dubois et al. [34], using glucose as standard. 

 

OUTER MEMBRANE PROTEINS EXTRACTION 

The outer membrane proteins (OMP) were isolated according to the method described 

by Winder et al. [35]. Sessile cells were harvested by centrifugation (3999 g, 5 min,  

4 oC). The pellet was suspended in 25 mM Tris and 1 mM MgCl2 buffer (pH 7.4). The 

bacterial suspension was sonicated for 2 min, 50% power (Bandelin generator with a 

Microtip MS 72 probe) on ice to promote cell lysis. After sonication, the solution was 

centrifuged (7000 g, 10 min, 4oC) in order to remove non-lysed cells. The supernatant 

was collected and sarcosine (Sigma) was added to a final concentration of 2% (w/v), in 

order to solubilize the OMP. This solution was left on ice for 20 min. The solution was 

then centrifuged (13000 g, 1 h, 4 oC) to recover the OMP. The pellet containing the OMP 

was resuspended in 25 mM Tris buffer (pH 7.4) and stored at -20 oC until needed.  

 

SDS-PAGE  

The biofilm OMP were separated by sodium dodecyl sulfate polyacrylamide gel 

electrophoresis (SDS-PAGE), as reported by Laemmli [36], using a 12% (w/v) acrylamide 

gel. The proteins content of each sample was standardized to 240 ± 10 µg.ml-1 for each 

sample. Electrophoresis was performed at a constant current of 170 mV. After 

electrophoresis, the proteins were stained with Coomassie blue for protein profile 

detection [37].  

 

SCANNING ELECTRON MICROSCOPY  

Twelve stainless steel slides covered with biofilms (four for each linear flow velocity) 

were observed by scanning electron microscopy (SEM). Prior to SEM observations, 

biofilm samples were fixed with 3% (w/v) glutaraldehyde in cacodylate buffer pH 7.2 

[38] for 10 min and exposed to an ethanol dehydration series of 50, 60, 70, 80, 90 and 

twice 100% (v/v) ethanol, followed by a chemical dehydration series of 100% ethanol + 

hexamethyldisilazane (HMDS, Ted Pella, USA) at 50, 60, 70, 80, 90 and 2 × 100% (v/v) 

HMDS [39], 5 min for each concentration. The coupons were then air-dried for 1 day in 

a desiccator. Each coupon was sputter-coated with a palladium-gold thin film [23] using 
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the SPI Module Sputter Coater equipment for, 90 s at 15 mA. The biofilms were analysed 

using a SEM/EDS (FEI Quanta 400FEG ESEM/EDAX Genesis X4M) under high-vacuum 

mode, at 10 kV. SEM observations were documented through the acquisition of, at 

least, 20 representative microphotographs. 

 

DETERMINATION OF NUTRIENT AND CELL LOAD  

The cell and nutrient loads were calculated as the number of cells, or the glucose mass 

per cross section area in a time unit. The cell number was calculated for Bioreactor II, 

which contained planktonic cells. The nutrient load was considered as the glucose 

content of the medium fed to bioreactor II. 

 

DETERMINATION OF THE SHEAR STRESS 

The shear stress was calculated using the dimensionless Darcy friction factor (f) 

obtained from the work of Teodósio et al. [40] applied to the following equation: 

𝑓 =
4∙𝜏𝑤

𝜌∙𝑢2

2⁄
 (eq. 5.6)  

where τw is the wall shear stress (Pa), ρ is the density of water at 25 oC (Kg.m-3) and u is 

the fluid velocity (m.s-1).  

 

DETERMINATION OF THE MASS TRANSFER COEFFICIENTS 

The external mass transfer coefficient, km (m.s-1) was obtained using the mathematical 

model described by Moreira et al. [41]. The correlation uses the Sherwood (Sh) number 

which is a function of the Reynolds (Re) and Schmidt (Sc) numbers (for 2100 < Re < 3500 

and 0.6 < Sc < 3000). For tubes with a fully developed concentration profile in laminar 

flow, Sh = 3.66:  

𝑘𝑚 =  
𝑆ℎ∙𝐷

𝐷ℎ
 (eq. 5.7) 

where D is the molecular diffusivity of glucose (m2.s-1) , the growth-limiting nutrient in 

the medium and Dh is the hydraulic diameter of the flow channel (m) [42]. For turbulent 

flow in tubes: 

𝑆ℎ = 0.023 ∙ 𝑅𝑒0.83 ∙ 𝑆𝑐
1

3⁄  (eq. 5.8)  

𝑆𝑐 =  
𝜇

𝜌∙𝐷
  (eq. 5.9)  
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𝑅𝑒 =
𝐷ℎ𝑢𝜌

µ
 (eq. 5.10)  

where µ is the viscosity of the water at 25 oC (kg.m-1.s-1).  

 

STATISTICAL ANALYSIS 

The data were analyzed using the statistical program SPSS version 20.0 (Statistical 

Package for the Social Sciences). The mean and standard deviation (SD) within samples 

were calculated in all cases. The experiments were replicated at least 3 times. The 

statistical significance of the results was evaluated using the t-test. Statistical 

calculations were based on confidence level equal to or higher than 95% (P ≤ 0.05 was 

considered statistically significant). 

5.3 RESULTS 

The flow cell reactor was operated at three different flow velocities u = 0.1, 0.4 and  

0.8 m.s-1. The biofilms developed under each different condition were characterized in 

terms of thickness, dry and wet mass, cell density, matrix and total proteins and 

polysaccharides (Table 5.1). The influence of flow conditions, on biofilm superficial 

structure and morphology was assessed by SEM (Figure 5.3). Furthermore, the OMP 

expression was analyzed by SDS-PAGE electrophoresis (Figure 5.4). The hydrodynamic 

and external mass transfer coefficients were also calculated (Table 5.2).  

 
Figure 5.2 Photographs of the stainless steel coupons with 7 days old biofilms grown at  

(a) u = 0.1 m.s-1, (b) u = 0.4 m.s-1 and (c) u = 0.8 m.s-1. 
 

Figure 5.2 demonstrates the morphological differences of biofilms developed on 

the coupons induced by different flow conditions. Biofilms developed at the lowest 

linear velocity (u = 0.1 m.s-1) showed an apparent partial coverage of the stainless steel 

a c b 
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surface (Figure 5.2a). Biofilms formed at u = 0.4 and 0.8 m.s-1 (Figures 5.2b and 5.2c) 

also showed a patchy appearance, but they appeared more homogeneous than those 

formed under low hydrodynamic stress. 

 

Table 5.1 Characterization of P. fluorescens biofilms grown at different linear flow velocities. 

Linear flow velocity (u)   
(m.s-1) 

0.1 0.4 0.8 

Thickness  
(mm) 

0.213 ± 0.05 0.207 ± 0.06 0.178 ± 0.02 

Biofilm mass 
(mg.cm-2) 

Dry  0.297 ± 0.00 0.262 ± 0.04 0.269 ± 0.07 

Wet 33.6 ± 6.00  30.0 ± 4.56 30.6 ± 3.94 

     

Log cell density  
(CFU.gbiofilm

-1) 
8.11 ± 0.68 

 
12.2 ± 0.63 

 
11.5 ± 0.12 

 

Matrix 
(mg.gbiofilm

-1) 

Proteins  104 ± 15.2 125 ± 4.23 211 ± 11.5 

Polysaccharides  88.0 ± 20.1 135 ± 6.14 265 ± 9.39 

Total 
(mg.gbiofilm

-1) 

Proteins  294 ± 39.6 532 ± 42.8 471 ± 39.9 

Polysaccharides  198 ± 18.6 512 ± 30.7 621 ± 15.8 

 

The thickness of the biofilms decreased with an increase of the linear flow velocity 

(Table 5.1). The thickness of the biofilms generated at the lowest velocity was different 

when compared with the thickness of those formed at u = 0.4 and 0.8 m.s-1 (P < 0.05). 

The biofilms wet and dry mass also differed with the flow velocity under which they 

were formed. The biofilm mass values were not statistically distinct (P > 0.05). 

Concerning the cell density of the biofilms, the biofilms formed at u = 0.4 m.s-1 had the 

highest cell density, being followed by those formed at u = 0.8 m.s-1. Biofilms generated 

at the highest flow velocities had similar cell density values (P > 0.05), and different from 

those formed at 0.1 m.s-1 (P < 0.05). At  

u = 0.1 m.s-1 the amounts of extracellular proteins and polysaccharides in the biofilms 

were the lowest. In fact, the productivity of extracellular products increased with the 

flow velocity. Also, for most of the cases the total protein and polysaccharide content 

increased with increasing flow velocity, even if there was no statistical difference 

between the total proteins and polysaccharides content for the biofilms formed under 

the highest flow velocities (P > 0. 05).  

SEM micrographs highlight the morphological aspects of the biofilms developed 

under different flow regimes (Figure 5.3). These images show the presence of 

extracellular structures that apparently connect the cells to each other and to the 
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stainless steel surface. These structures are more frequent when the flow velocity 

increases. The selected SEM micrographs are intended to provide the representative 

inspection of the evidences of the existence of extracellular appendages connecting 

cells to each other and to the surface and are not representative of the numbers of cells 

in each biofilm. 

 

 
 
Figure 5.3 SEM micrographs of P. fluorescens biofilms developed on stainless steel surfaces at 

different flow conditions: (a) u = 0.1 m.s-1, (b) u = 0.4 m.s-1 and (c) u = 0.8 m.s-1. × 15000 
magnification; bar = 5 µm. 

 

Biofilm formation under different linear flow velocities had no apparent effects on 

the type of the OMP expressed (Figure 5.4). The major OMPs expressed by the biofilm 

bacteria had apparent molecular weights of 32, 36, 80 and 250 (±2) kDa. However, the 

results suggest that the low flow velocities induced the formation of lower quantities of 

a 

c b 
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the major OMP. In fact, the protein with the apparent weight of 80 kDa appears to not 

be present in the gel, for the lowest velocity.  

 

 

Figure 5.4 OMP profiles of P. fluorescens bacteria developed in different modes of growth. 
Biofilms formed at (a) u = 0.1 m.s-1, (b) u = 0.4 m.s-1 and (c) u = 0.8 m.s-1. 

 

Some hydrodynamic and mass transfer coefficients, such as the feed flow, nutrient 

and cell loads, friction factor, shear stress, of the biofilms developed in the flow cell 

system are presented in Table 5.2. 

 
Table 5.2 Hydrodynamic and external mass transfer coefficients of 7 days-old P. fluorescens 

biofilms grown at different flow velocities.  

u / m.s-1 0.1 0.4 0.8 

Re   1000 4000 8000 

Feed flow L.h-1 41 174 331 

Nutrient load g glucose.m -2.s-1 3.65 15.4 29.2 

Cell load Log cells.m-2.s-1 13.3 13.9 14.2 

Friction factor  0.063 0.037 0.033 

Shear stress Pa 0.042 0.44 1.43 

Sc  n/a 1295 1295 

Sh  3.66 255 435 

km m.s-1 2.07×10-7 1.44×10-5 2.46×10-5 

 

250 kDa 

25  

20  

15  

37  

75  

50  

150  

100 

a b c 
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The shear stress variation inside the flow cells next to the biofilm surface is shown 

in Table 5.2. The shear stress increase is more significant between the u = 0.1 m.s-1  

(10.5 times lower) and 0.4 m.s-1, than between 0.4 and 0.8 m.s-1 (3.25 times higher). 

The friction factor is higher in the low flow velocity biofilms (0.063), and similar  

(P < 0.05) for those formed under u = 0.4 m.s-1 (0.037) and u = 0.8 m.s-1 (0.033). The 

external mass transfer coefficient of biofilms developed at the lower flow velocity were 

100 times lower than those calculated for the biofilms developed at the two highest 

flow velocities (P < 0.05). For these the km values were statistically distinct (P < 0.05). 

5.4 DISCUSSION 

The objective of this work was to determine how the hydrodynamic conditions under 

which biofilms were formed could influence their resistance characteristics. The 

biofilms were developed in a flow cell system at three different flow velocities, 0.1, 0.4 

and 0.8 m.s-1. In general, a linear velocity increase promoted a reduction of the biofilm 

thickness, however, the biofilm mass was kept constant despite the flow velocity. 

Therefore, a direct relationship between the increase of fluid flow velocity and the 

formation of more compact and denser biofilms was observed. This is in accordance 

with a previous study with Escherichia coli biofilms where the thickness of biofilms 

developed in a similar flow cell system was higher at lower flow velocities [41]. Biofilms 

grown at lower velocities are subjected to lower shear forces, growing faster and 

forming more open structures [43]. However, low flow-stressed biofilms are also known 

to have low mechanical strength, being more prone to sloughing events than those 

formed under higher flow rates [40]. Other authors also stated that the flow regime has 

a high impact on biofilm morphology; at lower flow rates the biofilms formed tend to 

be fluffy and thicker and, in opposition, higher flow rates yield compact, dense and 

smooth biofilms [44]. Verran [45] proposed that these structures with low mechanical 

resistance are critical on cleaning and disinfection practices. When biofilm erosion or 

sloughing occurs, bacteria are released to the bulk phase. These cells can attach to 

surfaces downstream and reseed a biofilm.  

The cell load obtained from the bulk fluid containing planktonic cells, and the 

biofilm cell density increased with the flow velocity under which the biofilms were 

formed. The results showed that more cells were available to colonize the stainless steel 

for the higher flow velocities. The highest flow velocities resulted in biofilms with higher 



100  Chapter 5 
_________________________________________________________________________________ 

 

cell densities. This fact is exacerbated by the shear stress, imposed by higher flow 

regimes, in the microorganisms, resulting in higher adhesion, and ultimately in biofilms 

with a higher cell density. Studies on electron transport systems provided evidence that 

the catabolic activity of biofilms can be stimulated by high shear forces, which could 

lead to higher cell numbers within the biofilms [46]. Simões et al. [23] studied the effects 

of hydrodynamic conditions on P. fluorescens biofilms. These authors showed that 

biofilm development under turbulent conditions gave origin to biofilms with more cells 

per unit area than those generated at laminar flow. That study also demonstrated an 

decreased bacterial metabolic activity of the biofilms developed under higher 

hydrodynamic stress conditions. They also proposed that higher flow velocities increase 

the availability of nutrients in the bulk fluid, stimulating bacterial metabolism. In this 

way, higher cell replication or EPS production was affordable. 

The amount of matrix proteins and polysaccharides apparently increased with a 

feed flow increase. Chmielewski and Frank [47] stated that the biofilm structure and 

content are influenced by the flow regime, associating high turbulence with increased 

EPS production. Shear stress is the predominant force acting on biofilms [15] and an 

increase in linear velocity, reflected by an increase of shear stress, may influence biofilm 

accumulation [44]. Vrouwenvelder et al. [44] also reported that biofilms developed 

under high shear stresses are very stable against mechanical disturbances. In the 

present study, three distinct flow velocities were tested, corresponding to three 

different shear stress values. These hydrodynamic conditions allowed the formation of 

biofilms with different thicknesses. This result is in agreement with a previous study 

where higher shear stresses originated compact biofilms, characterized by low 

thicknesses values and high cell densities [44]. 

SEM micrographs showed structures that the biofilm-embedded cells use, 

apparently, to attach to each other and to the surface. Winn et al. [48] used a similar 

dehydration process as that used in this study and also observed microtubular-like 

structures used for microbial attachment and relevant for biofilm mechanical stability.  

The hydrodynamic conditions used to form the biofilms had no significant effects 

on the OMP expression of biofilm cells. The OMP of 32 and 36 kDa is similar for the 

three biofilms. The protein with the apparent weight of 36 kDa could be correspondent 

to the one described by Kragelund et al. [49] as being the OprF, an outer membrane 

porin [50] known to be implicated in biofilm formation [51]. 
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The external mass transfer coefficients increased with the flow velocity. A direct 

consequence of increasing the flow velocity is that the transport rate of nutrients to the 

biofilm surface was higher at the highest velocities [52]. The higher external mass 

transfer effects observed in the biofilms developed at the two higher flow velocities 

were a higher amount of cells and EPS. These results are in accordance with the findings 

of Simões et al. [23]. The higher flow velocities are correlated with higher shear stress 

imposed to the biofilm that is related by thinner biofilms. In spite of having more cells 

and EPS, they also have less limitations to mass transfer by being thinner, than the 

thicker biofilm (u = 0.1 m.s-1) that have adapted its structure to be fluffier in order to 

facilitate the access to nutrients [13, 23]. Due to the higher shear stress they rather 

produce EPS, as seen on the results (u = 0.8 m.s-1), than new cells to increase its 

cohesion and withstand the forces of the passing fluid [41]. 

5.5  CONCLUSIONS 

In this study several characteristics of P. fluorescens biofilms were studied when formed 

at three distinct linear flow velocities. The biofilms developed at the two highest linear 

velocities were thinner, and both had approximately the same mass as that formed at 

the lowest velocity. The cell density and EPS content was also superior for the biofilms 

generated at the highest velocities. These features make these biofilms denser. The 

external mass transfer coefficient increased with the flow velocity. In general, biofilms 

formed under higher flow velocities were more complex, including the presence of 

attributes that can contribute to their antimicrobial resistance (higher cell density and 

EPS content) in a higher extent than those formed under lower flow velocities. 
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ABSTRACT 

Microbial biofilms are ubiquitous in nature and inherently resistant to an increasing 

range of antimicrobial agents. One of the most widely used disinfectants is sodium 

hypochlorite (SH), however, despite its proven efficacy, SH is surface corrosive, presents 

several health concerns, and resistance phenomena is already emerging. Therefore, the 

development of innovative biofilm control strategies are needed. Little is known about 

the usefulness of brominated products as food industry disinfectants. In this study, the 

control of Pseudomonas fluorescens biofilms was assessed with the halogen-based 

chemicals: cetyltrimethylammonium bromide (CTAB), sodium hypochlorite (SH),  

3-bromopropionyl chloride (BrCl) and 3-bromopropionic acid (BrOH). The influence of 

these chemicals was assessed on several physiological aspects of planktonic cells, 

particularly their antimicrobial action, influence on cell surface properties and 

potassium release. While CTAB had the highest antimicrobial activity, BrOH had the 

lowest. All the chemicals promoted cellular disruption, with apparent pore formation in 

the cell membranes and consequent leakage of essential intracellular constituents. Only 

CTAB, BrCl and BrOH led to irreversible changes in membrane properties (charge and 

physicochemical properties) through hydrophobicity changes and decrease of negative 

surface charge. When these chemicals were applied to biofilms, no significant killing or 

removal was achieved (maximum killing of 1 log and 15% removal). Moreover, the 

chemicals allowed the biofilms to regrow after exposure. In fact, the overall results 

demonstrated similar effects with all selected chemicals. The overall data demonstrate 

that both BrCl and CTAB are advantageous alternatives to the currently used 

disinfectant, SH, since they present comparable efficiency with potentially less health 

and surface equipment damage concerns.  
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6.1. INTRODUCTION 

The World Health Organization (WHO) refers to food safety as one of the top priorities 

and challenges of the century [1]. Nowadays, foodborne diseases are a prime public 

health concern in developing and developed countries. WHO reported 1.8 million 

mortality cases of diarrheal diseases worldwide. In the United States of America it is 

estimated that every year, about 48 million people suffer from foodborne diseases  

[1-3]. The Centers for Disease Control and Prevention (CDC) and the US National Health 

Institute (NIH), documented that biofilms are involved in over 65% of all microbial 

diseases. In addition, foodborne pathogens can form biofilms in produce, which makes 

them resistant to commonly used disinfectants [1, 4]. Consequently, the formation of 

biofilms has severe implications in several areas, from industrial processes to health-

related fields, with huge economic losses [5, 6]. 

The sanitizers and biocides used in industry do not control microorganisms in 

biofilms as they are typically 10-1000 times more resistant than their planktonic 

counterparts [7, 8]. The efficacy of a disinfectant depends on several factors, such as 

the type of target microorganism and its susceptibility, the adhesion surface, 

temperature, exposure time, concentration and pH [9]. Also, antimicrobial resistance 

occurs as a multifactorial aspect that includes slow or incomplete penetration of the 

biocide into the biofilm, physiological alterations of the biofilm cells, expression of stress 

response with adaptive molecules, or even, differentiation as persister cells [10-12]. 

Biofilm prevention and control is, therefore, a priority in food industry, prompting a 

need to search for new biocides and/or sanitizers and to understand their potential to 

prevent and control biofilms. 

Food contact surfaces are normally disinfected and cleaned with agents containing 

peroxides, chloramines or hypochlorite [5]. The free chlorine obtained by the use of 

hypochlorite can be very aggressive to stainless steel, interfering with its surface, and 

might facilitate further bacterial adhesion and biofilm formation [5, 13]. Furthermore, 

chlorine is the most widely used disinfectant in industry, however, there is a possibility 

that during disinfection it reacts with natural organic matter or contaminants in surface 

waters, and it can also produce a complex mixture of disinfection by-products which 

already demonstrated carcinogenic, mutagenic and teratogenic (abnormalities of 

physiological development ) activity in animal studies [1, 14]. 
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Quaternary ammonium compounds (QACs), cationic compounds with a basic 

structure (NH4
+) and a strong antimicrobial potential, are frequently used for 

disinfection and sanitation in a wide range of fields, such as hospitals and food 

manufacturing [15, 16]. Cetyltrimethylammonium bromide (CTAB) is a relatively safe 

and inexpensive product [17]. Nevertheless, it has been shown that its increasing use in 

a wide range of applications contributed to the emergence of resistant bacteria and, 

occasionally, multidrug resistance [17, 18]. Comparatively to chlorine, QACs are more 

expensive, however, they are an attractive alternative as they are less affected by the 

presence of organic matter, are not corrosive at low concentrations, are more stable, 

and could be stored for longer periods of time without compromising their 

antimicrobial activity [19]. 

The formation of biofilms is a microbial community behavior coordinated through 

cell-to-cell communication mediated by small, diffusible signals, a phenomenon called 

quorum sensing. Several phenotypes regulated by cell-to-cell communication are 

implicated in bacterial colonization and virulence [20]. Therefore, eukaryotes have 

developed a defense mechanism based on chemicals, including secondary metabolites 

that inhibit these phenotypes [20-22]. For example, furanones produced by the marine 

algae Delisea pulchra [23], oxidize halogen compounds produced by Laminaria digitata 

and, haloperoxidases produced by seaweeds are responsible for the production of the 

microbicidal compounds hypobromous acid (BrOH) and hypochlorous acid (ClOH) [22]. 

The natural furanones are halogenated at several positions by bromine, iodide or 

chloride and, as observed in field experiments, the concentration of furanones is 

inversely correlated with the degree of bacterial colonization [20]. Stabilized halogen 

antimicrobials are extensively used to control biofouling in industry and they have been 

shown to be more effective in penetrating and disinfecting biofilms than free halogen 

[22]. Considering this assumption, and the fact that 3-bromopropionic acid (BrOH) is 

used to synthetize several compounds with antimicrobial properties [24, 25], and that 

3-bromopropionyl chloride (BrCl) has a comparable structure, these two halogenated 

compounds were selected for this study to be assessed on their antimicrobial properties 

against planktonic cells and biofilms of Pseudomonas fluorescens (Figure 6.1). Little is 

known about the utility of bromine as a disinfectant for food industry. Previous studies 

demonstrated that dibromodimethyl hydrantoin was as effective as chlorine against 

Streptococcus faecalis [26], however, less effective against Bacillus cereus spores [27]. 

Similarly to free chlorine, there are safety concerns about the production of brominated 
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organic compounds and their impact on human and environmental safety [28]. Because 

chlorine is widely used in industry as a disinfectant and sanitizer, it was used for 

comparison purposes.  

The goal of this study was to assess the antimicrobial action of selected halogen-

based chemicals against planktonic cells and biofilms of Pseudomonas fluorescens. This 

bacterium is a major contaminant in food industry, causing produce spoilage and 

foodborne illnesses [29, 30]. 

6.2. MATERIALS AND METHODS 

ANTIMICROBIAL AGENTS 

Sodium hypochlorite solution (SH) and cetyltrimethylammonium bromide (CTAB) were 

purchased from Sigma (Portugal), 3-bromopropionic acid (BrOH) was purchased from 

Merck (VWR, Portugal), 3-bromopropionyl chloride (BrCl) was purchased from Alfa 

Aesar (VWR, Portugal). All dilutions were performed using sterile distilled water. 

 

 
 

Figure 6.1 Chemical structures of the chemicals used: (a) cetyltrimethylammonium bromide 
(CTAB), (b) sodium hypochlorite (SH), (c) 3-bromopropionyl chloride (BrCl) and  
(d) 3-bromopropionic acid (BrOH). 

 

MICROORGANISMS AND CULTURE CONDITIONS 

The bacterium used in this study was Pseudomonas fluorescens ATCC 13525. Bacterial 

growth was obtained from overnight cultures (16 h) in culture medium (5 g.L-1 glucose, 

2.5 g.L-1 peptone and 1.25 g.L-1 yeast extract in 0.025 M phosphate buffer, pH 7) and 

incubated at 30 ± 3°C, and 150 rpm of agitation [31]. 

 



110  Chapter 6 

_________________________________________________________________________________ 

 

ANTIBACTERIAL SUSCEPTIBILITY TESTS  

The minimum inhibitory concentration (MIC) of each agent was determined by the 

microdilution method according to the Clinical and Laboratory Standards Institute (CLSI) 

guidelines [32] using 96-well microtiter plates. Bacteria at a density of 109 colony 

forming units (CFU) per ml were inoculated into fresh culture medium. A volume of 

200 µl was inserted in each well, along with the different concentrations of the 

chemicals (10% v/v). The bacterial growth was determined at 600 nm using a microplate 

reader (Spectramax M2e, Molecular Devices, Inc.). The MIC was determined as the 

lowest concentration at which microbial growth was inhibited [33]. The cell suspension 

was plated in Plate Count Agar (PCA, Merck, Germany) and incubated overnight at 

30 ± 3°C, after a neutralization step to quench the chemicals antimicrobial activity, by 

dilution, to sub-inhibitory concentrations [34]. The minimum bactericidal concentration 

(MBC) was considered the lowest concentration of the antimicrobial agent where no 

growth was detected on the solid medium [33]. 

 

PHYSICOCHEMICAL CHARACTERIZATION OF BACTERIAL SURFACES 

The physicochemical properties of P. fluorescens cell surface were assessed by the 

sessile drop contact angle measurement on bacteria lawns, performed as described by 

Busscher et al. [35]. Contact angles were determined using an OCA 15 Plus 

(DATAPHYSICS) video-based optical measuring instrument, allowing image acquisition 

and data analysis. The measurements (≥ 15 per liquid and chemical) were performed 

according to Simões et al. [36], after bacterium incubation (1 h) with the chemical at 

the MBC. The liquid surface tension components reference values were obtained from 

the literature [37]. Hydrophobicity was assessed after contact angle measurement, 

following the van Oss method [38-40], where the degree of hydrophobicity of a given 

surface (s) is expressed as the free energy of interaction between two entities of that 

surface, when immersed in water (w)−(∆Gsws mJ. m−2). The surface is considered 

hydrophobic if the interaction between two entities is stronger than the interaction of 

each with water ∆𝐺𝑠𝑤𝑠 < 0. Otherwise, if ∆Gsws > 0, the material is considered 

hydrophilic. ∆Gsws can be calculated using the surface tension components of the 

interacting entities of equation 6.1: 
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∆Gsws  =  − 2 (√γs
LW − √γw

LW)
2

+ 4(√γs
+γw

− + √γs
−γw

+ − √γs
+γs

− − √γw
+ γw

− ) (eq. 6.1) 

where γLW, represents the Lifshitz-van der Waals component of the surface free energy 

and γ+ and γ− are the electron acceptor and donor parameters, respectively, of the 

Lewis acid-based component (γAB), where γAB = 2√γ+γ−. The surface tension 

components, of a solid material, can be obtained by measuring the contact angles of 

three liquids with different polarities and known surface tension components  

(1): α-bromonaphtalene (apolar), formamide (polar), and water (polar). Upon obtaining 

the data, three equations of the type below can be solved: 

(1 + cos θ)γL
Tot = 2 (√γS

LWγL
LW + √γS

+γL
− + √γS

−γL
+) (eq. 6.2) 

where θ is the contact angle. The total surface energy is calculated as γTot = γLW + γAB. 

 

BACTERIAL SURFACE CHARGE  

The zeta potential of bacterial suspensions was determined in sterile water using a Nano 

Zetasizer (Malvern Instruments). This determination was performed before and after  

1 h bacterial exposure to the chemicals at the corresponding MBC. 

 

POTASSIUM (K+) LEAKAGE 

The quantification of K+ in bacterial solutions, before and after 1 h exposure to the MBC 

of each biocide was determined by flame emission and atomic absorption spectroscopy. 

Samples were filtrated (Whatman, pore size 0.2 µm) and analyzed in a GBC AAS 932 

plus device using GBC Avante 1.33 software. 

 

OUTER MEMBRANE PROTEIN EXTRACTION AND ANALYSIS 

Outer membrane proteins (OMP) were isolated based on the method described by 

Winder et al. [41]. Briefly, an overnight inoculum of P. fluorescens was washed with 

8.5% NaCl solution, diluted to approximately 109 CFU.ml-1 and incubated with each 

chemical at the MBC, for 1 h at 30 ± 3°C and 150 rpm of agitation. All suspensions were 

then harvested by centrifugation (3202 g, 25 min) and ressuspended twice with Tris-

HCl 25 mM, pH 7.4 with 1 mM MgCl2. Then, the suspension was sonicated for 2 min, 

50% power (Bandelin generator with a Microtip MS 72 probe) on ice, to promote cell 
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lysis. Next, the solution was centrifuged (7000 g, 10 min, 4°C) to discard cell debris. 

Sarcosine (Sigma, final concentration of 2%) was added to the supernatant and 

incubated for 20 min at 4 °C, to solubilize the OMPs. The solution was centrifuged 

(13000 g, 4 °C, 1h), to recover the OMP that were ressuspended in Tris-HCl pH 7.4 [42]. 

The concentration of proteins was determined by Bicinchoninic Acid Protein Assay Kit 

(BCA) (BCA - PIERCE Cat. No. 23225) and standardized to 240 ± 10 µg.ml-1 in each sample 

and applied to a sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 

with 12% bisacrylamide [43, 44]. The proteins were stained with Coomassie blue [45]. 

Electrophoresis was accomplished at constant 170 V. All electrophoresis components 

were purchased from BioRad (Portugal). 

 

ASSESSMENT OF QUORUM SENSING INHIBITION  

Quorum sensing inhibition was determined by the disc diffusion assay. The inoculum of 

Chromobacterium violaceum (ATCC 12472) was grown overnight (approximately 16 h) 

in Luria-Bertani broth (LB), Liofilchem, Italy (30 ± 3°C, 150 rpm). The MIC and MBC for 

all chemicals were determined with the antibacterial susceptibility tests as described 

before, with minor modifications. LB broth was used and C. violaceum growth was 

determined at 620 nm. Standard disc diffusion assay was performed for all chemicals at 

the MBC. Briefly, the bacterial suspension (approximately 108 CFU.ml-1), was seeded on 

LB agar plates, using a sterilized swab. Next, sterile paper discs (6 mm diameter) were 

placed over the LB agar plates and 15 µl of each biocide was added. Antimicrobial and 

quorum sensing inhibition (halo of colorless but viable cells) halos were measured after 

24 h of incubation at 30 ± 3°C [46, 47]. 

 

COLONY BIOFILM FORMATION AND PENETRATION TESTS 

These tests were performed as explained in chapter 3, in the corresponding sub-section 

of material and methods.  

 

BIOFILM FORMATION IN A FLOW CELL SYSTEM 

Biofilm formation in the flow cell system was executed as explained in chapter 5, in the 

corresponding sub-section of material and methods.  



Halogen- containing chemicals   113 
_________________________________________________________________________________ 

 

BIOFILM CONTROL USING DIFFERENT CHEMICALS  

The flow-generated biofilms of P. fluorescens were submitted to a disinfection process 

with the selected chemicals (CTAB, BrCl, SH) at their MBC. The flow cell was carefully 

emptied and the disinfection of the biofilms was made by recirculation of the chemical 

at the MBC, with a flow rate of 3.4 L.h-1, for 1 h. After that period, the initial conditions 

were restored in the flow cell system. Control experiments with phosphate buffer were 

also performed. Four coupons, two from each flow cell were removed at different time 

periods: before chemical exposure, immediately after the antimicrobial exposure and 

2, 12 and 24 h post-antimicrobial treatment. After biofilm chemical exposure, a 

neutralization step by diluting to sub-inhibitory concentrations was performed, 

according to Johnston et al. [34]. 

 

BIOFILM ANALYSIS 

The P. fluorescens biofilms were characterized in terms of organic mass and cell density. 

The stainless steel coupons were removed from the flow cell and the biofilms that 

covered the coupons surface were completely scraped using a sterile scalpel and 

resuspended in 10 mL of phosphate buffer. The suspensions were vortexed (IKA TTS2) 

for 30 s at 100% input. The biofilm mass was determined according to the standard 

methods (American Public Health Association [APHA], American Water Works 

Association [AWWA], Water Pollution Control Federation [WPCF]) [52]. The biofilm cell 

densities were assessed in terms of CFUs in Plate Count Agar (Merck, Portugal) [53]. 

 

STATISTICAL ANALYSIS 

Data were analyzed applying the parametric paired t-test using the statistical program 

SPSS version 22.0 (Statistical Package for the Social Sciences). The average and standard 

deviation (SD) within samples were calculated for all cases. At least three independent 

experiments were performed for each condition tested. Statistical calculations were 

based on a confidence level ≥ 95% (P < 0.05) which was considered statistically 

significant. 



114  Chapter 6 

_________________________________________________________________________________ 

 

6.3. RESULTS  

The MIC and MBC values obtained for the tested chemicals against P. fluorescens are 

presented in Table 6.1. Overall, the MBC was higher than the MIC, with the exception 

of SH which a MIC and MBC were 500 µg.ml-1. CTAB was the most efficient antimicrobial 

with a MBC 10 to 20 times lower than the other chemicals.  

 

Table 6.1 Minimum inhibitory concentration (MIC) and minimum bactericidal concentration 
(MBC) values of each chemical tested. 

 MIC / µg.mL-1 MBC / µg.mL-1 

BrCl 650  700  

BrOH 850  900  

CTAB 20  50  

SH 500  500  

 

The parameters of the bacterial surface tension before and after the treatment 

with each chemical were determined to ascertain the effects of the selected chemical 

on the bacterial surface properties (Table 6.2).  

 
Table 6.2 Surface tension parameters, hydrophobicity (∆𝐺𝑠𝑤𝑠

 ), apolar (𝛾𝑠
𝐿𝑊) and polar (𝛾𝑠

𝐴𝐵), of 
untreated P. fluorescens (control) and after 1 h treatment with the chemicals (BrCl, 
BrOH, CTAB or SH). The average ± SD is presented.  

 Surface tension parameters / mJ.m-2 
∆𝑮𝒔𝒘𝒔

  / mJ.m-2 
 𝜸𝒔

𝑳𝑾 𝜸𝒔
𝑨𝑩 𝜸𝒔

+ 𝜸𝒔
− 

Control 22.8 ± 4.43 30.3 ± 4.79 4.14 ± 1.25 57.0 ± 4.71 30.7 ± 6.30 

BrCl 19.4 ± 0.43 31.4 ± 2.92 4.40 ± 1.07 57.0 ± 3.96 29.8 ± 5.50 

BrOH 20.3 ± 0.80 34.1 ± 3.61 6.10 ± 1.25 53.0 ± 3.51 23.4 ± 4.90 

CTAB 12.0 ± 1.35 47.0 ± 7.10 10.4 ± 2.98 54.0 ± 0.81 14.0 ± 5.00 

SH 29.4 ± 4.68 13.3 ± 1.83 0.89 ± 0.33 51.0 ± 6.00 33.5 ± 8.70 

 

P. fluorescens is naturally hydrophilic (∆Gsws
 > 0 mJ.m-2), however, this property 

was less pronounced when the cells were in contact with BrOH and CTAB (P < 0.05). 

Regarding the apolar parameter (γs
LW), only CTAB promoted a small decrease of the 

apolar component compared to the untreated cells. The polar parameter (γs
AB) of the 

bacterium increased with the application of CTAB and decreased in the presence of SH 
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(P < 0.05). Moreover, when the capacity to accept (γs
+) or donate (γs

−) electrons was 

analyzed, it was possible to observe that the treatment with SH significantly decreased 

the surface capacity of the cell to accept or donate electrons (P < 0.05), while BrOH and 

CTAB increased the electron acceptor component of P. fluorescens surface (P < 0.05). 

P. fluorescens untreated cells had a negative surface charge of -13.53 mV with a 

conductivity of 0.05 mS.cm-1 (Table 6.3). The exposure to CTAB, BrCl or BrOH modified 

P. fluorescens surface charge to less negative and increased its conductivity (P < 0.05), 

with the exception of CTAB that had no effects on the cell surface conductivity 

(P > 0.05). Conversely, SH enhanced conductivity (P < 0.05) without interfering with the 

cell surface charge (P > 0.05). 

 
Table 6.3 Zeta potential and conductivity of P. fluorescens before and after 1 h treatment with 

different chemicals. The average ± SD is presented. 

 Zeta Potential / mV Conductivity / mS.cm-1 

Control -13.5 ± 2.32 0.05 ± 0.02 

BrCl -2.88 ± 0.66 2.25 ± 0.06 

BrOH -4.96 ± 0.95 0.46 ± 0.09 

CTAB -8.14 ± 0.42 0.05 ± 0.01 

SH -13.0 ± 1.41 31.1 ± 0.14 

 

To ascertain the effects of the chemicals in the cell integrity the intracellular K+ 

release was assessed. Table 6.4 shows the K+ concentration with and without exposure 

to the chemicals. All chemicals tested promoted an alteration in the cytoplasmic 

membrane permeability, causing K+ release, regardless the chemical used (P < 0.05).  

 

Table 6.4 Concentration of K+ in solution of the untreated and after 1 h incubation of  
P. fluorescens with each chemical. The average ± SD is presented. 

 Concentration of K+ in solution / µg.ml-1 

Control 1.21 ± 0.08 

BrCl 1.99 ± 0.21 

BrOH 1.96 ± 0.25 

CTAB 2.09 ± 0.28 

SH 2.07 ± 0.26 

 
The OMP expression, using 1-D SDS-PAGE, was assessed before and after biocide 

exposure for 1 h (Figure 6.2). No significant differences were found in the expression of 
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the major OMP of P. fluorescens with and without the exposure to the selected 

chemicals, with the exception that CTAB and SH reduced significantly the amount of 

OMP expressed (Figure 6.2). 

 
Figure 6.2 OMP profile of P. fluorescens cells when exposed to the MBC of different chemicals. 

The molecular weight marker (a) was used to extrapolate the molecular weight of some 
lanes of the OMP profile obtained from incubation in the (b) absence or in the presence 
of (c) BrCl, (d) BrOH, (e) CTAB and (f) SH. 

 

The percentage of retardation gives an estimate on the efficacy of chemical 

products to cross the biofilm (Table 6.5). In this study, the penetration of BrCl was the 

most efficient followed closely by SH, with 0 and 1.90% retardation respectively. The 

biofilm penetration was retarded by 15% for BrOH and 100 % for CTAB (P < 0.05). 

 

Table 6.5 Retardation caused by P. fluorescens biofilms, for each chemical used. Data is 
presented as average ± SD of the percentage of diameter measurements for halo 
readings compared with controls (no biofilm). 

 Retardation / % 

BrCl 0.00 ± 0.00 

BrOH 15.7 ± 4.40 

CTAB 100 ± 0.00 

SH 1.90 ± 3.20 
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The disc diffusion assay for the detection of quorum sensing inhibition is depicted 

in Figure 6.3. Quorum sensing was not affected by the chemicals tested.  
 

 
Figure 6.3 Disc diffusion assays for the detection of quorum sensing inhibition of C. violaceum by 

(a) BrOH, (b) BrCl, (c) SH and (d) CTAB. 

 

BrCl was selected over BrOH for the biofilm assay, due to the lower MIC and MBC, 

higher capacity to change the surface properties of P. fluorescens and ability to 

penetrate the biofilm without being retarded. Therefore, BrCl, CTAB and SH were tested 

against 7-day old flow-generated biofilms, formed under conditions mimicking those 

found in industry, chapter 5. The effectiveness of the chemicals was assessed in terms 

of number of biofilm CFU (Figure 6.4a) and mass (Figure 6.4b).The results obtained for 

the number of biofilm CFU revealed a reduction after 1 h exposure to the MBC of CTAB 

and SH (Figure 6.4a). However, this effect was more pronounced for SH with 1-log 

reduction (P > 0.05). For CTAB a CFU log reduction of 0.4 was achieved and for BrCl the 

difference was almost negligible. In order to ascertain the role of the chemicals tested 

on biofilm regrowth, the CFU were determined during the 2, 12 and 24 h after chemical 

exposure. Two hours after the treatment the number of CFU increased for all chemicals 

tested, attaining similar values to those before the treatment (P > 0.05, Figure 6.4a). 
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The number of biofilm CFU, remained constant overtime for all the conditions tested, 

except for the 24 h BrCl-treated biofilms. In this case the number of CFU increased 

significantly (P < 0.05, Figure 6.4a) when compared to the control values (untreated 

biofilms). In terms of biofilm mass, the three chemicals promoted similar biomass 

removal (16%, Figure 6.4b). These values remained unchanged 2 h after the treatment 

(P > 0.05). When analyzing the biofilm, 12 h after the treatment, no significant biomass 

changes were found for the biofilms treated with CTAB and BrCl, in comparison to the 

biofilms immediately after exposure. The SH treated biofilms recovered significantly in 

terms of biomass (P < 0.05). However, 24 h after the treatment, the values obtained for 

the biomass, were as low as the values achieved with the SH treatment after the same 

time. During the recovery period, the biomass of CTAB-treated biofilms was similar to 

the value immediately after the treatment, while significant biomass regrowth of the 

BrCl-treated biofilms was found (P > 0.05). 

 

 

 
Figure 6.4 P. fluorescens biofilm log CFU.cm-2 (a) and mass (b) before and after treatment with 

CTAB ( ), BrCl ( ) and SH ( ). Samples were collected before treatment ( ), 
immediately after 1 h treatment and after 2, 12 and 24 h after chemical removal. Values 
are average ± SD. 
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6.4. DISCUSSION 

Antimicrobial resistance to conventional antimicrobial agents such as SH has been 

documented [54]. Also, the use of SH can result in the production of harmful 

disinfection by-products through their reaction with organic matter [55]. The best 

known and characterized products are the trihalomethanes, which include chloroform, 

bromoform, bromodichloromethane and chlorodibromomethane [56]. Drinking water 

quality regulation was specified to limit trihalomethane levels to 100 µg.L-1 [57]. 

In food industry, outbreaks of foodborne pathogens have been increasing in the 

last decades due to the high food demand to match population needs [58]. Therefore, 

the susceptibility to microbial contamination and biofilm formation requires major 

investments for produce decontamination and sanitation of the facilities [59]. However, 

resistance to disinfectants has been increasing, urging the necessity for the 

development of new formulations [10-12, 17, 18]. It is necessary to find alternative 

compounds capable of removing and/or killing undesired resistant microorganisms 

[60]. Brominated compounds might be a suitable replacement to the conventional 

chlorinated antimicrobials. In this work, the antimicrobial activity and capacity for 

biofilm control of chlorine (as sodium hypochlorite) and three bromine based chemicals 

(CTAB, BrCl and BrOH), against planktonic and biofilm embedded P. fluorescens, was 

studied. Additionally, several aspects of their interaction with the bacteria were 

assessed. The three brominated chemicals were selected based on their structure, 

particularly the presence of bromine [61, 62], chlorine [62, 63] and carboxyl group [64] 

known for their antimicrobial properties. P. fluorescens was chosen as a well-studied 

Gram negative bacterium, and ubiquitous in the natural, medical and industrial 

environments, that can cause serious problems in either its planktonic or biofilm states 

[33, 65]. In addition, this bacterium is known to form biofilms resistant to disinfectants 

[66]. Several bacterium physiological characteristics were assessed such as the MIC, 

MBC, hydrophobicity, potassium (K+) release, and surface charge.  

The MIC and MBC values of CTAB against P. fluorescens were 20 and 50 µg.ml-1, 

respectively (Table 6.1). Previous use of CTAB, revealed MIC values of 4 µg.mL-1 against 

the Gram negative Salmonella typhimurium and P. aeruginosa and 18 µg.mL-1 for the 

yeast Candida albicans [67]. The MIC and MBC of SH were 500 µg.mL-1 (Table 6.1). A 

range of SH concentrations from 50 to 5000 µg.mL-1 has been determined by several 

authors, for a variety of conditions, and bacteria [68-71]. Differences between the 
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values obtained within the previous studies can be explained by the use of different 

methods and bacteria to determine these parameters. Moreover, it is widely assumed 

that no strain can characterize the behavior of a species [72]. To our knowledge, this is 

the first study reporting the antimicrobial properties of BrOH and BrCl. It was found that 

both chemicals have antimicrobial activity, with a MIC and MBC against P. fluorescens 

of 650 and 700 µg.mL-1 for BrCl and 850 and 900 µg.mL-1 for BrOH. The lower MIC and 

MBC of BrCl is possibly due to the presence of chlorine, known for its antimicrobial 

properties [63, 73]. 

In order to understand the action of the selected chemicals on P. fluorescens, 

several aspects of the interaction between the chemicals and the bacterial cells were 

assessed, particularly the surface physicochemical properties, charge and K+ release. 

CTAB is a compound that binds to the negative cell surface of bacteria due to 

electrostatic attraction by chemisorption [74-76]. Azeredo et al. [75] revealed that 

when a concentration of CTAB higher than the MBC is used, hydrophobicity and surface 

charge properties can be enhanced and bacteria becomes hydrophilic and positively 

charged. Upon interaction with the surface, CTAB promotes cell membrane 

disorganization [77] or even disruption [78]. In this work, the effect of cell disruption 

was verified measuring by the amount of K+ released.  

Conversely to the effect caused by CTAB, P. fluorescens exposure to SH decreased 

the bacterial polar (𝛾𝑠
𝐴𝐵) character and, consequently the capacity to accept (𝛾𝑠

+) or 

donate (𝛾𝑠
−) electrons. According to Gottardi et al. [63], the action of active chlorine 

(hypochlorous acid - HOCl) in bacteria can be divided in two effects, non-lethal and 

lethal. The first implies reversible chlorination of the bacterial surface and the second is 

based on penetration into the bacteria combined with irreversible alterations. SH can 

also promote aggregation of essential proteins [73]. The present study corroborates the 

findings of Winter et al. [73] on the membrane destabilization effects. In fact, K+ release 

is a consequence of membrane leakage. The interaction of active chlorine does not 

interfere with the cell surface charge, suggesting covalent links between the biocide 

and the bacterial membrane [63]. Moreover, SH dissociation in ions can originate salt 

formation that can help explain the increase in conductivity. BrOH decreased bacterial 

hydrophilic characteristics, and improved electron acceptance (𝛾𝑠
+). These results, 

together with reduction in negative surface charge suggest that, electrostatic 

interactions of bromine based chemicals with the membrane occur after Br- dissociation 
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from the structure, as it was described for BrOH [79]. The membrane interaction of the 

chemical may also promote destabilization and consequently potassium release into 

the solution. The effects of BrCl were less noticeable on the hydrophobicity values, but 

this was the chemical that most affected the bacterial cells charge. The difference in 

antimicrobial activity and mode of action of BrOH and BrCl can be due to the 

presence/absence of the chemical entities OH- or Cl-. It seems that the presence of Cl- 

improves the antimicrobial activity of the molecules, causing a significant decrease in 

the cell surface charge and the leakage of intracellular K+. Even if significant effects on 

the cell surface properties and charge were promoted by the biocides, no changes were 

induced on OMP expression. This may indicate that these compounds may not 

potentiate antimicrobial resistance. This hypothesis is based on the knowledge of the 

OMP importance in bacterial resistance to biocides and antibiotics [41, 80-83]. 

The penetration of CTAB through P. fluorescens biofilms was completely retarded 

due to the presence of biofilms. In fact, bacteria in biofilms exhibit less susceptibility to 

antimicrobials due to their spatial heterogeneity, which consequently originates 

nutrient depletion within the biofilm, reduced access of the chemicals to the bacteria 

inside the biofilm, or biocide interaction with extracellular polymeric substances, and 

the existence of degradative enzymes and neutralizing chemicals [65, 84, 85]. Simões 

et al. [86] supports the accessibility hypothesis as it was verified that less dense biofilms 

were more susceptible than denser biofilms. The retardation of SH was negligible. A 

previous study showed that chlorine effectively diffuses through biofilms with a 

diffusion coefficient in water estimated to be 0.84 cm2.s-1 [87]. BrOH was moderately 

retarded by the biofilm, while BrCl was able to penetrate the biofilm without 

retardation. Again, this result supports the observations reported previously in this 

study, that the presence of ions Br-, Cl- or OH- may define the activity of the molecule. 

Biofilms are organized cell aggregates in a self-produced extracellular matrix and, 

can form on living or inert surfaces, which can create serious problems in several fields 

if disinfection protocols fail [65]. As biofilms are a major problem in industry, it is 

important to understand the chemical mechanism of disinfection and its efficacy on 

pre-established biofilms. Flow generated P. fluorescens biofilms were exposed, for 1 h, 

to the chemicals at their MBC values. Only modest reductions in the log CFU.cm-2 were 

obtained. This fact reinforces the higher resistance of biofilm cells compared to their 

planktonic counterparts [7, 88]. In terms of mass removal, the use of BrCl, CTAB or SH 

promoted low removal of the total biofilm mass (15%). It can be hypothesized that CTAB 
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acts eroding the biofilm, which may consist on eradication of the superficial bacteria, 

and disruption of the matrix. This assumption is based on the fact that CTAB is the most 

efficient chemical despite lacking the capacity to cross the biofilm layers. The possibility 

of BrCl and SH to pass through the biofilm and the lack of efficacy may be a consequence 

of an intrinsic or acquired resistance of biofilms [73, 89]. Furthermore, these chemicals 

did not interfere with quorum sensing. A screening protocol developed by McLean et 

al. [46] was used for the detection of quorum signal inhibition (targeting acylated 

homoserine lactones dependent signaling), no effects were found other than 

antimicrobial action. 

To ascertain the ability of the biofilms to regrow after 1 h exposure to the 

antimicrobial agents, the initial conditions were reestablished, so that a disinfection 

practice in industry was mimicked. Biofilm regrowth was found on SH treated biofilms 

after 12h h, and on BrCl treated biofilms after 24 h. It was verified that CFU recovered 

to its initial values 2 h after exposure to all chemicals. This result can be explained by 

the possible presence of starved or injured cells or potentially viable but not culturable 

cells [10, 90, 91]. Also, Pereira et al. [92] found that 7-days old P. fluorescens biofilms 

formed in a flow cell system are in the stationary or stabilization phase. This means that 

the loss of biomass due to physical stresses is balanced by the growth of new cells at 

the edge of the biofilm [93]. The results obtained show low to moderate effects of the 

selected biocides on biofilm removal and killing, and rapid regrowth to the stabilization 

phase. These results suggest that the selected biocides, at the concentrations tested, 

had no significant effects on the dynamic behavior of the biofilms. It is apparent that 

the promising results obtained with the tests on planktonic cells did not provide 

relevant insights on their application in biofilm control, even if the same strain and 

antimicrobial concentrations were used in both tests. Moreover, in this study, it seems 

that the chemical nature of the biocide was not relevant on biofilm control, and the 

bromine-based products had no clear antimicrobial advantage on biofilm control over 

SH. It is possible that the combination of bromine-based products and chlorine might 

potentiate their antimicrobial action. Pioneer studies [94, 95], demonstrated synergistic 

antimicrobial relationship when bromine was added to chlorine solutions. However, as 

with free chlorine, there are safety concerns about the production of brominated 

organic compounds and their impact on human and environmental safety, even if 

bromide ion has a low degree of toxicity [28]. 
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The effect of the halogenated compounds tested was similar between each other. 

Despite that BrOH and BrCl require higher MIC and the MBC than CTAB, they are both 

similar to SH. Also, the results propose that the chemicals tested share a similar mode 

of antimicrobial action against P. fluorescens. The overall results propose that the 

selected bromine-based products can be a potential alternative to chlorine-based 

products. 
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ABSTRACT 

Current biofilm control strategies are inefficient in removing biofilms from equipment 

surfaces. The use of enzymes is considered a new and environmentally friendly 

approach for biofilm control. This work investigates the effects of a β-glucanase, a 

protease, a lipase, and α-amylase, alone and in combination with benzalkonium chloride 

(BAC) and cetyltrimethyl ammonium bromide (CTAB) in the control of biofilms formed 

by Bacillus cereus and Pseudomonas fluorescens.  

Synergistic effects of the combination of the biocides with the enzymes were 

found against the biofilms developed using the microtiter tests. This biofilm control 

strategy was also applied against P. fluorescens biofilms formed in a flow cell system. In 

this case, the enzymes, when applied alone, resulted in low to moderate biofilm 

removal and CFU reduction. Following the enzymatic or CTAB-enzyme treatments, it 

was found biofilm regrowth and long term control events. The effect of the enzymes 

against planktonic cells was also evaluated by respirometry. Most enzymes showed to 

have the ability to reduce the respiratory activity of planktonic cells, except α-amylase 

that, instead, increased the activity of P. fluorescens. Moreover, protease, lipase and  

α-amylase hindered the antimicrobial activity of the biocides, apparently due to 

chemical neutralization. 

The overall results show the synergistic potential of selected enzymes with BAC 

and CTAB in the control of biofilms and demonstrate that a careful selection and 

application of enzymes must be considered since these molecules can quench the 

activity of antimicrobial agents. 
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7.1 INTRODUCTION 

Biofilms can be defined as microbial sessile communities, characterized by cells 

embedded in self-produced extracellular polymeric substances (EPS) [1]. The type and 

amount of EPS constituents can be strain dependent and vary with the environmental 

conditions under which biofilms are formed. However, there is unanimity in considering 

polysaccharides, proteins and DNA as its main constituents. EPS contribute to the 

mechanical stability of biofilms, enabling them to withstand shear forces, dehydration 

and chemical attacks [2]. EPS also enhance robustness and survival of the embedded-

microorganisms on a substratum, by acting as a chemically reactive diffusional transport 

barrier, slowing the penetration of antimicrobial agents. Furthermore, the 

exopolymeric matrix increases biofilm attachment to the substratum and stabilizes it, 

thereby reducing its susceptibility to sloughing by hydrodynamic stress [3]. 

The use of water for diverse processes of food industry increases the chance for 

microbial contamination and biofilm formation. Typical consequences of biofouling are 

reduced operational efficacy in heat exchangers, increased operational pressure, 

blockage of tubes, increased energy consumption, accelerated metal surfaces 

corrosion, final product contamination and consequential potential health problems  

[4, 5]. Biofouling deposits can contain pathogenic and spoilage bacteria, increasing the 

risks for human consumption. Consequently, contingency plans to control microbial 

contaminations need to be applied. The main objective of microbial control is to 

eliminate and/or reduce the number of microorganisms and their activity, as well as to 

prevent and control the formation of biological deposits on process equipment [6]. As 

a result, programs such as Good Manufacturing Practice (GMP) and Hazard Analysis and 

Critical Control Points (HACCP) [7] are currently employed to control microbial 

proliferation. Biofilm control in food industry is usually performed without dismantling 

or opening the equipment in a Clean-in-Place (CIP) process. CIP consists on running 

alternated cycles of detergent and disinfectant solutions with water rinses with 

increased turbulence [8]. This method typically uses caustic acids, surfactants, biocides 

and, occasionally, enzymes [4, 8-10]. As the continued use of biocides can induce 

microbial resistance, new control strategies must be developed. Also, as regulation 

restricts the use of toxic biocides, eco-friendly strategies represent a new approach for 

the control of biofilms of food industry [11, 12].  
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Enzymes are already used in a wide range of applications, including the production 

of food and beverages, detergents, clothing, paper products, pharmaceuticals, fuel and 

monitoring devices [13]. For instance, glucanases are used to reduce the viscosity in 

barley and oats used in animal feed, enhancing their digestibility. Proteases are the 

most used enzymes in dairy industry, and in cleaning detergents. They are also used for 

protein hydrolysis, milk clotting, low-allergenic infant-food formulation, flavor 

improvement in milk and cheese, meat tenderization and prevention of chill haze 

formation in brewing. Lipases are used for flavoring cheese, in-situ emulsification for 

dough conditioning, support for lipid digestion in young animals, and synthesis of 

aromatic molecules. Amylases are used for starch liquefaction and sacharification, and 

also increase shelf life and, by retaining moist, they improve product quality. The 

elasticity and softness of bread is provided by amylases. In addition, flour adjustment, 

and low calorie beer are also processes that use amylases. Amylases are the second 

most widely used group of enzymes, along with cellulases [13, 14], in the formulation 

of enzyme detergents, mainly to remove food residues of starch-based foods. Enzymes 

have already been tested in biofilm control, and are proven to potentiate the action of 

some antimicrobial agents [15-18]. 

This work evaluates the effectiveness of an enzymatic treatment in the control of 

Bacillus cereus and Pseudomonas fluorescens biofilms. The combined action of enzymes 

and quaternary ammonium compounds (QACs) was assessed against biofilms formed 

in microtiter plates and in a flow cell system. Additionally, tests with planktonic bacteria 

were performed in order to ascertain the supposed action of enzymes as quenchers of 

antimicrobial agents.  

7.2 MATERIALS AND METHODS 

BACTERIA AND CULTURE CONDITIONS 

P. fluorescens ATCC 13525T and a B. cereus strain isolated from a disinfectant solution 

and identified by 16S rRNA gene sequencing [19] were used in this study. Bacteria were 

grown at 30 ± 3 oC, in the medium composed by 5 g.L-1 glucose, 2.5 g.L-1 peptone,  

1.25 g.L-1 yeast extract, in phosphate buffer (PB), pH 7, 25 mM, that uses glucose (Merk) 

as the main carbon source [20]. Bacterial suspensions were prepared by inoculation of 

a single colony grown on solid medium (above medium supplemented with 10% agar) 
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into a 1 L flask containing 250 mL of sterile nutrient medium. This bacterial suspension 

was incubated overnight at 30 ± 3 oC in an orbital shaker (120 rpm). 

 

ANTIMICROBIAL AGENTS AND ENZYMES 

Two QACs were used: benzalkonium chloride (BAC) and cetyltrimethyl ammonium 

bromide (CTAB) (Sigma, Portugal). In order to ascertain the effect of the enzymes on 

the bacteria, QACs were used at their minimum bactericidal concentrations (MBC), 

previously assessed by Araújo et al. [21], chapter 4. The MBC of BAC was 10 mg.L-1 for 

B. cereus, and 35 mg.L-1 for P. fluorescens; CTAB was used at 20 mg.L-1 on the first and 

at 35 mg.L-1 on the second bacterium. QACs were prepared as concentrated aqueous 

solutions.  

The enzymes tested were provided by Novozymes (Denmark). Their commercial 

names are Ultraflo® (3.2.1.6, β-glucanase), Alcalase® (3.4.21.62, protease-subtisilin), 

Lecitase® (3.1.1.3, lipase), and Fungamyl® (3.2.1.1, α-amylase), supplied as aqueous 

solutions containing 5-30% active protein. The enzymes were used diluted (1:100) in PB 

[17]. The solutions combining enzymes with biocides started as enzymatic solutions to 

which a concentrated solution of biocide was added to achieve the desired 

concentration. 

 

BIOFILM FORMATION IN MICROTITER PLATES  

After the growth period, bacterial suspensions were harvested by centrifugation, using 

an Eppendorf 5810R centrifuge with the A-4-62 rotor (Göttinger, Germany) (3999 g,  

10 minutes) and resuspended in fresh culture medium to a final density of  

1 × 109 cells.mL-1. The methodology used to grow biofilms was based on the modified 

microtiter plate test, as proposed by Stepanović et al. [22]. For each bacterium, 200 µL 

of the bacterial suspension, 100-fold diluted, were transferred to the wells of sterile  

96-wells flat-bottomed polystyrene tissue culture plates (Orange Scientific, Portugal). 

Plates were incubated in an orbital shaker (120 rpm) for 24 h at 30 ± 3 oC. Negative 

controls consisted of culture medium with no bacterial cells. 
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BIOFILM CONTROL USING ENZYMES 

The effect of each enzyme and QAC, as well as different combinations of enzymes with 

antimicrobial agents on biofilms formed in microtiter plates was screened using the 

methods presented by Simões et al. [23] and Lequette et al. [17]. Briefly, the medium 

was removed and the wells were gently washed twice with PB to remove reversibly 

adhered bacteria. The remaining attached bacteria were submitted to a process that 

consisted in biofilm exposure to: (1) an enzymatic solution for 1 h, (2) a solution of 

enzyme and biocide for 1 h, and (3) an enzymatic solution for 30 minutes, followed by 

a gentle washing step with PB, and then, the biocide for 30 minutes (30 + 30 min). These 

tests were performed in an orbital shaker at 30 ± 3 oC, 120 rpm. Controls consisted of 

PB or biocide solutions, in the absence of enzymes. QACs were used at their MBC values 

[21]. This concentration will affect the biofilms only to a certain extent, not killing all the 

embedded bacteria, so that any effect caused by the selected enzymes, other than 

killing, could be recognized. 

 

BIOFILM MASS AND VIABILITY ASSESSMENT 

The biofilm mass was quantified using crystal violet staining (Merck, Portugal), and the 

modified Alamar blue (Sigma-Aldrich, Portugal) microtiter plate assay was applied to 

determine the bacterial viability of the biofilm-cells. Both methods were described by 

Araújo et al. [24], see chapter 3. 

 

BIOFILM CONTROL ACTIVITY CLASSIFICATION 

The effects of the enzymes, biocides, and combination of enzymes with biocides on 

biofilms were classified based on a ranking proposed by Lemos et al. [25]. Values of 

killing and removal percentage, or CFU reduction inferior to 10% represent insignificant 

efficacy of the product tested, 10% to 30% low efficacy, 30% to 60% moderate efficacy, 

60% to 85% high efficacy and values superior to 85% very high efficacy. 

The effect of the combination of enzymes with biocides was classified as described 

by Saavedra et al. [26], to elucidate the effects of the interaction. The combination of 

enzyme with biocide is considered antagonistic if [effect of combination enzyme and 

biocide – (effect biocide + effect enzyme)/2] < 0; indifferent if the 0 ≤ (effect of 
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combination enzyme and biocide) – (effect biocide + effect enzyme)/2 < effect enzyme 

or effect biocide; additive if (effect biocide) < [(effect of combination enzyme and 

biocide) – (effect biocide + effect enzyme)/2] < 2× (enzyme effect or biocide effect); and 

synergistic if (effect of combination enzyme and biocide) > 2× (effect enzyme or effect 

biocide). 

 

BIOFILM FORMATION IN A FLOW CELL SYSTEM 

To test these strategies using biofilms similar to those found in industrial environments, 

biofilms were developed in a flow cell system, see chapter 5 (Figure 5.1). The biofilms 

were left to develop for 7 days at a Reynolds number (Re) of 4000, corresponding to a 

flow velocity of 0.4 m.s-1. Following this period, two coupons were analyzed as control 

(without any treatment) for each experiment; subsequently the biofilms were 

submitted to a similar treatment as the one used for microtiter plate biofilms. The flow 

cell was carefully emptied, and then the solutions of CTAB, enzymes, and solutions 

combining CTAB with enzymes ran through the flow cells at a flow velocity of  

0.006 m.s-1, for 1 h. After that period, the initial conditions of the system were restored. 

Control experiments with PB were also performed. Four coupons, two from each flow 

cell were removed at different time periods: before chemical exposure (control), 

immediately after the exposure, and then 2, 12 and 24 h post treatment, in order to 

observe putative long-term effects or regrowth events following the treatment. 

 

FLOW GENERATED BIOFILM CHARACTERIZATION 

Biofilm mass and cell density were assessed as indicators of control. The biofilms 

covering the coupons were completely scraped using a sterile scalpel, resuspended in 

10 mL of PB, and vortexed for 30 s. The organic mass was determined according to the 

standard methods - American Public Health Association [APHA], American Water Works 

Association [AWWA], Water Pollution Control Federation [WPCF] [27]. The cell density 

was assessed in terms of colony forming units (CFUs) in Plate Count Agar (Merck, 

Portugal), according to Simões et al. [28]. The effectiveness of the control strategy was 

classified according to the rank based on the classification proposed by Lemos et al. 

[25]. 
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TESTS WITH PLANKTONIC CELLS 

To assess the antimicrobial potential of the selected enzymes in planktonic cells, the 

respiratory activity of B. cereus and P. fluorescens cell suspensions was ascertained by 

measuring oxygen uptake rates in a biological oxygen monitor (Yellow Springs 

Instruments 5300A) after the exposure to the QACs and the enzymes for 1 h. This 

method was described previously by Araújo et al. [21], see chapter 4. The concentration 

of O2 used by the bacteria for the oxidation of glucose corresponds to the exogenous 

respiration rate, which is obtained by the difference between the total and endogenous 

rates [28]. The respiratory activity, in mgO2. mgorganic mass -1. min-1, was calculated 

according to the following equation: 

𝑅𝑒𝑠𝑝𝑖𝑟𝑎𝑡𝑜𝑟𝑦 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑒𝑥𝑜𝑔𝑒𝑛𝑜𝑢𝑠 𝑟𝑎𝑡𝑒× 𝑂

2𝑠𝑜𝑙𝑢𝑏𝑖𝑙𝑖𝑡𝑦

𝑏𝑎𝑐𝑡𝑒𝑟𝑖𝑎𝑙 𝑚𝑎𝑠𝑠
 (eq. 7.1) 

where the metabolic rate was measured as the percentage of O2 consumed by the cells 

in time, the O2 solubility was considered 8.6 mg.L-1 [29], and the bacterial mass obtained 

by the determination of total volatile solids (TSV) according to standard methods (APHA, 

AWWA, and WPCF, [27], expressed as mgorganic mass.L-1. If respiratory activity < control, 

there was killing of the microorganisms, whereas if respiratory activity > control, there 

was metabolic potentiation. 

 

STATISTICAL ANALYSIS 

The experimental data was analyzed using the statistical program SPSS - Statistical 

Package for the Social Sciences, Version 22.0 (Armonk, NY, USA). The average and 

standard deviation were calculated for all cases, from at least three independent 

experiments performed for each condition tested. Normality of data distribution was 

assessed by the Kolmogorov-Smirnov method. The statistical significance of the average 

values obtained for biofilm biomass, biofilm activity and cell number were evaluated 

using the t-test. Statistical calculations were based on confidence level equal to or 

higher than 95% (P ≤ 0.05 was considered statistically significant). 
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7.3 RESULTS  

Several tests were performed in order to control B. cereus and P. fluorescens biofilms 

using selected enzymes: β-glucanase, protease, lipase and α-amylase, alone and 

combined with two QACs. An initial screening was performed using biofilms grown in 

96-wells polystyrene microtiter plates (Figures 7.1 and 7.2). Afterwards, the enzymes 

were tested against biofilms developed in a flow-cell system (Figure 7.3). The effects of 

the enzymatic treatments were also assessed against planktonic cells (Figure 7.4). 

 

THE EFFECT OF AN ENZYMATIC TREATMENT ON BIOFILM CONTROL 

The 24 h-old biofilms formed in the microtiter plates were subjected to three different 

types of treatments (1) 1 h exposure to an enzymatic solution, (2) 1 h exposure to an 

enzymatic solution containing a QAC, and (3) exposure to an enzymatic solution for 30 

min followed by 30 min exposure to a QAC (30 + 30). Control tests were performed with 

PB as negative controls, and the QAC solution as the positive. The control treatments 

were made to assess if the enzymes were acting in synergy with the QACs. 

In Figure 7.1, biofilm killing and removal after the treatments with the duration of 

1 h are depicted. The treatment with lipase resulted in no killing of B. cereus biofilms, 

and the treatments with β-glucanase, protease, and α-amylase promoted low killing  

(P > 0.05). The removal of B. cereus with the enzymatic solutions was low, with the 

exception of α-amylase that was insignificant (P > 0.05). P. fluorescens biofilms killing 

was insignificant with β-glucanase, protease and lipase (P > 0.05). The killing percentage 

was low with α-amylase (P > 0.05). The enzymatic solutions of β-glucanase, protease 

and α-amylase produced moderate removal (P < 0.05), while lipase caused low biofilm 

removal (P > 0.05) (Figure 7.1).  

Both biofilms of B. cereus and P. fluorescens showed susceptibility to BAC and 

CTAB, when the biocides were applied alone. B. cereus killing was moderate with both 

biocides (P < 0.05), and removal was low with BAC (P > 0.05) and insignificant with CTAB 

(P > 0.05). P. fluorescens was insignificantly killed by both biocides (P > 0.05), and its 

removal was low with BAC and insignificant with CTAB (P > 0.05).  

The combination of the selected biocides with the enzymes increased, in most 

cases, B. cereus and P. fluorescens killing percentage. The combined treatment BAC-

enzymes improved B. cereus killing from low to moderate (P < 0.05), however, with  
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β-glucanase killing remained low (P > 0.05). With the addition of CTAB, the killing of  

B. cereus was insignificant with α-amylase, and moderate with the other enzymes.  

P. fluorescens biofilms killing with BAC-α-amylase was insignificant (P > 0.05), with BAC-

protease and BAC-lipase remained insignificant (P > 0.05), and with BAC-β-glucanase 

increased to moderate (P < 0.05). Killing improved in all cases with CTAB: with protease, 

lipase and α-amylase increased to low, and with β-glucanase increased to moderate  

(P < 0.05). The removal of B. cereus with the combinations of BAC with all enzymes 

remained low despite an increase, in average of 5% (P > 0.05). B. cereus removal with 

CTAB improved slightly when combined with all enzymes (P > 0.05). The removal of  

P. fluorescens with BAC was low when combined with lipase and α-amylase, and 

moderate with β-glucanase and protease (P < 0.05). The removal of P. fluorescens with 

the combination CTAB-enzymes was similar to the case when only enzymes were used 

(P > 0.05). 

 
Figure 7.1 Killing and removal percentages of B. cereus and P. fluorescens biofilms using the 

selected enzymes with and without the selected QACs. Where  corresponds to  
β-glucanase,  protease,  lipase,  α-amylase and  QAC. The enzymatic and QAC 
(biocide) solutions were applied for 1 h. *means no killing. Average values ± standard 
deviation for at least three replicates are illustrated.  

 

The effect of the combinations of enzymes with biocides is antagonistic, when 

biofilm killing was reduced in comparison with the tests with the enzymes or the biocide 
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alone. This happened for B. cereus with the combinations of α-amylase with CTAB, and 

β-glucanase with BAC. The effect is indifferent as happened for B. cereus biofilms 

control using CTAB with β-glucanase, protease, and lipase, and for P. fluorescens using 

BAC with protease. The protease was an additive to killing when was used along with 

BAC on B. cereus.  

The combination of enzymes with biocides was synergistic against B. cereus 

biofilms when control was improved. This effect happened with all enzymes when 

combined with BAC, except β-glucanase. P. fluorescens killing improved with the 

synergistic combinations of BAC with β-glucanase and lipase, and of CTAB with all 

enzymes tested. B. cereus removal with BAC and CTAB was indifferent with all enzymes. 

P. fluorescens removal was indifferent with BAC, but the enzymes worked as additives 

to CTAB. 

The procedure that consisted in 30 minutes exposure to an enzymatic solution, 

followed by the same period of exposure (30 + 30 min) to the QACs resulted in higher 

killing and removal percentages (Figure 7.2). 

 
Figure 7.2 Killing and removal percentages for B. cereus and P. fluorescens biofilms using the 

selected enzymes. Where  corresponds to β-glucanase,  protease,  lipase and  
α-amylase. The enzymatic solutions were applied for 30 min then removed and the 
biocide was applied for 30 min (30 + 30). Average values ± standard deviation for at 
least three replicates are illustrated. 
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High killing percentages of B. cereus were observed with the pre-treatment of  

β-glucanase and protease followed by BAC (P < 0.05), and for CTAB with all enzymes 

tested (P < 0.05). The pre-treatments of lipase and amylase followed by BAC were 

classified as moderate (P > 0.05). For P. fluorescens, biofilms killing with BAC combined 

with all enzymes was low, except with protease which was moderate (P < 0.05). With 

CTAB the killing efficacy was still low for all cases (P > 0.05). The removal increased in 

comparison with the approach, when the treatments were applied for 1 h, for B. cereus 

in all situations, and for P. fluorescens with BAC (all increased to moderate). Contrary to 

when the treatments were applied for 1 h, biofilm removal was, on average, more 

significant with BAC than with CTAB (B. cereus 41% vs. 20%; P. fluorescens 31% vs. 21%).  

 

CONTROL OF BIOFILMS DEVELOPED IN THE FLOW CELL SYSTEM 

P. fluorescens formed biofilms with the highest resistance to killing by QACs and 

enzymes. This bacterium was selected to develop biofilms in a flow cell system in order 

to understand the killing and removal efficacies of QACs and enzymatic treatments 

against biofilms with characteristics mimicking those found in industrial systems. The 

results before (control), immediately after 1 h exposure to the enzymatic and biocidal 

solutions, and up to 24 h post treatment were compared in terms of CFU and biofilm 

mass. In Figure 7.3 the biofilm mass reduction percentage and log CFU reduction are 

represented for the different treatments. 

The treatments with the enzymes resulted, in most cases, in biofilm removal.  

β-glucanase, protease and α-amylase caused moderate biofilm removal, while lipase 

resulted in insignificant biofilm removal, immediately after exposure. CTAB caused low 

removal, 15% of total biofilm mass. When CTAB was applied in combination with the 

enzymes, the removal was insignificant for protease and lipase, and moderate with  

β-glucanase (57%) and α-amylase (36%), P < 0.05. 

The application of enzymes caused log CFU reductions from 1 to 1.7. CTAB caused 

a log CFU reduction of 1.3, immediately after treatment. When CTAB was combined 

with the selected enzymes the efficacy of the treatment increased, except for the 

combination with lipase which reduced the efficacy of the treatment (P < 0.05). The 

CTAB-β-glucanase and CTAB-protease combinations caused the highest efficacy 

increase (P < 0.05). The log CFU reduction between these treatments is statistically 

similar (P > 0.05), and different from the treatment with the biocide (P < 0.05). The log 
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CFU reduction was slightly higher for the combination CTAB-lipase than the reduction 

caused by CTAB alone. 

 

 
Figure 7.3 Mass and log CFU reduction of P. fluorescens biofilms overtime after the treatments 

with an enzymatic solution (left hand) and an enzymatic solution combined with CTAB 
(right hand). Where  corresponds to β-glucanase,  protease,  lipase,  α-amylase 
and  CTAB. *means no reduction. Average values ± standard deviation are depicted. 

 

The biofilm behavior, in terms of biofilm mass and CFU numbers, was further 

analyzed 2, 12 and 24 h following the treatment, after the initial biofilm growth 

conditions were reestablished (Figure 7.3). Significant (P < 0.05) biofilm regrowth 

(biofilm mass reduction percentage was lower than immediately after the treatment) 

following the enzymatic treatment was found for α-amylase, 12 h after treatment. A 

long-term biofilm removal effect (biofilm mass reduction percentage was higher than 

immediately after the treatment) was found with lipase, 2 and 12 h after treatment,  

α-amylase, 2 h after treatment and with β-glucanase and protease, 24 h after treatment 

(P < 0.05). For the treatments with CTAB and CTAB-enzyme combinations, significant  

(P < 0.05) biofilm mass regrowth was found on the biofilms treated with β-glucanase,  

2 and 24 h after treatment, and CTAB-lipase and CTAB-α-amylase, 24 h after treatment. 

Significant long-term effects were also found for CTAB, 2 and 12 h after treatment, for 

CTAB-lipase and CTAB-α-amylase, 12 h after treatment.  

In terms of CFU regrowth, following the enzymatic treatment, no significant  

(P > 0.05) CFU increase was found. A long-term effect (P < 0.05) on CFU reduction was 

found 2, 12 and 24 h after β-glucanase, and 2 h after α-amylase treatments. For the 
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treatment of CTAB, alone, and combined with enzymes, regrowth was found 2 h after 

the application of CTAB alone and CTAB-β-glucanase and CTAB-protease. This regrowth 

behavior persisted for the 12 h (CTAB alone and in combination with protease) and  

24 h (CTAB-β-glucanase) following treatment. Long-term effects (P < 0.05) in CFU 

reduction were found for CTAB-lipase, 2, 12 and 24 h after treatment. 

 

PLANKTONIC TESTS WITH ENZYMES  

Using respirometry, the respiratory activity of B. cereus and P. fluorescens was studied 

after the esposure to solutions of (1) enzymes, (2) biocides and (3) the combination of 

both (Figure 7.4). 

 
Figure 7.4 Effect of chemical treatment for 1 h of B. cereus (a) and P. fluorescens (b) planktonic 

cultures. Control  (no treatment). The different enzymes  β-glucanase,  protease, 
 lipase, and  α-amylase, were used alone and in combination with the two QACs. 

The results obtained with BAC and CTAB alone solutions are represented by arrows. 
Total inactivation of respiratory activity is indicated with an asterisk (*). Average values 
± standard deviation for at least three replicates are depicted. 

 
The use of enzymatic solutions, for 1 h, on B. cereus suspensions resulted in a 

decrease of the respiratory activity with all enzymes relatively to the control (no 

treatment). The respiratory activity was reduced by approximately 30% with  
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β-glucanase, 40% with lipase and 50% with both protease and α-amylase solutions. The 

presence of enzymes did not affect the antibacterial activity of BAC and CTAB (P > 0.05), 

with the exception of lipase (P < 0.05). In the presence of lipase, BAC at its MBC reduced 

the respiratory activity to 92% (P < 0.05). 

For P. fluorescens there were reductions of the respiratory activity with the 

enzymatic solutions of protease (75%, P < 0.05) and lipase (30%, P < 0.05). No changes 

were observed in the respiration of the cells treated with β-glucanase (P > 0.05). Albeit, 

the exposure to α-amylase promoted cell activation (24%, P < 0.05) as the cells exposed 

to this enzyme were more active than the cells with no treatment. No total reduction 

of respiratory activity was observed with the combined solutions of BAC with protease 

and lipase (P < 0.05). Moreover, the effects of CTAB on the bacterial respiratory activity 

decreased when protease and α-amylase were present (P < 0.05). 

7.4 DISCUSSION  

The removal of B. cereus increased with the same enzymes. In this case, lipase was the 

best for biofilm removal. P. fluorescens biofilm removal was best with the enzymatic 

solution of protease, followed by β-glucanase, lipase and α-amylase solutions  

(Figure 7.1). Oulahal-Lagsir et al. [30] found that protease, α-amylase, and β-glucanase 

were effective in cleaning a simulated industrial biofilm formed during paper pulp 

manufacture. In another study [31], a lipase was unsuccessful when tested on the 

control of biofilm formed by a Pseudoalteromonas strain. In a study by Marcato-Romain 

et al. [18] two lipases were inefficient, or only slightly efficient for microbial multi-

species biofilm removal. These results show that the efficiency of enzymatic treatments 

is strongly dependent on the biofilm type, particularly the species colonizers and the 

EPS they produce. Enzyme specificity is a fundamental stepping stone in designing an 

enzyme-based control strategy. The specific mode of action of enzymes makes the 

search for the correct enzymes for control challenging, because of the complex diversity 

of biofilm constituents [49] that differs between biofilms [50]. 

The preliminary studies with microtiter plates suggest that the enzymes worked 

synergistically with the biocides, even if biofilm killing and removal was modest. The 

biofilms of B. cereus were more effectively removed by BAC than the biofilms formed 

by P. fluorescens that were more effectively removed by CTAB. Simões et al. [32] 
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showed that a P. fluorescens biofilms exhibited reduced susceptibility after a treatment 

with BAC.  

A previous study by Walker et al. [33] proposed that treating biofilms with only 

one type of enzyme would only loosen the cells. These authors also suggested that 

enzymatic soaking should be used as a pre-treatment prior to the use of biocides. This 

corroborates the results obtained with the 30+30 min test performed in the present 

study (the tests providing the highest biofilm removal results).  

Jacquelin et al. [34] reported the use of enzymes with surfactants to improve 

disinfection efficacy. However, the inclusion of enzymes is not certain to increase 

efficacy, because there are several factors contributing to the success of such 

treatment. Kim et al. [35] demostrated that an enzymatic treatment with proteinase K 

and acylase I was not suitable against P. aeruginosa biofilms, as these were actually 

increasing the amount of proteins present. Marcato-Romain [18] tested the effect of 

concentration and contact time to discover that proteases were the best enzymes to 

remove biofilms, and that glycosidases and lipases only slightly removed biofilms from 

paper industry. It is known that exopolysaccharides and glycoproteins contribute to the 

adhesion of bacteria to a surface and bacterial accumulation in the biofilm [30]. In  

P. fluorescens biofilms α- and β- polysaccharides contribute to its cohesiveness [36]. 

Christensen et al. [36] studied the effect of alginate degrading enzymes to control pure 

culture biofilms. These authors concluded that bacterial alginate does not contribute to 

the cohesiveness of the biofilms tested. However, Johansen et al. [37] managed to 

successfully remove Pseudomonas spp. biofilms attached to stainless steel using 

polysaccharide hydrolysases. Lequette et al. [17] studied the effect of polysaccharidases 

and proteolitic enzymes on a CIP procedure, using bacteria commonly found in food 

industry. These authors found that proteolitic enzymes and polysaccharidases removed 

P. fluorescens biofilms attached to stainless steel. These enzymes were tested in several 

scenarios that differed from the current work, in parameters such as the pH and 

temperature.  

In the current work, the selected enzymatic treatments were able to reduce low 

to moderately the flow-generated biofilms; however, this reduction is apparently lower 

than the removal observed for the biofilms developed in the microtiter plates  

(Figures 7.1 vs. 7.3 immediately after the treatment). The biofilms generated in the flow 

cell system are older, thicker and with resistance characteristics (high EPS content and 

cell density), see chapter 5. Flow-generated biofilms are known to be firmly attached to 
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the surfaces enabling them to withstand the shear stress caused by the passing fluid 

[38]. This result reinforces that the biofilm characteristics, particularly its age (7 days 

old biofilms formed in the flow cell system vs. 1 day old biofilms formed in the microtiter 

plates) are relevant in the control process. This comparison proposes that an adequate 

biofilm formation system, with the ability to simulate the conditions found in practice 

should be used in the development of control strategies. 

The analysis of the flow generated biofilms following enzymatic and CTAB-enzyme 

treatments was followed up to 24 h after treatment. The results demonstrated some 

long-term effects on biofilm removal and CFU reductions. It is possible that the enzymes 

or CTAB-enzyme caused sustained effects in biofilm control. Even if the solutions are 

removed from the system, residual concentrations remain acting on the biofilms. Also, 

regrowth was found following some treatments. However, the long-term and regrowth 

effects found in this study were not specific for any particular enzyme and/or CTAB-

enzyme combination. Also, none of the strategies was effective in completely killing 

and/or removing the flow generated biofilms. Parkar et al. [39] proposed that in 

cleaning industrial plants, a large decrease of cells (removal and killing) is not indicative 

of a successful treatment because the treatments leave cell debris that act as an organic 

conditioning film able to assist microorganism attachment and regrowth. 

The function of the biocide is to kill bacteria, while the enzymes can cause EPS 

disruption. A part of biofilm resistance relies on internal mass transfer limitations 

caused by the intricate nature of biofilm architecture. The polyanionic nature of the 

bacterial EPS may be responsible for binding the antimicrobial agents before they have 

the opportunity to reach the cells, hindering their diffusion [40-42]. The antimicrobial 

agent can also react and be neutralized by components of the biofilms [43]. Augustin et 

al. [44] points out the possibility that inside biofilms there are altered chemical 

microenvironments able to inactivate enzymes. These authors also proposed that EPS 

may be impairing the diffusion of enzymes through biofilms, similarly to how oxygen 

does not fully penetrate biofilms [44]. The amount of enzymes available could be spent 

before these reach the under-layers of the biofilms [44, 45]. In order to overcome this 

issue, Pechaud et al. [46] allowed contact times of 20 hours to ensure total enzyme 

penetration inside the biofilms, which is a long downtime for cleaning and disinfection 

practices. Despite the long contact time, they observed that the enzymatic treatments 

were not efficiently removing biofilms.  
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The use of enzymes depends on several factors such as the type of biofilm to treat, 

the surface to which it is attached, the contact time, the pH and the temperature [33]. 

The action of some agents could be antagonized by local accumulation of acidic waste 

products that might lead to pH dissimilarities. Differences greater than 1, between the 

bulk fluid and the biofilm interior, were previously found [44]. In this case, the neutral 

pH was selected because it is the pH commonly used to grow the selected bacteria [47]. 

In fact, the effects of the enzymes could only be assessed if the parameters tested were 

only the presence/absence of enzymes. Lequette et al. [17] found that alkaline buffers, 

promoted biofilm removal.  

The results obtained with respirometry, demonstrated some inhibition of 

respiratory activity in the treatments where only enzymes were applied, except for  

P. fluorescens treated with α-amylase (which potentiated modestly the respiratory 

activity). However, when protease, lipase and α-amylase were applied with the QACs, 

the respiratory activity values of B. cereus and P. fluorescens indicated that the bacteria 

were in a viable state. In fact, the respiratory activity was higher than with the use of 

BAC and CTAB alone. Therefore, no advantage on microbial inactivation was found for 

these cases compared to the use of BAC and CTAB alone. These QACs were used at their 

MBC values and caused total bacterial inactivation. The antimicrobial activity of 

enzymes was already described [48]. In the last years many studies have been 

performed on the antimicrobial properties of bacterial cell wall hydrolases [49]. The 

hydrolysis of a sufficient number of specific bonds in the peptidoglycan layer results in 

weakening, or serious cell damage that ultimately results in bacteriolysis [50]. For 

instance, lysozyme is a bacteriolytic enzyme that hydrolyses polysaccharides which 

compose the cell wall [30]. The hydrolases used in this study could be acting in the same 

way. The exposure to protease resulted in high respiratory reduction of P. fluorescens 

cells. The other enzymes were unable to produce the same effect, with the exception 

of lipase that reduced the bacterial respiration in a low extent. This result is probably 

due to the presence of the outer membrane in P. fluorescens (Gram negative) compared 

with B. cereus (Gram positive). 

It is currently known that environmental characteristics can influence the activity 

of antimicrobial agents [51]. These hindrances can be caused by organic material that 

potentially interferes with antimicrobial agents by chemical and/or ionic interactions  

[9, 52]. The results from the present study, the combination of lipase with BAC resulted 

in lower inactivation effects on B. cereus and that protease reduced the effects of BAC 
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on P. fluorescens. The antimicrobial effects of CTAB on P. fluorescens were reduced with 

protease and α-amylase. The work of Araújo et al. [21] (chapter 4) elucidates how the 

antimicrobial function of BAC and CTAB antimicrobial is affected by low concentrations 

of organic material such as bovine serum albumin (BSA), alginate, yeast extract and 

humic acids. The antimicrobial mechanism of QAC involves the disruption and 

denaturation of structural proteins and enzymes [53] that could lead to the impairment 

of the enzyme function and activity. A similar phenomenon could have happened in the 

present study. In the case of bacterial metabolism activation the enzymes might have 

been taken as nutrients, since these could be carbon and nitrogen sources. Bacterial 

activation was observed by Kim et al. [35] when using enzymatic treatments for biofilm 

control. In this case, the release of fatty acids from bacterial EPS was promoted by the 

treatments which in its turn were utilized by bacteria. 

7.5 CONCLUSIONS 

The preliminary studies with microtiter plates suggest that enzymes work synergistically 

with the QACs, even if biofilm killing and removal was modest. Similar effects were 

found on the treatments of P. fluorescens biofilms developed in the flow cell system. 

Long term effects were observed apparently due the interaction between enzymes and 

the biofilm components. On the other hand, for some treatments, the biofilms 

recovered some of their characteristics over the course of 24 h after the treatments. 

The enzymes were proven to work as antimicrobial agents against planktonic cells; 

however, when combined with biocides, some enzymes acted as interfering agents 

decreasing the activity of the QACs. The increase of concentration and contact time 

could be a solution for the low efficacy rates; however, higher concentrations of 

enzymes would be overly expensive, or the optimized contact time could be infeasible 

for industrial applications. 
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8.1 FINAL CONCLUSIONS 

The results obtained in this thesis contribute to a better understanding of the 

phenomena associated with biofilm resistance to cleaning and disinfection. These 

studies also add information to develop cleaning and disinfection strategies to be 

applied in industry. Biofilm control was shown to be extremely complex, because 

embedded bacteria have dynamic resistance, enabling adaptation to varying 

environmental and engineered conditions. 

When resilient contaminations occur, they are often related to biofilms. 

Furthermore, the embedded bacterial cells may gain additional resistance to 

conventional control treatments. From the work presented in this thesis some major 

conclusions can be drawn: 

Antimicrobial agent penetration hindrances may be caused by the interaction of 

the agents with the biofilm components, or by diffusional limitations caused by the 

three-dimensional structure of the biofilm.  

The ability of an antimicrobial agent to penetrate through a biofilm is not 

correlated with biofilm killing or removal efficacy.  

Selected QAC (BAC and CTAB) showed reduced antimicrobial efficacy in the 

presence of BSA, YE and ALG. In the disinfection process of P. fluorescens, CTAB was 

severely hindered by low concentrations of HA, that inclusively increased the metabolic 

activity of this bacterium. The inclusion of HA substantially reduced the antimicrobial 

efficacy of the QAC. This substance is proposed to be included as an antimicrobial 

interfering agent for the testing protocols to develop disinfecting strategies. 

The flow monitor system used for the development of flow generated biofilms at 

different linear flow velocities, resulted in biofilms with clearly different characteristics 

from those formed in microtiter plates. Nonetheless, both bioreactor systems 

demonstrated to be suitable to perform biofilm control studies.  

The flow regime influences biofilm development. The biofilms developed at the 

highest linear flow velocities (u = 0.4 and 0.8 m.s-1) have similar characteristics, and are 

different from those developed at the lowest linear flow velocity (u = 0.1 m.s-1). 

Specifically, characteristics such as a higher occurrence of micro-tubular structures that 

cells are thought to use to adhere to the stainless steel surface and to each other, and 

more bacterial cells and EPS that were condensed in a more compact biofilm structure. 
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The most complex biofilms, developed in the flow monitor system at the highest linear 

flow velocities, were selected as a worst case scenario for the ensuing experiments on 

biofilm control strategies.  

BrCl and BrOH, CTAB and SH demonstrated the ability to change the cellular 

membrane properties, changing hydrophobicity, and decreasing surface charge. The 

action mechanism of BrCl and BrOH is thought to be cellular disruption, with pore 

formation, as leakage of the intracellular constituents was observed. 

BrOH, BrCl, CTAB and SH showed antimicrobial efficacy against planktonic  

P. fluorescens. The MIC and MBC values of SH were similar to the values for BrCl and 

BrOH, but the MIC and MBC of CTAB was the lower. Using the flow cell system, biofilm 

control with CTAB, SH and BrCl was modest at the tested concentrations. Also, the 

biofilms were able to recover after the treatments. The overall efficacy of BrCl and BrOH 

in biofilm control was comparable to that of SH, proposing that these brominated-based 

chemicals can be alternatives to SH. CTAB was the best antimicrobial agent. 

The enzymatic treatments were able to reduce low to moderately the biofilm 

quantity of both B. cereus and P. fluorescens developed in microtiter plates and in the 

flow cell system. The enzymes showed synergistic potential with both BAC and CTAB. 

The effects of the enzymatic treatments were observed for the biofilms developed in 

the flow cell system. In the subsequent hours, the treatments alone and combined with 

CTAB showed both long term effects and biofilm regrowth. These effects occurred with 

no particular specificity to an enzyme or enzyme-CTAB treatment. Nonetheless, the 

potential of the application of enzymes on biofilm control was found for the selected 

bacteria. 

When the enzymatic solutions were used on bacterial cell suspensions, all enzymes 

showed antimicrobial activity against the bacteria tested, except β-glucanase and  

α-amylase on P. fluorescens. The metabolism of this bacterium was stimulated when  

α-amylase was applied. Nevertheless, when enzymes were combined with the selected 

QACs, their antimicrobial potency was reduced. This phenomenon occurred when BAC 

was combined with lipase for both bacteria, BAC combined with protease, and CTAB 

combined with protease and α-amylase for P. fluorescens. A careful application of 

enzymes must be considered since these molecules can quench the activity of the 

antimicrobial agents. 
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8.2 FUTURE WORK 

Biofilms can be a problem in industries where water is involved in the manufacturing 

process. The chemical control of biofilms is an important issue because of the severe 

operation, management and public health impact.  

Biofilm control is proven to be even more challenging than the approaches taken 

against planktonic bacteria, however, the tests for chemicals efficacy are, most of the 

times, performed on planktonic bacteria. The selection of a suitable antimicrobial agent 

is of utmost importance for the development of a disinfection strategy. The 

antimicrobial efficacy should be tested against particular contaminations, because the 

loss of efficacy depends on many factors. Thus, it should be tested in conditions as close 

to practice as possible, as in many cases, the influence of interfering agents could 

severely hinder the antimicrobial efficacy. Therefore, it is proposed to widen the list of 

disinfecting interfering substances, through the investigation of the mechanisms of 

action of the antimicrobial agents and their interactions with different cellular targets 

and soiling agents. 

Industrial processes have a need for biocides able to retain their activity in soiled 

conditions, work in low volumes, have low costs, and reduced corrosion. Particularly in 

food industry, consumers and governmental agencies demand chemical agents that are 

less toxic, less susceptible to microbial resistance, and stable so that disinfection by-

products do not enter natural systems. Therefore, anti-biofilm specific compounds 

should be sought as alternative drugs with the function to selectively blocking virulence, 

quorum sensing, and biofilm formation. Consequently, natural products such as 

phytochemicals, have already been introduced into the market, however, in general, 

their effects are limited compared to conventional disinfectants. In this work, the 

combination of enzymes showed biofilm control potential, the addition/ combination 

of phenolic or other new chemicals to potentiate the action of the conventional 

antimicrobials is suggested as follow up research. Both strategies (combinations with 

enzymes and new products) need optimization for complete control.  

When the biofilms were scaled up to the flow cell system, it was stressed that the 

way how biofilms develop is strongly connected with its degree of resistance. The study 

of the process of biofilm formation is required from the early stages to maturation, by 

a combined perspective of their physical, chemical and biological phenomena. When 
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the correlation of the processing characteristics is made with contamination 

occurrences, some solutions can be found: (1) the study of the effects that the 

environmental parameters have on biofilm should be deepened and related with the 

food processing line characteristics. Plant performance should be optimized to find an 

equilibrium when production is maximized and the microbial contaminations are 

minimized, (2) design materials with ability to inhibit soil accumulation must be sought, 

and (3) the development of improved cleaning regimes, incorporated with 

conventional/new but efficient chemical agents is in demand. A cleaning and 

disinfection plan should be developed complying with certain principals: the nature of 

the equipment (material and design), nature of the soiling agent, selection of a suitable 

antimicrobial agent, and optimum operational conditions at which the agent has 

maximum efficacy (temperature, concentration, hydrodynamics and exposure time). 

These suggestions should be performed not only for the model bacteria used for this 

thesis, but others such as Escherichia coli, Salmonella spp. or Listeria monocytogenes, 

commonly found in food industry, and their combinations. Understanding the different 

constituents that could emerge in food industry, will lead to a faster and more efficient 

response, by tailoring treatments to specific situations. 

New strategies are currently being researched and many more will appear as a 

response to new resistance mechanisms or technological advances. 
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NOMENCLATURE 

ABBREVIATIONS 

ALG alginate  - 
APHA American Public Health Association - 
ATCC American Type Culture Collection - 
AVG average  - 
AWWA American Water Works Association - 
BAC bezalkonium chloride  - 
BDMDAC benzyldimethyldodecylammonium chloride - 
BrCl 3-bromopropionyl chloride - 
BrOH 3-bromopropionic acid - 
BSA bovine serum albumin  - 
CDC Centers for Disease Control and Prevention - 
CFU colony forming units  CFU.mL-1 
CIP clean-in-place  - 
CLSI Clinical and Laboratory Standards Institute - 
CTAB cetyltrimethylammonium bromide - 
DNA deoxyribonucleic acid - 
EB extraction buffer - 
EDTA ethylenediamine tetraacetate  - 
EPS exopolymeric substances - 
GMP Good Manufacturing Practice - 
HA humic acids - 
HACCP Hazard Analysis and Critical Control Points - 
HDMS hexamethyldisilazane - 
LB Luiria Bertrani  - 
MBC minimum bactericidal concentration  µg.mL-1 
MIC minimum inhibitory concentration µg.mL-1 
NIH National Health Institute - 
OD optical density  nm 
OMP outer membrane proteins  - 
PB phosphate buffer - 
PCA plate count agar  - 
QAC quaternary ammonium compound - 
QS quorum sensing - 
rRNA ribosomal ribonucleic acid - 
SD standard deviation  - 
SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis  
SEM scanning electron microscopy - 
SH sodium hypochlorite  - 
SPSS Statistical Package for the Social Sciences - 
TVS total volatile solids  mg biomass. L-1 
USA United States of America   - 
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UV  ultraviolet - 
WHO World Health Organization - 
WPCF Water Pollution Control Federation - 
YE yeast extract  - 

INDEXES 

BI biofilm inactivation  % 
BR biofilm removal  % 
D  molecular diffusivity of glucose  m2.s-1 
Dh hydraulic equivalent diameter m 
FIC fluorescence intensity of biofilms not exposed to 

antimicrobial agents 
- 

FIW fluorescence intensity value for biofilms exposed to 
the antimicrobial agents 

- 

km  external mass transfer coefficient m.s-1 
mc metabolic activity of the control experiments mg O2. mgorganic mass -1. min-1 

mt metabolic activity of bacteria exposed to the 
antimicrobial 

mg O2. mgorganic mass -1. min-1 

ODC  OD570nm value for biofilms not exposed to agents - 
ODW  OD570nm value for biofilm exposed to the selected 

chemicals 
- 

Q flow rate m3.s-1 
Re Reynolds number - 
Sc Schmidt number  - 
Sh Sherwood number - 
u linear flow velocity  m.s-1 

GREEK  

∆Gsws  free energy of interaction between two entities  mJ.m-2 
γ−  electron donor parameter mJ.m-2 
γ+ electron acceptor parameter  mJ.m-2 
γAB Lewis acid-based component mJ.m-2 

γLW Lifshitz-van der Waals component  mJ.m-2 

γTot total surface energy mJ.m-2 
µ water viscosity  kg.m-1.s-1 
ɛ porosity  - 
f Darcy friction factor - 
θ contact angle - 
ρ  density of water  Kg.m-3 
ρd  true density of dry biomass  Kg.m-3 
ρdw  mass per unit of wet volume Kg.m-3 
τ tortuosity - 
τw  wall shear stress  Pa 
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