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Abstract

TheWorld Health Organization estimates that 300 million people have asthma,
210 million people have Chronic Obstructive Pulmonary Disease (COPD),
and, according to WHO, COPD will become the third major cause of death
worldwide in 2030. Computational Vision systems are commonly used in
pulmonology to address the task of image segmentation, which is essential
for accurate medical diagnoses. Segmentation defines the regions of the lungs
in CT images of the thorax that must be further analyzed by the system or
by a specialist physician. This work proposes a novel and powerful technique
named 3D Adaptive Crisp Active Contour Method (3D ACACM) for the
segmentation of CT lung images. The method starts with a sphere within
the lung to be segmented that is deformed by forces acting on it towards the
lung borders. This process is performed iteratively in order to minimize an
energy function associated with the 3D deformable model used. In the exper-
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imental assessment, the 3D ACACM is compared against three approaches
commonly used in this field: the automatic 3D Region Growing, the level-set
algorithm based on coherent propagation and the semi-automatic segmenta-
tion by an expert using the 3D OsiriX toolbox. When applied to 40 CT scans
of the chest the 3D ACACM had an average F-measure of 99.22%, revealing
its superiority and competency to segment lungs in CT images.

Keywords: CT scan; Image Segmentation; 3D Reconstruction; Lung
Structures.

1. Introduction

Several diseases that affect the world population are related to the lungs,
for example: asthma (Kwan et al., 2015; Wisniewski and Zielinski, 2015),
bronchiectasis (Arunkumar, 2012) and chronic obstructive pulmonary disease
(COPD) (Mieloszyk et al., 2014; Ramalho et al., 2014; Spina et al., 2015).

The World Health Organization (WHO) estimates that 300 million people
have asthma, and this disease causes about 250 thousand deaths per year
worldwide (Campos and Lemos, 2009). Also, 210 million people have COPD
and more than 300 thousand people died in 2005 from this disease (WHO,
2014). Recent studies have shown that COPD is present in the 20 to 45 year-
old-age bracket, although people over 50 years old are the most commonly
affected. Additionally, WHO estimates that COPD will be the third major
cause of death worldwide by 2030 (Marco et al., 2004). For example, in
Brazil from 1992 to 2006, 15% of all hospital admissions financed by the
national public health system were due to respiratory diseases, and asthma
and COPD together were responsible for 562,016 cases (Campos and Lemos,
2009).

Hence, early effective diagnosis of lung diseases is urgently needed in
public health. Among the factors that contribute to achieve this goal is the
increased accuracy of the diagnoses made by specialized physicians with the
aid of computational vision systems. Additionally, some computational tech-
niques can monitor patients with asthma and COPD using personal devices.
Examples that can be highlighted among these techniques are the works of
Kwan et al. (2015) and Juen et al. (2015).

In pulmonology, computed tomography (CT) imaging is often used as a
tool for detection and monitoring of diseases. Hence, CT images have been
used in the analysis of airways (Pu et al., 2011; Lo et al., 2012), vessels
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(Korfiatis et al., 2011), cancer nodules (Diciotti et al., 2011), pulmonary
lobes (Van Rikxoort et al., 2010), pulmonary emphysema (Sorensen et al.,
2012; Hame et al., 2014), and fibrosis (Ariani et al., 2014) among other
lung diseases. Additionally, computational vision systems have been used
as diagnostic tools, particularly to address image segmentation, which is an
essential step to assure correct and accurate results, by identifying the region
of the lungs in the CT thorax images that must be further analyzed by the
system or by specialists.

The segmentation of objects or structures in medical images is usually
more complex than in other types of images. Furthermore, in the case of
lung images, this difficulty is due to the variability of the structures and
the internal organs of the lungs that can be imaged from different planes.
Also, diseases can affect these organs, increasing the difficulty even more to
develop effective techniques to segment the images under study (Rebouças
Filho et al., 2011, 2013).

Various lung segmentation techniques have been developed in recent years.
Among these techniques, the 3D Region Growing (3D RG) approach has been
applied to segment the lung and related internal structures, such as the ves-
sels and airways (Born et al., 2009; Irving et al., 2009; Tschirren et al., 2009;
Matsuoka et al., 2010; De Nunzio et al., 2011). Commercial software packages
commonly combine the 3D RG approach and Human Anatomy information,
like HU density ranges, to aid image-based medical diagnoses. However, a
correct analysis is more difficult when there is a disease in the lungs. The
work of Nemec et al. (2015) studied and evaluated four software packages
commonly used to extract the lung volume of healthy volunteers from CT
images of the chest.

Among the softwares available, OsiriX from the University of Geneva
(http://osirix-viewer.com/ ) is widely used for viewing and rendering 3D med-
ical images (Canas et al., 2007; Martin et al., 2013; Wink, 2014). This soft-
ware has automatic and semi-automatic tools for 3D segmentation (Michael
P Chae, 2015; Presti et al., 2015). In semi-automatic segmentation, an ex-
pert analyzes the 3D objects under analysis and removes unwanted objects
using the 3D Toolbox (Michael P Chae, 2015).

Wang et al. (2011, 2014) developed a fast level-set algorithm based on
the coherent propagation method and assessed its use on clinical datasets.
The results indicated that this algorithm was about 10 times faster than the
ITK Snap software in the segmentation of medical images.

Mansoor et al. (2014) presented a solution to segment healthy and dis-
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eased lungs in 3D using fuzzy logic and texture. On other hand, Wei and Li
(2014) presented a 3D lung segmentation solution based on machine learning
techniques, obtaining an accuracy difference of 2% relatively to experts.

Sun et al. (2012) proposed the Robust Active Shape Model approach for
the segmentation of lungs showing regions with cancer. The evaluation of
the approach was very limited; however, it demonstrated that active contours
can be effectively used for this purpose.

The method proposed in this work is a new Active Contour Model called
3D Adaptive Crisp Active Contour Method (3D ACACM). The proposed
method aims to increase the accuracy and reduce the analysis time and
subjectivity in the segmentation and analysis of CT scans of the chest by
specialized physicians. The method has the advantages of the works from
Mansoor et al. (2014), Wei and Li (2014) and Sun et al. (2012), and combines
machine learning techniques with active contours in order to segment lungs
efficiently in 3D .

Active Contour Models (ACMs) can be divided into parametric and geo-
metric models. Parametric ACMs move the segmentation curve by minimiz-
ing the energy required based on its shape and image information (Moallem
et al., 2015; Ge et al., 2016; Moreira et al., 2016). There are several 2D ver-
sions of parametric ACMs in the literature, which are commonly known as
Snakes. On the other hand, geometric ACMs move the curve by minimizing
the energy required based on a function of statistical probability (Leninisha
and Vani, 2015; Mesejo et al., 2015; Rebouças et al., 2016). There are differ-
ent versions of these models in 2D and 3D, which are commonly called Level
Set models, including the Geodesic model (Diciotti et al., 2011; Qiu et al.,
2015) and other models developed to optimize performance (Wang et al.,
2011, 2014).

This paper proposes a new parametric 3D active contour model specifi-
cally to segment complex objects such as the lung, and not only objects with
cylindrical topology and regular shape, as the one proposed in Schmitter
et al. (2015). The proposed method is innovative in terms of 3D segmenta-
tion, because the points of the 3D model are moved using information based
on the 3D shape of the model and image voxel information, which is different
compared to the existing 3D ACMs for complex shapes based on geometric
modeling. The results show the gain in terms of computation time and accu-
racy against to the related 2D version due to the new formulation used, and
its superiority in comparison to other 3D methods that are commonly used
for the same purpose.
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In the experimental assessment, the 3D ACACM is compared against
three methods commonly used in this field: the automatic 3D Region Grow-
ing (3D RG), the level-set algorithm based on the coherent propagation
method (LSCPM) and the semi-automatic segmentation by an expert us-
ing the 3D OsiriX. All methods are compared in terms of F-measure and
processing time to segment lungs in 3D CT images of the thorax.

2. Proposed method

In this section, a new 3D segmentation method based on the principles
of Active Contour Models, called 3D Adaptive Crisp ACM, is described.
All the steps of the new 3D method proposed, using information from 3D
medical images, are described in this section from the initialization to the
stabilization of the segmentation model.

Unlike other parametric ACMs, the proposed method moves the points
of the model using information from image voxels and model shape. Thus,
one point m(s) is moved by minimizing the energy of the 3D Adaptive Crisp
ACM ECA3D

, which is given by:

ECA3D
[m(s)] =

Eintadap3D
[m(s)] + τEextACEE3D

[m(s)], (1)

where Eintadap3D
[m(s)] is the 3D Adaptive Internal Energy and EextACEE3D

[m(s)]
is the 3D Adaptive Crisp External Energy, which are both proposed in this
work. A point m of the 3D model has as coordinate a C curve in a slice i of
the axis z. Thus, m(s) = [c(s), zi)], where c(s) is composed of the [x(s), y(s)]
coordinates, and zi is the plane of the curve c. The position of point c(s) is
on the axis z.

As aforementioned, the proposed method follows the concept of the 2D
method presented in Rebouças Filho et al. (2013). However, the energies of
the new 3D model were reformulated to increase the segmentation speed and
the stability. This the first parametric ACM proposed to efficiently segment
complex objects in 3D.
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2.1. 3D Adaptive Internal Energy

The internal energy of the proposed 3D parametric ACM is calculated
based on 3D model information:

Eintadap3D
[m(s)] =

βFcont3D [m(s)] + αFadap3D [m(s)], (2)

where Fcont3D [m(s)] is called 3D Continuity Force, Fadap3D [m(s)] is the Adap-
tive Force, and β and α are weights to set the importance of these forces in
the final internal energy of the model Eintadap3D

.

2.1.1. 3D Continuity Force

The reformulation of this energy in the proposed method aimed to keep
the points of the 3D model equidistant considering not only the neighboring
points in the same slice, but also maintaining the distance between the points
of the neighboring slices. Therefore, by increasing the distance of the closest
points and reducing the distance of the furthest ones, the 3D continuity force
tends to increase the stability of the model.

The calculation of the 3D Continuity Force Fcont3D is performed by using
a distance between two 3D points using the coordinates x, y and z, given by:

d3D =

√
∆x2 +∆y2 +∆z2, (3)

where ∆x, ∆y and ∆z correspond to the differences of the point coordinates
on the axes x, y and z, respectively, which leads to:

Fcont3D [x(s), y(s), zi] = Fcont3Dzi
[x(s), y(s), zi]+

Fcont3Dzi−1
[x(s), y(s), zi] + Fcont3Dzi+1

[x(s), y(s), zi], (4)

where Fcont3Dzi
, Fcont3Dzi−1

and Fcont3Dzi+1
are obtained from regions of the

slices i, i− 1 and i+ 1, respectively, and:

Fcont3Dzi
[x(s), y(s), zi] =

∣∣∣∣AD −
√
[x(s)zi − x(s− 1)zi ]

2
+ [y(s)zi − y(s− 1)zi ]

2

∣∣∣∣
+

∣∣∣∣AD −
√
[x(s)zi − x(s+ 1)zi ]

2
+ [y(s)zi − y(s+ 1)zi ]

2

∣∣∣∣ , (5)
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Fcont3Dzi−1
[x(s), y(s), zi] =∣∣∣∣AD −

√
[x(s)zi − xpzi−1

]
2
+ [y(s)z − ypzi−1

]
2
+ dz

2

∣∣∣∣ , (6)

and
Fcont3Dzi+1

[x(s), y(s), zi] =∣∣∣∣AD −
√
[x(s)zi − xpzi+1

]
2
+ [yz(s)− ypzi+1

]
2
+ dz

2

∣∣∣∣ . (7)

In Eqs. 5, 6 and 7, AD is the average distance among the 3D model
points, [x(s), y(s), zi] are the coordinates of point [x(s), y(s)] of the zi curve
in the slice where the force is calculated. The [xpzi−1

, ypzi−1
] and [xpzi+1

, ypzi+1
]

points are the [x(s), y(s)] in i− 1 and i+ 1 slices, respectively, and dz is the
distance between the curves in different slices in the z axis, which is constant
for each dataset. Note that [x(s − 1), y(s − 1)] and [x(s + 1), y(s + 1)] are
neighbors of point [x(s), y(s)] in the zi slice; therefore, Fcont3Dzi

does not have
dz in the calculation.

Figure 1 shows an example of the points and the distances involved in
the calculation of the force Fadap3D described by Eq. 4 taking a point Ci as
a reference. This figure illustrates the distances used in Eq. 5 in green (slice
i), and the ones in Eqs. 6 and 7 in red (slices i− 1 and i+ 1, respectively).

The resultant force Fcont3D uses the average distance between the points
in the model (AD). This parameter is used as a target of the analyzed
distances, generating forces that increase the distances that are inferior to AD
and reduce the distances that are superior to AD. Thus, the 3D continuity
model force tends to make the connections between the model points equally
spaced in 3D. The average distance AD needs to be updated at each iteration,
because when the points of the 3D model are moved, the distances between
them change. As result, this energy prevents that the points of the model
from moving uncoordinatedly not only in relation to the neighboring points
in the same slice, but also in relation to the neighboring points in the slices
above and below (Figure 1).

This strategy tends to improve the stability of the model.

2.1.2. 3D Adaptive Balloon Force

In the proposed method, the reformulation of this energy to 3D aimed to
keep the scope of the segmentation in different directions, but with an even
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Figure 1: Illustration of the distances used to calculate the 3D Continuity Force, with the
distances used in Eq. 5 in green (slice i), and the distances used in Eqs. 6 and 7 in red
(slices i− 1 and i+ 1, respectively).

faster rate than in the 2D method (Rebouças Filho et al., 2013; Rebouças
Filho et al., 2014). This is possible by using information from neighboring
slices to boost the movement of the model points.

The 3D Adaptive Balloon Force proposed in this work uses the topology of
each point to move it, and takes into account the information of neighboring
slices in the calculation of this force that will expand the model to 3D. Thus,
this force must use the topology of 3 slices to move each point, increasing
the convergence of each point towards the object of interest. The quality of
information on the object of interest improves when the proposed model uses
three consecutive slices into account, i, i− 1 and i+1, where i is the slice of
the point being analyzed.

Thus, the 3D Adaptive Balloon Force Fadap3D at a given point [c(s)] be-
longing to the slice zi, whose coordinates are [x(s)zi , y(s)zi ], is given by:

Fadap3D [c(s), zi] = Fadap3Dzi
[c(s), zi]+

Fadap3Dzi−1
[c(s), zi] + Fadap3Dzi+1

[c(s), zi], (8)
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where Fadap3Dzi
, Fadap3Dzi−1

and Fadap3Dzi+1
use the nearest point of c(s) in

the curves from slices i, i− 1 and i+ 1, respectively, and are defined as:

Fadap3Dzi
[c(s), zi] =

√∣∣x(s)zi ± xmzi

∣∣2 + ∣∣y(s)zi ± ymzi

∣∣2, (9)

Fadap3Dzi−1
[c(s), zi] =√∣∣∣x(s)zi ± xpzi−1

∣∣∣2 + ∣∣∣y(s)zi ± ypzi−1

∣∣∣2, (10)

and
Fadap3Dz+1

[c(s), zi] =√∣∣∣x(s)zi ± xpzi+1

∣∣∣2 + ∣∣∣y(s)zi ± ypzi+1

∣∣∣2, (11)

where point [xmzi
, ymzi

] is the center point of the neighboring of point c(s)
from the curve in slice i of z axis as they are in the same slice, while points
[xpzi−1

, ypzi−1
] and [xpzi+1

, ypzi+1
] are nearest to curve in slice i − 1 and i + 1

of the z axis, respectively. Points [xpzi−1
, ypzi−1

] and [xpzi+1
, ypzi+1

] are the
same as those used in the calculation of the 3D Continuity Force described
by Eq. 4. The signs of Eq. 9 are positive when the center point [xmzi

, ymzi
] is

internal to curve c of slice z, and negative otherwise. On the other hand, the
signs of Eqs. 10 and 11 are defined by points [xpzi−1

, ypzi−1
] and [xpzi+1

, ypzi+1
],

respectively. Therefore, the signs are positive when these points are internal
to curve c of slice i and negative otherwise.

The 3D Adaptive Force expands the model based on two pieces of infor-
mation to calculate the energy of each point. The first is determined by the
nearest points of the model when it comes to the neighboring slices, i − 1
and i + 1, and is determined by the center point of the neighbors when it
comes to the same slice i of axis z. These points are analyzed by extruding
or attracting the point according to their self-analysis, using the solution
suggested by Berg et al. (1975), which defines if the point is inside or outside
the model.

An example of the performance of the components of force Fadap3D acting
on a point Ci, as described in Eq. 8, is shown in Figure 2. In this figure, the
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Figure 2: Illustration of the 3D Adaptive Balloon Force FMBiDi
, FCi−1

and FCi+1
from

slices i, i− 1 and i+ 1, respectively, where i is the position on axis z.

first component defined in Eq. 9 uses the center point of its neighbors MBiDi
,

as shown in red in Figure 2. This is achieved by averaging its neighboring
points Bi and Di. Analyzing this point by the Jordan Curve Theorem (Berg
et al., 1975), this point is taken as the internal point of the slice i, resulting
in force FMBiDi

presented in yellow in Figure 2.
The second and the third components of force Fadap3D are obtained from

the nearest points of the neighboring slices by Eqs. 10 and 11. Eq. 10
defines the component from slice i − 1, using the point closest to point Ci

defined in Figure 2 as being point Ci−1. This point is analyzed based on the
Jordan Curve Theorem, Berg et al. (1975), changing the sign of Eq. 10 to
positive, and pushing point Ci, as shown for force FCi−1

presented in green,
so that it is inside the curve of slice i. Similarly, Eq. 11 uses point Ci+1

in the calculations so that this is the nearest to Ci in slice i + 1. In Figure
2, this point is internal to the curve of slice i, changing the sign of Eq. 11
to positive, which causes force FCi+1

, displayed in blue in Figure 2, to push
point Ci.

The movement of each point in the proposed 3D model is therefore influ-
enced by the curves in the neighboring slices whilst in the 2D model, only
slice i is analyzed by expanding the curve in this slice (Figure 2). Conse-
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quently, the movement of each point of the 3D model towards the objects of
interest resultant from the proposed energy is optimized as more information
is taken into account.

2.2. 3D Adaptive Crisp External Energy

The 3D Adaptive Crisp External Energy (3D ACEE) detects the origin
of the edges of the lungs based on the analysis of pulmonary densities in
the neighborhood of a voxel along with a Multi Layer Perceptron (MLP)
artificial neural network to determining the origin of the edges found in the
3D traditional external energy, which in this work is based on the Sobel
gradient in 3D (Al-Dossary and Al-Garni, 2013).

Starting from the Analysis of Pulmonary Densities (APD) (Rebouças
Filho et al., 2011) method performed in a 3D neighborhood of a voxel, the
percentages of 6 classes vi, in which i varies from 0 to 5, are: air hyper-
inflated (1000 to 950 HU), normally air inflated (950 to 500 HU), low air
inflated (500 to 100 HU), non-air inflated (100 to 100 HU), bone (600 to
2000 HU) and areas not classified, which are the densities that do not fit
in the previous ranges. From the definition of these classes, a CT lung is
considered as a set of overlapping images, i.e. slices. This analysis T has
dimension l × c × a, where l × c is the dimension of the slices and a the
number of slices of the exam under study.

Considering that the voxel under analysis has coordinates (x, y, z), the
function that determines the number of voxels with densities present in each
class vi is defined as:

f(x, y, z, vi) =
n∑

l=−n

n∑
m=−n

n∑
o=−n

R(x− l, y −m, z − o), (12)

where n is the size of the analyzed neighborhood and R(x, y, z) is given by:

R(x, y, z) =

{
1, liminf (vi) < T (x, y, z) < limsup(vi),
0, otherwise,

(13)

where liminf (vi) and limsup(vi) are the lower and upper limits of the density
range, in HU, for the class vi.

Using Eq. 12, it becomes possible to calculate the percentage Pi3D of each
class i as:

Pi3D(x, y, z) =
f(x, y, z, vi)
4∑

j=0

f(x, y, z, vi)

. (14)
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After exhaustive testing, it was concluded that by increasing n, the image
detection quality is increased, because the neighborhood size is proportional
to n. However, a value of n above 7 increases the processing time consid-
erably, without any significant improvements in the results. Therefore, the
value 7 was used for n in the experiments.

The new 3D external energy uses an MLP artificial neural network in
order to determine the origin of each edge found in the CT scans of the
thorax. This neural network has, as inputs, the percentage of each class vi
found by the ADP method (Rebouças Filho et al., 2011), and a topology of
6/4/1 (Rebouças Filho et al., 2013). Its output indicates if an edge found
in the thorax CT image belongs to the lung wall or not. Thus, a database
is built from the voxel percentages extracted from examinations of COPD,
cystic fibrosis and healthy patients.

A dataset was built manually, searching for the greatest possible rep-
resentation of lung structures. Hence, 10 CT lung exams used as part of
diagnostic investigations with approximately 5000 slices were analyzed. The
percentage Pi3D was extracted for 500 voxels in each slice. Each set of in-
puts for these percentages was labeled, indicating which of the edges found
in the 3D traditional external energy belonged to lung walls and which did
not. Emphasizing that the 3D traditional external energy was calculated
using the Sobel 3D operator, which calculates an average of the gradients
found throughout the neighborhood being analyzed. The dataset built was
validated by a cross-validation method (Haykin, 1999).

The following function is the output of the MLP network in execution,
before its training phase:

fmlp3D(v) =

{
1, edge similar to lung wall,
0, otherwise,

(15)

where v consists of the 6 percentages Pi3D , where i varies from 0 to 5.
Using fmlp3D in order to determine the origin of the edges found in the

CT lung images, the external energy is given by:

EextACEE3D
(x, y, z) =

{
Sobel3D(x, y, z), for fmlp3D (v) = 1,

1, otherwise, (16)

and v is the percentage vector of the ADP 3D method obtained from Eq. 12
using coordinates (x, y, z) from the analyzed voxel.

Using Eq. 16, the MLP network determines the walls that are lung edges
or not returning the value 1 using the function fmlp3D . When this function
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returns the value 0, it indicates that it is not a lung edge, and then the
associated region receives the maximum crisp adaptive energy. Small objects
presented only in a few number of slices now have less importance in the
3D model than in the related 2D model, as the energy is calculated with
information from multiple slices.

2.3. 3D Adaptive Crisp ACM Automatic Initialization

The 3D model automatically starts inside the lungs. The method deter-
mines the initialization voxels in the right and left lungs, called 3D Right-
hand initial voxels (RIP3D) and 3D Left-hand initial voxels (LIP3D), respec-
tively. Each one of these voxels has coordinates (xini, yini, zini). To carry this
out, all the slices on the input CT scan are analyzed by the 2D initialization
method in order to determine the exact initialization voxels (Rebouças Filho
et al., 2013). The values of the z coordinates of all slices that find a suc-
cessful 2D automatic initialization are stored, then the average coordinate is
adopted as zini and coordinates (xini, yini) obtained by the 2D method of this
slice are used as the initialization coordinates of voxels RIP3D and LIP3D.
As such, the method tends to start in the center of each lung.

Figure 3 shows two curves presented in individual slices, where the dis-
tance between each voxel, in red, from the center of the 3D model is given
by R; the blue line shows the centroid used in all slices and r is the radius
of the slice separated by a distance dz of the plane zini in the center of the
slice I considering only the axis z.

Figure 3: Definition of the initialization parameters for the 3D model.

Figure 3 depicts that each slice has a different distance from the centroid
for each voxel. So, given slice zini that belongs to the center of the 3D model,
it follows that the distance from the centroid for each voxel is the actual value.
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When the curve is on another slice, value r must be calculated that is the
radius of this further slice, and this value decreases as dz increases.

The algorithms used in the 3D display system used in this study were
developed in C and C++ languages and run on the OpenGL library (Astle
and Hawkins, 2009; Sellers et al., 2015). The GLU library is used to represent
objects in 3D. GLUT library is used to create windows and receive user
commands, and is multiplatform (Astle and Hawkins, 2009; Sellers et al.,
2015). Figure 4 shows an automatic initialization example of the 3D model,
where voxels RIP3D and LIP3D were found in a CT scan with 900 slices.
This initialization took 15 slices, using 30 voxels in each slice and a distance
of 30 voxels between each voxel and the center of each lung, in which the
starting voxels were RIP3D and LIP3D of the right and left lung models,
respectively. These lung models are shown in ”lung” color in Figure 4(a),
and Figure 4(b) displays one of the final lung models built.

(a) (b)

Figure 4: Automatic initialization of the 3D segmentation model in each of the lungs a)
and one of the final models built b).

2.4. Movement, Adding and Removing points

In this section, the dynamics of displacement, adding and removing ACM
points in the proposed 3D segmentation method are described. The displace-
ment of points is analyzed in a unique neighborhood, and the point coordi-
nates that generate a lower energy E3D set are its new coordinates. Hence,
the point coordinates are updated in order to minimize the total model en-
ergy given by Equation 1.

Figure 6 illustrates a 3 × 3 neighborhood of a point c(s) belonging to a
slice i considering the axis z of the 3D model. Slices i− 1 and i+ 1 are only
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used for the calculation of the 3D energy that contributes to the total energy
of the ACM Crisp 3D Adaptive (ECA3D

). Thus, the displacement of a point
belonging to a given slice will only occur in zi of this slice. Therefore, not
only the points between distant neighbors in the same slice should be added,
but also the points in neighboring slices. This is necessary so that the 3D
model can detect an object that is present in several slices, and not all slices
have a curve initially.

Figure 5: Illustration of a 3 × 3 neighborhood for the analysis of the energy and the
movement of a point c(s) belonging to slice i, wherein slices i1 and i+ 1 are just used to
define the shifting, addition and removal of points in a 3D model.

The addition of points occurs through two distinct methods. The first
method adds points between neighborhoods of a slice that have a distance
greater than the maximum allowed. The second method adds points between
neighboring slices. This method analyzes the curves present in two slices, the
first and last slices of the 3D model. This analysis is based on the perimeter of
these curves, wherein a maximum circumference (Pmax) is initially configured,
and the method adds a new curve where one of these aforementioned curves
exceeds the value of the predefined Pmax.

Considering that the first slice is slice f and the last one is slice l, then
when the first slice has a perimeter larger than Pmax, a new curve is added to
slice f − 1. However, when the last slice of the model has a perimeter larger
than Pmax, a new curve is added to slice l+1. This new curve is added using
the centroid of the curve in the analysis as a reference. When adding a curve
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in slice f − 1 it is used the centroid of f and when adding a curve to slice
l + 1 the centroid of the curve from slice l is used.

Figure 6 illustrates the application of this method using 30 as the max-
imum perimeter Pmax and the initialization parameters assuming the value
10 as the distance from each point to the centroid and 30 as the number of
vertices. In Figure 6(a), the upper and lower slices have greater perimeters
than Pmax; Figure Figure 6(b) shows the visualization of this model with an
internal view of the top slice. The results of applying the points addition
method in the upper and lower slices are shown in Figure 6(c). Figure 6(d)
shows the external and internal views of the model, respectively, after the
addition of the points.

(a) (b)

(c) (d)

Figure 6: Adding slices to a 3D model: a) 3D model with areas larger than the ones
defined in the first and last slices; b) top view of the model in a); c) 3D model after adding
the new slices; and d) top view of the model in c).

Another important step in the proposed method is the removal of points
from the 3D model. Analogously to the method of addition of points, this
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step is also based on two methods. The first method uses information of the
neighbors of a point in the same slice as illustrated in Figure 7. The angle
formed between the analyzed point and its neighbors in this slice is calculated

as α = arccos
(

a2+b2−c2

2bc

)
, and if this angle is less than a predefined angle, this

point is removed from the model and model is reordered. In summary this
method removes the model points that are misaligned with their neighbors.

Figure 7: Calculation of the angle between a point and its neighbors on the same slice.

The second method follows the same principle to remove points from
its neighbors, but expanding the principle to 3D. This is possible using the
closest points in neighboring slices. Thus, considering a point belonging to
slice zi, the nearest point of slice zi−1 and the closest point of slice zi+1 used,
as illustrated in Figure 8 with points Ci, Ci−1 and Ci+1 belonging to slices i,
i− 1 and i+ 1, respectively.

The analysis for the removal of points is based on the angle formed be-
tween the neighbor points that is compared with a predefined minimum angle
θmin. An analyzed point is removed when the angle between the point and
the closest ones in the neighboring slices is less than θmin. Given the model
shown in Figure 8, one can see the point Ci forming an angle θ with Ci−1 and
Ci+1, where these are the closest points in slices i− 1 and i+1, respectively.

Angle θ1 shown in Figure 8(a) is greater than angle θ2 in Figure 8(b). This
is because Ci is less aligned with Ci−1 and Ci+1 in the formation of θ2, which
does not occur in the formation of θ1. The angle θ formed between a point and

its closest points in the neighboring slices is given by θ = arccos
(

a2+b2−c2

2bc

)
,

where a, b and c are the parameters identified in Figure 8.
Thus, the removal methods tend to exclude the misaligned points from
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(a)

(b)

Figure 8: Illustration of the parameters used for calculating the angles formed between
a point of slice i with its nearest neighbor in slices i − 1 and i + 1: a) and b) show the
definition of angles θ1 and θ2, respectively.

the other slices. The points removed are points that are misalignment relative
to their neighbors in the same slice or relative to the points in curves present
in the neighboring slices. This makes the model smoother and avoids gross
errors in the 3D segmentation.

2.5. Automatic Segmentation of Lungs in Thorax CT Scans

The automatic segmentation of the lungs in a CT scan of the thorax uses
the methods previously described for the automatic initialization of the 3D
model, addition and removal of points and the 3D Adaptive Crisp ACM. The
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Figure 9:Flowchart for implementing the 3D Adaptive Crisp ACM.

methods are executed according to the flowchart shown in Figure 9, which
also includes examples related to each step involved.
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The first step in segmenting the lungs automatically in a CT examina-
tion is to open all the DICOM images. To carry this out, the free library
DCMTK is used to read the image and its parameters and to identify and
order the CT scan slices. Then, the whole external energy is calculated using
the 3D Adaptive Crisp method for detecting the origin of the edges obtained
by the 3D traditional external energy. The edges detected inside the lungs
are excluded from the external energy. The centroid of the 3D model with
coordinates xini, yini and zini is determined by the slice of the average co-
ordinate zi, considering all slices i, where the lung was found using the 2D
method suggested in Rebouças Filho et al. (2013). The 3D model under
goes successive iterations of the 3D Adaptive Crisp ACM method in order
to decrease the energy of the model by moving its points. In each of the
iterations, the methods of 3D points removal and addition are applied.

(a) (b) (c)

(d) (e) (f)

Figure 10: Lung segmentation in CT scans by 3D Adaptive Crisp ACM: a) automatic
initialization of the 3D model; b) to e), evolution of the 3D model, and f) final result.

The model is stable when the volume does not increase after two con-
secutive iterations. When this happens, the segmentation of the lung is
complete. Figure 10 shows an example of a segmentation obtained by the
proposed method, from the initialization to the stabilization of the 3D model.

20



2.6. Statistical measures

In order to analyze the segmentation performance, three well-known mea-
sures were employed: recall, precision and F-measure, whose definitions are
briefly described here:

Recall (aka Sensitivity) is the ratio between the number of correctly seg-
mented voxels of a given class and the total number of voxels in the CT scan
of the thorax under analysis, including those that were incorrectly segmented:

Recall =
true positives

true positives + false negatives
, (17)

where true positives and false negatives stand for the number of voxels of a
given class correctly and incorrectly segmented, respectively.

Precision (aka Positive predictive value) means the ratio between the
number of correctly segmented voxels of a specific class and the total number
of voxels in the CT scan of the thorax under analysis as belonging to that
class:

precision =
true positives

true positives + false positives
, (18)

where true positives and false positives denote the number of voxels correctly
and incorrectly segmented as belonging to the considered class, respectively.

The F-measure (Fm) for a given class is calculated as the harmonic mean
of the Recall and precision values for that specific class, resulting in a more
global parameter for evaluating the performance of a classifier on each class.
More formally:

Fm = 2

(
Recall × precision

Recall + precision

)
. (19)

3. Experimental Results

In this section, we present the results in terms of computational cost and
performance of each lung segmentation method under comparison. The tests
were performed on a notebook with an Intel Core i5 1.4 GHz, 4 GB of RAM,
and running MAC OS X 10.10.5.

In the evaluation, the computational cost (processing time), positive pre-
dictive value (precision), sensitivity (recall) and F-measure were used to cal-
culate the similarity between the shapes under comparison.
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Table 1: Description of the CT chest exams used to analyze the 3D algorithms.

CT scan Number of
number images Pathology

1 456 Normal
2 282 Normal
3 269 Normal
4 301 Normal
5 344 COPD
6 382 Normal
7 241 Fibrosis
8 232 Normal
9 279 Fibrosis
10 299 Normal
11 299 COPD
12 229 Bronchiectasis
13 228 Bronchiectasis
14 220 Bronchiectasis
15 268 Nodular calcification
16 260 Normal
17 248 COPD
18 224 Bronchiectasis and Fibrosis
19 228 Nodular calcification and COPD
20 276 calcification
21 224 Fibrosis
22 224 Parenchymal bands
23 228 Bronchiectasis and calcifications
24 240 Bronchiectasis and calcifications
25 256 Fibrosis and calcifications
26 228 Bronchiectasis
27 180 Bronchiectasis and Fibrosis
28 256 Normal
29 224 Bronchiectasis and Fibrosis
30 256 Normal
31 300 Parenchymal bands
32 256 Calcification and COPD
33 232 Bronchiectasis and Parenchymal bands
34 228 Calcification and COPD
35 248 Normal
36 244 Normal
37 224 Bronchiectasis and calcifications
38 252 Bronchiectasis and calcifications
39 268 Bronchiectasis
40 264 Atelectasis and COPD

3.1. Images Acquisition

The CT systems used to acquire the experimental 40 chest CT scans of
healthy volunteers and patients with various types of pathology were of high
resolution. The acquired images have a resolution of 512× 512 with 16 bits.
Table 1 indicates the characteristics of these exams, which were obtained
in partnership with the Walter Cantidio University Hospital, in Brazil, and
used in an earlier study (Rebouças Filho et al., 2011, 2013).

3.2. Definition of the optimal parameters

In this section, the definition of the optimal parameters to be used with
the proposed method for segmenting the lungs in the experimental CT scans
of the chest is described.

The energies involved in a parametric active contour model, either in 2D
or 3D, need to be parameterized and each energy component has a different
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importance in the calculation of the total energy for each pixel or voxel.
As such, the parameters α, β and τ define the weights of the 3D Adaptive
Balloon Force, 3D Continuity Force and 3D Adaptive Crisp External energy,
respectively, in the calculation of the total energy.

The optimal parameters were defined by cross-validation varying each
parameter and considering the sum of all as equal to 1 (one). The graphs of
Figure 11 depict the results of the F-measures and processing times. Three
columns are shown for three different weights for 3D Continuity Force, the
gray column is β = 0.5, black column β = 1.0 and white column β = 1.5. The
x-axis shows the values of parameter α and the τ value is the complement of
the sum between α and β to 1 (τ = 1− α− β). These results were obtained
using 6 CT scans considering different clinical cases: normal (CT scans 1
and 4), calcification (CT scans 15 and 20), bronchiectasis (CT scan 26), and
parenchymal bands (CT scan 31).

Analyzing Figure 11(a), one can verify that if alpha is increased, the
F-measure value will increase until it stabilizes; yet, it starts to drop from
α = 0.5. However, analyzing Figure 11(b), one can see that the higher
the alpha value is, the faster the lung segmentation in CT scans tends to
be. Therefore, the optimal configuration was obtained using β = 0.05 (grey
column) with α = 0.60, and τ = 0.35, as indicated by the red line shown in
Figure 11. This option will lead to the shortest possible processing time and
highest efficiency.

3.3. Numerical contribution of the proposed 3D method compared to the 2D
method

To evaluate numerically the contribution of the proposed 3D method
compared to the 2D method proposed in Rebouças Filho et al. (2013), we used
the optimal configuration obtained for both methods on the same 6 CT scans
(Figure 11). The 2D method obtained an F-measure of 96.33% ± 0.42 and
a processing time of 12.52± 2.10 minutes. The proposed 3D Adaptive Crisp
Active Contour obtained an F-measure of 99.14%±0.18 and a processing time
of 3.20± 0.38 minutes. These results demonstrate that the novel 3D energy
accelerates the convergence of the 3D model, thus reducing the processing
time, with the combination of each new 3D energy making the proposed 3D
method 3.91 times faster than the 2D method compared under the same
experimental settings and conditions.

The use of the Sobel 3D operator resulted in the F-measure average value
obtained by the proposed 3D model being 3.5% higher than the one obtained
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Figure 11: Results of the F-measure and processing time obtained by cross-validation
varying α, β and τ in order to define the weights of the 3D Adaptive Balloon Force,
3D Continuity Force and 3D Adaptive Crisp External energy, respectively. The grey bar
column is β = 0.5, black column β = 1.0 and white column β = 1.5. The optimal
configuration is indicated by a red line.

by the 2D method. Also the proposed 3D method is more stable, which can
be confirmed by analyzing the standard deviations of the F-measure.

3.4. Results and Discussion

In the experimental assessment, the 3D ACACM was compared against
three common approaches used in this field: the automatic 3D Region Grow-
ing (3D RG) algorithm, the level-set algorithm based on the coherent prop-
agation method (LSCPM) and the semi-automatic segmentation performed
by an expert using the 3D OsiriX toolbox (EUOT).
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The 3D Adaptive Crisp ACM method was configured with the parame-
ters (as described in Section 3.2) α = 0.60, β = 0.05 and τ = 0.35 in the
calculation of the total energy. After the initialization, the centroids were
determined. To build the initial 3D model, 30 voxels per slice with a radius
value of 50 voxels for the distance to the centroid were used. The maxi-
mum distance d among voxels considered in the addition of new voxels was
equal to 5 voxels and the minimum angle between a voxel and its neighbors
considered in the removal of voxels was defined as 45 degrees.

The 3D RG algorithm used the same initialization as 3D Adaptive Crisp
ACM, with the entire internal region of the ACM initialization polygon used
as seed. The neighboring regions addition method uses lung anatomy in-
formation, only adding voxels that are on intensity edges within the lung,
which are: normally aerated, slightly aerated or hyper-inflated. This ad-
dition occurs by successive iterations, ending when no more voxels can be
added. Two updates are made in this method. First of all, the trachea and
the hilum are targeted separately by removing the voxels of this region from
the result of the segmentation of the lungs. Finally, if the regions of both
lungs are tending to merge, the frontier between the two lungs is updated to
avoid segmenting regions of one lung as of the other lung. This frontier is
moved to the location of the smallest diameter between the regions. Assum-
ing that the voxels where the two lungs merge looks like an hourglass, the
frontier is moved to the middle of the hourglass.

There are several types of commercial medical software with plugins and
toolboxes that can be used to compare the proposed method. We used one
that is mostly used in hospitals and also in recent researches. Hence, the level-
set algorithm based on the coherent propagation method (LSCPM), proposed
by Wang et al. (2011, 2014), was used in this work for lung segmentation via
the MIA plugin for OsiriX (http://www.mia-solution.com).

Another segmentation approach possible is the semi-automatic segmenta-
tion by an expert using the 3D OsiriX toolbox (EUOT). In this approach, the
expert visualizes the 3D objects presented in the input exam, and removes
undesired objects (Michael P Chae, 2015). The use of EUOT is in fact widely
adopted by many doctors; however, this tool is based on simple segmentation
techniques such as thresholding and region growing. Thus, when the lung
under analysis has some disease, manual corrections should be made in each
slice of the CT dataset; however, this tool does not allow this straightforward
procedure. Figure 12 shows examples of the segmentations obtained by the
methods under comparison.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 12: Lung segmentation in CT scans by the methods under comparison: a), b)
and c) 3D Adaptive Crisp ACM; d), e) and f) 3D Region Growing; g), h) and i) Level-
set algorithm based on the coherent propagation method; j), k) and l) semi-automatic
segmentation by an expert using the 3D OsiriX toolbox.
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The segmentations obtained by each method under comparison were eval-
uated using 40 CT scans of the chest. Each CT scan was assessed along its
length from the apex to the base of the lung, removing one in eight slices.

The segmentations used as ground truth were built semi-automatically
using commercial software and manual corrections were subsequently carried
out by a medical expert on the existing errors.

Table 2 shows the statistical results obtained for the 40 CT scans in terms
of healthy patients and patients with diseases. In the case of the diseased
CT scans, there are two groups, the first group with decreased HU density in
some regions of the lung such as those due to COPD and bronchiectasis, and
the second group with increased HU densities such as those due to fibrosis,
calcification and atelectasis.

Table 2: Statistical analysis of the F-measure (FM) values obtained for the lung segmen-
tation methods on the experimental CT scans in terms of healthy lungs (HL), lungs with
disease that increase or decrease the HY density (DID and DDD, respectively), and global
results (GR).

Segm.
Method

Right lung Left lung Both lungs
FM(%) FM(%) FM(%) Time(min)

HL

3D ACACM 99.93±0.19 98.82±0.22 99.22±0.14 3.54±0.79
3D RG 98.19±0.74 98.28±0.77 98.57±0.54 2.51±0.55
EUOT 98.03±1.16 97.92±1.27 98.53±0.99 4.38±0.89
LSCPM 98.26±1.25 98.08±1.36 98.73±1.04 1.18±0.26

DDD

3D ACACM 98.90±0.11 98.69±0.23 99.19±0.08 3.04±0.47
3D RG 98.40±0.55 98.16±0.84 98.70±0.43 2.15±0.33
EUOT 98.02±1.01 97.68±1.35 98.65±0.84 3.72±0.56
LSCPM 98.07±1.14 97.65±1.50 98.76±0.92 1.01±0.15

DID

3D ACACM 98.94±0.25 98.78±0.28 99.22±0.16 2.91±0.32
3D RG 94.49±7.61 93.49±10.67 96.43±5.06 2.06±0.22
EUOT 93.78±8.64 92.68±11.35 96.08±5.97 3.69±0.38
LSCPM 92.92±10.21 91.74±13.43 95.56±7.46 0.97±0.10

GR

3D ACACM 98.94±0.21 98.77±0.26 99.22±0.14 3.11±0.57
3D RG 96.50±5.60 95.99±7.36 97.59±3.67 2.20±0.40
EUOT 96.01±6.37 95.39±8.28 97.39±4.35 3.89±0.66
LSCPM 95.68±7.56 94.98±9.81 97.22±5.43 1.03±0.19

This study adopted the F-measure as the quality metric because this
measure takes into account only the lung region in the calculations. Many
authors use the accuracy as an evaluation metric, but in this case, this metric
does not lead to accurate results, since the lung is just a small part of the total
imaged volume, and accuracy considers the whole volume under examination,
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which can lead to erroneous analysis of the results.
Regarding the results presented in Table 2, there are four analyzes. The

first one evaluates healthy patients, and here the average F-measure by the
proposed method is better for both lungs with a value of 99.22%± 0.14, fol-
lowed by the Level-set algorithm based on the coherent propagation method
with a value of 98.73%±1.04 for this metric, then the 3D RG with 98.57%±
0.54 and finally, the semi-automatic segmentation by an expert using 3D
OsiriX toolbox with 98.53%± 0.99.

The second analysis concerns patients with diseases. The presence of
exams with diseases that decrease the HU density in some lung regions does
not change significantly the results of the methods: as to the average F-
measure, the 3D ACACM has a value of 99.19%±0.08, LSCPM of 98.76%±
0.92, 3D RG of 98.70% ± 0.43, and EUOT of 98.65% ± 0.84. However,
this behavior does not occur for diseases that increase the HU density in
some regions of the lung. In these cases, the 3D ACACM results remain
practically constant with a value of 99.22%±0.16 for the average F-measure;
however, the other methods had lower performances: 3D RG obtained a value
of 96.43% ± 5.06, LSCPM of 95.56% ± 7.46, and EUOT of 96.08% ± 5.97.
Figure 13 presents boxplots of the most critical case associated to the existing
methods, i.e. the segmentation of lung diseases that tend to increase the
values of HU tissue density.
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Figure 13: F-measure (FM) boxplots of the values obtained for the lung segmentation
methods on the experimental CT scans in terms of disease that increase the HU density
(DID).

The boxplots in Figure 13 show that in cases of DID, the existing methods
have considerably variations of hit rate. This is because these diseases make

28



the unhealthy lung tissue very dissimilar to healthy lung tissue. However, the
proposed method remains robust with an almost constant hit rate, obtaining
results similar for healthy volunteers and patients with DDD and DID.

Figure 14 shows the results considering healthy and unhealthy lungs and
illustrates common errors that can occur in this field. The results are pre-
sented according to the following: the first row shows healthy lungs; the
second row shows lungs with COPD; the third row presents lungs with
Bronchiectasis and Parenchymal bands; the fourth row shows lungs with
Bronchiectasis and Fibrosis; the fifth row shows lungs with Nodular calci-
fication and COPD. The results are presented with true positives in green,
false negatives in red, and false positives in orange and blue (blue is used in
the cases where the border between the 2 lungs is unclear), and the original
grayscale represents true negatives.

Regarding Figure 14, the results in the first row indicate that all meth-
ods obtained correct segmentations. The slices in the third, fourth and fifth
rows, are associated to lung diseases that increase the HU density which
confounds inside lung regions with outer lung regions. The methods com-
pared against the proposed 3D ACACM method had lower performance in
segmenting these slices. Instead, the proposed method had a stable per-
formance in all of these cases due to its external energy and integration of
artificial intelligence that enhances its performance even more. The internal
energy makes segmentation of objects with different shapes possible, building
the correct 3D segmented model due to its integration with the appropriate
external force.

In the fifth row of Figure 14, there are small blue regions in the results ob-
tained by the existing methods, meaning an uncertainty of where the border
between the two lungs is; however, the proposed method performed very well
also due to the adopted external energy. Furthermore, the proposed internal
energy becomes more regular and stable in the 3D model and thus reduces
gross segmentation errors. Note that this behavior of the 3D ACACM energy
can also cause minor errors, as shown in yellow in these slices, because the
3D model is more stable and therefore, very small objects presented in a few
slices may be ignored, such as blood vessels and internal lung airways.

The last analysis is the global analysis that reflects the same observations
of the previous analysis: the proposed method obtained an average F-measure
of 99.22% ± 0.14, 3D RG of 97.59% ± 3.67, EUOT of 97.39% ± 4.35, and
LSCPM of 97.22% ± 5.43. Thus, one can say that the current methods
under comparison attained average F-measure values higher that 98.5% in the
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Figure 14: Examples of lung segmentations in CT scans obtained by the different methods
under evaluation: a), f), k), p), u) original images; b), g), l), q) and v) 3D Adaptive
Crisp ACM; c), h), m), r) and w) 3D Region Growing; d), i), n), s) and x) Level-set
algorithm based on the coherent propagation method; and e), j), o), t) and y) semi-
automatic segmentation by expert using the 3D OsiriX toolbox.
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healthy patients and in the patients with diseases that tend to diminish the
HU density in some lung regions. However, the proposed method was more
stable and obtained an average F-measure over 99% in all tests independently
of the type of disease presented.

Regarding the segmentation time, the most efficient methods in ascending
order were the Level-set algorithm based on the coherent propagation method
with 1.03 ± 0.19 minutes, 3D RG with 2.20 ± 0.40 minutes, 3D ACACM
with 3.11±0.57 minutes, and the semi-automatic segmentation by an expert
using the 3D OsiriX toolbox with 3.89±0.66 minutes. The proposed method
obtained an average result of 3 minutes, which is three times the time required
by the automatic commercial plugin software used to build the ground truth
and 1.5 times of the 3D RG time. However, the 3D ACACM is eight times
faster than the expert, which took 25 minutes on average in using the semi-
automated commercial software with subsequent manual improvements.

The experimental dataset used and the results obtained are available at
http://lapisco.ifce.edu.br/?page id=131.

4. Conclusion

This work proposes a method called 3D Adaptive Crisp that is a new
technique of automatic segmentation of lungs in CT scans of the thorax. The
main contributions achieved by the proposed method are related to the new
3D Adaptive Crisp external energy, the novel 3D Adaptive Balloon internal
energy and the robust 3D automatic initialization.

As secondary contributions, but also important to the quality of the re-
sults obtained, are the developed solutions for the addition, removal and
initialization of points, which were not successfully overcome by previous
studies. The use of the Sobel 3D operator allows better analysis of the
objects present in the input image dataset through the proposed external en-
ergy. These contributions give a parametric method of active contour, such
as Snakes, the ability to have results similar to the ones obtained by geo-
metrical methods of active contours, such as Level Set, even when compared
against an optimized Level-Set algorithm.

The 3D Adaptive Crisp was compared against three methods commonly
used by specialists in the segmentation of CT scans of the thorax both from
healthy and diseased patients, using a ground truth built by a medical expert.

The proposed method was comparatively more stable than the other
methods independently of the diseased presented, obtaining an average F-
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measure over 99% in all tests. The findings confirmed that the proposed
method is superior to the other methods under comparison, and its suit-
ability to be used in clinical routine diagnosis, since it requires less than 4
minutes to accomplish the segmentation in a common personal computer.

As to future works, we intend to apply other computational intelligence
and pattern recognition techniques to identify the origin of edges found in the
lungs, to adapt the methods developed for the detection of other organs, and
to investigate methods for the recognition of lung or other organ diseases.
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