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Methods S1. Analyses of alcohols by GC  

Analysis of alcohols from C1 to C4 was done using a gas chromatography (CP-3800 + CP-8400 

autosampler, Varian®, The Netherlands) equipped with a PoraPlot Q CP7550-PT column (10 m x 

0.32 mm x 10 μm; Agilent, Belgium) and a flame ionization detector (FID) based on a protocol 

described in Coma et al. [1]. One mL of filtered (0.45 μm) aqueous samples was added to a vial 

containing 100 μL of freshly prepared 20 % acetone as an internal standard (14.4 g L-1). Prepared 

sample (0.5 μL) was injected at 200 ºC with a split ratio of 30. The oven temperature was held at 

140 ºC for 2.1 minutes and then increased by 10ºC min-1 from 140 ºC to 165 ºC and by 30 ºC 

min-1 from 165 ºC to 200 ºC where it was kept for 2.23 min. The carrier gas was helium with an 

initial pressure of 7 Psi for 2.10 min, increased by 0.5 Psi min-1 to 8 Psi and by 2.5 Psi min-1 to 10 

Psi where it was held during 3.09 min. The FID temperature was set at 230 ºC. Hydrogen and 

synthetic air flows were set at 30 mL min-1 and 300 mL min-1, respectively. 
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Table S1. Comparison of key cathodic electrochemical and acetate production parameters of microbial electrosynthesis reactors 

operated in a continuous flow mode. 

Microbial inoculum 
Cathode 

material 

Cathodic electrochemical 

parameters 
Acetate production rates Electron 

recovery in 

acetate (%) 

Reference 
Japplied/produced          

 (A m-2)# 

Ecathode                              

(V vs SHE) 
 g L-1 d-1  (g m-2

 d-1)# 

Pure 

cultures 
Sporomusa ovata Graphite stick 0.208 -0.4 0.045 1.3 86 ± 21 [2] 

Sporomusa sphaeriodes Graphite stick 0.017 

-0.4 

0.002 0.06 84 

[3] Morella thermoacetica Graphite stick 0.009 0.003 0.1 84 

Clostridium ljungdhalii Graphite stick 0.029 0.003 0.1 72 

Sporomusa ovata 
Ni-coated 

graphite stick 
0.63 -0.4 0.067 3.33 82 ± 14 [4] 

Sporomusa ovata 

Carbon cloth + 

chitosan 
0.475 ± 0.018 -0.4 0.064 ± 0.016 2.70 ± 0.66 86 ± 12 

[5] 
Carbon cloth + 

Cyanuric chloride 
0.451 ± 0.079 -0.4 0.057 ± 0.014  2.42 ± 0.59 81 ± 16 

Sporomusa ovata 

Graphite disk 

(membraneless 

reactors) 

0.17 ± 0.04 -0.66 0.099 ± 0.014 1.65 ± 0.24 105 ± 5 

[6] 
0.46 ± 0.03 -0.81 0.128 ± 0.043 2.13 ± 0.71 54 ± 10 

Graphite stick 1.7 ± 0.19 -0.74 0.315 ± 0.086  9.68 ± 2.66 89 ± 12 

  

Mixed 

cultures 
Mix of anaerobic 

digester and retention 

basin effluents 

Graphite granules $12.3 ± 0.8 A m-3  -0.6 0.024±0.003 2.7 ± 0.4~ 28.9 ± 6.1 [7]* 

Enriched culture (from 

Labscale anode and 

algae UASB sludge) 

Carbon felt 5 ˗1 ± 0.06 0.94 ± 0.04 18.8 ± 0.8  56 ± 2.3 This study** 

#calculated per projected cathode surface; $based on the net cathode volume; ~data provided by the authors; *HRT - 0.812 d; **HRT - 3.3 d 
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Figure S2. An overview of complete experimental run for reactors C1 (left panel; a & b) and C2 (right panel; c & d) illustrating acetate 

(top panel; a & c) and other organics (bottom panel; b & d) production profiles at different HRTs. Phase I – batch mode (followed by a 

continuous flow mode operation until day 84), Phase II – continuous flow mode operation at different HRTs (from day 84 to 256), 

Phase III – continuous flow mode operation at HRT 5 d and catholyte pH controlled at around 5.0 (from day 314 to 417). Before 

switching to the phase III experiments, both reactors were operated at HRT of 5 d with normal pH feed (7.6) in order to restore their 

production profiles. 
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Figure S3. Continuous acetate production profiles for reactors C1 (from day 22) and C2 (from 

day 27) operated at different HRTs. Initial switching from batch to continuous feed regime was 

done at a low HRT of 2.9±0.3 d, which clearly resulted in a rapid decrease in the acetate 

concentration in both reactors. This was mainly due to the dilution of the catholyte and also due 

to the washout of biomass as confirmed by OD observations. After operating these reactors at a 

higher HRT of >7 d for four weeks, they were then switched to different HRT regimes starting 

from 6.7 d to 3.3 d. 
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Figure S4. Electron recovery in different products (organic acids, alcohols and H2) for reactors 

C1 and C2 operated in a continuous flow mode at different HRTs (experimental phase II). 
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Figure S5. Photographic images of biocathodes showing (accumulated) biomass growth at the carbon felt electrodes. The images were 

captured at the end of the experiments.  
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Figure S6. Cyclic voltammetry (CV) profiles of (bio)cathodes of reactors C1 and C2 recorded at different conditions – start of the 

experiment: before and immediate after inoculation (abiotic cathode controls), and at the end of batch operation and each HRT 

condition during continuous flow mode operation (biocathodes). Only the second cycle of two subsequent CVs is presented. Scan rate: 

1 mV s−1. 
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Figure S7. Heatmap representing the microbial communities of the 4 batch and 2 continues microbial electrosynthesis reactors. The left axis 

indicates phyla, the right axis indicates genus or the lowest taxonomic classification level above 1% relative abundance in at least 1 of the samples. 

Samples nomenclature: B: batch reactor, C: continuous reactor, ino: inoculum, d: day of sampling, HRT#: hydraulic residence time at the moment 

of sampling, pH#: pH at the moment of sampling, Felt: electrode attached community, Sediment: community of sedimented biomass. Roman 

numeral I and II indicate first and second time of HRT 5 days. The microbial communities of our previously published batch reactors (Patil et al. 

2015) of the liquid (Lane 34) and electrode (Lane 35) are also represented. Note that for comparative purposes lane 1 contains the same 

information as lane 4, the same goes for lane 7 and 21. 
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Figure S8. Redundancy analysis (RDA) highlighting the dissimilarities among the relative abundances of the bacterial communities in 

each samples obtained from continuous reactor operation (See also Figure S7) with A) the operational conditions Time, HRT and pH 

and B) organic components produced. 

Correlation of the suspended microbial community with operational parameters by means of redundancy analysis indicated that the 

relative abundance of the genera Comamonas, Azovibrio, unclassified Enterobacteriaceae and unclassified Xanthamonadaceae were 

the most responsive to changes in HRT, whereas Acetobacterium, Dysgonomonas, and Proteiniphilum were the most responsive to 

changes in pH and the relative abundance of Rummeliibacillus was correlated with overall operating period (time). 
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Figure S9. Selected correlations between product concentration and single OTU abundance. ‘C1’ 

or ‘C2’ indicates data obtained from the individual reactors, ‘both’, indicates data obtained from 

two reactors (C1 and C2).  
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Discussion S1. Specific sADH pcr 

Several primer sets (Table S4) implicated for the detection of sADH of Closterium beijerinckii 

were tested using the mastermix and PCR protocol according to [8] and DNA from a pure culture 

of C. beijerinckii (DSM6423). The optimal annealing temperature was determined using a 

gradient PCR (Figure S9). None on the green conditions yielded a hit in on the DNA of the 

reactor community. This was partly confirmed by the Illumina analysis (Figure S6). 

 

Table S3. Details of the primer sets used for the detection of sADH of Closterium beijerincki. 

Code Sequence Tm (°C) Reference 

sADH1  5’- ATGAAAGGTTTTGCAATGCTAGGTATT-3’  58 sADH-1 [9] 

sADH2  5’-TTATAATATAACTACTGCTTTAATTAAGTC-3’. 53 sADH-2   

sADH3 5′-TAAGGAGGAACATATTTTATGAAAG-3′  51.9 P11 [10] 

sADH4 5′-GTTATAATATAACTACTGCTTTAATTA-3′ 49.5 P12   

sADH7 5′- TTAGACTATTAAAGGAATATTTTTAAGG-3′ 52.1 s-adh-for [11] 

sADH8 5′- GTATAATCCTCCATGATCTATTATG-3′ 51.5 
s-adh-

rev 
  

sADH9 5’- ATGAAAGGTTTTGCAATGCTA -3’ 52 P7 [12] 

sADH10  5’- TTATAATATAACTACTGCTTTA -3’ 44.5 P8   

 

 
    

Figure S10. Results of annealing temperature optimization for detection of the sADH gene. Green 

primer/temperature combinations can be used to detect the presence of the sADH gene in the 

mixed community of the reactor.  
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