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Abstract

During the past decades numerous spectrometry devices, e.g. mass spectrom-
etry or liquid or gas chromatography, have been engineered to measure the
different properties of molecules, compounds or even complex structures. One
device exploits the different mobilities of ionized analytes, the so-called ion
mobility spectrometer. The advantages of this device are the low costs of
production and maintenance (e.g. a high vacuum as in mass spectrometry is
not required), the fast capture (a few milliseconds suffice) and the provision
of a high resolution of up to parts per billion (ppb) by volume. An ion mo-
bility spectrometer coupled with a multi-capillary column for pre-separation
achieves a resolution higher by several magnitudes. Substantial research was
done to investigate its feasibility for clinical or biotechnology applications,
especially clinical diagnosis or live monitoring. Ongoing miniaturization pro-
vides devices of even mobile phone-size, allowing mobile applications. In
critical places like main stations or sports stadiums, mobile devices are con-
ceivable for the detection of drugs or explosives. Another application scenario
can be a mobile device monitoring the breath of patients which can be used
at home. For such scenarios it is inevitable that the data is analyzed directly
at the device right after the capturing. The amount of data, the complexity
of the two-dimensional spectra as well as time and device restrictions require
analysis software specifically designed for this application.

The basis of MCC/IMS analysis is a representation of all high-intensity re-
gions (peaks) in the measurement by using a few descriptive parameters per
peak instead of the full measurement data, a process that we refer to as peak
extraction. The position of peaks infers the corresponding analyte and its
signal intensity delivers information about the concentration of the analyte.
These peaks can hint at several features, e.g. diseases in clinical diagnos-
tics. Previous work mainly concentrated on the extraction of the position
of the peaks’ highest signal intensity (mode). Using statistical distributions,
we introduce a function which requires only seven descriptive parameters to
approximate the complete shape of a peak. The straightforward nature of
this function as well as the intuitive descriptors simplify and accelerate the
methods estimating the descriptor set for every detected peak. Additional
post-processing steps like comparison with a reference, or aligning or cluster-
ing a set of measurements further simplify and add precision to the provided
peak model.

Having a measurement and the proposed peak model, the peaks have to
be detected and the model descriptors have to be estimated automatically.
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Here, we introduce two methods executing this task. The offline peak model
estimation reduces one measurement automatically into a set of peak models
but without any restrictions, i.e. the data is completely available during the
whole analysis process and can be accessed as often as required. Furthermore,
space and time restrictions were not taken into account. The idea of this
method is to take its approaches as a basis and redesign them for an online
analysis. Our second introduced method is referred to as online peak model
estimation. The method is restricted to store only one or a small quantity
of consecutive ion mobility spectra and discard the raw data directly after
the analysis. Additionally, this analysis has a strict time restriction provided
by the device itself (every 100 ms a new ion mobility spectrum is captured)
and should even run in time on current embedded systems as the Raspberry
Pi. Of course, this method should also provide a list of peak descriptors. For
that purpose, we redesigned particular methods to satisfy these restrictions.
This method is suitable for the application on mobile detection devices.

To find commonalities and differences among a set of measurements for fur-
ther classification or timeline analysis, it is an inherent necessity to find and
connect peaks provided by the same analyte. We refer to these clusters cov-
ering several peaks from different measurements as consensus peaks. Several
clustering methods are already introduced in literature, but many have the
disadvantage of requesting the number of clusters a priori. We introduce an
enhanced method of the classic EM algorithm which dynamically determines
the number of clusters. Additionally, we present the main ideas of efficient
implementation to make the clustering method feasible on embedded systems
as well. As the EM algorithm works with statistical models, the obtained
information of the peak extraction step can be efficiently applied, providing
a more precise clustering.

As an addition, a method is introduced to align either a peak list containing
peak descriptors or consensus peak descriptors against a reference list with
potentially previously discovered analytes and their parameters. This method
also employs statistical models and statistical optimization methods.

Since all utilized statistical methods and models are rather expensive in terms
of computation time and contain almost always the costly exponential func-
tion, we introduce an approximate exponential function as substitute. This
function has the ability to compute an exponential value up to 4-6 times faster
than exact functions of provided standard libraries with only a minimal loss
of precision. The exploitation of the binary representation of floating point
values within a processor makes this acceleration possible. These features are
desirable for the application on embedded systems.

All methods and implementations will be evaluated in detail in terms of com-
putation time, accuracy and reasonability.
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meinen Doktorvater Sven Rahmann, der mir die Möglichkeit gegeben und
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die Möglichkeit in einem spannenden und zukunftsträchtigen Projekt mitar-
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1 Introduction

An Ion mobility (IM) spectrometer (IMS) coupled with a multi-capillary col-
umn (MCC), MCC/IMS for short, is gaining importance for biotechnological
and medical applications. With MCC/IM spectrometers, one can measure
the presence and concentration of volatile organic compounds (VOCs) in the
air or in exhaled breath with high sensitivity. In contrast to other technolo-
gies, such as mass spectrometry coupled with gas chromatography (GC/MS),
an MCC/IMS works at ambient pressure and temperature. Several diseases
can potentially be diagnosed at an early stage with MCC/IM spectrometry
technology. These diseases include chronic obstructive pulmonary disease
(described by Westhoff et al. (2010), Koczulla et al. (2011) and Bessa et al.
(2011)), sarcoidosis as introduced by Bunkowski et al. (2009) or lung cancer
as investigated by Westhoff et al. (2009) and Darwiche et al. (2011). The
identification of bacteria was investigated by Jünger et al. (2012) and es-
pecially the potential of VOCs as biomarkers of patients suffering from an
infection with Pseudomonas aeruginosa explored by Maddula et al. (2011).
Keller et al. (1999) also used the MCC/IM spectrometers for the detection
of drugs as well as Ewing et al. (2001) employed it to detect explosives.
More advances in breath analysis are presented by Fink et al. (2014). The
constant monitoring of VOC levels is of interest in biotechnology, e.g., for
watching fermenters with yeast producing desired compounds as investigated
by Kolehmainen et al. (2003) and Halbfeld et al. (2014). Monitoring also can
be applied in medicine, e.g., monitoring propofol levels in the exhaled breath
of patients during surgery as described by Kreuder et al. (2011) and Buchinger
et al. (2013), monitoring sevoflurane levels described by Kunze et al. (2015) or
monitoring the level of Neutrophil granulocyte in blood (detecting neutrope-
nia) proved in clinical studies by Furtwängler et al. (2014). Furthermore,
this technology has the potential to infer information by comparison with
other analytical technologies as GC/MS as reported by Jünger et al. (2010)
and Maurer et al. (2014).

IMS technology is moving towards miniaturization and small mobile devices.
Research was done in this field by Teepe et al. (2001), Salleras et al. (2006),
Zimmermann and Barth (2007), and Aguilera-Herrador et al. (2008). Nowa-
days, the hardware even reaches dimensions of mobile phones. This creates
new challenges for data analysis: The analysis should be possible within the
measuring device without the necessity of additional hardware like an exter-
nal laptop or a compute server. The application of these mobile detectors can
be e.g. searching for drugs and explosives in public areas with few or no secu-
rity control stations, for instance central railway stations or sports stadiums.
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1 Introduction

Another possible scenario is a mobile device which monitors the health state
of patients and can even be taken home. For these devices it is indispensable
to detect a critical change of health states as early and reliably as possible.
Thus, an analysis of the data must happen immediately at the device during
the monitoring. To save as much energy as possible for the detector, the data
should be processed on a small embedded chip or small device like a Rasp-
berry Pi1 or similar hardware with restricted resources. Algorithms in small
mobile hardware face constraints, such as the need to use little energy (hence
little random access memory), while maintaining prescribed time constraints.

1.1 Objectives

The focus of this thesis is on the automatic analysis of MCC/IM spectrom-
etry data, especially in a resource-constrained context. Regions within these
spectra with high signal intensity are called peaks and are of increased impor-
tance. These peaks hint at the contained analytes within a sample and can
be potential biomarkers. Given a measurement in form of a two-dimensional
signal matrix S and a peak description θ, a peak extraction aims to detect
peaks within the matrix and reduces the information to its descriptive param-
eters per peak. Here, we distinguish between an offline and an online peak
extraction. Given a signal matrix S, an offline peak extraction is allowed
to access the whole matrix at any time during the complete analysis pro-
cess without any restriction. Methods for offline peak extraction especially
for MCC/IM spectrometry measurements have already been introduced, e.g.
a k-means approach by Bader et al. (2005), a watershed method described
by Bunkowski (2011) or a neighborhood region comparison searching for local
maxima by D’Addario et al. (2014). More information about these methods
is given in Section 3.2.

All these methods have in common that the complete signal matrix has to
be available during the extraction. That makes an application for mobile
detectors rather unsuitable, as they have constrained resources like limited
memory or low processor power. On the other hand, an online peak extraction
is allowed to access the data only sequentially and discard the raw data imme-
diately after analysis. Since detectors like the MCC/IM spectrometry device
provide chunks of the data at certain time intervals, the online peak extrac-
tion should also be able to analyze these chunks completely within the time
range. Only few methods have been introduced for this topic, i.e. peak detec-
tion by slope analysis or Savitzky-Golay Laplace-operator filter thresholding
regions by Egorov et al. (2013) (consider Section 4.1). Several descriptions of
a peak within MCC/IM spectrometry measurements have been introduced.
Bödeker and Baumbach (2009) described the theoretical surface of a peak us-
ing a product of two lognormal distributions (each for one dimension). This

1https://www.raspberrypi.org/
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description requires nine parameters. Vogtland and Baumbach (2009) intro-
duced another model, describing the surface by splitting the cross section of
a peak in both dimensions into two parts. Here, the first part describes the
peak fronting with a Gaussian distribution up to its mode whereas the tail-
ing is described by either a Breit-Wigner or a log-Breit-Wigner distribution.
Eight parameters are necessary to describe a peak. A detailed description of
both models is given in Section 3.2. Both models have in common that the
description of the surface makes it possible to determine the volume of a peak.
But due to their rather complex formulas, the estimation of appropriate pa-
rameters becomes more difficult which results in longer computation time. In
this thesis, we contribute to all three mentioned issues. First, we define a sta-
tistical model describing the surface of the peaks with only seven parameters.
Accordingly, we introduce one offline and one online peak extracting method.
The novelty of both methods is the provision of a peak list containing the
seven parameters per peak. Other methods only extract the position and the
highest intensity of the peaks. We also show that the online peak extraction
keeps up with time restrictions even on devices with low processing power.

The second focus of the analysis contributes right after a peak extraction.
For the exploration and characterization of analytes as potential markers for
certain conditions (e.g. detection of diseases using human breath), time lines
or data sets from the same experiment have to be aggregated and peaks
occurring in several measurements caused by the same analyte have to be
identified and clustered. We are given a set of observations (extracted peaks
from different measurements) and a suggested parameterized probability den-
sity function P with parameter set θ for observations within a cluster. The
clustering objective is to find a partition of the observations in a dynamically
adjusting set of clusters and estimate the parameters for every θ of all clus-
ters. Here, the likelihood is maximized that the observations are generated
by all probability density P using the parameter sets θ. Previous work only
focused on clustering with an unknown number of clusters like density-based
spatial clustering of applications with noise introduced by Ester et al. (1996)
or cluster editing described by Rahmann et al. (2007) and Böcker et al. (2011).
Other methods only considered a clustering using a probability density func-
tion for the observations with a fixed and pre-defined number of clusters,
e.g. the expectation-maximization algorithm introduced by Dempster et al.
(1977). More details are given in Sections 1.5.3 and 5.2. We introduce a
novel approach which takes advantage of applying a probability density func-
tion for observations as well as dynamically adjusts the number of clusters.
Additionally, we develop the method into a tool capable of clustering tens of
thousands of observations within a few seconds on devices with low processor
power as well. Optionally, peak lists containing either single measurements
or consensus peaks can be compared with a reference list including already
known compounds (i.e. a peak list of already labeled peaks) and their param-
eters to infer their corresponding analytes. Given a set of two-dimensional
reference observations and a set of target observations of the same dimen-
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1 Introduction

sion and a probability density function P, we search for a transformation set
mapping the targets to the references. The likelihood is maximized that the
targets are described by the references after transformation using P. This
problem is referred to as point set registration and can be solved using the
coherent point drift algorithm introduced by Myronenko and Song (2010).
We describe an adaption of this method tailored for our application.

1.2 Outline

After describing the technology of MCC/IM spectrometers followed by a set of
fundamental optimization methods within this section, an approximate func-
tion computing exp(x) is introduced in Section 2 which is up to six times faster
than conventional builtin functions of the standard libraries. Section 3 illus-
trates a proposed statistical model describing the shape of two-dimensional
peaks and introduces an offline method for extracting peaks and estimating
parameters for this model. Another method for peak extraction utilizing an
online approach is described in Section 4. Both methods provide a so-called
peak list containing all important information of the peaks. A necessary step
for continuing comparisons between peak lists is a clustering independent of
a predefined cluster size. A new approach for an adaptive EM clustering is
described in Section 5. The output of the clustering is a so-called consensus
peak list. Having a peak list from a single measurement or a consensus peak
list of a set of measurements provided by the clustering with yet unknown
peaks, it is important to determine the compounds (analytes) the peaks are
provided by. Such a peak list is referred to as a target peak list. Given a
reference peak list with already labeled peaks, Section 6 illustrates a method
to label peaks within the target peak list by aligning them to the reference
peak list. Although both these problems of clustering and aligning appear to
be similar, they need to be considered separately, as we assume during the
clustering that all single peak lists originate from the same device, but can not
claim this for the aligning as well. Caused by several features of the measuring
devices, peaks can shift systematically in a measurement. The evaluation is
split into several parts. Single method evaluations are described within their
sections, whereas comparative evaluations are given in Section 10. Section 11
concludes and discusses the thesis.

All performance benchmarks were executed on two different platforms, (1) a
desktop PC with Intel(R) Core(TM) i5 2.80GHz CPU, 8GB memory, with
Ubuntu 12.04 (64bit) OS and (2) a Raspberry Pi2 type B with ARM1176JZF-
S 700MHz CPU, 512 MB memory, Raspbian Wheezy (32bit) OS. The Rasp-
berry Pi was chosen because it is a complete credit card-sized low-cost single-
board computer with weak CPU and low power consumption (3.5 W) which
is suitable for embedded and mobile analysis measurement devices.

2http://www.raspberrypi.org/

4

http://www.raspberrypi.org/


1.3 MCC/IMS

1.3 MCC/IMS

For this work, a BioScout IMS (B&S Analytik, Dortmund, Germany) with a
63Ni ß-ionization source is used which couples a multi-capillary column with
an ion mobility spectrometer.

Ion Mobility Spectrometer

IM spectrometers separate molecules by their properties like mass, polariz-
ability and structure. A classic IMS is divided into two parts: an ionization
chamber and a drift tube. In contrast to other analysis devices like mass-
spectrometry (MS), IM spectrometers do not need a high vacuum. Since
the devices work with ambient pressure, construction and maintenance are
cheaper. Neutral analyte compounds are injected by either nitrogen or syn-
thetic air as carrier gas into the ionization chamber and ionized by radioactive
nickel as an ionization source. Here, no additional power supply is needed.
Negatively as well as positively charged ions can be produced. In positive
mode, reactant ions are captured emerging from the carrier gas. Since in
typical measurement processes the amount of carrier gas exceeds the amount
of all remaining analytes, a reactant ion peak is resulting as the highest peak
within the spectra. It also provides an upper bound for the number of ion-
izations, since the ionization source emits constantly. Hence, comparing two
spectra their integral should be almost equal. By collisions with the molecules,
the reactant ions generate product ions. An ion shutter that separates the
ionization chamber from the drift tubes opens periodically. Around the drift
tube, drift rings are mounted in equidistant intervals providing an electric
field which forces the product ions to drift through the tube towards a Fara-
day plate mounted at the opposite end of the tube. Additionally, drift gas is
injected with an adjustable gas flow from the opposite direction to function
as an obstacle. By collisions with the drift gas and acceleration through the
electric field, a separation of the product ions takes place. Finally, the ions hit
the Faraday plate and transfer their charge, causing a low current which can
be measured after amplification. Caused by the motion, not all ions of the
same analyte hit the plate at the same time but appear at continuous drift
time with different concentrations, providing the typical bell-shaped peaks
within the spectrum with a certain characteristic mean drift time for any
analytes. A schematic setup of an IMS is illustrated in Figure 1.1. After the
collision with the plate, the ions become neutral again. Finally, the molecules
are pushed out of the IMS by the drift gas. In general, these IM spectrometers
provide a high resolution measured in parts per billion by volume.

The measurement process takes about 100 milliseconds and the signal inten-
sity (voltage change) is captured at each point in time with 250 kHz. Due to
the analog/digital converter (12 bit for BioScout), the signals obtain discrete
values. Since the BioScout works with both positive and negative mode, the
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Gas
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Gas
outlet

Drift gas
inlet

Faraday
plate

Ion shutter Drift rings
Ionization source

Ionization
chamber Drift tube
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Figure 1.1: Schematic cross section of an IM spectrometer presented
by D’Addario et al. (2014). Analyte compounds are ionized after
injection into the ionization chamber. The ions are accelerated by
an electric field and move through the drift tube. They cause a
voltage change when colliding with the Faraday plate; this is the
measured signal.

digital values range between 0 (full deflection in positive mode), 2048 (no
signal) and 4095 (full deflection in negative mode). After amplification, a full
deflection corresponds to either +5 V or −5 V, depending on the mode.

For a comparable measurement independent of external conditions (tempera-
ture, pressure), the drift times are converted into reduced inverse mobilities.
Using the electric field strength E = U/l with voltage U and the character-
istic drift velocity V = l/d with drift tube length l in centimeter and drift
time d in seconds, the mobility K can be computed by the relation V = K ·E.
To be independent of temperature T and pressure P within the tube, the mo-
bility is reduced (i.e. normalized) by absolute pressure P0 = 1.013 25 bar and
temperature T0 = 293.15 K as described by Baumbach and Eiceman (1999).
According to the ideal gas law P v = NaRc T (with volume v, amount of
substance of gas Na, universal gas constant Rc), the reduced mobility K0 is

K0 =
T0 P
T P0

· l
2

U d
. (1.1)

For convenience, the inverse reduced mobility (IRM) τ = 1/K0 in units
of V s cm−2 is used with the advantage of being proportional to the drift time.
Let T be the set of (equidistant) IRMs where a measurement is made and D
be the corresponding set of equidistant drift time points (each 1/250 000 sec-

6



1.3 MCC/IMS

0

0.5

1

1.5

2

2.5

3

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

vo
lt

ag
e

/
V

inverse reduced mobility / V s cm−2

Arbitrary single IM Spectrum

Figure 1.2: An exemplary single IM spectrum containing the reactant ion
peak (RIP) with mode at 0.48 V s cm−2 and at least two peaks
caused by analytes (mode at 0.66 and 0.69 V s cm−2).

ond for 50 ms, i.e. 12 500 time points). Since almost all measures are constant
within a measurement process, there exists a constant proportional factor

fims =
T P0
T0 P

· U
l2
> 0

such that τ = fims · d. An exemplary single IM spectrum is illustrated in
Figure 1.2.

Pre-separation

It is impossible to distinguish different compounds with identical mean drift
time, since the width of both peaks is identical and thus an overlay of both
yields one high peak only. Especially in complex biological samples like hu-
man breath it is inevitable that these samples consist of several different com-
pounds. Therefore the IMS is coupled with a multi-capillary column (MCC)
which separates the compounds before they enter the IMS. Both MCC and
a gas chromatograph (GC) have in common that the analytes are pushed by
a carrier gas with an adjustable flow through a column coated with a gel
from the inside. The state of molecules sticking to the gel is referred to as
stationary phase whereas the state of molecules flowing through the column
is called mobile phase. In contrast to GCs, the MCC is constructed of several
dozen to several hundred columns, e.g. the BioScout uses an MCC with 1200
columns. Therefore, the separation is faster in an MCC than in a GC. Hence
a complete measurement process takes only a few minutes at most for an
MCC in comparison to a GC which can take about an hour for the same sep-
aration. According to the strength of molecules interacting with the matrix
of the MCC, different compounds are retained for different periods of time in
the MCC. The time the molecules need to pass the MCC is called retention
time.

7
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Table 1.1: Parameters of the BioScout that were used for almost all captured
measurements for evaluation. Differing adjustments are marked.

Parameter Value

MCC
Column type OV5
Column diameter 0.04 mm
Temperature T 40 ◦C
column length l 20 cm
Column number 1200
Carrier gas synthetic air
Carrier gas flow 150 mL min−1

Sample Loop
Duration 10 s
Volume 10 mL

Parameter Value

IMS
Ionization source 63Ni
Drift gas synthetic air
Drift gas flow 100 mL min−1

Voltage U 4380 V
Length l 12 cm
Grid opening
time dG

0.3 ms

Capturing period 100 ms
Polarity positive

Coupling both devices

Before the analytes are injected into the MCC, a sampling captures the air to
be analyzed for an adjustable time period. Afterwards, a certain concentra-
tion of the sample is injected into the MCC. After a specific retention time ρ,
several molecules of a compound pass the MCC and are directly injected into
the IMS device. Thus an IM spectrometry measurement is executed period-
ically. For a sufficient measurement, the BioScout captures about 10 − 12
minutes (assuming a certain set of adjustments listed in the following para-
graph) to ensure that all volatile organic compounds pass the column.

Device parameters

As mentioned, for this thesis the MCC/IMS BioScout was used as stated
by Bödeker et al. (2008). Table 1.1 summarizes all relevant parameters and
properties. If not stated different, these parameters hold for all measurement
captures for the evaluation sections within the following chapters.

1.4 Data and Peaks

Let R be the finite set of retention time points at which an IM spectrometry
measurement is taken, and let T be the finite set of measured inverse reduced
mobility (IRM) points. We obtain a two-dimensional spectrum S = (Sr,t)
indexed by r ≤ |R| and IRMs t ≤ |T | at retention time Rr and IRM Tt. It
can be visualized as a two-dimensional heat map (Fig. 1.3). For convenience,
a column S·,t with fixed IRM index t is called a chromatogram, a row Sr
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Figure 1.3: Visualization of a raw measurement (IMSC) as a heat map as pre-
sented by Kopczynski and Rahmann (2014); signal color: white
(lowest) < blue < purple < red < yellow (highest). The constantly
present reactant ion peak (RIP) with mode at 0.48 V s cm−2 and
one exemplary VOC peak are annotated.

with fixed retention time index is referred to as an IM spectrum, the whole
matrix S is called an IM spectrometry chromatogram (IMSC) and a cell of the
matrix Sr,t with both fixed retention time and IRM is called a signal intensity.
In practice it is common not to analyze the full spectra, but aggregated
ones, in which a set of consecutive values within an IM spectrum and a set
of consecutive IM spectra are averaged. It is convenient to aggregate with
a 5× 5 non-overlapping field in which the mean of 25 values is used instead.
The consequences are a decrease of the background noise level due to the
“smoothing” as well as a decrease of the number of values. Since the peaks
have a certain minimal width in both dimensions that are provided by the
physics of the device, every peak is wider than the aggregation kernel so that
none of them disappears by the smoothing.

Regions with high signal intensities within an IMSC are denoted as peaks.
The retention time and IRM of a peak discriminate a certain compound
which generates the peak and the intensity of a peak infers the concentration.
The presence or absence of peaks as well as their intensity can determine
biomarkers which may hint at certain diseases. The width in both retention
time and IRM is proportional with the corresponding dimensions. In the IRM
dimension, the peaks are almost normally distributed whereas the full width
at half maximum (FWHM) depends on the grid opening time dG and increases
negligibly. The computation of FWHM in the IRM dimension is described
in Section 3.3. We denote the standard deviation in the IRM dimension
as ∆τ in unit of V s cm−2 and in retention time ∆ρ in unit of s, respectively.
Furthermore, the peaks produce stronger tailings with increasing retention
time.
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Challenges of IMSC Analyses

Several properties of the described measuring technique provide characteristic
features which makes automated analyses difficult. Due to the little current
flow within the IMS (ranges in pA), the amplification causes an additive back-
ground noise overlaying the entire spectrum. The reactant ion peak appears
in every IM spectrum and does not provide any important information about
the desired peaks. Since the ions are separated by collisions with the drift
gas, they do not cause a single signal at only one discrete point in time (as
they do in mass spectrometry), but hit the Faraday plate during a time in-
terval causing a log-concave signal over time. Measuring in either positive or
negative mode provides different measurements in which the peak amounts
and locations differ. When the amount of ions of a certain analyte exceeds
a certain threshold, dimers and even polymers are formed, causing narrowed
monomers. This narrowing occurs because the quantity of ionizations is fixed
and thus the peaks in an IM spectrum only offer information about the rel-
ative concentration of an analyte instead of an absolute concentration. Fur-
thermore, a so-called tailing function is caused by the device, appears in every
IM spectrum and needs to be handled; for details consider Bader et al. (2008).
The high number of data points requires fast analysis methods. For example,
in breath gas analysis a data acquisition takes about ten minutes with ten
IM spectra per second and 12 500 data points per IM spectrum which results
in 6 000×12 500 = 75 000 000 data points. Finally, since the location of peaks
caused by the same analyte differs slightly between individual measurements,
robust methods have to cope with this feature.

Our focus within this thesis is to detect peaks and not analytes. We con-
centrate on measurements in positive mode in which we extract peaks (i.e.
reduce a measurement into a set of parameters describing the detected peaks),
including preprocessing to clean the measurements. The detection of dimers
and additional polymers and their connection and the inferring of the ana-
lytes concentrations is not within the scope of the research project. The main
objective is to develop robust methods for the complete processing pipeline
which can run sufficiently on embedded systems.

1.5 Optimization Methods

The algorithms in the following sections utilize several unconstrained mini-
mizing methods, i.e. the least square methods and expectation-maximization
algorithm. Especially the methods in Sections 3 and 4 make extensive use
of these optimization methods. These algorithms are partially used as intro-
duced in the literature. For some cases, the algorithms are adopted to solve
particular problems. In the following, the original methods are summarized
briefly. The adoptions are described in the sections in which they are utilized.
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1.5.1 Linear Least Square Method

We are given a set of input variables X = (Xi,l), a set of observations y =
(yi) with i = 1, . . . , n and l = 1, . . . , q and a linear relationship between
input variables and observations y = Xθ, where θ is a q-dimensional vector
of unknown parameters. To infer these parameters, we solve the following
optimization problem:

min
θ
||Xθ − y||22.

After expansion, we obtain minθ(θ
TXTXθ− θTXTy−yTXθ+yTy), where T

denotes the transposed vector or matrix, respectively. Since θTXTy and yTXθ
are scalar values, it holds θTXTy = yTXθ. After derivation with respect to θ
and setting to zero, we get 0 = 2XTXθ− 2XTy. Solving for θ, we obtain the
final equation

θ̂ = (XTX)−1XTy (1.2)

which is referred to as the normal equation. A detailed description is given
by (Björck, 1996, Chapter 1).

Polynomial Regression A use case for linear least squares is the polynomial
regression. Having a polynomial of degree q with yi = θqx

q
i + · · · + θ0x

0
i , we

get the input set

X =


∂f(x1)

∂θ0
· · · ∂f(x1)

∂θq
...

. . .
...

∂f(xn)

∂θ0
· · · ∂f(xn)

∂θq

 =

x
q
1 xq−11 · · · x1 1
...

. . .
...

xqn xq−1n · · · xn 1



and obtain the coefficient vector θ by solving Equation (1.2).

1.5.2 Non-linear Least Square Method

The non-linear least square (NLLS) method is an iterative method to esti-
mate parameters θ = (θ1, . . . , θq) of a supposed parametric function f having
a set of n observed data points (x1, y1), . . . , (xn, yn) with i = 1, . . . , n. The
idea is to minimize the quadratic error between the function and the ob-
served data, thus min

∑n
i e

2
i for all residual errors ei = yi − f(xi | θ). Taking

the first derivative with respect to every parameter and setting it to zero,
we obtain 2

∑n
i ei · ∂ei/∂θl = 0 for all l = 1, . . . , q. Since the gradient

functions do not have a closed formula, the parameters must be approxi-
mated by choosing starting parameters and improving them in every itera-
tion, thus θl ≈ θk+1

l = θkl + ∆θ where k denotes the kth iteration and ∆θ is a
shift operator. Additionally, a Jacobian matrix J = (Ji,l) is set up, which is

11
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defined as follows: Ji,l := −∂ei/∂θl. To obtain ∆θ, the first order Tailor-series
expansion is used, thus:

f(xi | θ) ≈ f(xi | θk) +

q∑
l

∂f(xi | θkl )

∂θkl
(θl − θkl ) = f(xi | θk) +

q∑
l

Ji,l∆θl.

Substituting ∆yi = yi − f(xi | θk) and setting all into the gradient functions,
we obtain

−2

n∑
i

Ji,l(∆yi −
q∑
l′

Ji,l′∆θl′) = 0

for all l ≤ q. Rearranging and writing in matrix notation leads to (JTJ)∆θ =
JT∆y. Having a function in which the derivative with respect to a parameter
depends on the remaining parameters, the following steps must be repeated
until convergence is reached:

∆y = y − f(x | θk),
∆θ = (JTJ)−1JT∆y,

θk+1 = θk + ∆θ.

Details and different algorithms for NLLS can be found in the literature (No-
cedal and Wright, 2006, Chapter 10).

Non-Linear Loss Minimization

In some cases it is not important, whether some observed values yi exceed the
function f(xi | θ) significantly, as long as the residual errors for the remaining
values are acceptably low. Baseline fitting is a reasonable use case for that
scenario. Mazet et al. (2004) propose an approach based on NLLS using a
non-symmetric error function. If the residual error (yi − f(xi | θ))2 exceeds
a given threshold γ, γ is used instead of the error. Another scenario for
using a modified error function is curve fitting, in which both positive and
negative outliers are ignored. Here, the error function is truncated in both
directions. However, since the non-symmetric error function was designed to
fit baselines using polynomial functions, we introduce another error function
which is more appropriate for statistical distributions. In Chapter 4, we
describe both symmetric and non-symmetric error functions and how these
are applied for non-linear loss minimization.

1.5.3 The EM Algorithm for Mixture Models with Heterogeneous
Components

In the subsequent sections, variations of the EM algorithm are utilized as
introduced by Dempster et al. (1977) for mixture model deconvolution. Here,
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we summarize the algorithm and describe the E-step common for all variants.
In each of the following sections, we describe the specific model, the initial
values for the parameters, and the specific maximum likelihood parameter
estimators of the M-step. A variation of the EM algorithm is described in
Section 5.

A fundamental idea of the EM algorithm is that the observed data x with n =
|x| data points is viewed as a sample of a mixture of probability distributions

f(x | θ) =
z∑
c

ωc fc(x | θc),

where c indexes the z different component distributions fc, where θc denotes
all parameters of distribution fc, and θc = (θc,1, . . . , θc,q) is the collection
of all parameters. The mixture coefficients ωc satisfy ωc ≥ 0 for all c, and∑z

c ωc = 1.

We point out that, in contrast to most applications, in our case the probability
distributions fc are of different types, e.g., a uniform and a Gaussian one.

The goal of mixture model analysis is to estimate the mixture coefficients ω =
(ωc) and the individual model parameters θ = (θc), whose number and inter-
pretation depends on the parametric distribution fc.

Since the resulting maximum likelihood parameter estimation problem is non-
convex, iterative locally optimizing methods such as the Expectation Max-
imization (EM) algorithm are frequently used. The EM algorithm consists
of two repeated steps: The E-step (expectation) first estimates the expected
membership of each data point in each component and then the component
weights ω, given the current model parameters θ. The M-step (maximiza-
tion) estimates maximum likelihood parameters θc for each parametric com-
ponent fc individually, using the expected memberships as hidden variables
which decouple the model. As the EM algorithm converges towards a local
optimum of the likelihood function, it is crucial to choose reasonable starting
parameters for θ.

E-Step

The E-step is independent of the specific component distribution types and
always proceeds in the same way. To estimate the expected membership Wi,c

of data point i in each component c, the component’s relative probability at
that data point is computed, i.e.

Wi,c =
ωc fc(xi | θc)∑z
c′ ωc′ fc′(xi | θc′)

, (1.3)
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such that
∑z

cWi,c = 1 for all i = 1, . . . , n. Then the new component weight
estimates ω+

c are the averages of Wi,c across all data points

ω+
c =

1

n

n∑
i

Wi,c, (1.4)

where n is the number of data points.

Convergence

After each M-step of an EM cycle, we compare θc,l (old parameter value)
and θ+c,l (updated parameter value), where l indexes the elements of θc, the
parameters of component c. Let

E(a, b) :=

{
0 if a = b = 0,
|a−b|

max(|a|,|b|) else
(1.5)

be the relative error. We say that the algorithm has converged when E(θ+c,l, θc,l)
drops below the threshold ε for all c = 1, . . . , z and l = 1, . . . , q. Empirically,
we determined a reasonable threshold ε := 0.001, corresponding to 0.1% pre-
cision. For convenience, when not mentioned otherwise, this threshold will
be taken for the convergence tests within all methods described in the follow-
ing. Since the threshold will be an adjustable parameter within the following
methods, we denote ε as convergence threshold.

14



2 Approximating the Exponential
Function

The exponential function, or more specifically, the natural exponential func-
tion is defined as x 7→ ex with e = 2.718 281 828 . . . (which is the Euler
number) as base and is commonly abbreviated with x 7→ exp(x). The func-
tion is widely used within mathematics and especially within statistics. Sev-
eral distribution functions like the Gaussian distribution, Inverse Gaussian
distribution or Poisson distribution utilize the exponential function.

2.1 Background

The following methods which are described in the Chapters 3, 4, 5 and 6
utilize both the Gaussian distribution as well as the Inverse Gaussian distri-
bution within their models. The offline as well as the online peak estimation
method execute the exp function at least |R| · |T | times, analyzing an IMSC
with dimension |R| × |T |, whereas the clustering executes the function over-
all n2 · ι time, where n is the number of data points to be clustered and ι
the number of iterations. For minor measurements, the exponential func-
tion is executed several thousand up to millions of times and the number
increases accordingly for the measurements with high resolution. All generic
math libraries provide an exact exp function. Using the knowledge about the
representation of floating points within processors, it is possible to build a
function approximating exp which accelerates the computation up to 4 − 6
times with hardly and loss of precision.

2.2 Related Work

In the following, we summarize three approximation methods already known
from literature, namely fastexp and fasterexp from the fastapprox-v0.3.2-
library and EXP makro.
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1 static inline float fastexp (float p){

2 p *= 1.442695040f;

3 float offset = (p < 0) ? 1.0f : 0.0f;

4 float clipp = (p < -126) ? -126.0f : p;

5 int w = clipp;

6 float z = clipp - w + offset;

7

8 union {int i; float f;} v = {int((1 << 23) \

9 * (clipp + 121.2740575f + 27.728023f / (4.8425256f - \

10 z) - 1.49012907f * z))};

11 return v.f;

12 }

13

14 static inline float fasterexp (float p){

15 p *= 1.442695040f;

16 float clipp = (p < -126) ? -126.0f : p;

17 union {int i; float f;} v = {int ((1 << 23) \

18 * (clipp + 126.94269504f))};

19 return v.f;

20 }

Listing 2.1: C++ code of fastexp and fasterexp approximation provided by
fastapprox-v0.3.2-library. The code was slightly adapted for bet-
ter legibility.

The fastapprox-v0.3.2-library

The fastapprox-v0.3.2 -library1, implemented and maintained by Paul Mineiro,
provides two methods: the fastexp and the fasterexp function. Both methods
exploit the binary representation of floating points and omit the expensive
computation of the exponential value by approximating its binary representa-
tion with atomic arithmetic operations. Given a negative value p, the method
fastexp computes exp(p) using an hyperbolic fitting function, whereas faster-
exp omits some arithmetic operations employing a constant value to fit the
integer representation. The code is shown in Listing 2.1. Due to the limited
number of operations, fasterexp is faster but provides results with a higher
mean and maximum error.

The EXP function

Introduced by Schraudolph (1999), the EXP function also exploits the rep-
resentation of floating points within a processor. By interpreting a float bit
field as an integer bit field, the complete computation can be reduced to few
integer operations. Listing 2.2 presents the complete code.

1https://code.google.com/p/fastapprox/
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2.3 Approximation Approach

1 static union { float f; int i; } eco;

2 #define EXP_A (8388608 / M_LN2)

3 #define EXP_C 60801

4 #define EXP(y) (eco.i = EXP_A * (y) + \

5 (1065353216 - EXP_C), eco.f)

Listing 2.2: C++ code of EXP function. For better comparability, the code
was adapted to float type (the original EXP function was coded
for double type).

2.3 Approximation Approach

As mentioned, the Gaussian distribution and the Inverse Gaussian distribu-
tion both utilize the exp function. By the definition of both distributions, the
exponent is always negative or zero. Thus, the exp approximation will be tai-
lored for this domain. The natural exponential function can be rewritten into
another exponential function with any other base, for example ex = 2x/ log(2).
Thus, the property can be exploited that the floating points are represented
as s · 2b · η as defined in the IEEE-754-1985 standard by the IEEE Com-
puter Society (1985), where s ∈ {−1, 1} is the sign, b ∈ N0 the exponent
with an offset of 127 and η ∈ [1; 2) the normalized mantissa. Now the result
can be expressed as the product of two floats, namely let exp(x) := f1 · f2,
where f1 := s1 · 2b1 · η1 with s1 := 1, η1 := 1 and b := dx/ log(2)e. Fur-
thermore, let f2 := 2(x/ log(2))−dx/ log(2)e. Here, f2 ranges between (0.5; 1]
and −1 < (x/ log(2))− dx/ log(2)e ≤ 0. Let

M∗(x) := 0.006935931x4+0.053403572x3+0.239547871x2+0.693075817x+1

be a fourth order polynomial, which fits 2x almost perfectly within the range (−1; 0].
The residual error between 2x and M is at most 5 · 10−6, consider Fig-
ure 2.1. Furthermore, the maximum relative error between 2x and M in the
range (−1; 0] is less than 1.5·10−5%. Hence, the relative error between exp(x)
and the approximation is also at most 1.5 · 10−5 for all x < 0, since all x are
reduced to approximate 2x within the range (−1; 0]. To reduce the num-
ber of arithmetical operations and redundant multiplications of x order, the
function is as factorized as possible, let

M :=
(
(0.006935931x+ 0.019890581)x+ 0.143440676

)
(x+ 4.83179411)x+ 1.

(2.1)
The coefficients are computed by solving

min

n−1∑
j=0

(
2xj −

4∑
i=0

cix
i
j

)2

where n = 108 and xj := −j/n for j = 0, . . . , n − 1. The equation can be
solved by the linear least squares method, which is described in Section 1.5.2.
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2 Approximating the Exponential Function
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Figure 2.1: (top) Comparison between function 2x and polynomialM within
the X-axis range (−1; 0], both functions run almost equally; (bot-
tom) residual error between function 2x and M, the maximum
absolute error is about 5 · 10−6.

The starting coefficients are computed as follows ci := log(2)i/i!. Several
different approximations forM are examined, like (1 + log(2) ·x/n)n where n
is a power of two e.g. 32, 64, 128 or polynomials of higher order, but either the
relative error or the computation time was higher for all of these approaches.

2.4 Implementation

The computation of exp(x) takes place in three steps, consider C++ code in
Listing 2.3. 1) The values f1 and f2 are prepared and initially filled, line 9−12.
2) Value f1 is computed, line 14− 15, more details in consecutive paragraph.
3) Value f2 is computed according to Equation (2.1), line 17− 22.

Computing f1 To provide a fast computation for f1, the floating point rep-
resentation is exploited. Within a 32 bit register, the bits [23; 30] are coding
the exponent. The exponent is biased with offset 127, making it possible to
compare floats by treating them as integers. Let f1,i be the integer interpreta-
tion of bit field f1 and f1,f for floating interpretation, respectively. Value x is
casted into an integer, whereat implicitly a round up operation is performed
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2.5 Enhancement under Resource Constraints

1 const float coeff_4 = 0.006935931 , coeff_3 = 0.019890581;

2 const float coeff_2 = 0.143440676 , coeff_1 = 4.831794110;

3 const float coeff_0 = 1., onebylog2 = 1.442695041;

4 const int offset_127 = 127, shift_23 = 23;

5 const float min_x = -88.;

6

7 inline float exp_approx(float x){

8 if (x > min_x){

9 x *= onebylog2;

10 union {int i; float f;} f1 = {(int)x};

11 x -= f1.i;

12 float f2 = x, x_tmp = x;

13

14 f1.i += offset_127;

15 f1.i <<= shift_23;

16

17 f2 *= coeff_4; x_tmp += coeff_1;

18 f2 += coeff_3; x_tmp *= x;

19 f2 *= x;

20 f2 += coeff_2;

21 f2 *= x_tmp;

22 f2 += coeff_0;

23

24 return f1.f * f2;

25 }

26 return 0.;

27 }

Listing 2.3: C++ code of exp approx for negative numbers.

(remark that x is negative), let f ′1,i := (int)x. Subsequently, the bias is added
and afterwards shifted by 23 bits, let f1,i := (f ′1,i + 127)� 23.

2.5 Enhancement under Resource Constraints

The following methods are used to allow the compiler to produce more opti-
mized code:

• Using const for every constant, the compiler does not need to care about
variables being overwritten.

• Splitting Equation (2.1) into its atomic operations allows the compiler
to rearrange the order of computations (without a change of the logic).
Since the equation contains several parallel computations, the compiler
can produce even faster code for processors with the ability of parallel
computation, e.g. single instruction multiple data (SIMD) technology.

• The rounding of x for computing f1 happens implicitly by casting to
int. Using the ceil function, the computation significantly slows down.
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2 Approximating the Exponential Function

• To avoid costly casts between int and float, a union container is utilized.

• When x drops below−88, the exponent would be less than−127. Hence,
the computation will be omitted and zero will be returned. This inac-
curacy is acceptable for the further algorithms. Especially computing
or checking for valid values will be omitted by returning zero.

2.6 Evaluation

The evaluation of the exponential function approximation contains a com-
putation time benchmark as well as an accuracy benchmark. Since the exp
approximation was designed for negative numbers, the benchmark contains
four sets S1 = (S1,j),S2 = (S2,j),S3 = (S3,j),S4 = (S4,j) with j := 1, . . . , 108,
where S1,j is an independent and identically distributed negative random
variable within the range (−1; 0], S2,j within (−40; 0], S3,j within (−88; 0]
and S4,j within (−1000; 0], respectively. Here, S4 is only taken into account
for computation, since most of the values are smaller than 2−88 and thus can
not be represented by float values. Hence, a computations of a relative error
is not reasonable. To avoid influences falsifying the computation time like the
computation of random numbers, only the execution of the main loop will be
measured. Additionally, the main loop contains ten calls of each tested func-
tion to reduce the computation overhead of loop unrolling by the compiler.
We use the exact exp function provided by C/C++ standard math library as
the reference. The functions fastexp, fasterexp and EXP as described in Sec-
tion 2.2 are also analyzed for comparison. For accuracy, the relative error E
is being computed using Equation (1.5). The mean relative error as well as
the maximal relative error are taken into account.

Results Table 2.1 and 2.2 present the results of the benchmark. On a Desk-
top PC, the developed exp approx function computes about 5.3 times faster
than the exact exp function while the relative error is only up to 10−5. Even
on the Raspberry Pi, exp approx is 3− 4 times faster. We elucidated empir-
ically, that approximating with a fourth order polynomial provides the best
trade-off between the accuracy and computation time. During the evaluation,
we profiled the function calls and found that exp approx requires about 25%
of the complete execution time when executing the online peak model estima-
tion described in Section 4. For measurements with normal resolution (e.g.
dataset 69, consider Appendix A.2), exp approx was called several million
times and for the highest resolution even about a billion times. When using
the ordinary builtin exp function, the calls occupy about 60% of the process-
ing time while the results only differ slightly. The high accuracy is especially
necessary for probabilities in statistical distributions. Since the probabilities
converge towards zero with increasing negative values, the absolute error also
shrinks. Although exp approx is not the fastest method, it provides the best
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2.6 Evaluation

Table 2.1: Comparison of exp function provided from standard library in
terms of computation time compared to our exp approx function,
fastexp and fasterexp provided by fastapprox-library and EXP pro-
vided by Schraudolph (1999). The mean error, mean standard de-
viation and maximum error is evaluated. The values indicate the
factor by which the tested function is faster than the exp function.

Speedup with exp as reference

set exp approx fastexp fasterexp EXP

Desktop PC

S1 5.3278 4.5346 12.239 13.1526
S2 5.3335 4.5394 12.292 13.1607
S3 4.7287 4.6112 10.761 10.4196
S4 13.787 9.2259 0.6109 18.88

Raspberry Pi

S1 3.9802 2.5476 6.7054 13.0584
S2 3.9649 2.5414 6.7803 13.214
S3 3.6902 2.5477 6.2900 10.175
S4 13.222 8.6952 0.7304 0.6164

trade-off between speed and accuracy. The functions EXP and fasterexp are
even twice as fast as exp approx but provide relative errors of about 1%.
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2 Approximating the Exponential Function

Table 2.2: Comparison of exp function provided from standard library against
the exp approx function and fastexp and fasterexp provided by
fastapprox library in terms of accuracy. Both measures, the mean
relative error and the maximal relative error are benchmarked.
Set S4 is not taken into account, since most contained values are
too low for computation.

set exp approx fastexp
mean error max error mean error max error

S1 7.1 · 10−7 ± 1.1 · 10−6 8.94 · 10−6 1.0 · 10−5 ± 1.7 · 10−5 6.16 · 10−5

S2 8.1 · 10−7 ± 1.3 · 10−6 1.06 · 10−5 1.0 · 10−5 ± 1.7 · 10−5 6.27 · 10−5

S3 1.1 · 10−6 ± 1.4 · 10−6 1.26 · 10−5 0.0019± 0.026 0.48

set fastexp EXP
mean error max error mean error max error

S1 0.0071± 0.0094 0.038 0.01± 0.01 0.05
S2 0.00804± 0.0097 0.03894 0.01± 0.018 0.05
S3 0.0093± 0.022 0.45 0.012± 0.038 0.93
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3 Offline Peak Model Estimation in
PEAX

The basis of MCC/IMS analysis is peak extraction, by which we mean a rep-
resentation of all high-intensity regions (peaks) in the measurement. An ade-
quate representation is using a few descriptive parameters per peak instead of
the full measurement data. Usually, peaks are described by a D-dimensional
point indicating the highest signal intensity of the peak as well as the sig-
nal intensity itself. In the following, we describe automated peak extraction
methods from literature extracting peaks from IMSCs, introduce a parame-
terized model describing the complete two-dimensional shape of a peak and
present a method for automated peak extraction by determination of their
descriptive parameters.

3.1 Background

The representation of peaks as a list of descriptive parameters has several
advantages, especially in a resource-constrained context. Almost every post-
processing step handles peak lists with less complexity than the signal inten-
sity matrix. This includes a comparison and connection of peaks within a set
of measurements as well as the determination of the analytes by comparing
them with a reference peak list. It is less expensive to store a peak list in
terms of storage space as well as a possible transmission of the data in terms
of energy consumption. Furthermore, the transformation of the parameters
for an easier pairwise peak comparison becomes feasible. Since the use of
distance measures can be improved, error tolerant comparisons become more
robust.

In general, automated peak extraction methods can be distinguished between
two categories: On the one hand, offline methods have the whole data matrix
of an IMSC available at any time during the entire extraction process. On
the other hand, methods are referred to as online in which a single (or a
small constant amount of) IM spectrum / spectra is processed right after
the capturing and then directly discarded. In this section we concentrate on
offline methods whereas Section 4 will focus on online methods.
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3 Offline Peak Model Estimation in PEAX

3.2 Related Work

In this section we present peak extraction methods from literature. The
following methods automated extraction in VisualNow, automated extraction
in IPHEx as well as local maxima are offline methods. All three extraction
methods have the description of a single peak in common, which consists of
three parameters θ = {ρ∗, τ∗, h∗} where h∗ = Sr∗,t∗ is the highest signal of
the peak and ρ∗ := Rr∗ , τ

∗ := Tt∗ . As next, we describe two functions from
literature describing the theoretical surface of a peak and briefly consider
their properties regarding the efficiency for parameter estimation.

Automated Extraction in VisualNow

VisualNow is a commercial program (distributed by the B&S Analytik, Dort-
mund, Germany) for the analysis of IMSCs basing on the developments
of Bödeker et al. (2008). It provides an automated peak extraction method
that was introduced by Bader et al. (2005). Having an IMSC signal ma-
trix, the first step is performed by a k-means algorithm. Every matrix cell is
labeled as “peak” or “non-peak”. In the second step, the matrix is first pro-
cessed row-wise. Neighboring cells labeled “peak” are considered as one row
unit. This step is associated to a run-length encoding. Having determined all
runs in each row, the matrix is now processed column-wise. Adjacent runs of
two neighboring rows are merged together. In a last step all centroids of the
emerged regions are computed.

Automated Extraction in IPHEx

Another approach for automated peak extraction was introduced by Bunkowski
(2011). For this purpose, the watershed method is utilized. Given the IMSC
signal matrix, all intensities are first sorted in descending order. The following
conditions are checked for all intensities:

• it has no labeled surrounding intensities, it is being labeled as a new
region,

• all its surrounding intensities have the same region label, it gets the
same label,

• at least two its surrounding intensities have different region labels, it is
labeled as a watershed.

Every region is treated as a peak and the position of the highest intensity is
assigned to the peak.
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3.2 Related Work

Local Maxima

D’Addario et al. (2014) introduced a complete pipeline (called PEAX) for
automated peak extraction containing the four steps preprocessing, candidate
detection, peak picking and estimation. The pipeline will be described in more
detail in Section 3.4, since the peak model estimation which is introduced in
this section is a part of this pipeline. One module within the candidate
detection step is called local maxima, which is an easy and fast method for
peak finding. Going through the data matrix of an IMSC, every cell as well as
its eight surrounding neighbor cells are taking into consideration. If the values
of all neighbors are lower than the value of the current cell and this value
exceeds a tunable threshold, it is considered a peak candidate. In the second
step, peak candidates which are too close to each other are merged. Here, a
weighted cluster editing problem is being solved. A more detailed summary
is given in Section 5.2. Cliques of peak candidates detected by cluster editing
are merged into final peaks. When merging two or more candidates, both the
position and the signal value of the highest candidate is assigned to the final
peak. The estimation step is omitted in this process.

Theoretical surface of a Peak

Bödeker and Baumbach (2009) introduced a function with nine parameters to
describe the theoretical surface of a peak using the log-normal distribution.
Having θ = (ρ∗, τ∗, h∗) defined as the mode position of a peak (retention time,
IRM) and its signal intensity, the function P describing the surface is defined
as follows:

µ̃b,σ(x) := log(x− b) + σ,

a(h, µ, σ) :=
hσ
√

2π

exp0.5σ−2−µ ,

zx∗,b,β(x) := β · (x− x∗) + x− b,

NL(x |µ, σ) := exp−
(log(x)−µ)2

2σ2 x · σ ·
√

2π,

Pθ(ρ, τ) :=
1

h∗
· a(h∗, µ̃bR,σR(ρ), σT) · NL(zρ∗,bR,βR(ρ) | µ̃bR,σR(ρ), σR)

· a(h∗, µ̃bT,σT(τ), σT) · NL(zτ∗,bT,βT(τ) | µ̃bT,σT(τ), σT)

for every ρ ∈ R, τ ∈ T where θ = {ρ∗, τ∗, h∗, σR, bR, βR, σT, bT, βT}. This
peak description is the product of two one-dimensional statistical distribu-
tions. However, the rather complex usage of parameters allows no intuitive
understanding of their functions. Providing maximum likelihood estimators
for every parameter is rather difficult. The number of parameters also makes
the model less suitable since more parameters mean more consumption of
computation power.
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3 Offline Peak Model Estimation in PEAX

Function for describing the Peak Surface

Another function for describing the peak surface was introduced by Vogtland
and Baumbach (2009) using eight parameters. Considering a peak in both
dimensions retention time and IRM, the peaks follow a similar pattern, i.e.
they all have a more pronounced tailing. Hence, the approach is to split
the function at the modes position. The fronting is described by a Gaussian
distribution and the tailing by a Breit-Wigner function. Since the tailing be-
comes extreme strong in retention time, a logarithmic Breit-Wigner function
is suggested. Here, θ = {ρ∗, τ∗, h∗} is again the mode position of a peak (re-
tention time, IRM) and its signal intensity, thus the peak surface function P
is defined as follows:

fT(x |x0, h, wg, wbw) :=


h if x = x0

h · 2
(x−x0)

2

w2
g else if x < x0

h · w2
bw

w2
bw+(x−x0)2

else

,

flbw(y | y0, h, a, w, ζ) :=


h log(a+wa )

ζ

log(a+wa )
ζ
+log

(
a+w−y0

a

)ζ if y − y0+ > 0

0 else

,

Pθ(ρ, τ) := fT(τ | τ∗, flbw(ρ | ρ∗, h∗, a, wr, ζ), wg, wbw)

for every ρ ∈ R, τ ∈ T where θ = {ρ∗, τ∗, h∗, wg, wbw, wR, a, ζ}, wg, wbw are
the width for both Gaussian as well as Breit-Wigner function in IRM, wR

the width of logarithmic Breit-Wigner function in retention time, a the neg-
ative distance from ρ∗ in retention time and ζ a tunable exponent. This
model has one parameter less than the previous model and also describes
the two-dimensional peak as a product of two one-dimensional distributions.
Besides the fact that it is unreasonable to describe a physical process with
two truncated statistical distributions for one dimension, approaches like the
EM algorithm become unsuitable for parameter estimation.

3.3 Peak Model

For our purpose of analyzing MCC/IMS measurements, a peak is character-
ized by the following assumptions.

Assumption. A D-dimensional peak P is a product of D log-concave func-
tions with two inflection points in each dimension and a parameter set θ. The
peak width at half height ω1/2,i can be calculated with respect to the mode
for each dimension i = 1, . . . ,D. At its mode (m1, . . . ,mD), Pθ exceeds the
average background noise level by a certain factor multiplied by the standard
deviation of the noise, i.e., I := µN + noise margin · σN.
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3.3 Peak Model

Assumption. For MCC/IMS measurements, the peak P is a special case
of P with D = 2 dimensions.

To describe peak P in both dimensions retention time and IRM, we use the
shifted Inverse Gaussian distribution. Other skewed statistical distributions,
i.e. Beta, Chi2, Erlang, F, Gamma or the Weibull distribution, were exam-
ined but discarded since all these distributions have the disadvantage of a
potential curve formation with a single inflection point when parameters are
set inappropriately. The Inverse Gaussian is defined by its density

g(x |µ, λ, o) :=
1[x > o]√

2π
·

√
λ

(x− o)3
· exp

(
−
λ
(
(x− o)− µ

)2
2µ2(x− o)

)
. (3.1)

Its parameters are the shift (or offset) o, the relative mean µ > 0 (to the right
of o) and the shape parameter λ > 0. A peak is then given as the product
of two shifted Inverse Gaussians, scaled by a volume factor v, i.e., by seven
parameters θ = {v, µR, λR, oR, µT, λT, oT}; so the density function of a peak
is defined as

Pθ(ρ, τ) := v · g(ρ |µR, λR, oR) · g(τ |µT, λT, oT)

for all ρ ∈ R, τ ∈ T as we introduced in Kopczynski et al. (2012).

Since the parameters µ, λ, o of a shifted Inverse Gaussian may be different
despite the similar shape of the resulting distributions, it is more intuitive to
describe the shifted Inverse Gaussian in terms of three different descriptors:
the (absolute) mean µ′, the standard deviation σ and the mode m. There is
a bijection between (µ, λ, o) and the descriptors (µ′, σ,m). Given (µ, λ, o), we
have

µ′ = µ+ o,

σ =
√
µ3/λ,

m = µ ·
(√

1 + (9µ2)/(4λ2)− (3µ)/(2λ)
)

+ o,

and, given (µ′, σ,m), we use auxiliary expressions p1 and p2 to find

p1 :=
(
−m(2µ′ +m) + 3 · (µ′2 − σ2)

)
/
(
2(m− µ′)

)
, (3.2)

p2 :=
(
m(3σ2 + µ′ ·m)− µ′3

)
/
(
2(m− µ′)

)
, (3.3)

o = −p1/2−
√
p21/4− p2,

µ = µ′ − o,
λ = µ3/σ2.

The advantages of this description in contrast to both peak descriptions pre-
sented in Section 3.2 are i) intuitive parameters, ii) inherent normalization
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Figure 3.1: Factor between ω1/2 and σ. With increasing skewness it is de-

creasing. The highest factor ∼ 2.3548 is achieved for a symmetric
inverse Gaussian.

of the model (important for statistical methods) and iii) fewest number of
parameters.

We also employ the following empirically observable properties of peaks in real
IMSCs which concern the peak widths on both the IRM axis and the retention
time axis. The full width at half maximum (FWHM) can be described as the
length ω1/2 of the interval around the mode where the peak height is at least
half of its maximum height. For a (symmetric) Gaussian distribution, there
is a linear relation between the standard deviation σ and ω1/2:

ω1/2 = φ · σ with φ = 2
√

2 ln 2 ≈ 2.3548 . (3.4)

This relation also holds well for not too skewed Inverse Gaussian distributions
(see Figure 3.1) and is a good approximation to estimate its descriptor σ from
an empirically observed ω1/2.

Given the mode d∗ of a peak in drift time (in ms), we can estimate its de-
scriptors (m,σ, µ′) in IRM units as follows. Recall that the IRM mode (in
V s cm−2) is simply m = fims · d∗, where fims is the conversion constant be-
tween drift time and IRM (see Section 1.3). Spangler and Collins (1975)

empirically derived that ω1/2 =
√

(11.09 D d∗)/V2d + d2grid, where D is the dif-

fusion coefficient, Vd the drift velocity. Using the relation stated by Einstein
(1905), D can be computed as D = KKBT /Q, where K is the ion mobility
which can be derived from d∗ using Equation (1.1), KB the Boltzmann con-
stant, T the absolute temperature and Q the electric charge. We then use
Equation (3.4) to estimate σ ≈ ω1/2/φ. Finally, the mean value is empirically

found to be µ′ ≈ fims ·
(
d∗ +

√
(4.246 · 10−5)2 + (d∗)2/585048.1633

)
.

On the retention time axis, the peak width ω1/2 grows approximately linearly
with retention time, i.e., there are the constants r width offset > 0 and
r width factor > 0 such that the width of a peak with mode at retention
time ρ is approximately

ξ(ρ) := ρ · r width factor + r width offset . (3.5)

28



3.4 Algorithm

Both parameters are adjustable and depend on the temperature and carrier
gas flow within the MCC. The standard deviation in retention time can fi-
nally be calculated as ∆ρ := ξ(ρ)/φ. Since two or more peaks in an IMSC
can slightly influence each other in shape and intensity, these equations can
be used to compute initial parameters and maximize them according to the
observed data.

3.4 Algorithm

Peak model estimation (PME) is a particular choice of certain modules within
the PEAX pipeline as stated by D’Addario et al. (2014). The peak extraction
process is divided into four steps. Each step has a defined task but can be
performed by different methods which are referred to as modules. Several
modules are already implemented within every step. We now discuss the four
distinct steps.

Preprocessing transforms a raw IMSC into another processed IMSC, i.e., no
data reduction or peak extraction takes place. Raw IMSCs are noisy and
include the additional RIP. To remove both noise and the RIP, we describe
three modules: baseline correction, de-noising and smoothing ; every module’s
input and output is an IMSC. Baseline Correction handles the RIP (and
the baseline in general), removes it, and uncovers underlying peaks. De-
Noising estimates the probability of a data point resulting from noise in order
to remove the noise. Smoothing applies a smoothing filter. The order of
execution is commutable, but none of these modules can be omitted.

Peak Candidate Detection finds a list of potential peaks within the prepro-
cessed IMSC. One of the implemented modules within this step is Cross Find-
ing, belonging to the peak model estimation process. The input of the module
is a processed IMSC, and the output is a list of candidate peaks, further re-
fined in the next step.

Peak Picking examines the proposed candidates and generates the final list
of extracted peaks. Three implemented modules are available. All three
methods calculate a representative peak for a set of peaks whose positions are
too close to be considered distinct. Peak model estimation uses the module
EM Clustering which discovers peak clusters utilizing the EM algorithm.

Peak Modeling is an optional final step to estimate additional peak param-
eters, describing shape and position more precisely. Peak model estimation
utilizes this optional step whereas the EM algorithm is used to estimate pa-
rameters of the given peak shape from Section 3.3 for every peak.

Although some modules in the PEAX pipeline are commutable (especially
all modules within the preprocessing step), PME has a fixed defined execu-
tion order, namely: baseline correction, de-noising, smoothing, cross finding,
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3 Offline Peak Model Estimation in PEAX

EM clustering, peak model estimation. Since PEAX is collaboratively devel-
oped, only the own developed modules are being presented in the following.

3.4.1 Preprocessing

Spectra usually have several inherent features in common beside their desired
signals, e.g. background noise. In particular for IMSC, additional features like
the reactant ion peak (RIP) and the tailing function as described in Section 1.3
influence the spectra and hence the peak extraction methods. To suppress
the disturbing features, the three preprocessing methods baseline correction,
de-noising and smoothing are applied for cleaning IMSCs as described in the
following.

Baseline Correction

In the following, we describe the properties of a baseline within IMSCs and
how to correct the data.

Background Intuitively and informally, a baseline spectrum B = (Bt)t≤|T |
is defined such that Bt is a typical or insignificantly high value at IRM τ when
considering the whole measurement. Formally, for each IRM τ we consider
the distribution of all intensities of chromatogram S·,t. Applying the baseline
correction, the features like RIP, tailing function or other signals occurring
within all IM spectra at the same IRM position are eliminated, since no in-
formation can be extracted which is relevant for the desired signals. Bader
et al. (2008) presented a method which assumes a log-normal model as base-
line and estimates its parameters using the Quasi-Newton before subtracting
from spectrum. We developed a new method since Bader’s method was de-
signed to suppress the tailing function and does not erase the complete RIP.

Mixture Model A typical chromatogram denoted as S·,t contains mostly
noise, one or a few peak(s) and no RIP. Hence, considering a histogram Ht

of S·,t (with the bin size assigned to the smallest signal intensity value),
the most prominent peak within Ht indicates that level. In the RIP chro-
matogram, the most prominent peak corresponds to the RIP level (Fig-
ure 3.2). In both cases and in the intermediate ones as well, we model the
most prominent peak of the histogram by a Gaussian distribution and the re-
mainder by the uniform distribution between the lowest and highest observed
intensity.

Thus, we describe the chromatogram distribution by a heterogeneous two-
component mixture model (Gaussian plus uniform) and estimate its param-
eters (µG, σ

2
G for the Gaussian, ωG for the Gaussian mixture coefficient) by

the EM algorithm.
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Figure 3.2: Histograms (y-axis: frequency) of signal intensities (x-axis) of two
chromatograms, a typical one (left) and a RIP chromatogram
(right). The prominent intensity peak is modeled by a Gaussian
distribution.

Initial Parameters To start the EM iteration, we set µG to the location of the
maximum of Ht and σG := σN, while ωG =

∣∣{t ∈ |T | | |Ht − µG| < 3σG
}∣∣/∣∣T ∣∣

which is relative number of values Ht within the interval [µG− σG;µG + σG].

Final Step After convergence, having estimated µG, σG, we say that all in-
tensities up to µ + 2σ belong to the baseline and adjust the chromatogram
as follows: S′r,t := Sr,t − (µG + 2σG) for all r = 1, . . . , R. After repeat-
ing this step for every t with individually estimated µG,t, σG,t, the baseline
Bt = µG,t + 2σG,t has been removed.

De-Noising

The next section considers an inherent noise of IMSC measurements and how
to suppress it.

Background Noise is understood as low signal intensity values occurring
around the mean value with a low variance. The goal of de-noising is to sub-
tract a substantial amount of noise from the IMSC S by estimating whether
the intensity Sr,t at index (r, t) belongs to a peak region or can solely be
explained by noise. In previous work on de-noising, Bader et al. (2008) use a
wavelet transform but apply it only for each spectrum individually. Our novel
approach is similar to the Baseline Correction module in the sense that the
EM algorithm is used, but the model is more complex and the subtraction
works differently.

31



3 Offline Peak Model Estimation in PEAX

The method is not directly applied to S, but to a matrix A created by a
moving average filter defined as

κT :=
∆τ · |T |
max(T )

,

κR :=
∆ρ · |R|
max(R)

,

Ar,t :=
1

(2κR + 1)(2κT + 1)
·

r+κR∑
r′=r−κR

t+κT∑
t′=t−κT

Sr′,t′ ,

where κT, κR are the smoothing radii according to the standard deviations
of the peaks. Here, ∆τ = t width offset is also an adjustable parameter
and ∆ρ is computed as described in Section 3.3.

Mixture Model Considering the distribution of all A-values, we identify
three components: the noise component (the one of interest and to be re-
moved) is modeled as a Gaussian distribution, the signal component (to be
kept) is modeled as an Inverse Gaussian distribution and a background com-
ponent (explaining every intensity not specifically explained by the other
components) is modeled as a uniform distribution over all measured intensi-
ties. This yields a three-component heterogeneous mixture model (Gaussian
plus Inverse Gaussian plus uniform), whose parameters are again estimated
by the EM algorithm.

Final Step After convergence and a final E-step, we obtain the expected
membership values Wr,t (which are a weighted normalized values of every
probability computed by the probability models) of each data point at index
(r, t) in the noise component. We adjust the original IMSC such that only
the non-noise fraction remains, i.e., S′r,t := (Sr,t − µG) · (1 −Wr,t) where µG
is the mean parameter for the Gaussian model for all r := 1, . . . , |R| and t :=
1, . . . , |T |.

Smoothing

Finally, the last method preprocessing a raw data matrix is introduced in the
following section.

Background In general, background noise is a mixture of a complete fre-
quency bandwidth whereas desired peaks contain only low frequencies. It
manifests itself as a slight jittering of the signal intensities. To reduce the
amount of background noise within the spectrum, the two consecutive meth-
ods lowpass filter and Savitzky-Golay Filter are utilized in the smoothing
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3.4 Algorithm

step. Liu et al. (2012), for example, use a wavelet transform to smooth two-
dimensional nuclear magnetic response spectra.

Lowpass Filter The first method is a lowpass filter. The IMSC is trans-
formed from the time/signal domain into the frequency/signal domain by a
two-dimensional fast Fourier transform (2DFFT), detailed description given
in (Cormen et al., 2009, Chapter 30). All frequencies exceeding a tunable
frequency threshold (parameter fftcutoff) are removed, i.e., set to zero
intensity. Only the adjusted percentage of the first frequencies within this
domain are preserved. The inverse transformation of the filtered matrix is
executed using the inverse two-dimensional fast Fourier transform (I2DFFT).

Savitzky-Golay Filter The IMSC is smoothed by a Savitzky and Golay
(1964) filter (SGF) on local windows using a (2κT + 1) × (2κR + 1) ker-
nel around each data point. In contrast to a smoothing filter with Gaussian
kernel, the Savitzky-Golay filter has the advantage of a preserved peak height
and width. To handle the boundaries of the measurement, we expand the
data matrix with a margin containing only zero values. This procedure is un-
critical since the data at the boundary of the measurement does not contain
important data. The SGF computes a weighted average across the window.

Cropping to Zero

As a step between the preprocessing and the following steps, all signal inten-
sities < 0 are set to zero. All peaks should have intensities above zero. This
step is important, since some modules like the EM algorithm cannot operate
with negative values.

3.4.2 Candidate Detection

The basic idea of Cross Finding is to find maxima based on the ideas by Fong
et al. (2011), searching for roots within the first derivatives in both retention
time and IRM dimension.

We construct two auxiliary matrices V R and V T, both with the same di-
mensions |R| × |T |. In V T, discrete derivatives of spectra are stored (partial
derivatives with respect to the IRM), V T

r,t := Sr,t+1−Sr,t; analogously deriva-

tives of chromatograms are stored in V R. We describe how V T is analyzed.

In each derived spectrum (for fixed retention time index r), we mark down-
ward zero crossings; these are indices t with V T

r,t−1 ≥ 0 and V T
r,t < 0. The

resulting indices t are called active positions for retention time index r.

During the scan through the spectra, two data structures are maintained.
The first one is an active set containing lists of active positions connected

33



3 Offline Peak Model Estimation in PEAX

-1
0
1
2
3
4
5
6
7
8

0 2 4 6 8 10
-1
0
1
2
3
4
5
6
7
8

0 2 4 6 8 10

Figure 3.3: Cross Finding as described by D’Addario et al. (2014): Active po-
sitions (marking potential peak maxima) are initially unaligned
(left) and then connected by alignment across spectra (right;
shown as red + and blue x). The same procedure is repeated
for all chromatograms giving horizontal bands instead of vertical
bands. Intersecting the results from both dimensions results in
peak candidates.

across several spectra. The second one is a finalized set, to which lists from
the active sets are moved after having been processed. Initially both sets are
empty.

Our aim is to connect active positions between consecutive retention times,
i.e., we want to find active positions for spectrum r+1 corresponding to active
positions in spectrum r (see Figure 3.3(left)). To find the correspondences,
we compute a global alignment between the two sorted integer lists A ⊂
{1, . . . , |T |} and A+ ⊂ {1, . . . , |T |} containing the active positions. Here,
we utilize the Needleman and Wunsch (1970) algorithm. Depending on the
dimension, the following distance functions are applied:

dist(i′, j′)R :=
|RA[i′] −RA+[j′]|

∆ρ
,

dist(i′, j′)T :=
|TA[i′] − TA+[j′]|

∆τ

for retention time and IRM dimension, respectively. To prevent that two
positions with a high distance are aligned, we introduce a gap g = 1.

Applying a global alignment, three scenarios are possible in regard to the
aligned position pairs:

(1) If A+[j′] is not aligned to any A[i′], it is a “new” active position and a
new list containing only A+[j′] is inserted into the active set.

(2) If A+[j′] is aligned to some A[i′], the corresponding list containing A[i′]
is already in the active set and extended by A+[j′].
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3.4 Algorithm

(3) Each A[i′] which is not aligned to any A+[j′] finalizes its corresponding
active list and the list is moved into the finalized set.

After processing all spectra and finalizing each remaining list, we obtain sev-
eral position lists pointing out consecutive maxima throughout each spectrum;
see Figure 3.3(right).

The same procedure is analogously performed with matrix V R. We report the
intersection of positions found from both matrices (which can be visualized
as crosses; hence the name “Cross Finding”). If more than one position over-
lap is found between two lists, the position with the higher signal intensity
is reported. Each reported point whose signal intensity exceeds the thresh-
old σN · noise margin is a candidate for a peak location with noise margin

as an adjustable parameter.

3.4.3 Peak Picking

The mean retention time and IRM of a peak is random within a small inter-
val. Given the physical separation properties of an MCC/IMS device, different
peaks with too high overlapping appearance intervals must be considered as
one peak. The objective of this module is to recognize peak candidates from
the previous step which comply with this property. This module also utilizes
the EM algorithm. Initially, each peak candidate represents a component but
during the course of the algorithm, components can be merged. The remain-
ing components will represent the picked peaks. This method is referred to
as EM Clustering and a detailed explanation is given in Section 5.

Each component is a two-dimensional Gaussian distribution with independent
dimensions, i.e., diagonal covariance matrix. Initially, the mean of every
component is the (ρ, τ) location of the corresponding peak candidate. The
standard deviation on the R- and T-axis is set to ∆ρ and ∆τ , respectively.
In the E-step, the hidden membership coefficients of each peak are estimated
for each component. When a peak candidate is close to another one, the
probability that the first model also (partially) describes the second candidate
is comparatively high. In the maximization phase, the parameters of each
component are re-estimated based on candidate membership using maximum
likelihood estimators. In the case of two close candidates, the mean of both
components moves towards their middle. When the distance between the
means of two components drops below a given threshold, the components are
merged: The component of the candidate with the lower signal intensity is
removed, and its weight is added to the remaining model. The E- and M-steps
are repeated until convergence.

When updating the variance by maximum likelihood estimation, we must be
aware that the variance of a component described by only one peak tends to
zero, leading to a singularity in the Gaussian density function. Therefore, we
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3 Offline Peak Model Estimation in PEAX

restrict the estimated standard deviation to values exceeding the threshold
τmin := ∆τ · 10−5 V s cm−2.

3.4.4 Peak Modeling

Peak modeling is an optional step which estimates a parametric model of a
peak shape. Within the PME pipeline it is enabled, providing a module of
the same title introduced by Kopczynski et al. (2012). It outputs the peak
list with the additional parameters appended.

Mixture Model

A whole IMSC is interpreted as a sample from a mixture model of differ-
ent shifted Inverse Gaussians and a uniform background noise model. Then,
each component (peak) can be described by seven parameters (three for both
shifted Inverse Gaussians in both T- and R-dimension, plus one mixture co-
efficient). The challenge is to estimate the parameters correctly, especially
when peaks overlap. Again, the EM algorithm is utilized for this purpose.

For efficiency, each component model is only evaluated in a surrounding box
enclosing the peak. Starting from the picked peak location, the borders of
the box are expanded in all four main directions until the signal intensity
drops below σN in each direction. Additionally, the box is expanded by κT in
both main IRM directions and by κR in both main retention time directions,
respectively. When two boxes intersect, both boxes are merged into their
convex hull. After this process, we have a set of boxes containing at least one
peak.

Initial Parameters

Now we can apply EM to each box independently with the advantage of
processing smaller boxes in contrast to the whole signal matrix. The weights
are at the beginning ω := 1/c having c components. Starting parameters
for each component are estimated from the locations of picked peaks and
additional assumptions: The descriptors are chosen such that their modes
correspond to the known (ρ∗, τ∗) values, the mean is set slightly higher (µT =
τ∗ + τmin), and the standard deviation is set with ∆τ in IRM dimension
and ∆ρ in retention time, respectively. The initial model parameters can
be recomputed using the descriptors as explained in Section 3.3. Hence, we
obtain for model j a parameter vector θj = {ω, µR, λR, oR, µT, λT, oT}.
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M-Step

Let c be the number of peaks provided by the picking step. Additionally,
we add a background component with index j = 0. Using the membership
variables W(r,t),j for all j := 0, . . . , c, the data point intensity Sr,t decomposes

into independent components S
(j)
r,t , each of which represents a single peak (or

the background), via

S
(j)
r,t := W(r,t),j · Sr,t.

We first estimate the new model weights ω∗c by maximum likelihood; a stan-
dard calculation shows that

ω∗j =
1

S̃

∑
r∈R,t∈T

S
(j)
(r,t),

where S̃ =
∑

r,t Sr,t is the total signal intensity for all r := 1, . . . , |R| and t :=
1, . . . , |T |. There are no further parameters for the background component
and the process is complete.

For the peak component, we estimate each parameter of θj . Maximum likeli-
hood estimators for the one-dimensional shifted Inverse Gaussian are known
as stated by Cheng and Amin (1981) and Koutrouvelis et al. (2005). Since
our two-dimensional model factors into two one-dimensional Inverse Gaus-
sians, these estimators can be used by marginalizing over the respective other
dimension. We provide the resulting estimators (µ∗j , λ

∗
j , o
∗
j ) for the retention

time axis. Let S̃(r,·) :=
∑

t∈T S
(j)
(r,t) be the marginalized signal.

The relative mean is naturally estimated as

µ∗j =

∑
r≤|R|

Rr · S̃(j)
(r,·)

ω∗j S̃
− o∗j .

Thus, the offset estimate o∗j has to be known to estimate µ∗j . We solve this

problem by first using the previous value o0j , then estimating o∗j (see below)
using µ∗j , and finally updating µ∗j by using o∗j . This can be repeated until
convergence, but we found that in one iteration is sufficient. The shape
parameter λ∗j is ML-estimated by

λ∗j =
ω∗j S̃∑

r≤|R|
S̃
(j)
(r,·) ·

(
1/(Rr − o∗j )− 1/µ∗j

) .
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3 Offline Peak Model Estimation in PEAX

We circumvent the difficulty of requiring o∗j as above. The ML-estimator for
the offset o∗j is determined by

0 =
∑
r≤|R|

S̃
(j)
(r,·) ·

(
3

λ∗j (Rr − o∗j )
+

1

(µ∗j )
2
− 1

(Rr − o∗j )2

)
.

There is no closed formula for o∗j , but its value can be efficiently determined
using Newton’s method. The EM algorithm interrupts the process, once all
convergence criteria are fulfilled.

Final Step

As the model parameters have a rather technical interpretation, they are
translated back into the descriptors, i.e. mode, mean and standard deviation
of the distribution, which are conveniently compared and interpreted.

3.5 Evaluation

In the following, we evaluate several aspects introduced within this section.
First, the quality of the introduced peak model is evaluated. Subsequently,
an evaluation of the complete algorithm is presented as documented in Sec-
tion 3.4.

3.5.1 Quality of the Model

We evaluate the quality of the obtained peak models by computing the
log-likelihood of the observed normalized signal S′r,t := Sr,t/S̃ where S̃ =∑

r≤|R|,t≤|T | Sr,t under three different distributions: (1) the empirical distri-

bution S′r,t itself, the most accurate description of the data requiring |R| |T |
parameters; (2) the estimated mixture model Pθ(ρ, τ) requiring seven param-
eters θ per peak; (3) the uniform distribution on |R| × |T |, irrespective of the
data and requiring no parameters. Thus, let

LD :=
∑

r,t
S′r,t log(S′r,t),

LM :=
∑

r,t
S′r,t log(Pθ(Rr, Tt)),

LU :=
∑

r,t
S′r,t log(1/(|R| |T |)) = − log(|R| |T |).

Of course LD ≥ LM ≥ LU; we claim that for IMS measurements with high
peak density, LD ≈ LM � LU, even though our model requires only seven
parameters per peak instead of |R| |T | data points. Hence, we compute the rel-
ative size of LM in the interval [LU, LD], that is Q := (LM−LU)/(LD−LU) ∈
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Figure 3.4: Q in relation to the signal weight 1−ωB for 110 sections containing
peaks as illustrated in Kopczynski et al. (2012).

[0, 1]; values towards 1 mean more accurate models. Sparse measurements
with few peaks (and much background noise) are (globally) already well de-
scribed by the uniform model; thus, we plot Q in relation to the weight
1 − ωB of the signal components in our model (Fig. 3.4), where ωB is the
weight of the uniform distribution, i.e., background model. For the evalua-
tion, we manually extracted 110 sections containing peaks from Dataset 69
(described in Appendix A.2). For data sets that predominantly consist of
peaks (1− ωB > 0.4), almost all Q-values exceed 0.8.

3.5.2 Quality of the Pipeline

As introduced for PEAX, a sequence of consecutive processing steps is re-
ferred to as a pipeline. We compare the described pipeline with all remaining
pipelines provided by PEAX. For this purpose, we use Dataset 69 again.
Since there is a lack of single measurement annotations, a domain expert
additionally pinpointed the peaks for every measurement within the dataset.
By combining the provided modules, 108 individual pipelines can be set up.
We name the pipelines by concatenating the shortcuts of the used modules in
order. For example, the pipeline using (in this order) the modules Smooth-
ing, De-Noising, Baseline Correction, Cross Finding, EM Clustering and No
Modeling is named s-dn-bc-lm-emc-e. There are not 144 pipelines because
of the redundancy between pipelines using the empty module as fourth step
(for more details consider D’Addario et al. (2014)). Our PME pipeline has a
particular name: bc-dn-s-cf-emc-pme.

To evaluate each pipeline, we compare the final obtained peak list with
one which was manually annotated by an expert MCC/IMS development
engineer. For the comparison we considered only peaks with a retention
time exceeding 5 s and an IRM above 0.48 V s cm−2, as is standard practice.
Agreement of an automatically obtained peak list with that obtained by a
domain expert is generally considered favorable. However, one should be
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Figure 3.5: Comparing the results of all pipelines with the manually picked
peaks according to sensitivity and precision (or PPV). The green
crosses indicate the Pareto front. Left, middle and right figure cor-
respond to signal intensity thresholds noise margin = 5, 10, 15,
respectively. The dashed lines separate two clusters of pipelines.

aware that manually annotated lists may also be incomplete or contain ex-
traneous peaks. Nevertheless, assuming that the manually annotated peaks
are correct, we compute the following quantities. Peaks detected by both
methods, manual and automatic, within one measurement are true positives
(TP). Accordingly, manually annotated peaks that are not detected by the
pipeline are false negatives (FN) and automatically detected peaks not found
in the manual annotation are false positives (FP). We compute the sensi-
tivity SENS := TP/(TP + FN) and the precision (or positive predictive
value) PPV := TP/(TP + FP). To determine these quantities for a par-
ticular pipeline, we average over all measurements of the dataset. It remains
to define what it really means that “the same” peak has been detected by
both methods, since the location parameters (ρ, τ) may differ slightly. All
peak picking modules can be used for this decision, and we chose “Merging
by Signal Intensity” (ms) as described by D’Addario et al. (2014). Imagine
a box around every manually annotated peak (ρ, τ) of widths 2∆ρ and 2∆τ ,
respectively. Then we successively count each box containing at least one au-
tomatically detected peak and delete it. In case of two or more peaks within
the box, we count the closest one.

Ranking the Pipelines

Figure 3.5 shows a plot of SENS against PPV for each pipeline for different
parameter values of the signal intensity threshold I := σN · noise margin.
The Pareto front is visualized in each plot. We find that, for the candidate
detection step, almost all Pareto-optimal pipelines use Cross Finding (cf)
whereas EM clustering (EMC) shows the best trade-off between sensitivity
and PPV. For every signal intensity threshold I, the pipelines split into two
groups. The first group has both relatively low sensitivity and low positive
predictive value, while the second one has high values for both measures.
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By modeling, the peak coordinates move slightly, yielding larger average dif-
ferences to the manual annotation based on grid coordinates. However, the
volume of a peak may contain important information (not evaluated here)
which we cannot solely infer from the position and intensity at those coordi-
nates. Concerning the threshold noise margin, selecting a value of 10 yields
superior results. We note that individual measurement properties (high or
low noise, characteristic VOCs, etc.) were not taken into consideration for
choosing the module parameters.
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4 Online Peak Model Extraction

State-of-the-art software, like IPHEx by Bunkowski (2011), Visual Now pre-
sented by Bödeker et al. (2008) or PEAX introduced by D’Addario et al.
(2014) only extract peaks when the whole measurement is available. A mea-
surement may take up to 10 minutes because of the pre-separation of the ana-
lytes in the MCC. Our own PEAX software in fact defines modular pipelines
for fully automatic peak extraction and competes favorably with a human
domain expert doing the same work manually when presented with a whole
MCC/IMS measurement. However, storing the whole measurement is neither
desirable nor possible when memory or CPU power are restricted. To process
a single (noise-reduced) IM spectrum S = (St), it is deconvoluted into sepa-
rate components described by statistical distribution functions. This is called
online peak extraction. Then, storing the whole matrix becomes obsolete, a
desirable property especially for resource-constrained embedded devices. In
the following we first summarize online methods from literature. Afterwards,
we explain in detail the three capital steps of our proposed method, namely
extracting peak parameters from a single IM spectrum containing preprocess-
ing, connecting one-dimensional peak models towards consecutive IM spectra
and estimating parameters for a two-dimensional model for all peak chains as
illustrated in Figure 4.1. Accordingly, we describe the online peak model es-
timation (OPME) method we previously introduced in Kopczynski and Rah-
mann (2014) and explain the enhancements under resource constraints.

4.1 Related Work

As described in Section 3.2, only a few offline automated peak extraction
software products exist in literature. Here we describe two online methods:
peak detection by slope analysis (PDSA) and Savitzky-Golay Laplace-operator
filtering Thresholding Regions (SGLTR) are methods, in which the single IM
spectrum (or a small constant consecutive subset) is processed immediately
after capturing and then directly discarded again.

Peak Detection by Slope Analysis (PDSA)

One approach for detecting peaks is described by Egorov et al. (2013) and is
referred to as peak detection by slope analysis (PDSA). It is an online algo-
rithm, thus it discards every raw IM spectrum data directly after the analysis.
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Figure 4.1: Demonstration of the three major steps in the online process:
extracting peak parameters from a single IM spectrum and
preprocessing (a); connecting one-dimensional peak models to-
wards consecutive IM spectra (b); estimating parameters for two-
dimensional model for all peak chains (c).

A moving window with a pre-defined width is sliding through the spectrum,
searching for a specific pattern. For convenience, we call this pattern a run.
When the sum of all values within the window exceeds a threshold computed
on an area containing only noise, the run begins. In every iteration, the win-
dow is shifted one position ahead. It continues as long as the sum of a window
from the previous iteration is smaller than the current. During the process,
the difference between two sums (i.e. the slope) is being tracked. A change
of the algebraic sign of the slope is allowed only once. When the sums are
decreasing during the sliding until they drop below the threshold, the run
ends and is accepted. Runs with more than one change of sign are discarded.
For every run, the mode of the detected peak is stored. Runs are merged
in retention time, when certain distance criteria stated by Hauschild et al.
(2013) are fulfilled.

Savitzky-Golay Laplace-operator filtering Thresholding Regions
(SGLTR)

The second detection method described by Egorov et al. (2013) utilizes the
Laplace operator. For this, a set of consecutive IM spectra is processed at
once. The Laplace operator is the sum of both second partial derivatives in
retention time and IRM dimension. This value is a measure for the bending
of the matrix section. A filtering kernel is moving through the set of spectra
with tunable width and height, approximating the Laplace operator. To
approximate the second derivative for the kernel, a Savitzky-Golay filter is
utilized. Peaks can be inferred when the operator provides high values.
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4.2 Extracting Peak Parameters from a Single
Spectrum

Here we describe the process of extracting peaks from a single IM spectrum.
After a spectrum is captured, it is still noisy and contaminated with the
RIP and its tailing function. Thus, a preprocessing has to be performed to
suppress the disturbing influences. Afterwards, we repeat three sub-steps to
extract all peaks from a spectrum (from left to right):

1. scanning for a potential peak, starting where the previous iteration
stopped;

2. determining peak parameters using an Inverse Gaussian distribution;

3. subtracting the peak from the spectrum and continuing with the re-
mainder.

4.2.1 Preprocessing

The systematic error of each IM spectrum has to be suppressed to allow
for a decent peak extraction. Again, both the baseline correction as well as
a noise reduction have to be performed. In contrast to the two-dimensional
preprocessing, it is not feasible to utilize the preprocessing methods described
in Section 3.4.1, since these methods considered whole IMSC to lower the
baseline. Thus, considering a single IM spectrum, three preprocessing steps
have to be performed: determining and suppressing the tailing function, de-
noising and baseline correction. Accordingly, the suppression of the RIP
and the tailing function was performed within the baseline correction step
in the offline mode. Aggravating the situation, both shape and scale change
from spectrum to spectrum without any recognizable relation. The scale of
the RIP, for example, decreases significantly whereas the scale of the tailing
function remains almost constant in several consecutive IM spectra. Hence,
capturing a RIP-only spectrum and subtracting it from the current spectrum
is not reasonable. For the consecutive preprocessing we claim the following
assumptions during one measurement:

Assumption. Two consecutive IM spectra S,S ′ containing no peaks pro-
duced by analytes are almost equal, hence |S ′t−St| < 3σN for all t = 1, . . . , |T |.
The RIP is both shifted within an IM spectrum in comparison to the RIP-only
spectrum and scaled. The shape remains unchanged. Position and shape of
the tailing function usually differ in contrast to RIP-only spectrum SR. Since
the analytes need a certain time to pass the drift tube, a particular number
of the first T ′ signals at the beginning of every IM spectrum contains only
noise. Thus, most signals within a spectrum have no amplitude, i.e. belong
to the noise. The noise is normally distributed with mean µN and standard
deviation σN.
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Figure 4.2: An exemplary single IM spectrum and its estimated tailing
function.

Following this assumption, SR has to be processed before any following spec-
tra can be processed. This includes:

1. determining the parameters µN, σN of the noise level by considering the
first T ′ signals of SR,

2. determining and subtracting the tailing function from SR as described
in the paragraph ’Determining the Tailing Function’,

3. de-noising and setting the ground level to zero as explained in the para-
graph ’De-Noising’.

The preprocessed RIP-only spectrum S′R now only contains the RIP (as the
name suggests) as well as peaks which appear in every following IM spectrum,
e.g. the pre-RIP.

Determining the Tailing Function

Background The tailing function appears in every IM spectrum (see Fig-
ure 4.2 for an example). Its shape and scale change slightly from spectrum to
spectrum but the shape always follows a right skewed peak form; hence it has
to be determined anew in each spectrum and subtracted in order to extract
peaks from the remaining signal in the further step. Empirically, we observe
that the tailing function f(τ) can also be described by a scaled shifted Inverse
Gaussian, f(τ) = v · g(τ |µ, λ, o) with g given by Equation (3.1). The goal
is to determine the parameters θ = (v, µ, λ, o) such that fθ(τ) under-fits the
given data S = S(r,·), as shown in Figure 4.2.

Related Work Bader et al. (2008) presented an approach using a log-normal
distribution L(t) to model the tailing function. This model also has four
parameters but one is fixed since they claim that the modes of both the
RIP and the tailing function have the same IRM value. A penalty term was
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Figure 4.3: Error function Et (red line) with γ = 4 and its first derivative
(blue line).

developed considering the residual error of
(
Smed − L(t)

)
where Smed is a

median spectrum (every data point is the median of row S·,t). This term is
minimized by a quasi-Newton method. Since the median spectrum needs the
whole IMSC to be computed, this approach is not applicable in an online
context.

Parameter Estimation Let Rθ(t) := St− fθ(Tt) be the residual function for
a given choice θ of parameters. As we want to penalize R(t) < 0 but not
R(t) > 0, we use the following non-symmetric loss function which depends
on a threshold parameter γ > 0:

Et(θ; γ) :=

{
Rθ(t)2/2 if rθ(t) < γ ,

γ · rθ(t)− γ2/2 if rθ(t) ≥ γ .

That is, the loss at time t is the squared residual when it has a negative or
low positive value less than the given threshold γ > 0, but becomes a linear
function of the residual for larger positive residuals (consider Figure 4.3 for
an example). The goal is to find the parameter set θ to minimize the total
loss L(θ) :=

∑
t Et(θ; γ) for the given spectrum S and given γ > 0. We use

gradient descent to solve this nonlinear optimization problem, to which we
refer as non-linear loss minimization (NLLM). By modifying the computa-
tion of the parameter shift vector of the NLLS, we obtain the computation
instructions in matrix notation

∆y = y − f(x, θk),

∆θ = (JTJ)−1JTE′(∆y, γ),

θk+1 = θk + ∆θ

where E′ is the derivative of E. Since the derivative of E(x, γ) is continuous
with respect to x, we can compute it as follows: E′(x, γ) = max(x, γ). Here,
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the computation of the Jacobian matrix J remains unchanged. Deriving f(τ)
with respect to all four parameters, we obtain the following instructions for J :

Jv,t = g(Tt |µ, λ, o),

Jµ,t = v
λ(x− o− µ)

µ3
· g(Tt |µ, λ, o),

Jλ,t = 0.5v

(
1

λ
− (Tt − o− µ)2

µ2(Tt − o)

)
· g(Tt |µ, λ, o),

Jo,t = 0.5v

(
λ

(
Tt − o
µ2

− 1

Tt − o

)
+ 3

)
· g(Tt |µ, λ, o)

x− o

for every t = 1, . . . , |T |.

Initial Parameters The initial parameter values (v, µ, λ, o) are determined
as follows: For the scaling factor, we initially set v = (1/2)

∑
t≤|T | St. For

the other parameters, we first estimate the descriptors (µ′, σ,m) as described
below and then use the correspondence to the parameters listed in Section 3.
The initial σ is set to the standard deviation of the whole RIP-only spectrum.
We determine the initial m as the mode of the RIP. One property of the
Inverse Gaussian distributions is that the mean µ′ is always within the interval
I = [m,m + b · σ]. Here, b = 0.71743893 is the maximal factor for the
relation µ′ = b · σ + m, yielding valid parameters for the inverse Gaussian.
To compute b, Equation (3.2) and (3.3) must be equated as: p21/4 = p2 with
setting µ′ = b · σ +m and solving for b. To obtain an appropriate value for
µ′, an auxiliary offset variable o′ is set to the largest IRM left of m where the
signal is lower than σR, hence

o′ = max{τ = Tt | τ < m ∧ |St − µN| < σN}.

Accordingly, µ′ is increased in increments within I. The candidate descriptors
(µ′, σ,m) are converted into corresponding parameters (µ, λ, o) until o ≥ o′.
These initial parameters are used to estimate the function parameters as
described in the following paragraph.

Executing the Estimation To estimate the parameters for the tailing func-
tion, we

1. determine reasonable initial values for the parameters θ = (v, µ, λ, o) as
described in the previous paragraph,

2. solve NLLM with γ = σ2N to estimate the scaling factor v, leaving the
other parameters fixed,

3. solve NLLM with γ = σ2N to estimate all four parameters,

4. solve NLLM with γ = σ2N/100 to re-estimate the scaling factor v .
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4.2 Extracting Peak Parameters from a Single Spectrum

Final Step Having estimated θ = (v, µ, λ, o), the tailing is subtracted from
the spectrum, let

S∗t := St − v · g(Tt |µ, λ, o)

for every t = 1, . . . , |T | at retention time index r. The obtained spectrum S∗

is now devoid of the tailing function and we can proceed to the following
preprocessing steps.

Baseline correction

As the consecutive part of the preprocessing for the single spectra, a baseline
correction is performed. Since signals at a certain IRM can occur constantly
among the whole retention time, they disturb the peak detection, since they
could be recognized as a false positive peak. Here, we treat the RIP-only
spectrum as a reference baseline which also has to be prepared for a suit-
able subtraction. The following processing steps are performed to align the
preprocessed RIP-only spectrum SR to every remaining spectrum S:

1. shifting SR so that the RIP modes of both spectra SR and S are aligned,

2. scaling SR so that the RIPs of both spectra SR and S have the same
maximum height.

The aligned RIP-only spectrum S+R is now suppressed from the actual spec-
trum and the completely preprocessed spectrum S+ is

S+t := max
{
St − S+R,t, 0

}
for all t = 1, . . . , |T |.

De-Noising

As the last step in the preprocessing chain, the de-noising is described.

Background A major challenge during the peak detection in an IM spec-
trum is to find peaks which only slightly exceed the background noise level in
a spectrum S = (St). To determine whether the intensity St at coordinate t
belongs to a peak region or can be solely explained by background noise, we
propose a method based on the EM algorithm. It runs in O(ι|T |) time where ι
is the number of EM iterations.
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Figure 4.4: Histogram of signal intensities of an exemplary IM spectrum
(green bars), an estimated distribution of the noise component
(red line) and of the signal component (blue line). The parame-
ters for both components were estimated with the EM algorithm.

Mixture Model Based on observations of IM spectra signal intensities, we
assume that

• the noise intensity follows a Gaussian distribution over low intensity
values with mean µG and standard deviation σG,

pG(s |µG, σG) =
1√

2π σG
· exp

(
− (s− µG)2/(2σ2G)

)
,

• the true signal intensity follows an Inverse Gaussian distribution with
mean µS and shape parameter λS, i.e.,

pS(s |µS, λS) =
√
λS/(2πs3) · exp

(
− λS(s− µS)2/(2µ2Ss)

)
,

• there is an unspecific background component which is not well modeled
by either of the two previous distributions; we model it by the uniform
distribution over all intensities in IMSC S,

pB(s) = 1/(max(S)−min(S)),

and we expect the weight ωB of this component to be close to zero
in standard IM spectra. High weights indicate an anomaly during the
measurement.

We interpret the observed spectrum S as a sample of a mixture of these
three components c with unknown mixture coefficients. To illustrate this
approach, Figure 4.4 shows the empirical intensity distribution (histogram)
of an exemplary IM spectrum with the estimated components. The uniform
distribution is not shown, because the estimated coefficient is close to zero
as expected. Finally, there are six independent parameters to estimate: µG,
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4.2 Extracting Peak Parameters from a Single Spectrum

σG, µS, λS and weights ωG, ωS, ωB (for noise, signal and background, where
ωB = 1− ωG − ωS).

Initial Parameter Values Background noise intensities are assumed to fol-
low a Gaussian distribution with low intensity values. We can determine its
approximate mean µG and standard deviation σG by considering the first and
last 10% of data points in each spectrum since these areas typically contain
no signals except noise.

The initial weight of the noise component is set to include most points covered
by this Gaussian distribution, i.e.,

ωG :=
∣∣{t ≤ |T | | St ≤ µG + 3σG}

∣∣ / |T |.
We assume that almost all of the remaining weight belongs to the signal
component, thus ωS = (1− ωG) · 0.999, and ωB = (1− ωG) · 0.001. To obtain
initial parameters for the signal model, I ′ := {t ≤ |T | | St > µG + 3σG} is the
complement of intensities initially assigned to the noise component. We set

µS =
(∑
t∈I′

(St − µG)
)
/|I ′|,

λS = (
∑
t∈I′

(1/(St − µG)− 1/µS))−1 (4.1)

which are the maximum likelihood estimators for Inverse Gaussian parame-
ters.

E-Step The hidden parameters Wt,c are computed using Equation (1.3),
where the three component distributions fc are the three component densities
pG, pS, pB with their parameters and the data x is a mean-smoothed version
of the original spectrum S:

xt :=
1

2α+ 1
·

t+α∑
t′=t−α

St′ ,

where the smoothing window width is α := fims · dgrid · |T |/max (T )/φ. Here,
dgrid is the grid opening time of the spectrometer and max (T ) is the maxi-
mum IRM in T . Since the borders of a spectrum do not contain important
information, we deal with boundary effects by computing xt in those cases as
averages of the existing spectrum entries only.
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M-Step In the maximization step (M-step), we estimate the maximum like-
lihood parameters for the non-uniform components using the original inten-
sities of S again for all t = 1, . . . , |T |:

µG =

∑
t Wt,G · St∑
t Wt,G

,

µS =

∑
t Wt,S · (St − µG)∑

t Wt,S
,

σ2G =

∑
t Wt,G · (St − µG)2∑

t Wt,G
,

λS =

∑
t Wt,S∑

t Wt,S · (1/(St − µG)− 1/µS)
.

Final Step After convergence, we correct the ground level of the spectrum
and remove noise: We first subtract µG from the signal value and then reduce
the remaining value by the estimated noise weight. The corrected spectrum
S+ is

S+t := (1−Wt,G)(St − µG)

for all t = 1, . . . , |T |. The preprocessing is now finished for the spectrum,
hence the peak detection is performed as a consecutive step. All preprocessing
steps, i.e. suppressing the tailing function, baseline correction, de-noising and
finished spectrum are illustrated in Figure 4.5.

4.2.2 Peak Detection

The algorithm scans for peaks, starting at the left end of the preprocessed
spectrum S by sliding a window of a given width across S and fitting a
quadratic polynomial model to the data points within the window. The width
of the window (in index units) is related to the grid opening time dgrid of
the spectrometer and given as fims · dgrid · |T |/max (T ) data points. Let
f(τ ; θ) = θ2 τ

2+θ1 τ+θ0 be the fitted quadratic polynomial inside the window.
We call a window a peak window if the following conditions are fulfilled:

• the extreme IRM τ∗ = θ1/(2θ2) lies within the IRMs of the window;

• the extreme IRM τ∗ indicates a maximum (i.e., θ2 < 0);

• the maximum is sufficiently higher than the noise level (which is zero
after preprocessing): f(τ∗; θ) ≥ σN.

The first condition can be more severely restricted to achieve more reliable
results by shrinking the interval towards the center of the window.
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Figure 4.5: Exemplary process from a raw IM spectrum into a processed spec-
trum, showing all intermediate steps: (first) raw spectrum and
the estimated tailing function; (second) suppressed spectrum and
the aligned baseline; (third) baseline corrected spectrum; (fourth)
de-noised / preprocessed spectrum.

If no peak is found, the moving window is shifted forward by one index. If a
peak is detected, the peak parameters are computed. To avoid the detection
of the same peak again when shifting forward by one index, the window is
shifted by half its length and the next scan begins.
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Determining Peak Parameters

As described in Section 3.3, we can estimate all peak descriptors (µ′, σ,m)
having the mode m = τ∗ of a peak. We convert them into the parameters
θ = (µ, λ, o) of the Inverse Gaussian parameterization. The scaling factor v
for the peak is v = f(τ∗; θ)/g(τ∗;µ, λ, o).

The model function is subtracted from the spectrum and the next iteration is
started with a window shifted by α index units (consider Section 4.2.1). For
each spectrum, the output of this step is a spectrum peak list, which is a set of
parameters for a mixture of weighted Inverse Gaussian models describing the
peaks. As the next processing step, the behavior of peaks between spectra
must be analyzed.

4.3 Aligning Consecutive Spectrum Peak Lists

4.3.1 Background

Having a set of peak parameters for each spectrum, the question arises how to
merge the sets P = (Pi) and P+ = (P+

j ) of two consecutive spectra. For each

peak Pi (and for P+
j , respectively), we have stored the Inverse Gaussian pa-

rameters µi, λi, oi, the peak descriptors µ′i, σi,mi (mean, standard deviation,
mode) and the scaling factor vi. The idea is to compute a global alignment
between P and P+, similar to the Needleman and Wunsch (1970) method.
We need to specify how to score the aligning of Pi to P+

j and how to score
leaving a peak unaligned (i.e., a gap).

4.3.2 Scoring Peak Alignments

The score ζij for aligning Pi to P+
j is chosen by evaluating Pi’s density function

at the new mode m+
j and comparing it to the expected value which is an

approximate standard deviation away from the mode at mi + ∆τ , resulting
in the log-odds score

ζi,j = ln

(
g(m+

j ; µi, λi, oi)

g(mi + ∆τ ; µi, λi, oi)

)
.

Alternatively, leaving a peak unmatched results in a gap score of zero. Ap-
plying the Needleman-Wunsch global alignment, we can compute the optimal
score of aligning the first i peaks in the latter spectrum with the first j peaks
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in the current spectrum by dynamic programming. We initialize a matrix Z,
setting all Zi,0 and Z0,j to zero and then compute, for i ≥ 1 and j ≥ 1,

Zi,j = max


Zi−1,j−1 + ζi,j ,

Zi−1,j ,

Zi,j−1.

4.3.3 Obtaining Peak Chains

Once the matrix Z has been computed, the alignment is obtained by back-
tracing and recording the optimal case in each cell, as usual. There are three
cases to consider.

• If P+
j is not aligned with a peak in P , a new peak starts potentially at

this retention time. Thus, the peak P+
j is put into a new peak chain.

• If P+
j is aligned with a peak Pi, the chain containing Pi is extended

with P+
j .

• All peaks Pi that are not aligned to any peak in P+ indicate the end of
a peak chain at the current retention time.

A peak chain P = (P1, . . . , Pn) is now a set of one-dimensional Inverse Gaus-
sian models. All completed peak chains are forwarded to the next step, two-
dimensional peak model estimation.

4.4 Estimation of 2-D Peak Models

4.4.1 Background

The goal of this step is to estimate a two-dimensional peak model (product
of two one-dimensional Inverse Gaussians) from the chain, as described in
Section 3.3. Alternatively, rejection of the chain may be necessary if it does
not fit such a model well. Potential problems are that peak chains i) may
contain noisy 1-D peaks truncated at their borders, ii) consist only of noise
or iii) in fact consist of several consecutive 2-D peaks at the same IRM and
successive retention times.

4.4.2 Related Work

For the determination of the number of peaks within a peak chain in the
second dimension of a two-dimensional spectrum, Vivó-Truyols (2012) intro-
duced a Bayesian approach. Given a vector of heights h = {h1, . . . , hn} of
1-D peaks provided by a peak chain, a configuration Pi is determined as a
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vector h

Figure 4.6: Exemplary assembly of height vector h (right) from the modes of
the single 1-D models of an exemplary peak (left).

particular connection of the entries of h with each other. Every connected
component within the chain marks a discrete peak. Obviously, connecting
only consecutive entries is reasonable. For every configuration a conditional
probability

p(Pi |h) := p(h |Pi)
p(Pi)
p(h)

is estimated where p(h |Pi) is the likelihood of h, given an assumed config-
uration Pi. Furthermore, p(Pi) is the prior probability of having a certain
configuration and p(h) the probability of obtaining the current data h. This
approach only holds when the configuration contains only one connected com-
ponent. When assuming two peaks, the following equation has to be solved:

p(h |Pi) = p(hA |Pi, hB)p(hB |Pi),
p(h |Pi) = p(hA |Pi)p(hB |Pi).

To avoid a combinatorial explosion of configurations, impossible cases in terms
of analytics (e.g. h1 is connected with h3 skipping h2) are discarded. Addi-
tionally, several conditions are stated, e.g. entries can only be merged if they
are sufficiently close to each other.

4.4.3 Estimating the Parameters

As discussed in Section 3.3, the half-height width ω1/2 in retention time of a
peak centered at retention time ρ can be described by an affine function ξ(ρ),
Equation (3.5), and ω1/2 can be converted to the corresponding number of
data points (width of the window). For each individual peak i = 1, . . . , n in a
peak chain, we know the parameters (v̂i, µ̂i,T, λ̂i,T, ôi,T) and the correspond-
ing descriptors (µ̂′i,T, σ̂i,T, m̂i,T), as well as the associated retention time ρi.

The peak heights can be obtained computing hi = v̂i · g(m̂i,T; µ̂i,T, λ̂i,T, ôi,T),
an exemplary assembly of the heights is demonstrated in Figure 4.6. We
proceed by fitting quadratic polynomials b(ρ; θ) = θ2ρ

2 + θ1ρ + θ0 in sliding
windows of the appropriate width ξ(ρi) to h such that hi ≈ b(ρi; θ) (similar
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to the scanning approach described in Section 4.2.2). To omit outliers within
vector h during the fitting, we use the Huber loss function L and derivative L′

L(x, γ) :=

{
1
2x

2 if |x| < γ

γ · |x| − 1
2γ

2 else
,

L′(x, γ) := max
(

min(x, γ),−γ
)

for the non-linear loss minimization. Hence, as the new computation instruc-
tions we obtain:

∆y = y − f(x, θk),

∆θ = (JTJ)−1JTL′(∆y, γ),

θk+1 = θk + ∆θ

where γ = σ2N equals the variance of the background noise. Having found
a window which fits a peak, we estimate initial descriptors for an Inverse
Gaussian model in retention time as follows:

v′R = −θ21/(4θ2) + θ0,

σR =
√
v′R/(2|θ2|),

mR = −θ1/(2θ2),
µ′R = mR + ξ(mR) / (4φ).

The descriptors are then converted into model parameters.

After processing each window, we have obtained a list of k Inverse Gaussian
distributions. We expect these distributions to be a mixture of k overlapping
peaks in a single peak chain. To obtain an optimal deconvolution, we first
normalize the volume factors v′R of the k components to obtain vR,j such that∑k

j=1 vR,j = 1 and then apply the EM algorithm. As a byproduct, we obtain
an (n× k) matrix W = (Wi,j) which determines the membership probability
for each of the n data points (ρi, hi) to each of the k models.

To obtain the Inverse Gaussian distribution parameters in the IRM dimen-
sion for each of the k models, we first compute model descriptors using

57



4 Online Peak Model Extraction

a membership-weighted average over the individual model descriptors: For
j ∈ {1, . . . , k}, let

W j :=
∑
i≤n

Wi,j ,

µ′j,T :=
1

W j

∑
i≤n

Wi,j · µ̂′i,T,

σj,T :=
1

W j

∑
i≤n

Wi,j · σ̂i,T,

mj,T :=
1

W j

∑
i≤n

Wi,j · m̂i,T.

We then convert these descriptors back into model parameters (consider Sec-
tion 3.3). The final peak volume is computed as v∗j = v′j,R ·

∑
i≤n vi,T.

For every model j ∈ {1, . . . , k}, we check the following conditions:

• the width at half height in the retention time dimension has approxi-
mately the expected size (cf. Eqs. (3.4), (3.5)): ξ(mj,R)/2 ≤ σj,R · φ <
2 · ξ(mj,R),

• the maximum peak height exceeds the noise level: v∗j ·g(mj,T;µj,T, λj,T, oj,T)·
g(mj,R;µj,R, λj,R, oj,R) ≥ noise margin · σN ,

• the Inverse Gaussian peak model g in retention time correlates well with
its quadratic approximation b in a window around the mode in terms
of the Pearson product-moment correlation coefficient

Pearson(X,Y ) =

∑
i≤n,j≤m(Xi −X)(Yj − Y )√∑

i≤n(Xi −X)2
√∑

j≤m(Yj − Y )2

with X,Y as the sample mean. More precisely, consider the window
M = [mj,R−∆ρ, mj,R +∆ρ], the model vector G = g(ρ;µj,R, λj,R, oj,R)
for ρ ∈M and the quadratic approximation vector B = bj(ρ; θ) for ρ ∈
M , and test whether the Pearson correlation satisfies Pearson(G,B) ≥
min correlation where 0 ≤ min correlation ≤ 1 is a tunable param-
eter.

If all conditions are fulfilled, we have identified a 2-D peak model with its
corresponding parameters (v∗j , µj,T, λj,T, oj,T, µj,R, λj,R, oj,R). Otherwise the
model is discarded.

4.5 Enhancement under Resource Constraints

In the following, several approaches are introduced which aim at the impor-
tant notion of maintaining speed under resource constraints.
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Figure 4.7: Example of an IM spectrum truncation. Only the middle part of
the spectrum is being considered for the analysis, the remaining
parts (gray) are being discarded.

Truncation of the Spectrum

A simple but effective method to reduce the number of computations is the
truncation the spectrum. Having determined the parameters µN, σN for the
background noise model, those parts of an IM spectrum S = (St) can be
truncated which consist solely of noise. This is achieved by computing the
beginning (tL) and ending (tR) of the part of the spectrum which contains
true signal information as follows:

tL := min
(
t
∣∣St − µN < 2 · σN

)
,

tR := max
(
t
∣∣St − µN > 2 · σN

)
.

Since the peaks have only positive values, the difference between St and µN is
compared to σN and not to the absolute difference. Depending on the physical
properties and adjustment of the MCC/IMS device, up to 30% of a spectrum
may contain noise only and thus can be truncated. As an example, consider
Figure 4.7.

Speedup of NLLS and NLLM

One bottleneck of the whole process is to suppress the tailing function by
determining its model parameters. This is achieved by utilizing the non-linear
loss minimization as described is Section 4.2.1. An advantage of choosing the
shifted Inverse Gaussian distribution is the moderate requirement of only
four parameters. With a fixed quantity of parameters, some optimizations
like loop unrolling are possible. Instead of using a for-loop with a fixed
number of iterations, all commands within this loop are stated explicitly.
The advantage of loop unrolling is that the internal processor pipeline does
not have to be interrupted at the end of every loop to decide whether to
jump back to the beginning of the loop or to continue. Considering the
computation step (JTJ) within the NLLM, a normal matrix multiplication

59



4 Online Peak Model Extraction

can be implemented with a triple-nested loop. Matrix JT ∈ Rq×n and J ∈
Rn×q both have a fixed q = 4.
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1 inline float* matrix_mul_JTJ(const float* J, const int n){

2 // matrix J = [J_0 ,0; J_0 ,1; J_0 ,2; J_0 ,3; . . .

3 // J_n -1,0; J_n -1,1; J_n -1,2; J_n -1,3]

4 float* const J_star = new float [16];

5 // determine end of array

6 const FTYPE* const matrix_end = J + (n * 4);

7 // initializing the upper right triangle of the matrix

8 J_star [0] = J_star [1] = J_star [2] = J_star [3] = 0;

9 J_star [5] = J_star [6] = J_star [7] = 0;

10 J_star [10] = J_star [11] = 0;

11 J_star [15] = 0;

12 // perform the J^T * J computation

13 for(; J < matrix_end; J += 4){

14 J_star [0] += J[0] * J[0];

15

16 J_star [1] += J[0] * J[1];

17 J_star [5] += J[1] * J[1];

18

19 J_star [2] += J[0] * J[2];

20 J_star [6] += J[1] * J[2];

21 J_star [10] += J[2] * J[2];

22

23 J_star [3] += J[0] * J[3];

24 J_star [7] += J[1] * J[3];

25 J_star [11] += J[2] * J[3];

26 J_star [15] += J[3] * J[3];

27 }

28 // adding the symmetric values

29 J_star [4] = J_star [1];

30 J_star [8] = J_star [2];

31 J_star [9] = J_star [6];

32 J_star [12] = J_star [3];

33 J_star [13] = J_star [7];

34 J_star [14] = J_star [11];

35 return J_star;

36 }

Listing 4.1: Efficient C++ code for matrix multiplication J∗ = (JTJ).

The resulting matrix J∗ = (JTJ) ∈ Rq×q will be a 4 × 4 matrix for which
a single loop over 1, . . . , n remains. A second feature of matrix J∗ is its
symmetry. Including the diagonal vector, only half of the values have to be
computed. In this case six values can be omitted. Finally, it is more efficient
to compute the matrix multiplication within one step instead of computing the
transposed matrix JT in a separate step. The efficient C++ code for matrix
multiplication is shown in Listing 4.1. Due to its linear scanning of the array
containing the linearized matrix J , this code is more cache efficient. Since J∗

has 16 values, its inverse matrix (J∗)−1 can also be efficiently computed with
108 arithmetic instructions.
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Figure 4.8: Histogram of weights s̃ between all 82 000 spectra and their related
reduced spectra. Almost 92% of all reductions achieve an optimal
weight.

Pre-computation

We can exploit that IRM array T has equidistant entries. Thus, when ini-
tializing OPME, several vectors or matrices can be precomputed once and
used repeatedly as needed. For example, during the scanning (described in
Section 4.2.2) a second order polynomial is fitted to a section of the complete
spectrum within a moving window. The window size is invariant during this
process. Since the Jacobian matrix J for a polynomial regression does not
change, the intermediate matrix (JTJ)−1JT has to be computed only once.
As a consequence, up to millions of computations can become obsolete, espe-
cially for high resolution measurements with 12 500 data points per IM spec-
trum and typically 6000 IM spectra. This idea cannot be implemented in
retention time, since the moving window is linearly increasing. On the other
hand, the number of polynomial regression steps is significantly decreased in
R-dimension.

Remaining Optimizations

Some small but efficient optimizations are listed below:

• Since many methods use matrices (i.e. EM algorithm, NLLS and NLLM,
aligning), the matrices are stored as linearized vectors. This offers the
advantage that many methods iterate linearly through the matrices
which is cache efficient and lowers the number of cache misses.

• If one divisor is used for several divisions, the inverse is multiplied in-
stead. Within our tested hardware, a multiplication requires less com-
putation time than a division.
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Table 4.1: Average processing time in ms of de-noising, baseline correction
and spectrum reduction on two platforms with different clock rates,
averaging methods (single spectra, averages of 2 and 5 spectra) and
convergence thresholds ε.

ε Platform average 1 / ms average 2 / ms average 5 / ms

0.1%
Desktop PC 4.36 2.09 0.88
Rasp. Pi (700 MHz) 119.48 55.02 21.82
Rasp. Pi (900 MHz) 97.19 43.62 17.42

1.0%
Desktop PC 4.26 2.01 0.66
Rasp. Pi (700 MHz) 116.69 52.63 16.99
Rasp. Pi (900 MHz) 94.03 41.46 13.48

• The scanning process according to Section 4.2.2 scans a spectrum once
from left to right. It is not reasonable to update the complete spec-
trum when suppressing a detected peak. Hence, only the suffix of the
spectrum starting at the moving window’s position is updated.

4.6 Evaluation

Several aspects of the online peak extraction are evaluated including (1) the
quality of the reduction of an IM spectrum, (2) the execution time as well
as (3) the quality of automated peak extraction in comparison with manual
offline annotation.

Parameters

For evaluation measurements, the BioScout was adjusted according to the
suggested parameter values as listed in Section 1.3. We chose the following
parameters:

• r width offset = 2.5 s (width offset for peaks in retention time),

• r width factor = 0.06 (width slope for peaks in retention time),

• t width offset = 0.003 V s cm−2 (standard deviation for peaks in IRM),

• convergence threshold (convergence threshold; value varies within
evaluation),

• noise margin = 4 (factor multiplied with standard deviation of back-
ground noise for minimal peak height),

• min correlation = 0.95 (minimal Pearson product-moment correla-
tion coefficient).
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Figure 4.9: Time series of discovered intensities of two peaks. Left: A peak
with agreement between manual and automated online annota-
tion. Right: A peak where the online method fails to extract the
peak in several measurements.

A determination of the best parameter values is presented in Section 9.

4.6.1 Quality of Single Spectrum Reduction

In a first experiment, we tested the quality of the spectrum reduction method
using an approach by Munteanu and Wornowizki (2015). Its core idea is to
determine the agreement between an observed set of data points, interpreted
as an empirical distribution function F (the data) and a model distribution G
(the mixture distribution obtained from the peak list parameters). The ap-
proach states that F = s̃ · G + (1 − s̃) · H with s̃ ∈ [0, 1], where H is a
non-parametric distribution whose inclusion ensures the fit of the model G
to the data F . If the weight s̃ is close to 1.0, then F is a plausible sample
from G.

We compare the original spectra and reduced spectra (peaks from peak lists)
from Dataset 69 (consider Appendix A.2). Each measurement contains 1 200
spectra. For all measurements, we computed the reduced spectrum model for
each spectrum and determined s̃. Over 92% of all 82 000 models achieved s̃ =
1 and over 99% reached s̃ ≥ 0.9. No s̃ dropped below 85%. In summary,
spectrum reduction provides an accurate parametric representation of most
spectra. Figure 4.8 illustrates that consideration of all 82 000 reductions leads
to almost 92% achieving an optimal correlation of 100% of cases, in which
the algorithm suggests to keep the distribution untouched.

4.6.2 Execution Time

Recall that each spectrum contains 12 500 data points. It is current practice
to analyze not the full spectra, but aggregated ones, in which five consecutive
values are averaged. Here we consider the full spectra, slightly aggregated
ones (average over two values, 6 250 data points) and standard aggregated
ones (average over five values, 2 500 data points). We measured the average
execution time of de-noising, baseline correction and consecutive spectrum
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Figure 4.10: Kernel density estimation (kde) plots of recall and cosine similar-
ity of peak intensity, comparing automatically picked peaks from
our online algorithm and VisualNow against expert annotation.
Each dot corresponds to the time series of one peak. Optimal
results would be a recall of 1.0 and a cosine similarity of 1.0 for
each time series.

reduction. The results are presented in Table 4.1. At the highest resolu-
tion (Average 1), the Raspberry Pi with 900 MHz barely keeps the time bound
of 100 ms (provided by the measuring device) between consecutive spectra.
At lower resolutions, the Raspberry Pi satisfies the time restrictions running
about half the time boundary. The desktop PC effortlessly copes with the
analysis on any setting. We found that in the steps using the EM algorithm,
on average 25–30 EM iterations were necessary for a precision of ε := 0.001
(i.e., 0.1%) (see convergence in Section 1.5.3). Relaxing the threshold from
0.001 to 0.01 halved the number of required iterations without a noticeable
difference in the resulting estimated parameters.

4.6.3 Comparison of Automated Online Peak Extraction with
Manual Offline Annotation

The third experiment compares the quality of extracted peaks from a time
series of measurements of two automated methods with an expert manual an-
notation. The automated methods are our online analysis process described
here and automated peak detection using the commercial VisualNow (consider
Section 3.2) software. For this experiment, we used the Rats dataset as de-
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scribed in Appendix A.2. To track peaks over time, we used the EM clustering
method described in Section 5. As an example, Figure 4.9 shows time series
of intensities of two peaks detected on the one hand by computer-assisted
manual annotation and on the other hand using our online algorithm. The
example illustrates the existence of cases with imperfect sensitivity of the
online algorithm. This is mainly true for peaks whose intensity only slightly
exceeds the background noise.

To obtain an overview over all time series, we computed the cosine similarity
with bounds [−1; +1] between the time series of peak intensities discovered by
manual annotation and both automated methods. We also computed the re-
call for both automated methods for each time series, i.e. the relative fraction
of measurements where the peak was found by the algorithm among those
where it was found by manual annotation. Figure 4.10 shows an overall good
agreement between both automated methods (our online method and auto-
mated VisualNow peak extraction) and the expert manual annotation. The
cosine similarity of the inferred time series is in better agreement than the
recall. When comparing the automated methods against each other, we out-
perform VisualNow in terms of sensitivity and computation time: About 31%
of the points extracted by the online method exceed 90% recall and 98% cosine
similarity, whereas only 5% of the time series extracted by VisualNow achieve
these values. The peak detection of one measurement takes about 2 seconds
on average (when the whole measurement is available at once) with the online
method and about 20 seconds with VisualNow on the desktop computer as
described in Section 4.6.2. VisualNow only provides the position and signal
intensity of the peak’s maximum, whereas our method additionally provides
shape parameters. Problems of our online method stem from low-intensity
peaks only slightly above the detection threshold, resulting in fragmentary or
rejected peak chains.
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5 Adaptive EM Clustering

We now consider a series of IMS measurements, for each of which we have
extracted peaks available in the form of parameter vectors or descriptors. The
question arises how to decide which descriptors in different measurements
represent the same peak (and hence potentially the same VOC).

5.1 Background

Assuming that not a single IMSC is to be analyzed, but a time series or a
data set of several entities, providing the same condition, e.g. patients suffer-
ing from the same disease, it is important to determine if any two peaks of
different measurements have the same origin, e.g. are produced by the same
analyte. In the peak clustering step, a set of n peak lists of a given data set
is provided. The objective is to obtain an n × k matrix D = (Di,j) with k
consensus peaks where every cell stores the signal intensity of a certain peak
contained in measurement i and consensus peak j. For convenience, matrix D
is referred to as a data table.

5.2 Related Work

Several different clustering methods are known from literature. It is a nec-
essary feature to dynamically determine the number of clusters and not set
it as a fixed parameter. We briefly describe the manual peak picking and
clustering (state-of-the-art method), k-means and the enhanced version k-
means++ as the only clustering algorithm with a fixed cluster number, and
DBSCAN, grid squares, cluster editing and hierarchical clustering as methods
being independent of a predefined cluster number.

Manual Peak Detection and Clustering

Since the manual peak detection and clustering in VisualNow is one step,
it is explained here once. Having a set of IMSC measurements, quadratic
regions can be drawn over a visualization of a considered data matrix within
the set. Every region corresponds to a cluster and therefore the regions must
not overlap. For all measurements, the highest value within a region is being
taken into consideration for a cluster.
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K-Means

Given a set of n observation {x1, . . . , xn} with D dimensions for each, k-
means partitions these observations into k clusters {P1, . . . , Pk} with cen-
ters {m1, . . . ,mk}. The value k is fixed and will not be altered during the
processing. The original k-means approach was first introduced by Lloyd
(1982) for quantizations in pulse-code modulations, where the objective func-
tion

min
k∑
j=1

∑
x∈Pj

||x−mj ||2

is solved with a heuristic approach. The algorithm comprises three steps:

1. First, choose k observations randomly as cluster centers.

2. Update the partitions, let Pj := {x | ||x−mj ||2 < ||x−mj′ ||2 for all j′ =
{1, . . . , k} \ {j}} for all j ≤ k.

3. Update the centers, let mj := |Pj |−1
∑

x∈Pj x for all j ≤ k.

Repeat steps 2-3 until no observation is reassigned to another partition.

K-Means++

The enhanced version of k-means is k-means++ with an improved first step
as described by Arthur and Vassilvitskii (2007). Choosing the first or ran-
dom k observations as cluster centers can lead to disadvantageous initial
positions of the centers. The k-means++ approach first picks one random
observation as a cluster center. All remaining observations are weighted.
Let δi := min{||xi −mj ||2 | j ≤ k′} be the minimal distance of observation xi
to all already picked k′ cluster center. Hence, let wi := δi/

∑n
i′=1 δi′ be their

weight. The next observation is randomly picked as cluster center with a
probability according to its weight. The weighting and picking steps are re-
peated until k cluster centers have been picked.

Density-Based Spatial Clustering of Applications with Noise
(DBSCAN)

Introduced by Ester et al. (1996), DBSCAN is the most frequently used clus-
tering algorithm in the application field of data mining. Starting with a
random point p, the algorithm considers all neighbors of p dropping below a
tunable distance ε. When the number of neighbors exceeds a second tunable
threshold minPts, p is put into a new cluster or otherwise labeled as noise.
Continuing with the neighbors, their neighbors are determined and put into
the same cluster when minPts is exceeded. As long as observations can be
reached according to the ε distance, the observations are put into the same
cluster. When no remaining unvisited point can be reached, the cluster gets
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closed and the algorithm starts again with an unvisited point. All observa-
tions that do not fulfill the minPts criterion are labeled as noise. DBSCAN
has the property to cluster points without any knowledge about a possible
underlying distribution of the points building a cluster. Thus, no features like
centroids are provided in the original approach.

Grid Squares

A naive method is the so-called grid squares, the only method with linear
time complexity according to the number of detected peaks over a set of
measurements. These grid squares (or hypercubes having dimension D > 2)
are spanned over a unified point set. One grid square equals one cluster and
basically has a fixed width and height. In a more complex scenario, the height
is linearly increasing depending on the retention time stated by Hauschild
et al. (2013). For every point, its corresponding grid square can be computed
in constant time. Empty grids or grids with too few contained peaks are
discarded from consideration. For every sufficient grid, all contained points
are considered to be a cluster.

Cluster Editing

An instance of a weighted cluster editing problem is solved to find clusters
within a point set, as examined by Rahmann et al. (2007) and Böcker et al.
(2011). Having a symmetric weight function, every pair of points gets a weight
assigned which corresponds to an weighted edge in a graph with the peaks as
vertices. The objective is to find a set of disjointed cliques by eliminating a
subset of edges with minimal costs. All points building a clique are treated
as a cluster.

Hierarchical Clustering

Often used in data mining or statistics, hierarchical clustering is a method
to construct a dendrogram where the leaves contain the points and the inner
nodes mark a conjunction of all descendant leaves. Two main techniques to
construct a dendrogram are agglomerative or a divisive construction. Tak-
ing the agglomerative method, two nodes (having no ancestor yet) with the
smallest distance are connected by becoming the successors of a newly inserted
node. This process is repeated as long as at least two nodes do not have any
ancestor or the distance between any pair of nodes exceeds a given thresh-
old. Common distance metrics are Euclidean distance, Manhattan distance
or Mahalanobis distance. The challenge is to determine a distance δ(x, y)
between an inner node containing several points and another node. Several
linkage criteria comparing two sets of points X,Y are
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• complete-linkage clustering: max{δ(x, y) |x ∈ X, y ∈ Y },

• single-linkage clustering: min{δ(x, y) |x ∈ X, y ∈ Y },

• average-linkage clustering: 1
|X| |Y |

∑
x∈X

∑
y∈Y

δ(x, y).

Purkhart et al. (2012) utilized the hierarchical clustering to distinguish po-
tential biomarkers from environmental volatile compounds in exhaled air.

5.3 Algorithm

In the following, we explain the method of dynamically adjusting EM cluster-
ing as already introduced in Kopczynski and Rahmann (2015) and introduce
some consecutive developments to enhance the tool for a resource-constrained
context.

Let X be the union of peak locations in all measurements, let n := |X|, and
let Xi,R be the retention time of peak i and Xi,T its IRM. We introduce a
clustering approach using the EM algorithm with two-dimensional Gaussian
mixtures that differs from the standard approach in its ability to dynamically
adjust the number of clusters in the process.

5.3.1 Mixture Model

We assume that the measured retention times and IRMs belonging to peaks
from the same compound are independently normally distributed in both
dimensions around the (unknown) true retention time and IRM. Let θj :=
(µj,R, σj,R, µj,T, σj,T) be the parameters for component j, and let fj(x

′ | θj)
be a two-dimensional Gaussian product distribution for a peak location x =
(xR, xT) with x ∈ X containing these parameters. The mixture distribution
is f(x) =

∑c
j=1 ωj fj(x | θj) with a yet undetermined number c of clusters.

Note that there is no “background” model component.

5.3.2 Initial Parameter Values

In the beginning we initialize the algorithm with as many clusters as peaks,
i.e., we set c := n. This assignment makes a background model obsolete,
because all peaks are assigned to at least one cluster. As start parameters
for µj,R, µj,T, all clusters get the original retention time and IRM of peak
location Xj , respectively, for j = 1, . . . , n. We set σj,T := ∆τ > 0 and
σj,R := ∆ρ where ∆τ and ∆ρ are widths as introduced in Section 1.4. The
weights are equally distributed, thus ωj := 1/c.
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5.3.3 Dynamic Adjustment of the Number of Clusters

After computing weights in the E-step, but before starting the M-step, we
dynamically adjust the number of clusters by merging clusters whose centroids
are close to each other. Every pair j < k of clusters is compared in a nested
for-loop. Let fj,k = f((µk,R, µk,T) | θj) be the probability density that the
model of cluster j describes the centroid position of cluster k. Furthermore,
let f̃j((µj,R − σj,R, µj,T − σj,T) | θj) the probability density that the model of
cluster j describes its elliptical standard deviation ring. When fj,k/f̃j ≥ 1
is satisfied, the centroid of cluster k ranges within the standard deviation of
cluster j. W.l.o.g. if µj,R < µk,R, the condition fk,j/f̃k ≥ 1 will be considered.
Hence, clusters j and k are merged by summing the EM weights: ω+ :=
ωj +ωk and Wi,+ := Wi,j +Wi,k for all i = 1, . . . , n. Real case scenarios offer
the empirical finding, that there is a correlation between the peak intensity
and the distance of the peak to its cluster center. Therefore, the summed
weights are assigned to the location of the cluster with its higher original peak
intensity. Thus, the intensity over all peaks within a cluster is stored and if a
merging occurs, the lower intensity cluster is deleted and the higher intensity
cluster remains at its current position and gets the weights w and membership
weights W assigned from the deleted cluster. The re-computation of the
parameters is executed immediately after merging in the maximization step.
The order of comparisons may matter in rare cases for the decision which
peaks are merged first, but since new means and variances are computed,
possible mergings omitted in the current iteration will be performed in the
next iteration.

5.3.4 Maximum Likelihood Estimators

The maximum likelihood estimators for the mean and variance of a two-
dimensional Gaussian are the standard ones, taking into account the mem-
bership weights,

µj,d =

∑n
i=1 Wi,j ·Xi,d∑n

i=1 Wi,j
, d ∈ {T, R}, (5.1)

σ2j,d =

∑n
i=1 Wi,j · (Xi,d − µj,d)2∑n

i=1 Wi,j
, d ∈ {T, R}, (5.2)

for all components j = 1, . . . , c.

One problem using this approach emerges from the fact that each cluster
initially only contains one peak, leading to an estimated variance of zero
in many cases. To prevent this, minimum values are enforced such that
σj,T ≥ ∆τ and σj,R ≥ ∆ρ for all j = 1, . . . , c.
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5.3.5 Final Step

The EM loop terminates when no merging occurs and the convergence criteria
for all parameters are fulfilled. The resulting membership weights determine
the number of clusters as well as the membership coefficient of peak loca-
tion Xi to cluster j. If a hard clustering is desired, the merging step has to
be traced.

5.4 Enhancement under Resource Constraints

One major challenge and the decisive bottleneck of this method is to estimate
the hidden membership variables in the E step and the merging phase, since
in theory, both methods need O(c n) runtime in every iteration, where n is
the number of points and c the number of clusters. Actually, in the first
iteration both algorithms need O(n2), since the algorithm starts with c := n.
In the worst case, all points are superposed, but on average the points build
separable clusters with a certain distance to each other. Considering both
steps, a probability density between two clusters (merging) or cluster and
point (E step) is computed, respectively. Hence, it is reasonable to use a
clever preselection of clusters (which is referred to as range searching) when
considering a certain cluster during the merging or data point in expectation
step.

5.4.1 Related Work

We claim that an appropriate data structure for the preselection has the
following features:

• using an index or having sublinear point access time,

• being capable for updates, i.e. mergings or point shifts,

• using little additional memory.

Several approaches have been examined:

Fast Gauss Transform

The evaluation of sums of multivariate Gaussian kernels is referred to as
discrete Gauss transform G and has the computational complexity of O(mn)
with n source points x = (xi) and m target points y = (yj) with xi, yj ∈ RD.
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Given an additional vector of coefficients q = (qj) depending on yj , G is
defined as follows:

G(xi) :=
n∑
j

qje
−||xi−yj ||2/h for all i = 1, . . . , n.

Greengard and Strain (1991) introduced an approach called fast Gauss trans-
form with a time complexity of O(n + m). Since the standard deviation h
is a fixed value over all dimensions within all source and target points, their
idea is to split the space into D-dimensional hypercubes of side length r′

√
2h

with r′ < 1. Additional computation is saved by using the box centers and
computing coefficients that are equal for every source point within a box.
Thus these coefficients have to be computed once only. Although the asymp-
totic computation time is low, this approach was not adopted, since the com-
putation time can only be reached when the points are equally distributed
and the variance h2 is the same for every dimension.

Delaunay Triangulation

Another approach is to connect any point within a point set with its nearest
neighbors with the restriction that the connections are not allowed to cross
each other. One solution is a triangulation as described by Delaunay (1934).
This method spans a grid of triangles with the point set as the vertices for
every triangle by maximizing the minimum angle of all angles within all tri-
angles. More informally: the choice of slim triangles shall be omitted. Several
methods are implemented, utilizing common techniques, i.e. incremental, di-
vide and conquer or sweep line. These methods have a runtime of O(n log(n))
in common. An incremental method is to span a triangle covering all points,
inserting every point p by determining in which triangle abc it is in, splitting
into triangles abp, apc, pbc and performing recursively edge flips, when the
circumcircle condition (i.e. no interior points) of the new triangles is violated.
This approach provides the best pre-separation of points but the maintaining
of this graph is costly after a merging of two points or a point shift.

Range Tree

A range tree is a multi-dimensional, balanced binary search tree and was
introduced by Bentley (1979). For the first dimension, a balanced binary
search tree is constructed in which the leaves store one point each and the
inner nodes store the values of its leftmost and rightmost descendant leaf.
Furthermore, each inner node is a root to a further binary search tree, sorted
according to the next dimension and still containing all its descendant leaves.
Over all, the total construction time as well as the storage have a complexity
of O(n logD−1(n)) and a query needs O(logD(n)+k) where k is the number of
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hits. Due to the rather complex structure of the multi-dimensional tree, main-
taining the tree is also costly when updates are allowed. Although Chazelle

(1990) reduced the storage complexity to O
(
n
(

log(n)
log(log(n))

)D−1)
and query

time to O(logD−1(n)+k) using fractional cascading amongst others, the main-
taining still remains challenging after updating.

5.4.2 Utilized Methods and Approaches

In the following section, several methods are described which helps to achieve
a better computation time without loosing too much precision.

Dynamical Adjustment

Since only the dynamical adjustment step can reduce the number of clusters,
this step is performed at the beginning of every EM iteration and not during
it. The advantage is, that the consecutive E step does not have to consider
all beginning clusters. Especially during the first iteration, many clusters can
exist due to a high number of peaks.

Range Searching

Before the clustering starts, all n clusters are sorted with respect to their IRM
value. Choosing the IRM dimension as the indexed measure is advantageous
as its variance for peaks remains constant (consider Section 1.3). Let C be
the sorted cluster list and µC,j,T the centroids IRM value of the cluster j =
1, . . . , c within C. When performing the dynamical adjustment, the tolerance
interval [jL, jR] determines the position of the minimum and maximum IRM
of remaining clusters that have to be considered for cluster j, let

jL := min
(
j′
∣∣µC,j′,T − µC,j,T ≥ −β · σj),

jR := max
(
j′
∣∣µC,j′,T − µC,j,T ≤ β · σj)

where β is a tolerance factor and can be set to β = 4 in practice (note that
that 3σ covers almost the complete half of a Gaussian curve). Since the
clusters are sorted, the update of the interval can be performed by simply
increasing both values jL, jR as long as their conditions are violated. This
kind of range searching corresponds to a moving window and can be performed
in O(c).

Within the E step, the position of both peaks and clusters is compared to
each other. To find all sufficient clusters for a peak, two binary searches
are performed to find jL, jR. The membership variables Wi,j for peak i are
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computed considering only the clusters jL ≤ j ≤ jR. All remaining vari-
ables Wi,j′ with j < jL, jR < j are set to zero. The memory consump-
tion is also decreased, since cluster j stores only a list of the tuples (i,Wi,j)
with i ⊆ {1, . . . , n} indexing the data points for the consecutive M step.

Probability Density Function (pdf) of a Multivariate Normal Distribution

The pdf of a multivariate normal distribution also contains an exponential
computation. The approximate exp function (introduced in Section 2) can be
enhanced to reduce the number of atomic computations and the computation
time for a bivariate Gaussian bell as in our case.

Computation of the Variance

It is inevitable to estimate the weighted mean of every cluster using the maxi-
mum likelihood estimators. For the variance, however, we use the already pre-
defined standard deviations according to the peak width observations. Thus,
having computed µ∗j,d for d ∈ {R,T} and j = 1, . . . , C, the standard defini-
tions are assigned as follows:

σ∗j,T := ∆τ,

σ∗j,R := ∆ρ.

We empirically observed, that the restriction of cluster variances provides
significantly improved results, since close clusters are not merged too quickly
and definite singleton clusters remain singletons.

Maintaining the sorted Cluster List

After the M step, the means of the cluster have eventually shifted and thus
the order of the cluster list could be violated. A solution is the utilization of
a bubble sorting approach. When the parameters of cluster j within C are
maximized, the cluster is compared with its predecessor j − 1 and swapped
as long as µC,j−1,T > µC,j,T. A comparison with its successor is not necessary,
since the successor will be compared to its predecessor after the update. Of
course an upper bound of this method results in O(N2) comparisons. Thus we
describe the tendency of the number of swaps with increasing EM iterations:
When all cluster centroids overlap, N − 1 mergings are performed within the
first adjustment step; hence only one cluster remains and no swap can occur.
Now we (need to) consider the general case with suggested distribution of
the data points. A merging is only possible when two cluster centroids are
too close to each other. When a merging happens, the new cluster centroid
is located in the center of the new cluster and in between of both former
centroids, because both former clusters were convex. Thus, the distances of
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Figure 5.1: Histograms of Fowlkes-Mallows index (FMI; higher is better) and
normalized variation of information (NVI; lower is better) com-
paring 100 simulated measurements containing partitioned peak
locations with their clusters produced by the different methods.

the new centroids increase in general, decreasing the probability of consecutive
mergings. At the same time, the cluster content can only increase, hence
the variance of an eventual shifting of the centroid decreases. This is how
the centroid positions are determined by definition. Here we can conclude
that the expected number of swaps decreases with the increasing iteration
of the algorithm. The more the data points are well-parted, the faster the
algorithm works since more mergings are possible within the first iterations.
The algorithm stops when no merging occurs anymore.

5.5 Evaluation

To evaluate peak clustering methods, we simulate peak locations according
to locations in real MCC/IMS datasets, together with the true partition P of
peaks. Most of the detected peaks appear in a small, dense area and rather
early in the measurement. The remaining peaks are distributed widely, which
is referred to as the sparse area (we let the areas overlap such that the dense
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area is contained within the sparse area). The areas have approximately the
following boundaries (in units of (V s cm−2, s) from lower left to upper right
point, cf. Figure 1.3:

measurement: (0, 0), (1.45, 600)
dense area: (0.5, 4), (0.7, 60)

sparse area: (0.5, 4), (1.2, 450)

Peak clusters are ellipsoidal and dense. From Bödeker et al. (2008) we know
the minimum required distance between two peaks to allow identification as
two separate compounds. We simulate 30 peak cluster centroids in the dense
area and 20 in the sparse area, all randomly picked and uniformly distributed
in the respective area. We then randomly pick both the number of peaks
per cluster and the distribution of peaks within a cluster. Since we do not
know the actual distribution model, we decided to simulate with three models:
normal (n), exponential (e) and uniform (u) distribution with the following
densities:

fn(r, t |µt, σt, µr, σr) = N (t |µt, σt) · N (r |µr, σr),
fe(r, t |µt, λt, µr, λr) = λtλr exp

(
− (λt|t− µt|+ λr|r − µr|)

)
/4,

fu(r, t |µt, νt, µr, νr) =

{
(πνtνr)

−1 if |t−µt|
2

ν2t
+ |r−µr|2

ν2r
≤ 1

0 otherwise
,

where N is the pdf of the Gaussian distribution. Here (µt, µr) is the coordi-
nate of the centroid with IRM in V s cm−2 and retention time in s. For the
normal distribution, we used σt = 0.002 and σr = µr · 0.002 + 0.2. For the
exponential distribution, we used λt = (1.45·2500)−1 (reduced mobility width
for in single cell within M) and λr = 1/(µr · 0.002 + 0.2). For the uniform
distribution, we used an ellipsoid with radii νt = 0.006 and νr = µr · 0.02 + 1.
Figure 5.2 presents an exemplary distribution of simulated clusters.

We compared our adaptive EM clustering with two common clustering meth-
ods: k-means and DBSCAN. Since k-means needs a fixed number of clus-
ters k and appropriate start values for the centroids, we used k-means++
by Arthur and Vassilvitskii (2007) for estimating good starting values and
give it an advantage by assigning the true number of partitions. DBSCAN
has the advantages that it does not need to know the number of clusters in
advance and that it can find non-linear cluster boundaries, but it does not
easily yield parametric cluster descriptors.

To measure the quality of an obtained clustering C, we utilize the Fowlkes-
Mallows index (FMI, Fowlkes and Mallows (1983)) and the normalized vari-
ation of information (NVI) score introduced by Reichart and Rappoport
(2009).

The FMI requires consideration of all pairs of data points. If two data points
belong to the same true partition of P, they are called connected. Accord-
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Figure 5.2: Exemplary distribution of simulated clusters randomly using one
of the three proposed distributions for each cluster. Additional
noise is added.

ingly, a pair of data points is called clustered if they are clustered together
by the clustering method. Pairs of data points both connected and clus-
tered are called true positives (TP). False positives (FP, not connected but
clustered) and false negatives (FN, connected but not clustered) are com-
puted analogously. The FMI is the geometric mean of precision and recall:
FMI(P, C) :=

√
TP/(TP + FP ) · TP/(TP + FN),

where P is the true partition and C is the clustering. We have FMI(P, C) ∈ [0, 1],
and FMI(P, C) = 1 indicating perfect agreement. The FMI is difficult to in-
terpret when the number of clusters in C and P differs significantly.

Therefore we use a second measure which considers cluster sizes only, the
normalized variation of information (NVI). To compute the NVI, an auxiliary
(|P|×|C|)-dimensional matrix A = (ai,j) is computed, where ai,j is the number
of data points within partition i assigned to cluster j. The NVI score is defined
via entropies; let n be the number of data points and

H(P) := −
∑
i≤|P|

∑
j≤|C| ai,j

n
log

∑
j≤|C| ai,j

n
,

H(C) := −
∑
j≤|C|

∑
i≤|P| ai,j

n
log

∑
i≤|P| ai,j

n
,

H(P|C) := −
∑
j≤|C|

∑
i≤|P|

ai,j
n

log
ai,j∑

i′≤|P| ai′,j
,

H(C|P) := −
∑
j≤|C|

∑
i≤|P|

ai,j
n

log
ai,j∑

j′≤|C| ai,j′
,

NVI(P, C) :=

{
H(P|C)+H(C|P)

H(P) if H(P) 6= 0,

H(C) otherwise.
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Figure 5.3: Histograms similar to Figure 5.1, but in a more realistic noisy
scenario (see text). An FMI of 1 and NVI of 0 would be optimal.

Here NV I(P, C) = 0 indicates perfect agreement between the cluster size
distributions. Together, an FMI of 1 and an NVI score of 0 indicate a perfect
clustering.

For the first test, we evaluated 100 sets of data points distributed as described
above. The cluster model (normal, exponential or uniform) was drawn ran-
domly. The results show that even with the advantage of k-means having
been given the true k, our adaptive EM clustering performs best on average
in terms of FMI and NVI score (Figure 5.1). For the second test, we addition-
ally inserted 200 uniformly distributed (noise) peaks into the measurement
area. All these peaks are singletons and have no matching peaks. The results
(Figure 5.3) show that adaptive EM clustering still performs best on average,
whereas k-means fails.
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6 Comparison with a Reference

6.1 Background

Having a set of (consensus) peak lists, it is desirable to identify the actual
analytes within these lists. Thus, when a reference (i.e. a reference peak list)
is available, a comparison has to be performed. However, some issues must be
taken into consideration which argue against a simple search of the minimal
Euclidean distance of a peak position against the reference positions.

On the one hand, both the dimensions of retention time and drift time provide
different magnitudes of their values, so a normalization is essential. On the
other hand, the hardware parts like MCC can scuff and subsequently generate
biased data. The IM spectrometer device could also not be adjusted perfectly
to the defined voltage, leading to a shift in drift time. These influences must
be taken into account for a comparison. It results in a challenge to align
two peak lists (produced and reference set) having a constant shift in one
dimension and a linear shift in the other dimension. The objective is to
find parameters of the constant and linear shift that minimize the distance
between both peak lists.

6.2 Related Work

The problem of aligning a set of points to another is referred to as point set
registration. A coherent point drift algorithm was introduced by Myronenko
and Song (2010). They handle two methods with different constraints. The
rigid point set registration only allows a transform from one point set to
another by shifting, scaling and rotating the point set. A nonrigid point set
registration typically allows nonlinear transform, reflection, rotation in all
dimensions, shear mapping and other affine transformations. In both cases
one point set is referred to as the source point set xn×D and the second as
the target point set ym×D, respectively. A Gaussian mixture model is used in
which every point of the source point set is the centroid of a D-dimensional
Gaussian model. Having a rotation matrix RD×D, a shift-vector tD×1 and a
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scaling parameter s, let G be the transformation function and Q the objective
that defined as follows:

G(yj |R, t, s) := sRyj + t,

P old(j |xi) :=
exp
− 1

2

∣∣∣∣∣∣∣∣xi−G(yj |R,t,s)σ

∣∣∣∣∣∣∣∣2
∑

k≤m exp
− 1

2

∣∣∣∣∣∣xi−G(yk |R,t,s)σ

∣∣∣∣∣∣2
+c

,

NP :=
∑

i≤n,j≤m
P old(j |xi),

Q :=
1

2σ

∑
i≤n,j≤m

P old(j |xi)||xi − G(yj |R, t, s)||+
NPD

2
log σ2,

where σ2 is the variance. Here, P old denotes the posterior probabilities of
the Gaussian mixture model components where c = (2πσ2)D/2ω/(1−ω)m/n,
a uniform background distribution to explain outliers with the background
model weight ω. The objective function Q is minimized by utilizing the
maximum likelihood estimators for σ,R, t and s. Since this method assumes
the same variance over all dimensions and utilizes the fast Gauss transform,
it is not applicable for our purposes but it can be enhanced.

6.3 Algorithm

In the following, an approach based on the work of Myronenko and Song
(2010) is described which again utilizes the EM algorithm for parameter es-
timation.

6.3.1 Mixture Model

We are given a reference peak list R = (Ri) with Ri = {µR,T, µR,R}, i ≤ n
and a target peak list T = (Tj) with Tj = {µT ,T, µT ,R}, j ≤ m where µT, µR
are the centroid positions of the consensus peaks. We intend to estimate the
shift parameter sT in IRM and scaling parameter sR in retention time. Again,
a Gaussian mixture model is utilized in which the centroids of R indicate the
model means and the variances can be computed using the peak definitions

σ∗T := ∆τ,

σ∗R := ξ(µ∗d,R)/φ for all d ∈ {R, T }.

When the target peak list is a single peak list either provided by the offline or
the online peak model estimation method from Section 3 or 4, the variances
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do not have to be computed since they were estimated and are more precise.
Let

p(Ri, Tj) :=

exp

(
−0.5

((
µR,R,i−µT ,R,j ·sR

σR,T,i

)2
+
(
µR,T,i−(µT ,T,j+sT)

σR,T,i

)2))
2πσR,T,iσR,R,i

be the Gaussian probability distribution for the described consensus peak Tj
with model Ri.

6.3.2 Initial parameters

At the beginning we assume the best case, i.e. that we have no shift and no
scale and thus set the initial parameters sR = 1 and sT = 0.

6.3.3 Estimating the parameters

Again, we take the maximum likelihood estimators in the maximization step,
which are

s∗T :=
1

n

∑
i≤n,j≤m

Wi,j(µR,T,i − µT ,T,j),

s∗R :=
1

n

∑
i≤n,j≤m

Wi,j(µR,R,i/µT ,R,j).

6.3.4 Final step

To determine which target peak belongs to which reference peak, we consider
the membership variables indicating that information. Let

j∗ := arg max
j≤m

(Wi,j)

be the target peak describing model i best for all i ≤ n and thus being
connected. Here, we also claim a maximal distance to ensure that unrea-
sonable connections are not established. For this purpose, we utilize the
standard deviation in both dimensions to compute the minimal probability
for a model. Let Vs∗T,s

∗
R

({x, y}) := {x + s∗T, y · s∗R} be the transformation
function to compute the transformed coordinates. Connections between Ri
and Tj are established when

log

(
p
(
Ri,Vs∗T,s

∗
R

(Tj)
)

p
(
Ri, {µR,T + σ∗T, µR,R + σ∗R}i

)) ≥ 0

is satisfied or discarded otherwise.
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6.4 Evaluation

The setting of the evaluation for the comparison approach is structured as
follows: as the reference peak list, we use a consensus peak list provided
by the Pseudomonas aeruginosa (described in Section A.2) utilizing the of-
fline peak extraction described in Section 3 and clustered with EM clus-
tering as described in Section 5. The dataset contains 67 measurement
files, the consensus peak list has 27 peaks listed and mean/standard devi-
ation of extracted peaks with the single peak lists is 13.47 ± 2.19. For one
experiment, the shift parameter sT in IRM and the scaling parameter sR
in retention time is determined randomly, a comparison peak list is cre-
ated with peaks transformed according to both parameters and accordingly,
these parameters again are inferred by considering only the reference and
the comparison peak list. For a comparison peak list, i) a subset of the
reference peak list is taken in which the size is a random Gaussian number
with µ = 13.47, σ = 2.19, ii) a set of false peaks is added with a random size
between [5, 10] with both IRM and retention time randomly chosen with τ
between [0.5, 1.2] V s cm−2 and ρ between [0, 350] ms, iii) all peak positions are
transformed according to the shifting and scaling parameter and iv) all peak
positions are jittered using random Gaussian numbers with µ = t, σ = ∆τ
in IRM and µ = ρ, σ = ξ(ρ)/φ in retention time. The device parameters are
taken as described in Table 8.1. To see the influence of both shift and scaling
parameter, we perform nine independent experiment batches with alternat-
ing parameters. Each experiment batch consists of 1000 independent exper-
iments. The parameters are randomly chosen within ranges of a Cartesian
product of ([−0.01, 0.01], [−0.025, 0.025], [−0.1, 0.1])× ([1, 1.1], [1, 1.25], [1, 2])
for shift parameter and scaling parameter, respectively.

Figure 6.1 presents all nine experiment batches. All figures show a histogram
of the difference between the determined and estimated parameter, the figures
on the left the difference for the shift parameter in IRM and the figures on
the right for the scaling parameters, respectively. The upper figures show
the results of the scaling parameter randomly set between [1, 1.1], the middle
figures with [1, 1.25] and the bottom figures with [1, 2]. The combination of
0.01 maximum shift and 1.1 maximum scale is the most realistic scenario. In
the top figures it is visible that the estimation performs best in this scenario.
On the harder scenarios with 0.025 maximum shift and 1.2 maximum scale,
the method still copes well. Considering unrealistic scenarios with 0.1 shift
corresponding to a shift of over 3 ms and a scale up to 2, the method fails.
Although the correct parameters are estimated on average, the variance is
very high.
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Figure 6.1: Histograms of the differences between determined and estimated
shift (left) and scale (right) parameters of 1000 experiments each;
(top) maximum scale: 1.1; (middle) maximum scale: 1.2; (bot-
tom) maximum scale: 2. Each figure contains three histograms
for all three maximum shifts each.
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7 Evaluation of Determination Limit
of Peak Extraction

The first global evaluation takes both online and offline methods into account
and focuses on the determination limit of the peak extraction. We intend
to determine the noise margin level noise margin which amplifies the back-
ground noise deviation σN. In general we claim that peaks with minimal peak
height exceeding noise margin · σN will be detected correctly with reliable
results.

7.1 Setting

We are using the calibration curve data sets as described in Appendix A.1.
Since these series have only one analyte injected and the concentration of
this analyte decreases exponentially (thinning series), it appears reasonable
to check at which signal intensity level the methods fail to find peaks. We
use the following parameters for both methods as listed in Table 7.1. After-
wards the single peak lists are clustered using the EM clustering described in
Section 5. The data sets have the following average standard deviations for
the background noise model: σN,1 = 4.26× 10−3 V and σN,2 = 4.35× 10−3 V.

To evaluate the results, we compare the results with the determination limit
introduced by the German Institute for Standardization. The DIN 32645
standard defines a limit of detection and limit of determination for chemical
analyses. A limit of detection determines the lowest quantity of analytes that
can be distinguished from blank samples. This limit is defined as the mean of
the blank with a standard deviation scaled by a confidence factor. Typically,
for a mean with zero value, the limit of detection is defined as 3 · σN. The
limit of determination is the lowest quantity of analytes that can quantified
with a defined precision. In chemical analyses, the limit is typically defined
as 9 · σN.
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7 Evaluation of Determination Limit of Peak Extraction

Table 7.1: Parameters of both offline and online methods for the determina-
tion limit evaluation.

Parameter Value Parameter Value

offline
r width offset 2.5 candidate detection cf
r width factor 0.01 picking emc
t width offset 0.003 modeling pme
preprocessing first bc fftcutoff 0.2
preprocessing second dn convergence threshold 0.001
preprocessing third s

online
r width offset 2.5 convergence threshold 0.01
r width factor 0.01 min correlation 0.9
t width offset 0.003

7.2 Results

Experiment 1

Figure 7.1 (top) illustrates the results of the complete calibration curve for
data set 1. As a reference (red line), we first manually determine the peaks
position (τ∗, ρ∗) over all measurements and search the highest signal intensity
within the rectangle window from (τ∗ −∆τ, ρ∗ −∆ρ) to (τ∗ + ∆τ, ρ∗ + ∆ρ).
The limit of determination is σN,1 · 9 = 0.0383 (brown dashed line). For the
first 700 measurements, both methods keep well with both the identification
and extraction as well as the estimation of the peak model to get the peak
height. To get a better comparison, Figure 7.1 (bottom) presents a zoomed
view at the end of the curve. Additionally, the determination limit is plotted.
For both methods it is clearly visible that the determination limit is kept,
thus noise margin = 9 suffices. The offline method performs even slightly
better for the recognition at low quantities whereas it estimates the model
parameters slightly worse.

Experiment 2

Figure 7.2 shows the results for the second calibration curve, respectively.
The reference line and the limit of determination are computed as in Experi-
ment 1. Some points of the reference line are corrupted since a few IM spectra
are faulty within the measurements. When these IM spectra are within the
range of the corresponding peak to the analyte, outlier values are stored.
Hence, the online method fails to detect a peak when its height exceeds of
half the maximum deflection due to a deformation of the actual peak. The
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Figure 7.1: Top: complete calibration curve for data set 1: (red line) the
calibration analyte; (green line) extracted peaks using PME; (blue
line) extracted peak heights using OPME. Bottom: zoom in of the
last part of the calibration curve for data set 1 (top): (red line) the
calibration analyte; (green line) extracted peaks using PME; (blue
line) extracted peak heights using OPME. The online method
copes with the standard determination limit (dashed brown line).

offline method recognizes peaks with quantities of such height but also fails to
estimate good model parameters. For quantities below half of the maximum
deflection, both methods perform well. The methods estimate slightly higher
peak intensities due to their estimation process which is not critical, since this
is a linear error, it can be suppressed. Generally, the second experiment con-
firms the result considering the determination limit of the first experiment.
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Figure 7.2: Top: complete calibration curve for data set 2: (red line) the
calibration analyte; (green line) extracted peaks using PME; (blue
line) extracted peak heights using OPME. Bottom: zoom in of the
last part of the calibration curve for data set 2 (top): (red line) the
calibration analyte; (green line) extracted peaks using PME; (blue
line) extracted peak heights using OPME. The online method
copes with the standard determination limit (dashed brown line).
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8 Evaluation of Automated Peak
Extraction compared with Manual
Annotation

The next evaluation considers a comparison of manually annotated datasets
in which the peaks were pinpointed by a domain expert using a visualization
tool as VisualNow (written by Bödeker et al. (2008)) and the automated peak
extraction using both the online and offline method.

8.1 Setting

For this experiment we are using three datasets, namely Dataset 69, Pseu-
domonas aeruginosa and Dataset 508 as described in Appendix A.2. A man-
ual data table (measurement × consensus peak) is provided for all datasets.
The peak extraction methods were performed with the parameter adjustment
listed in Table 8.1. The noise margin was set as determined in Section 7,
namely noise margin = 9.

Here, we treat the manually detected data as the basic truth. We count for
each single measurement the peaks detected from both manual and automated
method (true positives TP), as well as false positives FP, false negatives FN
and true negatives TN, respectively. For this particular experiment it is possi-
ble to count TN, since both manually and automatically generated data tables
provide signal intensities for every measurement / consensus peak combina-
tion. If a peak is not found in a particular measurement, the corresponding
signal intensity within the data table is zero (or definitely below the determi-
nation limit). Thus, when a signal intensity of a certain measurement / peak
combination satisfies the “not found” criterion within both manually and au-
tomatically generated data table, a true negative is counted. To connect two
consensus peak lists provided by the data tables, we use a comparison similar
to the method as described in Section 6.
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Table 8.1: Parameters of both offline and online methods for the comparison
evaluation.

Parameter Value Parameter Value

offline
r width offset 2.5 candidate detection cf
r width factor 0.06 picking emc
t width offset 0.003 modeling pme
preprocessing first bc fftcutoff 0.2
preprocessing second dn convergence threshold 0.001
preprocessing third s noise margin 9

online
r width offset 2.5 convergence threshold 0.01
r width factor 0.06 min correlation 0.9
t width offset 0.003 noise margin 9

Additionally, we claim only a 1 to 1 connection or no connection between the
peak lists. Note that in contrast to the evaluation in Section 3.5.2, we do not
compare peak lists of single measurements. After the counting, we compute
the specificity spec = TN/(TN + FP) and precision (or positive predictive
value) spec = TP/(TP+FP). One feature of dataset Pseudomonas aeruginosa
and Dataset 508 is the difference between number of consensus peaks within
manually generated peak lists and both automatically generated peak lists.
They are about 5 and 10 times higher since the data table was not filtered
with respect to singleton clusters or clusters with too few peaks. Thus, we do
not use the sensitivity and accuracy as quality measures since it would bias
the results. The numbers for (manual, offline, online) consensus peak lists for
the data sets are follows: Dataset 69 (60, 57, 56); Pseudomonas aeruginosa
(224, 26, 19); Dataset 508 (156, 36, 37).

8.2 Results

The results for all the six experiments are plotted in Figure 8.1. Both meth-
ods achieve a specificity above 0.75 for almost all measurement comparisons.
Surely there is space for improvement of the methods to increase the preci-
sion, but generally there is a good agreement between the manual and the
automated extraction.
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Figure 8.1: The specificity and precision for all tree experiments are plotted
against each other for both offline (red points each) and online
method (blue points each). Experiments: (top) Dataset 69; (mid-
dle) Pseudomonas aeruginosa; (bottom) Dataset 508.
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9 Evaluation of Parameters

The adjustable parameters are significantly relevant for the quality of the
peak extraction. In this section we try to determine the best combination of
parameter values for both introduced methods, PME and OPME.

9.1 Setting

Since the parameters strongly depend on the adjustment of the spectrom-
eter, we concentrate here on standard adjustments as listed in Table 1.1.
Four of the adjustable parameters are used for both methods PME as well as
OPME, namely convergence threshold, r width factor, r width offset

and t width offset. The parameter fftcutoff is solely used by PME
and min correlation by OPME, respectively. Since noise margin was eval-
uated in Section 7, it is not taken into consideration here. Table 8.1 lists stan-
dard values for all parameters. For all mentioned parameters we take a set
of values surrounding its standard value. Within every experiment only one
parameter was increased, whereas the standard values were assigned to the
remaining parameters. We use the Reference 6 mixture dataset described in
Appendix A.1, since we know the exact position of the supposed peaks, we can
check whether peaks are found and extracted or not. Additionally, we count
the presence of all known peaks within every measurement to have reference
count. As a quality measure, we use a normalized agreement R ∈ [−1; 1]. A
value R = 1 corresponds to a perfect agreement (all true positives and no false
positives found). Let TPi be the number of true positives for measurement i
and FPi the number of false positives, respectively, then let

R :=
1

n
·
∑
i≤n

(
TPi

max(TP)
− FPi

max(FP)

)

where n is the number of measurements and max(FP) the highest false pos-
itive rate among all measurements.

9.2 Results

The Figures 9.1, 9.2, 9.3, 9.4, 9.5 and 9.6 present the results for all param-
eter experiments, each figure for one parameter. The following applies for
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Table 9.1: Agreement R results for all parameter values of all PME and
OPME parameters.

PME results
fftcutoff convergence threshold r width factor r width factor t width offset

value R value R value R value R value R

0.1 0.223 0.0001 0.339 0.01 0.241 0.0 0.165 0.001 -0.031
0.2 0.424 0.0005 0.351 0.02 0.257 0.5 0.22 0.002 0.439
0.3 0.429 0.001 0.355 0.03 0.231 1.0 0.22 0.003 0.248
0.4 0.434 0.005 0.397 0.04 0.261 1.5 0.23 0.004 0.271
0.5 0.415 0.01 0.407 0.05 0.252 2.0 0.241 0.005 0.266
0.6 0.401 0.05 0.373 0.06 0.3 2.5 0.246 0.006 0.306

0.1 0.283 0.07 0.291 3.0 0.248 0.007 0.322
0.5 0.177 0.08 0.334 3.5 0.265 0.008 0.346

0.09 0.309 4.0 0.269 0.009 0.339
0.1 0.321 4.5 0.278 0.01 0.366
0.11 0.315 5.0 0.282
0.12 0.343

OPME results
min correlation convergence threshold r width factor r width factor t width offset

0.7 0.215 0.0001 0.194 0.01 0.202 0.0 0.281 0.001 -0.006
0.75 0.229 0.0005 0.204 0.02 0.192 0.5 0.045 0.002 0.11
0.8 0.247 0.001 0.206 0.03 0.207 1.0 0.145 0.003 0.206
0.85 0.28 0.005 0.21 0.04 0.193 1.5 0.271 0.004 0.225
0.9 0.339 0.01 0.225 0.05 0.196 2.0 0.334 0.005 0.225
0.95 0.397 0.05 0.233 0.06 0.225 2.5 0.339 0.006 0.25
0.99 0.158 0.1 0.238 0.07 0.199 3.0 0.349 0.007 0.251

0.5 0.149 0.08 0.168 3.5 0.341 0.008 0.252
0.09 0.155 4.0 0.299 0.009 0.257
0.1 0.153 4.5 0.285 0.01 0.259
0.11 0.156 5.0 0.241
0.12 0.139
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Figure 9.1: Experiment for fftcutoff for PME: (top) color-coded matrix
containing the counts (TP) for every pair of measurement / pa-
rameter values, the single row indicating the actual number of
present peaks within the measurements; (bottom) color-coded
matrix containing the FP rate. The more a row resembles to
the counting row for the top matrix and the lower the numbers of
the row in the bottom matrix, the better the parameter value.

every figure: every figure unit consists of two parts; the top part is a color-
coded matrix containing the counts (TP) for every pair of measurement /
parameter values, an additional single row shows the number of truly present
peaks for every measurement; the bottom part presents a color-coded matrix
containing the FP. Since fftcutoff and min correlation are only used by
either PME or OPME, the corresponding Figures 9.1 and 9.2 contain only one
figure unit. The remaining figures contain two figure units since both peak
extraction methods utilize these parameters. Furthermore, Table 9.1 presents
the R results for all parameter values of all PME and OPME parameters. All
common parameters are listed within the same column.

First of all, it is noticeable that most of the measurements contain eight peaks
and only few contain nine or even ten peaks. The reason why the methods do
detect any measurement with more than eight peaks is that some measure-
ments contain dimers and thus deformed monomers. In those cases the dimer
was detected but due to its deformation the monomers were not found. We
recall that the methods were not designed to recognize deformed monomers
or align monomers and dimers. In many measurements, one particular peak
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Figure 9.2: Experiment for min correlation: for OPME: (top) color-coded
matrix containing the counts (TP) for every pair of measurement
/ parameter values, the single row indicating the actual number
of present peaks within the measurements; (bottom) color-coded
matrix containing the FP rate.

often occurs with a maximal signal intensity slightly exceeding the determi-
nation limit, resulting in OPME usually only finding seven peaks. We notice
that OPME displays an overall lower FP rate. In general, PME has a high
false positive rate, which can be explained by (1) the measurements may
contain minimal concentrations of not characterized compounds or (2) com-
pounds with high concentrations produce trails resulting in more peaks than
only the noticed monomers and dimers.

Parameter fftcutoff

The first parameter is only used by PME for preprocessing. A visualization of
the results for the fftcutoff experiment is presented in Figure 9.1. Although
it seems that the value has no effect on the results, we recommend to preserve
the first 20% of the frequency spectrum, thus fftcutoff = 0.2. The R results
in Table 9.1 confirm our choice. For higher values, the effect of noise reduction
is significantly lowered and for lower values, too many artifacts are provided
and being misleadingly detected as peaks.
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9.2 Results

Parameter min correlation

The only parameter solely used by the online method is min correlation.
The results for this parameter are illustrated in Figure 9.2. Since it is desirable
that this parameter is being set as high as possible to get reliable results and
few false positive extraction, our initial choice of min correlation = 0.9
is reasonable. Considering Table 9.1, even 0.95 should be a good choice.
Actually, we also tested the value 0.999 but at that high confidence value no
peak was found.

Parameter convergence threshold

Figure 9.3 presents the results for the performance parameter convergence threshold.
At first sight, this parameter has only negligible influence on the quality of
extraction. This can be explained by the fact that this parameter is used for
every estimation of the model parameters. When appropriate initial parame-
ters are provided, the methods only slightly maximize the parameters. Since
the number of iterations for the numerical optimization methods increase the
computation time and thus significantly lower the performance, a relative
error of 1% suffices, hence convergence threshold = 0.01. Agreement R
affirms this suggestion.

Parameter r width factor

The results for the second common parameter r width factor are visualized
in Figure 9.4. It is visible that PME is less prone with respect to this parame-
ter. For the online method, the value r width factor ≤ 0.07 seems legit and
therefore confirms our pre-choice. Our assumed adjustment coincides with
this result from Table 9.1, especially when considering the results for OMPE.

Parameter r width offset

The results of the r width offset experiment are illustrated in Figure 9.5.
Again the results for PME are more stable when the parameter is alternated,
in contrast to OPME. This can be explained by the rather simple peak candi-
date detection that does not take the peak model under consideration at the
beginning. Thus, exceeding 0.5, the results show an almost perfect peak ex-
traction. For both methods we recommend a value 2.0 ≤ r width factor ≤
3.5 which can also be reinforced by the R results, especially when considering
OPME.
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9 Evaluation of Parameters

Parameter t width offset

Figure 9.6 presents the results for parameter t width offset. Again, PME
is more tolerant towards a higher value range for this parameter due to
its simplicity. For both counting matrices it is clearly visible that 0.003 ≤
t width offset ≤ 0.004 becomes reasonable. This result supports our cal-
culation for the offset in IRM dimension. Higher values make physically no
sense, although the R values are increasing for increasing the parameter value
for PME.
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Figure 9.3: Experiment for convergence threshold containing two fig-
ure units (upper) for PME and (lower) for OPME. Every unit
consists of: (top) color-coded matrix containing the counts (TP)
for every pair of measurement / parameter values, the single row
indicating the actual number of present peaks within the mea-
surements; (bottom) color-coded matrix containing the FP rate.
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Figure 9.4: Experiment for r width factor containing two figure units (up-
per) for PME and (lower) for OPME. Every unit consists of: (top)
color-coded matrix containing the counts (TP) for every pair of
measurement / parameter values, the single row indicating the ac-
tual number of present peaks within the measurements; (bottom)
color-coded matrix containing the FP rate.
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Figure 9.5: Experiment for r width offset containing two figure units (up-
per) for PME and (lower) for OPME. Every unit consists of: (top)
color-coded matrix containing the counts (TP) for every pair of
measurement / parameter values, the single row indicating the ac-
tual number of present peaks within the measurements; (bottom)
color-coded matrix containing the FP rate.
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Figure 9.6: Experiment for t width offset containing two figure units (up-
per) for PME and (lower) for OPME. Every unit consists of: (top)
color-coded matrix containing the counts (TP) for every pair of
measurement / parameter values, the single row indicating the ac-
tual number of present peaks within the measurements; (bottom)
color-coded matrix containing the FP rate.
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10 Evaluation of Classification Quality
with Two Classes of Data

In the last experiment we evaluate whether both peak extraction methods
with the consecutive clustering method can compete with a hand-made ex-
traction. As a quality measure, we use a two-class dataset and measure the
accuracy when applying several classification methods with these data.

10.1 Related Work

Several two-class classification methods are known from literature. Here we
briefly introduce these methods utilized for our experiment. For convenience,
we call a consensus peak a variable within the classification context.

Support Vector Machine (SVM)

The objective of support vector machines is to detect boundaries separating
the observations of two classes. Hereby, the points have to be as far away as
possible from the boundary. For details consider the literature (Theodoridis
and Koutroumbas, 2009, Chapter 3.7).

Linear SVM

The linear SVM determines a hyperplane separating the observations. Data
points which violate the boundary by lying on the wrong side of the hyper-
plane (according to their class) are penalized with a cost parameter.

Radial Basis Function (RBF) SVM

Since a linear decision boundary might often be unsuitable, other boundaries
can be achieved by transforming the data into a higher dimension and then
searching for a linear boundary in this space. To optimize this boundary,
the algorithm does not have to actually compute the transformations. A
so-called kernel function calculates the necessary dot products between two
transformed observations without computing the actual values first. One
kernel function is the radial basis function with K(xi, xj) = exp{−γ|xi−xj |2}

105



10 Evaluation of Classification Quality with Two Classes of Data

for two points xi and xj . Besides the cost parameter, the second tuning
parameter is γ > 0.

K-Nearest-Neighbor (kNN)

A simple idea to classify a new observation is to assign it to the class to
which most of its closest neighbors belong to. The kNN algorithm is referred
to as a lazy learning method, as in contrast to an eager learning method
the classification training is applied during the request. The k closest points
(in terms of Euclidean distance considering all variables) decide per majority
vote. The number of considered neighbors k is treated as tuning parameter,
taking the integers from one to ten in the inner cross-validation. A detailed
description of kNN can be found in literature (Duda et al., 2000, Chapter 4.4).

Classification Tree (CT)

In a two-class classification problem, a classification tree splits the training
set into two groups using a simple cut-point on a single variable as briefly
described in (Theodoridis and Koutroumbas, 2009, Chapter 4.20). The pro-
cedure progresses iteratively for the two resulting sets, which means they are
also split regarding one variable until a stopping criterion is reached. A set
of observations in the tree is called node. To decide which variable and which
cut-point should be used at each step, the Gini index is used to measure the
decrease of impurity achieved by a certain split. A node is considered pure if
it contains only observations of the same class. If the node impurity does not
improve by a factor of 0.01, the node is not split any more. Since large trees
with many splits and a considerable depth are prone to overfitting, the size
of a terminal node is not split any further can be restricted. The parameter
specifies the minimum number of observations in a terminal node.

Generalized Boosted Models (GBM)

Boosting is a strategy to combine many weak learners into a strong one as
introduced by Friedman (2001). A set of simple trees with a limited quantity
of nodes (interaction depth is a tuning parameter) is iteratively generated.
The next tree is chosen such that it minimizes a loss criterion (here the
deviance, the negative log-likelihood of the Bernoulli model) based on the
current model. To determine the next tree, just 50% of the training data is
used.
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10.2 Setting

Random Forest (RF)

A Random Forest is a collection of many trees, each of which is based only on
a random selection of

√
k of the available variables and a bootstrap sample

of size n. Each tree is fully grown, meaning that there are no restrictions in
regard to minimum node size. To classify an observation, it is passed trough
all trees and the class is assigned by majority vote.

10.2 Setting

We are given data tables which result from peak clustering and contain n
observations and a differing number of k consensus peaks. For this exper-
iment the dataset Pseudomonas aeruginosa (as described in Appendix A.2)
was utilized. We apply different classification algorithms to each data table
as described by Horsch et al. (2015). See Hastie et al. (2009) for an overview
and the references after the descriptions of the methods for explicit implemen-
tations. We use 10-fold cross-validation (CV), i.e., we split our observations
in 10 equally-sized groups, train our classification algorithm, sequentially on
90% of the data (training set) and predict the left out 10th partition of the
data (test set) with the resulting model. In case of necessary parameter tuning
for the classification algorithm a nested 10-fold CV is performed. Since the
results of the CV depend on the 10 random splits, we repeat each procedure
of classification 50 times.

A classification process of a dataset containing IMSC measurements is subdi-
vided into three steps, namely a combined preprocessing and peak detection,
peak clustering and the training of a classification model itself. For peak de-
tection we use both our offline (PME) and online (OPME) methods and the
automatic detection in VisualNow, Local Maxima (described in Section 3.1)
as well as PDSA and SGLTR (see Section 4.1) for the sake of comparison. Of
course the manual peak detection using VisualNow (which is state of the art)
is also involved. The parameters for our methods are adjusted as listed in
Table 8.1. To cluster the peak lists provided by every extraction method for
all measurements, we utilize our augmented EM clustering as well as cluster
editing, grid squares and DBSCAN (consider Section 5.2 for details). Finally,
the data tables obtained from the previous clustering are classified using all
classification methods described in Section 10.1. We apply a Cartesian prod-
uct of all three steps. Since both manual peak extraction and clustering are
one step within VisualNow, no manually extracted peak lists are provided
and they are not combined with the remaining clustering methods. As a
second exception, VisualNow is not able to cluster provided peak lists and
therefore some combinations can not be deployed. In total, 156 combinations
are applied as illustrated in Figure 10.1.
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Preprocessing and
peak detection

Peak clustering

Classification

VisualNow
(manual)

VisualNow
(automatic)

Local
Maxima PME OPME PDSA SGLTR

VisualNow
(manual)

VisualNow
(automatic)

EM
Clustering

Cluster
Editing Grid Square DBSCAN

kNNSVM (rbf)SVM (linear) Classification
Tree GBM Random

Forest

Figure 10.1: Possible combinations for the three steps in the analysis process
from raw data to classification results as presented by Horsch
et al. (2015). Not all peak detection and peak clustering methods
can be combined. All results from peak detection are input for
all classification methods.

10.3 Results

We now evaluate all meaningful combinations of peak detection, peak clus-
tering, and classification algorithms on the dataset as initially described
by Horsch et al. (2015). After peak detection and peak clustering, we have 26
data tables of peak intensities as input for the consecutive classification step.
The number of consensus peaks and thus variables varies over the datasets.
Whereas the VN variants find many consensus peaks – 224 for VN (man-
ual) and 236 for VN (auto) combined with its own peak clustering method
– the other methods identify much less, from 11 for OPME combined with
Grid Squares up to 67 for SGLTR combined with EM clustering. This may
indicate that the automated versions often miss or merge existing peaks and
thus corresponding metabolites in the exhaled air. Still we will see that clas-
sification accuracy does not decline significantly.

We now consider all 156 analysis processes separately. Figure 10.2 shows
the results in terms of accuracy. Each of the 156 boxplots represents one of
the combinations of peak detection, peak clustering and classification. Each
box is based on 50 points, the replications of the 10-fold CV. The six panels
contain the results of the different classification processes. The horizontal line
at an accuracy of 0.8 serves as orientation. In each panel of Figure 10.2, the
boxes are ordered according the peak detection methods (annotation on the
x-axis) and colored according peak clustering methods. Considering just RF
and GBM, the best peak detection methods are combinations with LM, PME
and SGLTR, depending on the peak clustering methods. Considering only
these classification and peak detection methods, Grid Squares most frequently
leads to the best accuracies. The combination of OPME and Grid Squares
seems to be considerably inferior to all other combinations, as it displays a
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Accuracies for all combinations of peak picking, 
 peak clustering and classification algorithms

Peak picking method
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Figure 10.2: Accuracies for all combinations of peak detection, peak clustering
and classification processes provided by Horsch et al. (2015).
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10 Evaluation of Classification Quality with Two Classes of Data

Table 10.1: Median performance measures for all PME / EM Clustering and
classification combinations, OPME / EM Clustering and classi-
fication combinations, VN (manual) and classification combina-
tions as well as the best classification process.

Peak detection / clustering Classification Accuracy Sensitivity Specificity AUC

PME / EM Clustering SVM (linear) 0.701 0.533 0.865 0.776
PME / EM Clustering SVM (rbf) 0.724 0.533 0.865 0.783
PME / EM Clustering kNN 0.687 0.567 0.784 0.718
PME / EM Clustering CT 0.858 0.800 0.919 0.895
PME / EM Clustering RF 0.903 0.900 0.919 0.918
PME / EM Clustering GBM 0.881 0.833 0.919 0.905

OPME / EM Clustering SVM (linear) 0.791 0.633 0.919 0.859
OPME / EM Clustering SVM (rbf) 0.791 0.633 0.892 0.844
OPME / EM Clustering kNN 0.746 0.600 0.892 0.759
OPME / EM Clustering CT 0.776 0.700 0.838 0.781
OPME / EM Clustering RF 0.821 0.700 0.919 0.851
OPME / EM Clustering GBM 0.769 0.600 0.892 0.780

VN (manual) SVM (linear) 0.791 0.700 0.865 0.860
VN (manual) SVM (rbf) 0.776 0.767 0.811 0.863
VN (manual) kNN 0.836 0.750 0.892 0.857
VN (manual) CT 0.828 0.800 0.851 0.859
VN (manual) RF 0.851 0.733 0.973 0.923
VN (manual) GBM 0.821 0.733 0.919 0.860

LM / Grid Square GBM 0.940 0.967 0.946 0.960

lower median and higher variability of accuracy. That is not unexpected due
to the simplicity of Grid Squares. The best results are achieved using random
forest for the classification in which PME / EM Clustering clearly exceeds
the VN (manual) detection in terms of accuracy, consider Table 10.1. OPME
barely keeps up with the manual detection when providing a classification
utilizing random forest again. In general, it is visible that the combination of
peak extraction and clustering can compete with the state of the art manual
peak extraction.
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11 Conclusion and Discussion

In the final section we give a brief summary of all methods and tools intro-
duced in this thesis. Afterwards we discuss some aspects of automated peak
extraction and biological data in general and give an outlook for a possible
continuation of this work.

11.1 Summary

Approximating the Exponential Function

The first method we introduced is a fast approximation of the exponential
of a number. This method exploits the floating point representation within
processors of real values to increase the performance while keeping the error
low. We evaluated that our further algorithms utilize the exponential func-
tion up to billion times in a high-resolution measurement, which justifies a
high-performance computation – especially in a resource-constrained appli-
cation. Since all further algorithms use statistical distributions, we designed
this approximation with respect to negative numbers. With the described
methods and tricks we can decrease the computation time. Our performance
tests show that the approximation is (depending on the processor) 4–6 times
faster than exact functions. On the other hand, the error between the approx-
imation and the corresponding exact result remains low; the highest relative
error is about 0.001%. This result makes application in a statistical context
very reasonable.

Offline Peak Model Estimation in PEAX

The peak model estimation for an offline application (PME) was initially
designed to investigate the possibilities during the implementation of its sub-
processes for enhancements into an online context. PME is allowed to access
a whole IMSC for the peak extraction at any time. It is capable of estimating
parameters for an introduced peak model describing the complete shape of a
peak and providing a peak list with all parameters of the corresponding peaks.
This peak model is helpful for any consecutive post-processing step. The ad-
justable parameters for PME are necessary, especially when adjustments at
the spectrometer device alternate. We show that the proposed peak model
is reasonable and describes the peaks well after estimation. Accordingly, we
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11 Conclusion and Discussion

present that PME is suitable as a preprocessing step itself for a classification
context. In combination with EM Clustering, PME reaches one of the best
accuracy results (90.3%) within the classification evaluation.

Online Peak Model Estimation

The second introduced peak extraction method was dedicated to operate
in a resource-constrained context. Thus, the online peak model estimation
(OPME) was designed to analyze consecutively captured IM spectra only
once, discard these spectra immediately and store only data in a highly com-
pressed type, e.g. with statistical models. OPME also provides a peak list in
which all model parameters of the according peaks are listed. We show that
the time restriction of 100 ms to process a single IM spectrum is kept, even
with high-resolution spectra on embedded systems (about 97 ms). This com-
putation time can again be decreased by over-clocking the processor, relaxing
the convergence threshold or averaging the IM spectra. Considering the accu-
racy of modeling single IM spectra, we show that over 90% of the IM spectra
models reach a perfect agreement with the real spectra and about 99% of the
spectra achieve an accuracy of over 90%. However, OMPE achieves classifica-
tion evaluation accuracies which are slightly below the accuracies of manual
peak extraction but still comparable.

Adaptive EM Clustering

We combined the advantage of providing an underlying distribution model
for clusters with independence of a predetermination of the cluster number.
We introduced the adaptive EM Clustering, which is capable of both consid-
ering an underlying model for clusters and dynamically adjusting the number
of clusters. This method outperforms existing clustering methods which also
dynamically determine the number of clusters. Another advantage is the pro-
vision of peak parameters by the peak extraction which can be exploited for
the clustering. Since the application should also be located on a resource-
constrained device, we presented a number of methods and techniques to
increase the performance without noticeably losing any precision. Although
the resulting tool is designed for MCC/IMS data, it can be easily reimple-
mented for other spectrometry data.

Comparison with a Reference

The final introduced method presented an approach for aligning two peak
lists. Ideally, a reference peak list is provided with already determined corre-
sponding compounds of the peaks. In contrast to the clustering approach, this
method takes a constant and linear shifting of the peak sets under considera-
tion. Due to the rather limited number of reference peaks or small peak lists
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11.2 Discussion

provided by any of the peak extraction methods or the clustering, no need
emerged to enhance the method for embedded systems, since it performs well
on real case scenarios. Nevertheless, the idea of enhancing the EM Clustering
can also be adopted for the comparison. The method was utilized for the
evaluation of the adjustable program parameters for PME and OPME.

11.2 Discussion

Automated peak extraction will always be confronted with false positive and
false negative detections. It remains a trade-off which of both cases provides
more disadvantageous consequences. Of course, wrongly undetected peaks
for a single measurement are detrimental. Considering a whole set of mea-
surements, however, missing single peaks in single measurement becomes less
critical. When clustering to consensus peaks over measurements and provid-
ing, e.g. time series, both outliers and missing values can be detected and
corrected with appropriate methods. On the other hand, a faulty detection
of peaks can also create complications, especially when considering single
measurements again. But as in the previous case, the number of critical out-
liers biasing the results declines when more measurements are provided and
clustered. Since false positives are usually uniformly distributed, they should
be eliminated by a clustering. When a classification model is provided, the
presence of false positives is also less critical – as long as true positives are
found with a high confidence. As in many other biological fields, it is also
challenging to evaluate the methods since we do not know the basic truth of
our data. One way is to annotate the data by domain experts as we did, but
many evaluations suffer from treating human annotation as gold standard:
even in the best case they can only show that the evaluated methods are as
good as the human annotation.

We presented the first methods capable of automated peak extraction in var-
ious application fields. Their unique feature is that these methods provide
a complete description of the peak shape instead of the location of peaks
mode only. All methods were implemented, and especially the methods ded-
icated for an online application (OMPE and EM Clustering) were optimized
in terms of computation time. Surely, there is space for improvement. The
PME suffers from a high false positive rate. This could probably be solved
by increasing involvement of the peak model within the peak candidate de-
tection step. On the other hand, OMPE displays a tendency towards a high
false negative rate. It was a design decision to process an IMSC only, consid-
ering single IM spectra and not a set of spectra at once. A smoothing step
over several IM spectra could probably increase the sensitivity, especially
for detecting peaks slightly exceeding the determination limit. Features like
the detection of monomer / dimer pairs were omitted and could be investi-
gated in future work, just as properties of measurements captured in negative
mode. At the moment, r width offset and r width factor are adjustable
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11 Conclusion and Discussion

parameters, but can perhaps be inferred by device adjustments like MCC
temperature of carrier gas flow.

To conclude, we believe that we accomplished our objectives and provided
some powerful tools. Although OPME is a prototype and thus has to be
implemented on a target system, the remaining tools are ready for application
in practice.
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A Datasets

Several datasets were utilized for certain aspects of the evaluation. All
datasets were provided by B&S Analytik (Dortmund, Germany). Generally,
these datasets can be separated into two groups: measurements captured
under laboratory conditions for high reproducibility and measurements cap-
tured in hospitals for clinical studies with patients suffering from the same
disease within a dataset. The diseases are known but irrelevant with re-
spect to methods being evaluated within this thesis and cannot be disclosed
due to confidentiality agreements within the clinical study approved by the
state ethics committee. Since these datasets are confidential, they cannot be
published along with this thesis. In the following, all utilized datasets are
described.

A.1 Laboratory datasets

Calibration Curves

A calibration curve is a set of measurements to determine a correlation be-
tween the concentration of a certain analyte and the highest signal intensity
(or volume) of its corresponding peak. These data sets have in common, that
all measurement conditions are equal, i.e., equidistant measurement start-
ing points (every minute one measurement is started), a 1 × 5 aggregation
kernel (5 signal values within an IM spectrum are aggregated to their mean
value), one measurement takes 30 s (hence it contains 300 IM spectra) and
the curves are exponential thinning series. The thinning is performed until
the concentration of the analyte drops below the determination limit and no
signal of the corresponding peak is visible anymore. The adjustment of the
BioScout device is different for these two data sets: the MCC temperature
is 90 ◦C and the MCC carrier gas flow is 250 ml min−1. Two calibration curve
data sets are available, the first contains 1336 measurements and the second
contains 2209 measurements. The concentration of the analyte drops below
the determination limit only within the first data set.

Reference 6 mixture

This dataset contains a set of 446 measurements captured with standard con-
ditions (consider Table 1.1). Here, a defined set of six already known reference
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compounds was injected. All measurements are averaged with a 5× 5 kernel.
A peak list with peak parameters of the corresponding compounds was pro-
vided. Since the concentration of all compounds was rather high, almost all
compounds produced monomers as well as dimers within the spectra.

A.2 Datasets from clinical Studies

Dataset 69

Captured for a clinical study, this dataset contains 69 measurements, of which
39 are from different patients suffering from the same disease and 30 from a
control group not showing corresponding symptoms. This dataset was also
used for classification by Hauschild et al. (2013) and Egorov et al. (2013). All
measurements were performed within ten days and within the same hospital,
captured for ten minutes and their IMSCs were averaged with a 5× 5 kernel.
A manual analysis of the dataset provided a consensus peak list with 60 peaks.

Pseudomonas aeruginosa

The second clinical two-class dataset contains infected patients and a healthy
control group. Exhaled breath was measured from 30 patients whose airways
are either infected or colonized by Pseudomonas aeruginosa and from 37
healthy non-smoker control volunteers. All patients were recruited from the
Department of Pulmonology, Ruhrlandklinik, University Hospital of Essen,
Germany, with no evidence of acute exacerbation for at least 4 weeks prior to
enrollment. The diagnosis of Pseudomonas was established according to up-
to-date guidelines. All healthy volunteers were employees of the hospital. The
study was approved by the ethic committee of the University of Duisburg–
Essen, with informed consent of all subjects. On an only slightly different
dataset, Rabis et al. (2011) identified single peaks with differential intensities
between the two groups. Here, 224 consensus peaks are extracted.

Dataset 508

Another dataset from a clinical study provides 508 measurements which can
be subdivided into 348 measurements of diseased patients and a control group
of 160 probands. This is the biggest dataset we consider. All measurements
were captured for ten minutes and averaged with a 5 × 5 kernel. Again, a
manual analysis by a domain expert provided a consensus peak list containing
156 peaks.
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Rats dataset

In another clinical study by Wolf et al. (2014), 15 rats were monitored at 20
minute intervals for up to a day. Each rat resulted in 30–40 measurements
(a time series) for a total of 515 measurements. The acquisition time for
every measurement was about twelve minutes and a 5 × 5 kernel was used
for averaging. A manually generated data table was provided for every rat.
Over all, 100 consensus peaks were extracted.
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B Contributions to co-authored
Articles

This thesis contains several results from already peer-reviewed publications
with other researchers. The following papers contain shortened versions of
the corresponding section within this thesis:

Chapter 3

I stated the introduced peak model describing an approximation of the com-
plete shape of a peak with statistical distributions using seven parameters.
To estimate these parameters, I implemented a method using maximum like-
lihood estimators. For the PEAX pipeline, I implemented the following mod-
ules: (Preprocessing) baseline correction, de-noising, smoothing; (Peak Can-
didate Detection) cross finding; (Peak Picking) EM clustering; (Peak Model-
ing) peak model estimation.

D. Kopczynski, J. Baumbach, and S. Rahmann. Peak modeling
for Ion mobility spectrometry measurements. In Signal Processing
Conference (EUSIPCO), 2012 Proceedings of the 20th European,
pages 1801–1805, New York, NY, USA, Aug 2012. IEEE.

M. D’Addario, D. Kopczynski, J. I. Baumbach, and S. Rahmann.
A modular computational framework for automated peak extrac-
tion from ion mobility spectra. BMC Bioinformatics, 15(1):25,
2014.

Chapter 4

I developed the online peak model estimation approach and implemented a
recourse-constrained version to keep the time restrictions.

D. Kopczynski and S. Rahmann. An Online Peak Extraction
Algorithm for Ion Mobility Spectrometry Data. In WABI, volume
8701 of Lecture Notes in Computer Science, pages 232–246, New
York, 2014. Springer.
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B Contributions to co-authored Articles

Chapter 5

I developed the adaptive EM Clustering and I implemented a resource-constrained
version to cope well on low-power devices and performed the evaluation.

D. Kopczynski and S. Rahmann. An online peak extraction algo-
rithm for ion mobility spectrometry data. Algorithms for Molec-
ular Biology, 10(1):17, 2015.

Chapter 10

For both evaluation papers, I performed the main peak extractions and clus-
terings.

A. C. Hauschild, D. Kopczynski, M. D’Addario, J. I. Baumbach,
S. Rahmann, and J. Baumbach. Peak Detection Method Evalu-
ation for Ion Mobility Spectrometry by Using Machine Learning
Approaches. Metabolites, 3(2):277–293, 2013.

S. Horsch, D. Kopczynski, J. I. Baumbach, J. Rahnenführer, and
S. Rahmann. From raw ion mobility measurements to disease clas-
sification: a comparison of analysis processes. PeerJ PrePrints,
3:e1591, 2015.
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S. Mitkovska, A. Niehage, R. Pawelko, M. Sträßer, and C. Striewe.
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T. Perl. Multi-capillary column-ion mobility spectrometry (MCC-IMS) as a
new method for the quantification of occupational exposure to sevoflurane
in anaesthesia workplaces: an observational feasibility study. Journal of
Occupational Medicine and Toxicology, 10(1):12, 2015.

Z. Liu, A. Abbas, B.-Y. Jing, and X. Gao. WaVPeak: picking NMR peaks
through wavelet-based smoothing and volume-based filtering. Bioinformat-
ics, 28(7):914–920, 2012.

S. Lloyd. Least squares quantization in PCM. IEEE Transactions on Infor-
mation Theory, 28(2):129–137, 1982.

S. Maddula, T. Rabis, U. Sommerwerck, O. Anhenn, K. Darwiche, L. Freitag,
H. Teschler, and J. I. Baumbach. Correlation analysis on data sets to detect
infectious agents in the airways by ion mobility spectrometry of exhaled
breath. International Journal for Ion Mobility Spectrometry, 14(4):197–
206, 2011.

F. Maurer, A.-C. Hauschild, K. Eisinger, J. Baumbach, A. Mayor, and J. I.
Baumbach. MIMA–a software for analyte identification in MCC/IMS chro-
matograms by mapping accompanying GC/MS measurements. Interna-
tional Journal for Ion Mobility Spectrometry, 17(2):95–101, 2014.

V. Mazet, D. Brie, and J. Idier. Baseline spectrum estimation using half-
quadratic minimization. In Proceedings of the 12th European Signal Pro-
cessing Conference (EUSIPCO 2004), pages 305–308, 2004.

A. Munteanu and M. Wornowizki. Correcting statistical models via empirical
distribution functions. Computational Statistics, pages 1–31, 2015.

A. Myronenko and X. Song. Point Set Registration: Coherent Point Drift.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(12):
2262–2275, 2010.

S. B. Needleman and C. D. Wunsch. A general method applicable to the
search for similarities in the amino acid sequence of two proteins. Journal
of Molecular Biology, 48(3):443–453, 1970.

J. Nocedal and S. J. Wright. Numerical Optimization. Springer, New York,
2nd edition, 2006.

125



Bibliography

R. Purkhart, A. Hillmann, R. Graupne, and G. Becher. Detection of charac-
teristic clusters in IMS-Spectrograms of exhaled air polluted with environ-
mental contaminants. International Journal for Ion Mobility Spectrometry,
15(2):63–68, 2012.

T. Rabis, U. Sommerwerck, O. Anhenn, K. Darwiche, L. Freitag, H. Teschler,
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