Improved Mixed-Integer Programming Models for Multithreaded Scheduling with Communication Delays

Sven Mallach
Institut für Informatik
Universität zu Köln, 50969 Köln, Germany

September 16, 2016

Abstract
We revise existing and introduce new mixed-integer programming models for the Multithreaded Scheduling Problem with Communication Delays. At first, we show how to provably reduce the number of product variables necessary to explicitly linearize the so-called packing formulation that contains bilinear terms. Then, we reveal that the feasible region of almost all existing formulations contains redundant solutions and formulate new constraints in order to exclude these. At the same time, by exploiting further structural properties, the models are improved concerning their size, strength, and modeling complexity. The discussion of these improvements leads to new much more compact formulations which are then experimentally compared with each other and with other formulations from the literature. We set up a realistic scenario with a preprocessing of the task graphs, delivering the gained information equally to all the tested models and evaluate not only running times but also the obtained lower and upper bounds on the makespan objective for unsolved instances of a large scale benchmark set.

1 Introduction

The Multithreaded Scheduling Problem with Communication Delays (MPSCD) is to find a minimum makespan schedule of a task system with precedence constraints on a set of homogeneous processors subject to delays that arise if dependent tasks are processed on different processors. More formally, let $G = (V, A)$ be a task graph where $(i, j) \in A$ if task j needs to be processed after task i has finished. Each task $i \in V$ is associated with a fixed processing time L_i that is independent of the processor assigned to i. However, if $(i, j) \in A$ and the two tasks are processed on different processors, then j can start no earlier than at time $t_i + L_i + c_{ij}$ where t_i denotes the starting time of task $i \in V$ and c_{ij} the communication delay between i and j.

The MPSCD has obvious applications in scheduling tasks on fully connected network multiprocessor environments. Using the widely accepted notation proposed in [14], it can be described as $P|\text{prec}, c_{ij}|C_{\text{max}}$. It is a generalization of the
classical multiprocessor scheduling problem without precedence constraints and communication delays $P|\epsilon|C_{\text{max}}$ which is already \mathcal{NP}-hard even if the number of processors P is equal to two [12].

Related Work. There is a lot of research that deals with the hardness of the problem and its variants. Rayward-Smith showed that the preemptive version of the problem is \mathcal{NP}-hard for any fixed communication delays larger than one [21] and that the non-preemptive case is \mathcal{NP}-hard even if both, the processing times and the communication delays, are of unit length [22]. Further complexity results and algorithms for several special cases of the problem are discussed in [27, 28], and surveyed in [3] and in [13].

For the general problem setting, there is an approximation algorithm [15] whose approximation factor depends on the communication costs of the longest path in the schedule. A $\frac{3}{2}$-approximation algorithm can be constructed when all the communication delays c_{ij} are restricted to be no larger than the processing times of immediate predecessors of j and immediate successors of i [20].

A common heuristic idea is to extend usual multiprocessor list or level scheduling algorithms to deal with communication delays. For example, the MCP heuristic by Wu and Gajski [31], the mapping heuristic by El-Rewini and Lewis [9], and the DLS algorithm by Sih and Lee [20] fall into this category. Yang and Gerasoulis discuss the differences and performance issues when communication delays are considered in list scheduling heuristics and provide further variants in [33].

Later, Djordjević and Tošić [8] present a single-pass heuristic algorithm which is a generalized list scheduling technique called *chaining* and Kwok et al. combine list scheduling with a local search step in [18]. Another heuristic strategy is to decompose the problem into two stages, namely the clustering of tasks to be processed on the same processor and the subsequent ordering of these clusters. This approach has been used, e.g., by Kim and Browne [17], Sarkar [23] and Yang and Gerasoulis [32]. Fujita and Yamashita survey the connections between the list scheduling algorithm variants with and without communication delays, the clustering-based algorithms and some of the complexity and approximability results in [11]. An experimental comparison of several heuristic approaches has been carried out by Jin et al. [16].

On the exact side, there is an A^*-based algorithm to solve the problem to optimality [25] that can however suffer from large memory requirements for instances with 40 or more tasks [30]. Satish et al. [24] give a Benders-decomposition based constraint programming algorithm that quickly finds feasible schedules also for larger instances with up to 100 tasks. However, optimality can be proven only sometimes within a short time frame and rather for the smaller of the tested instances. The majority of approaches to solve the problem exactly is based on mixed-integer programming (MILP) formulations. The first effort in this direction was given by Davidović et al. in [7] and [5], and has later been improved by the authors in [6]. In subsequent research, the latter model is usually called the packing formulation. It contains bilinear terms in order to incorporate the communication delays which can be linearized either in a standard or in a more sophisticated manner [6,19]. The packing formulation has been subject to several revisions by Venugopal and Sinnen in [20] and [30]. The modifications focus mainly on avoiding the binary products beforehand by different modeling tricks, and on reducing the total number of constraints. Another proposal into this direction has been given by Ait El Cadi et al. [2]. Until today, the different integer programming models could as well only be used to
solve smaller instances with up to 50 tasks.

Contribution. In this paper, we present improvements applicable to almost all of the integer programming models known so far. These yield advantages in their size, strength, and modeling complexity. First, we show how to provably reduce the number of product variables necessary to explicitly linearize the packing formulation. Then, we prove a structural property that can be used to eliminate symmetric and redundant solutions from the search space of all the models as presented in \[6, 29, 30\]. As a side product, we briefly review the many different models and their variants from the literature using a unified notation. We identify two major modeling strategies and let our and previous improvements meld into two new more compact and strengthened formulations which are then experimentally compared with the improved linearized packing formulation and the model by Ait El Cadi et al. from \[2\] using a large set of benchmark instances with up to 100 tasks. The experiments are carried out in a realistic setting where all of the models are initialized with the same preprocessing information as it would naturally be computed when solving the problem in practice. Our results show that, when a standard commercial MILP solver is used, the performance of the models varies significantly in terms of (a) finding good feasible solutions quickly and (b) proving optimality of known solutions by deriving strong lower bounds on the makespan. In these disciplines and hence also in the number of solved instances (given a time limit of ten minutes), the models derived in this paper compare favorably with the others. The results also indicate that the performance depends on the precedence structure of the task graphs and the number of processors \(P\).

Outline. This manuscript is built up as follows. Sect. \(2\) gives basic definitions and notations necessary to understand the problem and the integer programming models and their variants known so far. The proposed improvements are then presented in Sect. \(3\) and new models that make use of these features are introduced in Sect. \(4\). The evaluation of these models takes place in Sect. \(5\) and we close with conclusions in Sect. \(6\).

2 Problem Statement and Known Formulations

2.1 The Multiprocessor Scheduling Problem with Communication Delays (MPSCD)

The input to the MPSCD consists of a task graph \(G = (V, A)\) together with (a) processing times \(L_i\) associated to each task \(i \in V\), (b) edge weights \(c_{ij}\) for each \((i, j) \in A\) specifying the communication delays, and (c) the number \(P\) of available processors. If \(t_i\) denotes the starting time of a task \(i\) and \((i, j) \in A\), then task \(j\) can start its execution earliest at time \(t_i + L_i\) if \(j\) is processed on the same processor as task \(i\). If \(i\) and \(j\) are processed on different processors, then \(j\) can start earliest at time \(t_i + L_i + c_{ij}\). The standard and here considered objective of the MPSCD is to minimize the makespan \(\max_{i \in V} t_i + L_i\).

As a convention, we will assume that the processors are enumerated by an index set \(P = \{1, \ldots, P\}\). Similarly, the task set is associated with the vertices \(V = \{1, \ldots, n\}\) of the task graph.

3
2.2 The packing formulation

The packing formulation as presented in [6] uses several types of variables, starting with general integer variables (without explicit integrality requirement), \(t_i\) and \(p_i\), specifying the starting time and processor index of each task \(i \in V\), respectively. The fundamental idea of the formulation is, however, to model a feasible overlapping of tasks using special kinds of ordering variables for all \(i, j \in V, i \neq j\):

\[
\sigma_{ij} = \begin{cases}
1, & \text{if task } i \text{ must finish before task } j \text{ starts} \\
0, & \text{otherwise}
\end{cases}
\]

\[
\epsilon_{ij} = \begin{cases}
1, & \text{if } p_i < p_j \\
0, & \text{otherwise}
\end{cases}
\]

Additionally, the precise processor assignment for each task is reflected using the following variables for each task \(i \in V\), and each \(k \in P\):

\[
x_{ik} = \begin{cases}
1, & \text{if } p_i = k \\
0, & \text{otherwise}
\end{cases}
\]

The packing formulation is the following mixed-integer quadratic program:

\[
\min C_{\text{max}}
\]

s.t. \(\sigma_{ij} + \sigma_{ji} \leq 1\) for all \(i, j \in V, i \neq j\) (1)

\(\epsilon_{ij} + \epsilon_{ji} \leq 1\) for all \(i, j \in V, i \neq j\) (2)

\(\sigma_{ij} + \epsilon_{ij} + \epsilon_{ji} \geq 1\) for all \(i, j \in V, i \neq j\) (3)

\(\sigma_{ij} = 1\) for all \((i, j) \in A\) (4)

\(t_i + L_i \leq C_{\text{max}}\) for all \(i \in V\) (5)

\(t_j - t_i - L_i - (\sigma_{ij} - 1)M \geq 0\) for all \(i, j \in V, i \neq j\) (6)

\(p_j - p_i - 1 - (\epsilon_{ij} - 1)P \geq 0\) for all \(i, j \in V, i \neq j\) (7)

\(t_i + L_i + \sum_{k \in P} \sum_{l \in P, l \neq j} c_{ij} x_{ik} x_{jl} \leq t_j\) for all \((i, j) \in A\) (8)

\(\sum_{k \in P} x_{ik} = 1\) for all \(i \in V\) (9)

\(\sum_{k \in P} p_i x_{ik} = p_i\) for all \(i \in V\) (10)

\(C_{\text{max}} \geq 0\)

\(t_i \geq 0\) for all \(i \in V\)

\(p_i \geq 1\) for all \(i \in V\)

\(x_{ik} \in \{0, 1\}\) for all \(i \in V, \text{ for all } k \in P\)

\(\sigma_{ij} \in \{0, 1\}\) for all \(i, j \in V, i \neq j\)

\(\epsilon_{ij} \in \{0, 1\}\) for all \(i, j \in V, i \neq j\)

Inequalities (1) and (2) impose that there can be at most one valid ordering of tasks and their assigned processor indices, respectively. Further, if an ordering is already known due to the precedence relations, then it is set by (4).

If two tasks \(i\) and \(j\) are running on the same processor \((\epsilon_{ij} + \epsilon_{ji} = 0)\), then inequalities (3) make sure that they are ordered. Similarly, if neither task starts before the other finishes \((\sigma_{ij} + \sigma_{ji} = 0)\), then they must be running on different processors.
The constraints impose the correct lower bounds on the makespan objective variable to be minimized.

Inequalities make sure that the starting times of ordered tasks are consistent. The constant needs to be chosen such that the constraint is satisfied if is not ordered after (\(\sigma_{ij} = 0\)). In [6], it is proposed to set \(M\) to any known upper bound on the makespan which is safe but unnecessarily weakens the formulation as will be discussed in Sect. 3.3.

If \(\epsilon_{ij}\) is set to 1, inequalities require \(p_j\) to be strictly greater than \(p_i\). However, in principle, the formulation allows \(\epsilon_{ij}\) and \(\epsilon_{ji}\) to be both zero while \(p_i \neq p_j\). This causes no harm since the communication delays are imposed based on the \(x\)-variables. However, it is of interest for different modeling approaches as discussed in Sect. 2.3.2.

Inequalities impose the precedence constraints and communication delays if the respective tasks are assigned to different processors. In the displayed form, these constraints have bilinear terms making the formulation a non-linear one. We will discuss in the following subsection how to deal with this issue.

Finally, each task must be assigned to exactly one processor as is enforced by (9) and (10) translates these decisions into the correct processor indices.

2.3 Linearization of the packing formulation

What has been left open so far is how to deal with the products arising in constraints. Different approaches have been proposed in the literature and will be discussed in the following. We will distinguish explicit linearizations where the bilinear terms are replaced by additional variables, and implicit linearizations where the products are avoided by modeling the problem differently.

2.3.1 Explicit linearization of the packing formulation

The most straightforward way to linearize the bilinear terms is to apply the standard linearization approach used in integer linear programming as it has been originally suggested by Fortet [10] and has been carried out for this problem in [6]. Each product \(x_{ik}x_{jl}\) is modeled using a variable \(y_{kl}^{ij}\) and three constraints:

\[
\begin{align*}
y_{kl}^{ij} & \leq x_{ik} \quad \text{for all } (i, j) \in A \text{ and all } k, l \in \mathcal{P}, k \neq l \quad (11) \\
y_{kl}^{ij} & \leq x_{jl} \quad \text{for all } (i, j) \in A \text{ and all } k, l \in \mathcal{P}, k \neq l \quad (12) \\
y_{kl}^{ij} & \geq x_{ik} + x_{jl} - 1 \quad \text{for all } (i, j) \in A \text{ and all } k, l \in \mathcal{P}, k \neq l \quad (13)
\end{align*}
\]

The second one is an application of a more involved linearization method (called compact linearization). It can be applied only to integer programs with assignment constraints and has been proposed by Liberti [19]. Following [6], one needs to add the constraints:

\[
\begin{align*}
\sum_{k \in \mathcal{P}} y_{kl}^{ij} & = x_{jl} \quad \text{for all } i, j \in V, i \neq j, \text{ for all } l \in \mathcal{P} \quad (14) \\
y_{ij}^{kl} & = y_{ji}^{lk} \quad \text{for all } i, j \in V, i \neq j, \text{ for all } k, l \in \mathcal{P} \quad (15)
\end{align*}
\]

Clearly, (15) needs to be stated only for the cases where \(i < j\). According to the experimental remarks given in [6], each of the two strategies may be superior
in practice and this depends mainly on the density of the task graph. An important fact to notice here is that the ‘compact’ linearization approach requires \(y\)-variables to be introduced for each pair of tasks, not only for dependent ones.

2.3.2 Implicit linearization of the packing formulation

Venugopalan and Sinnen [29, 30] proposed three linear variants of the packing formulation that avoid the introduction of additional variables.

The idea of the first approach is to plug in constraints (13) directly into inequalities (8), leading to (16). In order to still be valid in the case that \(x_{ik} + x_{jl} = 0\), inequalities (17) are added.

\[
\begin{align*}
t_i + L_i + c_{ij}(x_{ik} + x_{jl} - 1) & \leq t_j \quad \text{for all } (i, j) \in A, k, l \in P, k \neq l \\
t_i + L_i & \leq t_j \quad \text{for all } (i, j) \in A
\end{align*}
\]

Alternatively, the authors propose to model the communication delays using the \(\epsilon\)-variables by replacing inequalities (8) with (18). In [29], they enforce transitive consistency on the \(\epsilon\)-variables by inequalities (19). This is however not sufficient to also achieve consistency with the \(p\)-variables as this still allows for cases where \(p_i \neq p_j\) although \(\epsilon_{ij} = \epsilon_{ji} = 0\). Further, the number of these constraints is of order \(\Theta(|V|^3)\).

\[
\begin{align*}
t_i + L_i + c_{ij}(\epsilon_{ij} + \epsilon_{ji}) & \leq t_j \quad \text{for all } (i, j) \in A \\
\epsilon_{ij} + \epsilon_{jk} & \geq \epsilon_{ik} \quad \text{for all } i, j, k \in V, i \neq j \neq k
\end{align*}
\]

Both problems can however be circumvented. Venugopalan and Sinnen showed in [30] that consistency of the processor assignments, without the \(x\)-variables, can also be established using inequalities (20) instead of (19).

\[
p_j - p_i - \epsilon_{ij}P \leq 0 \quad \text{for all } i, j \in V, i \neq j
\]

The total number of constraints is then only of order \(O(|V|^2)\). Moreover, the \(x\)-variables together with constraints (14) and (15) can be dropped when using this strategy which lets the size of the formulation be independent from the number of processors.

Another approach that requires no more than a quadratic number of variables and constraints in the number of tasks and processors is given by Ait El Cadi et al. [2]. It uses only the \(x\)-, \(\sigma\)- and \(t\)-variables and the constraints (9) and (10) from the packing formulation. Further, the constraints (8) are reformulated by removing the summations and adding a constraint for each pair of processors instead, using individual coefficients \(c_{ij,kl}\) for each pair of processors \(k, l \in P\) (so that \(c_{ij,kl}\) can be set to 0 for \(k = l\)):

\[
\begin{align*}
t_i + L_i + c_{ij,kl}(x_{ik} + x_{jl} - 1) & \leq t_j \quad \text{for all } (i, j) \in A, k, l \in P
\end{align*}
\]

Independent tasks are ordered using the following big-M constraints:

\[
\begin{align*}
t_i + L_i + M(3 - x_{ik} + x_{jk} - \sigma_{ij}) & \leq t_j \quad \text{for all } i, j \in V, (i, j), (j, i) \notin A, k \in P \\
t_j + L_j + M(2 - x_{ik} + x_{jk} + \sigma_{ij}) & \leq t_i \quad \text{for all } i, j \in V, (i, j), (j, i) \notin A, k \in P
\end{align*}
\]
3 New Reductions and Improvements

3.1 Compacting the compact linearization

As stated in Sect. 2.3.1, when applying the compact linearization for the packing formulation as proposed in [6], the number of variables increases over the standard linearization method. While in the usual approach,

$$|A| \cdot P(P - 1)$$

variables and 3$$|A| \cdot P(P - 1)$$ inequalities need to be introduced, the compact method requires

$$|V|(|V| - 1) \cdot P^2$$ variables, $$|V|(|V| - 1) \cdot P$$ equations of type (14) and (with the obvious reduction) $$|V|(|V| - 1)/2 \cdot P^2$$ equations of type (15).

From equations (15) one can see directly that half of the variables are in fact redundant. We can eliminate all $$z$$-variables for $$j > i$$ and all equations (15) by reformulating and splitting (14) as follows:

$$\sum_{k \in P} y_{ij}^{kl} = x_{jl} \quad \text{for all } i, j \in V, i < j, \text{ for all } l \in P \quad (21)$$

$$\sum_{k \in P} y_{ji}^{kl} = x_{jl} \quad \text{for all } i, j \in V, i > j, \text{ for all } l \in P \quad (22)$$

However, since the products are only needed (and evaluated) for dependent task pairs, we strive to make the number of additional variables and equations proportional to the number of arcs again. We proceed as follows.

Given $$(i, j) \in A$$, we are interested in all the products $$x_{ik} \cdot x_{jl}$$ for all $$k, l \in \{1, \ldots, P\}$$. For each vertex $$i \in V$$, let $$A_i = \{j \in V \mid (i, j) \in A \text{ or } (j, i) \in A\}$$. As a consequence, for $$(i, j) \in A$$, it holds that $$i \in A_j$$ and $$j \in A_i$$.

Consider the set of equations:

$$\sum_{k \in P} x_{ik} x_{jl} = x_{jl} \quad \text{for all } i \in V, j \in A_i, l \in P \quad (23)$$

We want to introduce $$y_{ij}^{kl}$$ only for $$i < j$$ (irrelevant whether $$(i, j) \in A$$ or $$(j, i) \in A$$). Hence, we replace each equation (23) by one of the following two equations, depending on whether $$i < j$$ or $$j < i$$:

$$\sum_{k \in P} y_{ij}^{kl} = x_{jl} \quad \text{for all } i \in V, j \in A_i, i < j, l \in P \quad (24)$$

$$\sum_{k \in P} y_{ji}^{kl} = x_{jl} \quad \text{for all } i \in V, j \in A_i, j < i, l \in P \quad (25)$$

Theorem 3.1. For any integral solution to the $$x$$-variables satisfying constraints (9), equations (24) and (25) imply that $$y_{ij}^{kl} = x_{ik} \cdot x_{jl}$$ for each $$(i, j) \in A$$ and each $$k, l \in \{1, \ldots, P\}$$.

Proof. We pick some $$(i, j) \in A$$ and assume, w.l.o.g., that $$i < j$$ such that we have a set of equations of type (24) (however, for $$j < i$$, the following arguments can equally be stated using equations (25)). Let the rows of this equation set be ordered in the following way:

$$y_{ij}^{11} + y_{ij}^{21} + \ldots + y_{ij}^{P1} = x_{j1}$$
$$y_{ij}^{12} + y_{ij}^{22} + \ldots + y_{ij}^{P2} = x_{j2}$$
$$\ldots + \ldots + \ldots + \ldots = \ldots$$
$$y_{ij}^{1P} + y_{ij}^{2P} + \ldots + y_{ij}^{PP} = x_{jP}$$

Now, since $$x_{j1} + x_{j2} + \cdots + x_{jP} = 1$$, exactly one of the above rows has a right hand side of 1. Let the $$l$$-th row be the according one, i.e.,
\[y_{ij}^1 + y_{ij}^2 + \ldots + y_{ij}^P = x_{jl} = 1 \]

For a moment, we assume integrality of the \(y \)-variables and hence, one of the variables on the left hand side must be equal to 1. This is semantically correct: Exactly one product variable in the corresponding row must be 1, since also \(x_{i1} + x_{i2} + \ldots + x_{iP} = 1 \). Now suppose that \(y_{ij}^{kl} = 1 \) for some \(k \in \mathcal{P} \). If then \(x_{ik} = 1 \), this would be fine, so assume to the contrary that \(x_{ik} = 0 \). Consider then the following row that exists since \(i \in A_j \):
\[
y_{ij}^{k1} + y_{ij}^{k2} + \ldots + y_{ij}^{kP} = x_{ik} = 0
\]

The left hand side of the latter equation contains \(y_{ij}^{kl} \) which is assumed to be 1, so \(x_{ik} \) cannot be 0 at the same time - a contradiction. So until here, we can conclude that whenever \(y_{ij}^{kl} = 1 \) then \(x_{jl} = 1 \) as desired.

Assume now that \(y_{ij}^{kl} = 0 \). If this is because the row containing \(y_{ij}^{kl} \) has right hand side \(x_{jl} = 0 \), then this is clearly correct. So assume that \(x_{jl} = 1 \). In this case, there must be some \(y_{ij}^{k'l} = 1 \) for some \(k' \neq k \), and, hence by the observations just made, this implies \(x_{ik'} = 1 \). As a consequence, by constraints \(\text{(9)} \), \(x_{ik} = 0 \) as desired.

By a similar argument, one can show that integrality of the \(x \)-variables implies integrality of the \(y \)-variables. Suppose that the right hand side 1 in
\[y_{ij}^1 + y_{ij}^2 + \ldots + y_{ij}^P = x_{jl} = 1 \]

is split over multiple variables, say w.l.o.g. over \(y_{ij}^{a1} \) and \(y_{ij}^{b1} \). Then there are rows
\[
y_{ij}^{a1} + y_{ij}^{a2} + \ldots + y_{ij}^{aP} = x_{ia} \\
y_{ij}^{b1} + y_{ij}^{b2} + \ldots + y_{ij}^{bP} = x_{ib}
\]
where the upper one contains \(y_{ij}^{a1} > 0 \) and the lower one contains \(y_{ij}^{b1} > 0 \) on the left hand sides. This means that both \(x_{ia} \) and \(x_{ib} \) are forced to be > 0 which is, again by \(\text{(9)} \), impossible.

Corollary 3.2. There is a compact linearization of the packing formulation that requires only \(|A| \cdot P^2\) additional variables and \(2|A|P\) additional constraints.

3.2 Excluding Redundant Integer Solutions

Let \(T_P = \{ t \in \mathbb{N}^V \mid t \text{ feasible} \} \) be the set of feasible task starting time vectors where there exists a feasible processor assignment for \(P \) processors.

The set of inequalities \(\text{(1)}, \text{(2)} \) and \(\text{(3)} \) allows for multiple solutions in the \(\sigma \)- and \(\epsilon \)-variables that correspond to the same task starting time vectors \(t \in T_P \).

Before we prove this, we state some central observations that help us afterwards.

Observation 3.3. Since \(\sigma_{ij} = 1 \) for all \((i, j) \in A \), inequalities \(\text{(3)} \) are trivially satisfied for dependent pairs of tasks and can hence be omitted for them. The same is true for \(\text{(1)} \) since \(\sigma_{ji} = 0 \) and for \(\text{(6)} \) since dependent tasks are already ordered due to the communication delay constraints.

Observation 3.4. (as already stated in [30]) Any integer solution to inequalities \(\text{(2)} \) implies \(\text{(1)} \) to be satisfied. Further, any integer solution to \(\text{(7)} \) and \(\text{(20)} \) implies \(\text{(2)} \) to be satisfied.
Theorem 3.5. Let $i, j \in V$ such that neither $(i, j) \in A$ nor $(j, i) \in A$. Then, for each $t \in T_P$, there is a feasible solution that satisfies:

$$\sigma_{ij} + \sigma_{ji} + \epsilon_{ij} + \epsilon_{ji} = 1$$

(26)

Proof. We need to show that an exclusion of the case where $\sigma_{ij} + \sigma_{ji} = 1$ and $\epsilon_{ij} + \epsilon_{ji} = 1$ at the same time is permitted, i.e., that adding (26) does not exclude valid solutions in terms of the starting times of the tasks.

An important prerequisite is to see that all independent task-pairs $k, l \in V$ that are assigned to the same processor ($\epsilon_{kl} = \epsilon_{lk} = 0$) are ordered by combining (9) with either (7) or (26). In particular, (9) are the only other constraints where the σ-variables are incorporated. The two instances of (9) for i and j read:

$$t_i \geq t_j + L_j - M(1 - \sigma_{ji})$$

(6a)

$$t_j \geq t_i + L_i - M(1 - \sigma_{ij})$$

(6b)

Since i and j are independent, t_i and t_j only depend on the other tasks assigned to the respective processors of i and j which must be different as we assume that $\epsilon_{ij} + \epsilon_{ji} = 1$. Let, w.l.o.g., $t_i \leq t_j$ and consider the set of predecessors of j on its processor $J_\prec = \{k \in V | \epsilon_{jk} + \epsilon_{kj} = 0, \sigma_{kj} = 1\}$. Due to the ordering of these tasks, there is some minimum possible starting time $t_j^{\text{min}} = \max_{k \in J_\prec} t_k + L_k$ for j. Clearly, $t_j \geq t_j^{\text{min}}$.

Since $t_i \leq t_j$ and when reasonably assuming $L_j > 0$, (6a) implies $\sigma_{ji} = 0$. Moreover, any potential feasible solution where j starts in the (possibly empty) interval $[t_j^{\text{min}}, t_i + L_i - 1]$ requires $\sigma_{ij} = 0$ in order to not violate (6a) and hence satisfies (26). Finally, for all feasible solutions where $t_j \geq t_i + L_i$, the inequality (6a) is still satisfied (for any $M \geq 0$) if we set σ_{ij} to 0. Hence, adding (26) does not exclude any solutions.

For the symmetric case $t_j \leq t_i$, the same line of argumentation can be used with the roles of i and j, σ_{ij} and σ_{ji}, and (6a) and (6b) interchanged.

Corollary 3.6. Using equation (26) instead of (7), (9) and (11) yields a stronger formulation and continuous relaxation of the problem.

Proof. The claim follows immediately, as (26) excludes feasible solutions in terms of the σ-variables that are redundant w.r.t. the feasible starting time vectors t and satisfy (3). Further, constraints (11) and (2) are implied by (26) not only for integer but also for fractional solutions.

3.3 Pair-dependent choice of M

In inequalities (11), the constant M needs to be chosen such that the constraint is satisfied if j is not ordered after i ($\sigma_{ij} = 0$). In (9), it is proposed to set M to any known upper bound on the makespan, and in (30), it is proposed to set it to $\sum_{i \in V} L_i + \sum_{(i, j) \in A} \epsilon_{ij}$. Both choices are safe but unnecessarily weaken the formulation w.r.t. fractional solutions in the σ-variables. Especially, since this ordering constraint is only required for independent pairs of tasks, the second summation is superfluous. Moreover, in practice, one will usually compute a heuristic solution in advance, and therefore have not only lower bound positions $\text{lb}(i)$ but also upper bound positions $\text{ub}(i)$ for each task $i \in V$. In this case, it is possible to compute a stronger individual value $M_{ij} = \text{ub}(i) + L_i - \text{lb}(j)$ for each of the constraints (9).
3.4 Redundancy in Task-Processor Assignments

In the original packing formulation, variables p_i were just an alias for $\sum_{k \in P} k x_{ik}$ and all of their occurrences could therefore be replaced by this term. In essence, as already indicated in Sect. 2.3.2 there are two choices that avoid redundancy in this respect. Either one uses the p-variables together with the ϵ-variables and inequalities (20). Or ones uses just the x-assignment variables. We will see in Sect. 4.2 how constraints (26) can be reformulated with x-variables. In [30], the authors state that it is an advantage of their model to be completely independent in size from the number of processors. However, if this requires more variable-types whose numbers are quadratic in $|V|$ (like the ϵ-variables), this will typically result in a net increase over $|V| \cdot P$ since one can assume that multiprocessing systems are usually applied to task systems where the number of tasks is at least as large as the number of processors.

4 New Models

A first improved model results when applying all the improvements from Sect. 3 to the packing formulation. In particular, inequalities (1), (2) and (3) are replaced by equation (26), variables σ_{ij} and inequalities (6) (with the task-dependent M_{ij} from Sect. 3.3) are restricted to $i, j \in V$ where neither (i, j) nor $(i, j) \in A$. Finally, the linearization approach from Sect. 3.1 is applied and the bilinear terms $x_{ik}x_{jl}$ are replaced by the corresponding variables y_{kl}^{ij}.

To address the either-or choice between the p and the x-variables as explained in Sect. 3.4, we now formulate two new models that incorporate the reductions from sections 3.2 and 3.3 as well. To stress their reduced complexity and the choice of either p- or x-variables, we call these two models Core-P and Core-X.

4.1 Formulation Core-P

This formulation is a straightforward application of the changes and reductions from sections 3.2 and 3.3 to the formulation by Venugopalan and Sinnen from [30].

\[
\begin{align*}
\text{min} & \quad C_{\text{max}} \\
\text{s.t.} & \quad \sigma_{ij} + \sigma_{ji} + \epsilon_{ij} + \epsilon_{ji} = 1 & \text{for all } i, j \in V, \ i < j, \ (i, j), (j, i) \notin A \\
& \quad t_i + L_i \leq C_{\text{max}} & \text{for all } i \in V \\
& \quad t_j - t_i - L_i - (\sigma_{ij} - 1)M_{ij} \geq 0 & \text{for all } i, j \in V, \ (i, j), (j, i) \notin A \\
& \quad p_j - p_i - 1 - (\epsilon_{ij} - 1)P \geq 0 & \text{for all } i, j \in V, \ i \neq j \\
& \quad p_j - p_i - \epsilon_{ij}P \leq 0 & \text{for all } i, j \in V, \ i \neq j \\
& \quad t_i + L_i + c_{ij}(\epsilon_{ij} + \epsilon_{ji}) \leq t_j & \text{for all } (i, j) \in A \\
& \quad C_{\text{max}} \geq 0 \\
& \quad t_i \geq 0 & \text{for all } i \in V \\
& \quad p_i \geq 1 & \text{for all } i \in V \\
& \quad \sigma_{ij} \in \{0, 1\} & \text{for all } i, j \in V, \ (i, j), (j, i) \notin A \\
& \quad \epsilon_{ij} \in \{0, 1\} & \text{for all } i, j \in V, \ i \neq j
\end{align*}
\]
4.2 Formulation Core-X

The following formulation Core-X is a variant with only x-variables. However, they are used in a different way as has been proposed in [2] or [29]. Instead of inequalities (16) and (17), we install (28) and (29) to model the communication delays. Inequalities (28) enforce these, whenever i is assigned to processor k and j is assigned to a processor with strictly larger index. Similarly, (29) has the same effect when j is assigned to a processor with strictly smaller index. Further, since there are no ϵ-variables, the new equations (26) from Sect. 3.2 are turned into inequalities (27). These enforce $\sigma_{ij} + \sigma_{ji} = 1$ if and only if i and j are both assigned to processor $k \in P$, i.e., when $x_{ik} = 1$ and all x_{jl} for $l \neq k$ are zero. For ease of notation, let $V_i = \{ j \in V \mid i < j \text{ and } (i,j) \notin A \text{ and } (j,i) \notin A \}$.

$$\min C_{max}$$

s.t. $\sigma_{ij} + \sigma_{ji} - x_{i,k} + \sum_{l \in P, l \neq k} x_{jl} \geq 0$ for all $j \in V_i, k \in P$ (27)

$$t_i + L_i \leq C_{max} \text{ for all } i \in V$$

$$t_j - t_i - L_i - (\sigma_{ij} - 1)M_{ij} \geq 0 \text{ for all } i,j \in V, (i,j), (j,i) \notin A$$

$$t_i + L_i + c_{ij}(x_{ik} - \sum_{l \in P, l \leq k} x_{jl}) \leq t_j \text{ for all } (i,j) \in A, k \in P$$ (28)

$$t_i + L_i + c_{ij}(x_{ik} - \sum_{l \in P, l \geq k} x_{jl}) \leq t_j \text{ for all } (i,j) \in A, k \in P$$ (29)

$$\sum_{k \in P} x_{ik} = 1 \text{ for all } i \in V$$

$$C_{max} \geq 0$$

$$t_i \geq 0 \text{ for all } i \in V$$

$$x_{ik} \in \{0,1\} \text{ for all } i \in V, \text{ for all } k \in P$$

$$\sigma_{ij} \in \{0,1\} \text{ for all } i,j \in V, (i,j), (j,i) \notin A$$

5 Experimental Evaluation

5.1 MIP models

The developments presented suggest a comparison of the following problem formulations:

- **PCK-C**: The linearized packing formulation with all improvements as mentioned in the beginning of Sect. 4.
- **Core-P**: The new formulation with p- and ϵ-variables but no x-variables from Sect. 4.1
- **Core-X**: The new formulation with x- but neither p- nor ϵ-variables from Sect. 4.2
- **Core-X-VS**: Like Core-X, but with the inequalities (16) and (17) from [29] instead of (28) and (29) to formulate the communication delay constraints.
- **2M**: The formulation by Ait El Cadi et al. from [2].
5.2 Instances

We use three benchmark sets from the literature.

The first set **Structure** consists of 207 task graphs that have been used for comparisons already in [30]. Here, the emphasis is laid on determining a model’s sensitivity to different input graph structures. The instance sets consist of in-trees (abbreviated in figures as InT), out-trees (OutT), fork- (F), join- (J), and fork-and-join (F-J) graphs, graphs without arcs, i.e., only independent tasks (Ind), pipeline graphs (Pipe, with diamond structures), stencil (St), series-parallel (SP) and random (Rnd) graphs. All instances have either 10, 21 or 30 nodes and varying density. Another parameter of interest is the communication-to-computation ratio (CCR) defined as $\text{CCR} = \sum_{(i,j) \in A} c_{ij} / \sum_{i \in V} L_i$. The graphs were generated such that the CCR is either about 0.1, 1, 2 or 10.

The second set is from [4] and can be further divided into two subsets. In the first subset (called DC from now on), the instances have a randomly generated precedence structure, random communication delays, and either 50, 100, 200, 300, 400 or 500 nodes. For each of these sizes, there are 30 instances, more precisely each time six with density 20, 40, 50, 60, 80 where density is defined as the percentage of arcs w.r.t. a complete directed graph. We restricted our experiments to those with 50 or 100 nodes, so these were 60 instances in total.

The other subset (**ogra**) consists of instances whose optimal solutions correspond to a dense packing of the tasks for a pre-specified number of processors, i.e., when scheduled on the respective number of processors, none of them will have any idle cycle. The task graphs have 50, 100, 150, . . ., 500 nodes, for each size there are 70 instances. In all of those with the same number of nodes, all tasks have the same processing time, and hence only the edge density and communication delays differ. Further, the edge sets of instances with higher density have those of instances with smaller densities as their subsets. Also here we restricted our experiments to instances with 50 or 100 nodes.

We remark here that a common drawback of all, but in particular of the DC and **ogra** benchmark sets, is, that in most of the instances there exist several arcs with redundant communication delays associated to them. If $(i, j) \in A$ but there is also a path from i to j such that the accumulated lengths of the tasks succeeding i and preceding j on this path is larger than the weight c_{ij} of the arc (i, j), then these communication delays have no effect in practice and the corresponding constraints of the linear programs will not be binding.

For the DC instances, all instances with 50 and 100 tasks have arc weights that are redundant in this respect, and the ratio of non-redundant arc-weights varies between only 3 and 29%, and 7 and 50% respectively. In case of the **ogra** instances, 62 (63) out of 70 instances with 50 (100) tasks have redundant communication delays. In both sets, the percentage of non-redundant ones is however higher on average and lies between 42 and 99%. For the **Structure** instances, 31 of the 207 instances have redundant arc weights. The ratio of non-redundant ones differs from instance to instance and is spread across the whole interval between 20 and 96%.

While the **ogra** instance set explicitly specifies how many processors shall be used (up to 16), the parallelism inherent to the DC and also the **Structure** instances is limited. Hence, we restricted our benchmarks to $P = 2, 4,$ and 8 for these sets.
5.3 System Setup, MILP Solver and Time Limits

Our experiments were run on a Debian Linux system with g++ 4.9 and optimization level -O2 on an Intel Core i7-3770T processor running at 2.5 GHz and with 32 GB RAM.

To solve the integer programming models, we used Gurobi\(^1\) in version 6.5.1. In order to reduce side effects as much as possible, we configured Gurobi to use only a single thread and disabled all internal heuristics.

Whenever a MIP is solved using Gurobi, we specified a time limit of 600 seconds. We remark that Gurobi internally uses wall clock (elapsed) time measurement while we display the sustained total CPU and system time (for both, preprocessing and MIP solving) in our figures. Since we used our system exclusively and only ran a single thread, the difference is only marginal. Further, as Gurobi tends to stop some milliseconds before its given time limit and the time required for the preprocessing is negligibly small, the measured CPU and system time never exceeded 603 seconds.

5.4 Preprocessing

All the input tasks graphs are passed to a simple preprocessing routine, in order to derive lower and upper bound positions \(\text{lb}(i)\) and \(\text{ub}(i)\) for each of the tasks. To this end, the graphs are also appended by an artificial super source and an artificial super sink. Using this approach, no makespan variable is necessary as the starting time variable of the super sink can be used instead.

The preprocessing phase works as follows: At first, a global upper bound \(\text{UB}_P\) is established by executing a heuristic that basically resembles the highest-level first with estimated times (HLFET) strategy as presented by Adam et al.\(^1\) but with an adapted processor mapping step to integrate the presence of communication delays. More precisely, the tasks are scheduled in non-increasing order of their critical path length (priority). Each task is scheduled on the processor that allows it to start earliest (which depends on the processor assignments of its predecessor tasks). Ties are broken such that the task with the larger processing time or the processor with the smaller index is selected. This procedure is once repeated with the DAG that results when reversing all the arcs of the task graph and the better of the two schedules is selected. Secondly, lower bounds on task starting times are derived by transitively propagating the processing times using the precedence relationships in a topologically ordered fashion. This leads to a global lower bound \(\text{LB}_P\) (the lower bound on the starting time of the super sink) and minimum distances between dependent task pairs. The latter are then combined with \(\text{UB}_P\) in order to transitively propagate the upper bound positions backward starting from the super sink.

The information gained in the preprocessing phase is exploited for all of the models in the same way by:

- Setting the lower and upper bound positions of each task \(i \in V\) as the lower and upper bound of the respective starting time variable \(t_i\).
- Fixing any \(\sigma\)-variables for known (i.e. also transitive) precedences.

\(^1\)http://www.gurobi.com/
• Adding communication delay constraints only for arcs \((i, j) \in A\) where \(c_{ij} > 0\) and additional simple precedence constraints for the super source and super sink.

• Computing pair-dependent values \(M_{ij}\) as described in Sect. 3.3

5.5 Results

The presentation adheres to the following rules: For each instance set (and size-subset), first the running times of all the models are displayed for either all instances, or (if these are too many) for those that could be solved by at least one of the models. In addition, for all instances remaining unsolved by all models, a plot that displays the lower bounds and best feasible solutions (upper bounds) obtained is added. More precisely, there will be two points for each model and instance, the upper one reflecting the upper bound and the lower one the lower bound computed. This shall give a hint which of the models was closest to proving optimality of a known solution when the time limit occurred. In these figures, the computed lower and upper bounds are normalized to the initially known lower bound after preprocessing \(\text{LB}_P\) (giving the base 100) as this value is equal for all models. As a remark, this bound could typically not be improved at the root of the branch-and-bound tree by any of the models, although, with slightly more effort, better lower bounds could be derived from the preprocessing step. Further, the effective size of the models and also their performance is significantly influenced by the derived global lower and upper bound. Hence, in all the bound plots, the upper bound \(\text{UB}_P\) is shown (also normalized to the initial lower bound) as ‘UB’. In some plots, it becomes apparent that the heuristic schedule is sometimes far away from the optimum solution. On the other hand, there were a few instances solved to proven optimality already by the preprocessing. These instances were filtered out from the displayed figures as no integer program had to be solved.

5.5.1 Graph Structures Instance Set

To display the running times for the 207 Structure instances aesthetically pleasant, we skipped all instances where all models timed out, and split the remaining ones into three parts. Nevertheless, the obtained bounds for the unsolved instances will be displayed separately.

For \(P = 2\), there were 102 instances that could be solved by at least one model and these are shown in Fig. 1. The picture concerning the performance of the models is however similar in each of the plots: When an instance can be solved, then the \(x\)-variables based models (\(\text{Core-X}, \text{Core-X-VS}\)) are typically the fastest. On some instances, \(\text{Core-P}\) is faster but usually it is rather in the midfield. Except for some single instances, the packing formulation is slower than the three \(\text{Core}\) models and with \(2M\) several timeout occurred where the other models could solve the respective instance. Six instances were solved by the preprocessing. Among the remaining 99 instances that timed out for all models were nearly all instances with 30 nodes and also many with 21 nodes. For these instances, normalized lower and upper bounds on the objective function value when the timeout occurred are shown in Fig. 2. One can see there that for most of the instances, all models failed to improve on the initial lower bound.
Figure 1: Solution times for the Structure instances and $P = 2.$
On the other hand, the initial upper bounds given could typically be improved by all of the models, i.e., better feasible solutions were found. The random instances could not be solved although the initial lower and upper bounds were relatively close to each other.

For \(P = 4 \), the number of instances that could be solved by at least one of the models increased to 122. The results, shown Fig. 3, are similar to the \(P = 2 \)-case, however Core-P and also 2M perform a bit better on average. Further 22 instances could be solved by the preprocessing. For the 63 instances were all models timed out, the final lower and upper bounds on the objective function value are shown in Fig. 4. Again, the best feasible solutions found are typically much better than the initial upper bounds, but no clear trend can be observed.

When further increasing the number of processors to eight, 137 instances can be solved by at least one model and these are displayed in Fig. 5. Again the performance of Core-P is improved compared to the \(P = 4 \)-case. On most of the solved instances, it is now the fastest model followed by the \(x \)-variable based models and also 2M which is however not so robust and has several timeouts where the other formulations do not. The majority of outstanding timeouts is however discovered for the packing formulation. Since 36 instances could be solved by the preprocessing, only 34 instances remain that timed out for all the models. For these, the final lower and upper bounds on the objective function value are shown in Fig. 6. It becomes apparent that the lower bounds could now be improved in most of the cases and nearly always by all models. Which model delivers the best bounds varies however from instance to instance. The only noticeable trend is that the packing formulation typically reached the weakest bounds.
Figure 3: Solution times for the Structure instances and $P = 4$.
<table>
<thead>
<tr>
<th>Instance Set</th>
<th>Core-P</th>
<th>Core-X</th>
<th>Core-X-VS</th>
<th>2M</th>
<th>PCK-C</th>
<th>UB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core-X-VS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCK-C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5.5.2 DC Instance Set

For the DC instances with 50 tasks and $P = 2$, we see in Fig. 7 that in almost all of the cases, either all models fail to find a provably optimum solution within the time limit, or all models succeed in that respect. If only a subset of the models succeeds, then it is usually only the packing formulation that cannot compete with the others, despite the improvements applied here. Also, the packing formulation is usually among the slowest methods in the successful runs, whereas the x-variable-based models (Core-X, Core-X-VS) are typically the fastest. In most of the successful runs, $2M$ and Core-P are in the midfield, sometimes faster than the packing formulation, sometimes not and never among the fastest models. The picture is very similar when increasing P to four as is shown in Fig. 9. For $P = 8$, the number of instances remaining unsolved by all models increases significantly. Like for the Structure instance set, the relative performance of Core-P compared to the x-variable based models is improved (cf. Fig. 11).

In Fig. 8 and Fig. 10 one can see that when instances could not be solved by any of the models, then the models Core-P, Core-X, and Core-X-VS usually deliver the best lower bounds, while $2M$ and Packing are weaker in that respect. Concerning the upper bounds, the x-variable based models perform best. This is also true for $P = 8$, however the better relative performance of Core-P in terms of the lower bounds as observed before is confirmed (cf. Fig. 12).

For the instances with 100 tasks and $P = 2$, only four out of 30 can be solved by any of the models. The results are given in Fig. 13. We remark here, that even when doubling the time limit to 1.200 seconds, the amount of instances solved increases only slightly, e.g., two more instances can be solved by Core-X.
Figure 5: Solution times for the Structure instances and $P = 8$.

19
Lower and upper bounds for the unsolved instances are shown in Fig. 14. For \(P = 4 \), only once instance can, exceptionally, be solved by Core-X-VS, namely 1.100.80.3. We refrain from plotting this single instance but again give the lower and upper bounds for the unsolved instances in Fig. 15. For \(P = 8 \), no instance can be solved within the time limit whence these are also not plotted. Lower and upper bounds are given in Fig. 16. The relative performance of the models is comparable to the instances with 50 tasks, although the net improvement on the initial lower bounds is significantly worse. For \(P = 2 \) and \(P = 4 \), Core-X and Core-X-VS perform best in terms of the lower bounds, for \(P = 8 \), however, Core-P is superior. Concerning the upper bounds, the \(x \)-variable based models typically find the best feasible solutions within the time limit.

5.5.3 ogra Instance Set

For the ogra subset with 50 tasks, 2 instances were solved to optimality by the preprocessing, 42 instances timed out and only 26 instance could be solved by at least one model. However, most of these 26 instances could not be solved by 2M or the packing formulation as can be seen in Fig. 17. Models Core-X and Core-X-VS clearly perform best. Due to the special structure of these instances, the initial lower bounds given to the models is typically optimum, and the only task is to find the optimum solution. Also here it becomes apparent, that the \(x \)-variable based models were typically closest to this goal when a timeout occurred (cf. Fig. 18). For the instances with 100 tasks, the picture becomes much worse as the models have much more problems in finding good feasible solutions for most of the instances as can be seen in Fig. 18. As a consequence,
Figure 7: Solution times for the DC instances with 50 tasks and $P = 2$.

Figure 8: Lower and upper bounds for the unsolved DC instances with 50 tasks and $P = 2$.
Figure 9: Solution times for the DC instances with 50 tasks and $P = 4$.

Figure 10: Lower and upper bounds for the unsolved DC instances with 50 tasks and $P = 4$.
Figure 11: Solution times for the DC instances with 50 tasks and $P = 8$.

Figure 12: Lower and upper bounds for the unsolved DC instances with 50 tasks and $P = 8$.
Figure 13: Solution times for the DC instances with 100 tasks and $P = 2$.

Figure 14: Lower and upper bounds for the unsolved DC instances with 100 tasks and $P = 2$.
Figure 15: Lower and upper bounds for the unsolved DC instances with 100 tasks and \(P = 4 \).

Figure 16: Lower and upper bounds for the unsolved DC instances with 100 tasks and \(P = 8 \).
Figure 17: Solution times for the *ogra* instances with 50 tasks.

Figure 18: Lower and upper bounds for the unsolved *ogra* instances with 50 tasks.
only three instances with $P = 2$ can be solved within the time limit, namely \text{ogra_100_70_2} only by Core-X, \text{ogra_100_80_2} by Core-X, Core-X-VS and 2M, and \text{ogra_100_90_2} by the same three models.

6 Conclusion and Final Remarks

We have discussed structural improvements of several integer programming formulations for the Multiprocessor Scheduling Problem with Communication Delays. These improvements yield models that are provably smaller while excluding redundant solutions that have been part of the feasible region before. Further, a linearization of the packing formulation has been given that introduces a number of additional variables and constraints that is proportional to the number of precedence arcs in the task graph.

Despite the avoidance of redundancies especially due to the new equations (26), and the discussed either-or choice between using processor index (p-) and processor index ordering (ϵ-) variables and processor-assignment (x-) variables, the models presented still have some unwanted symmetries. This is true since, for imposing communication delays, it is not relevant which particular processors two dependent tasks are assigned to, but only whether they are assigned to different processors or not. However, if we refrain from modeling processor assignments explicitly, it becomes very complicated to model that all tasks using the same processor are well-ordered while making sure that no more than the available processors are used.

The experimental results showed that the newly introduced models with x-variables (Core-X and Core-X-VS) are often the most robust choice among the
compared models. With an increasing number of processors, the usage of \(p \)- and \(\epsilon \)-variables (as in Core-P) appears to be superior. Despite the improvements, it appears that the packing formulation is, in its current form, not competitive in most of the cases. In contrast to that, the model by Ait El Cadi et al. (2M) can be competitive but is inferior in terms of the robustness as relatively many timeouts are observed.

References

